SENTIMENT CLASSIFICATION WITH SUPERVISED SEQUENCE EMBEDDING

Kindly Presented by: Evangelos Papalexakis from CMU

OVERVIEW

- Introduction
- Method
- Experimental results

OVERVIEW

- Introduction
- Method
- Experimental results

- We focus on document-level sentiment classification (D-SC)
- Tackle SC as a supervised text classification task
- Two variants of D-SC:
 - Binary sentiment classification
 - Estimates overall sentiment of text as positive or negative
 - Multi-class sentiment classification
 - Determines overall sentiment of text using Likert scale
 - e.g., 5-star system for online reviews

REVIEW TEXT→

"i believe that this book is not at all helpful since it does not explain thoroughly the material."

ECML 2012

PRIOR WORK

- Surveys [1,2] on latest developments in sentiment analysis
- Discriminative supervised methods are (close to) state-of-art
 - Linear SVM trained on Bag-of-Word (BoW) with TF-IDF representation
 - We consider BoW and BoN (Bag-of-Ngram) with TF-IDF as baselines

- [1] B. Pang and L. Lee. Opinion mining and sentiment analysis. *Foundations and Trends in Information Retrieval 2008*.
- [2] Bing Liu. Sentiment Analysis and Opinion Mining. *Lectures on HLT 2012*. Morgan & Claypool Publishers.

BASELINE: BAG-OF-WORDS REPRESENTATION FOR TEXT

"Think and wonder, wonder and think."

and	2
think	2
wonder	2

- Bag-of-Words (BoW) model treats text as order-invariant collection of features ≥
 - Enumerate all unique words in text corpus and place into dictionary \mathcal{D}
 - Let $\mathbf{X} = (w_1, \cdot, w_N)$ denote a document from corpus
 - Define canonical basis vector with single non-zero entry at position w_{j} :

$$\mathbf{e}_{w_i} = (0, \dots, 1, \dots, 0)^{\top}$$

Thus, BoW representation of document \mathbf{X} :

$$\tilde{\mathbf{e}}_{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{e}_{w_i} \qquad \dim(\tilde{\mathbf{e}}_{\mathbf{x}}) = \dim(\mathbf{e}_{w_i}) = |\mathcal{D}| \times 1$$

Optionally, assign weights (e.g., TF-IDF, BM25) to every word

WORD PHRASES (N-GRAMS) IMPORTANT FOR SC TASK

- Short phrases / n-grams better capture sentiment than single words
 - E.g. words "recommend" and "book"

"I absolutely recommend this book"

"I highly recommend this book"

"I recommend this book"

"I somewhat recommend this book"

"I don't recommend this book"

HOW TO MODEL N-GRAMS / PHRASES IN BOW MODEL 1

"the film is palpable evil genius"

"the film"	1
"film is"	1
"is palpable"	1
"palpable evil"	1
"evil genius"	1

- Extend BoW to encode distributions of n-grams
 - n continuous words (i.e., n-grams) from corpus
 - Add n-grams to set Γ and use their distribution as features in BoW model:

$$\dim(\mathbf{e}_{w_i}) = |\Gamma| \times 1, \quad |\Gamma| = O(|\mathcal{D}|^n)$$

BoW with n-grams will be referred to as bag of n-grams (BoN)

BoN: Curse of Dimensionality (Following numbers are in Thousands)

Dimensionality of BoN grows exponentially with n, thus feature selection preprocessing is required

C

OVERVIEW

- Introduction
- Method
- Experimental results

THE PROPOSED METHOD: SUPERVISED SEQUENCE ENCODER (SSE)

