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Abstract

Spatial pyramid matching (SPM) component is part
of most state-of-art image classification methods. SPM
encodes spatial distribution of image features, in an un-
supervised fashion, by partitioning an image into re-
gions at multiple scales and concatenating feature vec-
tors for these regions. In this paper we propose to re-
place the unsupervised SPM procedure with a super-
vised two-stage feature selection that requires the image
partitioned at a single scale. Experimental results show
the proposed method performs statistically significantly
better than the SPM baseline.

1. Introduction

In this paper we consider large-scale image classifi-
cation (LIC) task. Extensive research efforts in recent
years produced significant leap in classification accu-
racy of LIC methods. State-of-art LIC systems contain
five stages or steps. 1) Extracting low-level image de-
scriptors (LID) over a dense lattice from image x. HoG,
SURF or SIFT are popular choices of LID. We refer to
Step 1 in Figure 1 as “LID extraction”. 2) A “coding”
step encodes each LID via a nonlinear feature mapping
into a vector space R|D|. This space is induced by a
codebook D of visual-word features or codewords (see
Step 2 in Figure 1). 3) A “pooling” step aggregates cod-
ing results for a sub-image into a single feature vector
(FV) representing the image region (see Step 3 in Fig-
ure 1). We refer to LID extraction, coding and pooling
(Steps 1–3 in Figure 1) as “FV construction” that re-
sults in “bag-of-features” (BoF) representation for an
image region. 4) Partitioning x into regions at multiple
scales (e.g., 1× 1, 2× 2, 4× 4) and concatenating FVs
for all regions to form final vector space representation
of x. This procedure known as spatial pyramid match-
ing (SPM) was proposed by Lazebnik et al. [4]. Step
3 in Figure 1 illustrates a single SPM scale with 3 × 3
partitions. 5) A classification step that predicts image

labels from vector space representation of x (see Step 6
in Figure 1).

The first four stages in current LIC systems are all
unsupervised, in the sense that LID extraction, coding,
pooling and SPM steps do not consider image label in-
formation. Image labels are only used in the final (fifth)
step of the LIC system to train a classifier. Recent im-
provements of LIC systems are mostly attributed to re-
finements in the coding step: e.g., sparse-coding [9],
locality-constrained linear coding [7], super-vector cod-
ing [5] and Fisher kernel-based method [6].

In this paper we propose to replace unsupervised
SPM procedure with a two-stage embedding method
that involves a supervised feature selection step called
“Supervised Spatial Encoder” (SSE). SSE encodes spa-
tial interactions among the regions in a latent space (see
Step 4 in Figure 1). Latent embedding of individual
regions are then combined to form image-level repre-
sentation of x (see Step 5 in Figure 1). The parameters
of the two-stage latent embedding are biased towards
target LIC task. The experimental results show the pro-
posed method performs statistically significantly better
than the unsupervised SPM baseline.

2. Method

We formally define the SSE procedure in Sec-
tion 2.1. Section 2.2 describes the two classifiers that
we consider in this work. Before we proceed, a quick
overview of notations is in order. Let Y = {1, ..., C}
denote a set of class labels and X denote a collec-
tion of labeled images (i.e., training set), where X =
{(xi, yi)i=1,...,L|xi ∈ X & yi ∈ Y} and |X | = L. We
denote cardinality of a set with |.|. Operator × denotes
vector or matrix multiplication, while · is used to em-
phasize the multiplication of scalar variables.

2.1 Supervised Spatial Encoder

Given an image x, the proposed procedure first par-
titions x into N × N regions, and BoF representation



Figure 1. Image classification using SSE.
BEST VIEWED IN COLOR.

is computed for each region (Steps 1–3 in Figure 1). In
Step 4 SSE encodes all sliding windows of n × n re-
gions in M̂ -dimensional latent space. Figure 1 provides
an overview of the proposed method with N = 3 and
n = 2. For an i-th sliding window consisting of k = n2

regions {wj1 , wj2 , . . . wjk}, vector ei denotes concate-
nation of its FVs as:

ei = [ϕ(wj1)
>, ϕ(wj2)

>, . . . ϕ(wjk )
>]>, (1)

where ϕ(w) ∈ R|D| is the BoF representation of region
w. The M̂ -dimensional latent embedding pi of the i-th
window is obtained from

pi = G× ei, (2)

where G ∈ RM̂×n2·|D|. For brevity we drop bias terms
in the definitions of latent projections. We note that pro-
jection (2) maintains n2 independent embedding param-
eters for each regionwj , based on its position within the
i-th sliding window.