- A model efficiently encodes text phrases and document
- KEY: embed all sliding n-gram windows from text into a learned latent space based on supervised signals
- Implemented as deep Neural Network (NN) architecture
- Latent projection and supervised classifier are jointly trained with back-propagation using stochastic gradient descent

$$\mathbf{e}_{w_i} = (0, \dots, 0, \underset{\text{at index } w_i}{1}, \dots, 0)^{\top}$$

$$\hat{\mathbf{e}}_{\gamma_j} = [\mathbf{e}_{w_j}^\top, \mathbf{e}_{w_{j+1}}^\top, \dots, \mathbf{e}_{w_{j+n-1}}^\top]^\top$$

$$\mathbf{e}_{w_i} = (0, \dots, 0, \underset{\text{at index } w_i}{1}, \dots, 0)^{\top}$$

$$\hat{\mathbf{e}}_{\gamma_j} = [\mathbf{e}_{w_j}^\top, \mathbf{e}_{w_{j+1}}^\top, \dots, \mathbf{e}_{w_{j+n-1}}^\top]^\top$$

$$\mathbf{p}_{\gamma_j} = \mathbf{G} imes \hat{\mathbf{e}}_{\gamma_j}$$

$$\mathbf{e}_{w_i} = (0, \dots, 0, \underset{\text{at index } w_i}{1}, \dots, 0)^{\top}$$

$$\hat{\mathbf{e}}_{\gamma_j} = [\mathbf{e}_{w_j}^\top, \mathbf{e}_{w_{j+1}}^\top, \dots, \mathbf{e}_{w_{j+n-1}}^\top]^\top$$

$$\mathbf{p}_{\gamma_j} = \mathbf{G} imes \hat{\mathbf{e}}_{\gamma_j}$$

$$\mathbf{e}_{w_i} = (0, \dots, 0, \underset{\text{at index } w_i}{1}, \dots, 0)^{\top}$$

$$\hat{\mathbf{e}}_{\gamma_j} = [\mathbf{e}_{w_j}^\top, \mathbf{e}_{w_{j+1}}^\top, \dots, \mathbf{e}_{w_{j+n-1}}^\top]^\top$$

$$\mathbf{p}_{\gamma_j} = \mathbf{G} imes \hat{\mathbf{e}}_{\gamma_j}$$

$$\phi(\mathbf{x}) \equiv \mathbf{d}_{\mathbf{x}} = \sum_{j=1}^{N} q_j \times h(\mathbf{p}_{\gamma_j})$$

 $g(\mathbf{d_x})$

Two variants of SSE for SC task:

-I: SSE

-II: SSE-W

$$\phi(\mathbf{x}) \equiv \mathbf{d}_{\mathbf{x}} = \sum_{j=1}^{N} q_j \times h(\mathbf{p}_{\gamma_j})$$

SSE: uniform weights $q_j = \frac{1}{N} = \frac{1}{4}, \forall j \in [1, N]$

SSE-W: learn weights from n-gram locations $\binom{j}{N}$ using mixture model

ECML 2012

Classification with Multinomial Logistic Regression (MLR)

- Popular loss model for classification [12]
- Known to rival hinge loss (SVM-like)
- Predicts conditional probability distribution over labels given input vector **d**
- Learns coefficient weights β_i for every label $i \in [1, C]$
- Performs label inference:

$$g(\mathbf{d}) = \underset{i \in [1,C]}{\operatorname{arg max}} \frac{\exp(\boldsymbol{\beta}_i^{\top} \mathbf{d})}{1 + \sum_k \exp(\boldsymbol{\beta}_k^{\top} \mathbf{d})}$$

• Called **negative log-likelihood loss** in literature due to the form of objective (loss function)

- Backpropagation [10] is supervised learning method for neural network (NN)
 - Using backward recurrence it jointly optimizes all NN parameters
 - Requires all activation functions to be differentiable
 - Enables flexible design in deep NN architecture
 - Gradient descent is used to (locally) minimize objective:

$$\mathbf{A}^{k+1} = \mathbf{A}^k - \eta \frac{\partial \mathbf{L}}{\partial \mathbf{A}^k}$$

- Stochastic Gradient Descent (SGD) [11] is first-order iterative optimization
 - SGD is an online learning method
 - Approximates "true" gradient with a gradient at one data point
 - Attractive because of low computation requirement
 - Rivals **batch learning** (e.g., SVM) methods on large datasets

CML 2012

20

ADVANTAGES OF SSE

- SSE utilizes only unigram features:
 - latent n-grams are defined as cumulative of unigram vectors
- Phrase structure is encoded by learning n embedding vectors for a unigram, one per every position in the n-gram
- SSE-W extension encodes positional information of each ngram in the global document structure
- Parameter space of SSE grows linear with n (i.e., size of n-gram)
- Computation of latent n-grams in SSE is extremely fast
 - requires only vector additions and multiplications with scalars
 - i.e., equivalent to n (sparse) projections of BoW representation

OVERVIEW

- Introduction
- Method
- Experimental results

Baseline I: Linear SVM [13] with BoN Representation

3CML 2015

$$\dim\left(\tilde{\mathbf{e}}_{\mathbf{x}}\right) = |\Gamma_n| \times 1$$

$$\dim\left(\mathbf{H}\right) = C \times |\Gamma_n|$$

Multi-class (C>2) is reduced to C binary (one-vs-all) SVM classifiers

[13] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning, 20, 1995.

3CML 2012

Baseline II: Perceptron (PRC) for BoN Representation

$$\dim (\tilde{\mathbf{e}}_{\mathbf{x}}) = |\Gamma_n| \times 1$$

$$|\Gamma_n| = O(|\mathcal{D}|^n)$$

$$\dim (\mathbf{d}_{\mathbf{x}}) = M \times |\Gamma_n|$$

BASELINE III: LTC BASED SC

- SSE was motivated by Lookup Temporal Convolution (LTC)
 - originally proposed by Collobert and Weston [8]
 - adopted to sentiment classification in our prior work [9]
 - LTC is based on supervised word embedding

- [8] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. *ICML 2008*.
- [9] Dmitriy Bespalov and Bing Bai and Yanjun Qi and Ali Shokoufandeh. Sentiment Classification Based on Supervised Latent n-gram Analysis. *CIKM 2011*.

25

SENTIMENT DATASETS

- Use two large-scale sentiment datasets
 - Amazon & TripAdvisor
- Amazon contains product reviews from 25 categories
 - samples 257,900 training / 110,562 testing / 10,000 validation
 - e.g., apparel, automotive, baby, DVDs, electronics, magazines
- TripAdvisor contains hotel reviews from across the globe
 - Samples 55,306 training / 10,078 samples testing / 5,000 validation
 - Consider only overall ratings for reviews
- Create balanced 70/30% train-test splits
 - Validating set was sampled from the respective test sets
- For baseline BoN approaches, filtering n-grams with mutual information (MI) [14]
 - Retained top **500,000** phrases from respective training sets

[14] J. Blitzer et al. Biographies, bollywood, boomboxes and blenders: Domain adaptation for sentiment classification. *ACL 2007*.

EXPERIMENTAL RESULTS: SENTIMENT CLASSIFICATION

- Micro-average error rate is reported
- Numbers marked with \uparrow (or \downarrow) are statistically significantly better than **SVM BoN-3g** with p < 0.0001 (or p < 0.01)
- o $2 \cdot \star$ denotes binary SC; $5 \cdot \star$ and $4 \cdot \star$ denote multi-class settings $4 \cdot \star$

• i.e., _____ ignores neutral reviews

Method	Amazon		TripAdvisor		
Method	$2 \cdot \star$	$4 \cdot \star$	2 · *	$4 \cdot \star$	5 · ⋆
SVM BoW-1g	10.68	29.66	8.97	33.76	44.02
SVM BoW-2g	6.60	23.69	7.60	32.05	42.17
SVM BoW-3g	6.39	23.45	7.46	32.00	43.07
SVM BoW-5g	6.48	23.53	7.53	<u>31.93</u>	44.02
Prc BoW-3g	6.55	23.00	7.54	33.94	43.05
LTC	7.05	-	8.49	-	-
SSE	5.69	22.40	6.90	33.90	42.21
SSE-W	5.63^{\dagger}	22.05^\dagger	7.01	31.41	40.76^{\ddagger}

EXPERIMENTAL RESULTS: SENTIMENT CLASSIFICATION (CONT'D)

- Macro-average error rate is reported
- \circ 5 · * and 4 · * denote multi-class settings
 - i.e., $4 \cdot \star$ ignores neutral reviews

Method	Amazon	TripAdvisor		
Method	$4 \cdot \star$	$4 \cdot \star$	5·*	
SVM BoW-1g	35.78	35.41	46.41	
SVM BoW-2g	28.26	33.68	44.68	
SVM BoW-3g	27.98	33.50	45.12	
SVM BoW-5g	28.02	33.45	46.41	
Prc BoW-3g	26.45	34.73	43.58	
SSE	25.30	34.22	42.88	
$\mathbf{SSE}\text{-}\mathbf{W}$	24.61	32.25	40.54	

29

Thanks a million to "Evangelos Papalexakis"!

N-GRAM WEIGHTS IN SSE-W

SSE-W model was trained on Amazon with multi-class setting

- Sentiment Analysis (SA) deals with "computational treatment of opinion, sentiment, and subjectivity in text" [1]
- Prominent directions of opinion mining research include:
 - Sentiment and subjectivity classification
 - Sentence-level identifies subjective statements, and labels their sentiment
 - Document-level predicts overall sentiment expressed in whole text
 - Feature-based and comparative SA are structured data extraction problems
 - Feature-based detects entities:
 - object of the review, opinion holder, sentiment of opinion, related aspects
 - Comparative SA deals with opinions expressed with comparative sentences:
 - e.g., product-X is better than product-Y, but not as good as product-Z
 - Opinion search and retrieval
 - deals with indexing, retrieval and querying of opinionated documents
 - Opinion spam
 - detects fake reviews with undeserving positive or malicious negative opinions

ECMIL 2012

Previous method: sentiment classification based on supervised word embedding

[9] Dmitriy Bespalov and Bing Bai and Yanjun Qi and Ali Shokoufand eh.

Sentiment Classificatio n Based on Supervised Latent ngram Analysis. CIKM 2011.

EXPERIMENTAL RESULTS: SENTIMENT CLASSIFICATION (CONT'D)

- In our previous work [9], different test-train split was used
 - Validating set was sampled from respective training sets
 - BoN was limited to only 127,000 features
- Micro-average error rate is reported
- Numbers marked with \uparrow (or \uparrow) are statistically significantly better than **SVM BoW-3g** with p < 0.0001 (or p < 0.01)

Method	Amazon		TripAdvisor		
Mernoa	2·*	$4\cdot\star$	2 · *	$4 \cdot \star$	5 · ★
SVM BoW-1g	11.10	30.31	8.89	33.54	43.93
SVM BoW-2g	7.45	25.28	7.47	32.27	42.34
SVM BoW-3g	7.13	25.02	7.25	32.22	42.20
SVM BoW-5g	7.34	25.67	7.43	32.55	42.31
Prc BoW-3g	7.41	27.49	7.31	31.99	41.29
LTC	7.12	27.10	8.33	33.40	42.69
SSE	7.04	23.59	6.59	27.60	37.56
SSE-W	7.00	$oldsymbol{23.11}^\dagger$	$\textbf{6.43}^{\ddagger}$	27.68^{\dagger}	38.09^{\dagger}

[9] Dmitriy Bespalov and Bing Bai and Yanjun Qi and Ali Shokoufandeh. Sentiment Classification Based on Supervised Latent n-gram Analysis. *CIKM 2011*.

CML 2012

EXPERIMENTAL RESULTS: BINARY TOPIC CATEGORIZATION

- Used **four** most frequent topics in training set of RCV1
- o 500,000 most frequent phrases were retained in BoN
- Macro-average error rate is reported

Method	RCV1				
Method	CCAT	GCAT	MCAT	C15	
SVM BoW-1g	6.45	5.66	5.70	7.95	
SVM BoW-2g	5.82	5.42	5.60	7.62	
SVM BoW-3g	<u>5.79</u>	5.53	5.59	7.46	
SVM BoW-5g	5.89	5.72	5.75	7.55	
SSE	5.74	4.79	4.41	6.21	
$\mathbf{SSE}\text{-}\mathbf{W}$	5.71	4.70	4.45	5.50	

Feed-forward Deep Architectures

Input Vector

X

Linear Projection

$$\mathbf{p}_1 = \mathbf{A}\mathbf{x} + \mathbf{b}$$

Non-linear Transfer Function

$$\mathbf{p}_2 = \mathbf{h}(\mathbf{p}_1)$$

$$\tanh(t) = \frac{e^{2t} - 1}{e^{2t} + 1}$$

$$sigmoid(t) = \frac{1}{1 + e^{-t}}$$

Optimization objective (i.e., NN Criterion)

$$L(\mathbf{p_k})$$