Step 5 concatenates latent embedding of all sliding
windows into a single vector p̂x defined as:

p̂x = h
([

p>1 ,p
>
2 , . . .p

>
N2

]>)
, (3)

where h(·) = tanh(·)1. Then the final image-level la-
tent representation dx ∈ RM is the result of the second
projection step:

φ(x) ≡ dx = F× p̂x, (4)

where F ∈ RM×N2·M̂ .
In summary, SSE projects all sliding windows each

containing n2 regions into a latent space using projec-
tion (2). The latent representation of all sliding win-
dows are then concatenated to form vector px in (3).
The second projection layer is used to obtain image-
level latent representation dx in (4). In other words, the
proposed method resembles construction of SPM in a
latent space. In contrast to SPM procedure that con-
structs image-level representation in an unsupervised
bottom-up fashion, Step 4 in the proposed method per-
forms a supervised feature selection at an intermediate
level of spatial pyramid, while Step 5 computes image-
level representation of x in the supervised latent space.
It is this latter encoding, dx, of image x that will be
used as the input of the classifier (see Section 2.2).

Relationship to CNN The proposed procedure is
closely related to convolutional neural networks (CNN).
However, they do have two major differences. Firstly,
CNN models spatial interactions among dense FVs
(pixels), while the proposed model is designed to han-
dle sparse FVs. Secondly, CNNs have multiple layers of
projections, thus are more expensive to train. To the best
of our knowledge, image classification methods with
CNNs are generally restricted to small or medium-scale
datasets e.g., Caltech-101/256, PASCAL07. In contrast,
our image classification system requires a single SSE
layer to encode spatial interactions of sparse FVs com-
puted for a partitioned image.

1The non-linear element-wise operator tanh(·) that converts the
unbounded range of the input into [−1, 1].



2.2 Classifiers

We examine the proposed latent image encoding in
conjunction with two different vector space classifiers.
The empirical evidence suggests that irrespective of
classifier, SSE-based method outperforms the baseline
that relies on the SPM procedure to capture spatial dis-
tribution of image features. We implement the pro-
posed system as a multi-layer feed-forward perceptron
model [3], which is trained using stochastic gradient de-
scent [2].

The first classifier we consider is the so-called Multi-
nomial Logistic Regression (MLR). In the case of MLR
classifier, we learn M = C dimensional latent repre-
sentation of image x. In other words, dx ∈ RC main-
tains a coefficient weight for every candidate class (i.e.,
M = C). And the predicted class label for x is calcu-
lated as follows:

g1(dx) = arg max
i∈{1..C}

exp(dx[i])

1 +
∑

k∈{1..C} exp(dx[k])
, (5)

where dx[k] denotes the kth element in vector dx.
Given a training set X , MLR classifier is computed by
minimizing the loss function:

L1(X ) = −
∑

i∈{1..|X |}

log
exp(dxi

[yi])

1 +
∑

j∈{1..C} exp(dxi [j])
,

This latter loss is called “negative log likelihood” in lit-
erature.

The second classifier we consider in this work is
based on the WARP Loss proposed by Weston et al. [8].
This classifier is based on margin-penalized ranking of
pairwise (label-image) similarity values. In addition
to learning latent representation φ(·) for images, the
WARP classifier computes M -dimensional latent rep-
resentation for each label yi ∈ Y . Let V ∈ RM×C

denote the parameters for latent embedding for C la-
bels, and Vyi

denote the latent embedding of yi. The
classifier is then computed by minimizing the WARP
loss:

L2(X ) =
∑

i∈{1..|X |}

Λ

∑
yj 6=yi

I [ξ(xi, yj) > ξ(xi, yi)]

,
where Λ(k) =

k∑
j=1

1
j , ξ(x, y) =

V>
y ×dx

‖Vy‖·‖dx‖ and I(·) is

the indicator function. The prediction for image x using
the classifier optimized with the WARP loss is obtained
using:

g2(dx) = arg max
i∈{1..C}

ξ(x, yi). (6)

3. Experiments

Metric We evaluate the proposed method using
dataset from the Image-Net Large Scale Visual Recog-
nition Challenge 2011 (ILSVRC2011) [1]. The dataset
contains images of 1000 categories of objects, where
each category corresponds to a synset (set of synony-
mous nouns) in WordNet. The categories are orga-
nized as leaf nodes into a hierarchy that corresponds
to a subset of WordNet synset hierarchy. The compet-
ing methods in ILSVRC2011 were evaluated using two
cost measures. The first, called flat cost (FL), measured
classification hit rate among the top five label predic-
tions produced by each method. The hierarchical cost
(HI) used the minimum height of the lowest common
ancestor of ground truth label and one of five predicted
labels. To conserve space, we refer the reader to the
ILSVRC2011 webpage [1] for a formal definition of the
cost measures used in the competition. We report clas-
sification results obtained using one (Top-1) and five
(Top-5) label predictions per image.

BoF Representation We implement Steps 1–3 in Fig-
ure 1 using VLFeat2 computer vision library. For LID
extraction, images are rescaled with the largest dimen-
sion set to 300 pixels. We use grayscale SIFT image de-
scriptors extracted every 8 pixels using square regions
at scales 8, 16, and 24 pixels. We cluster 30 million
randomly chosen SIFT descriptors into 4,096 leaf clus-
ters (i.e., codewords) using hierarchical k-means. For
LID coding we closely follow the implementation of
locality-constrained linear coding (LLC) method [7],
and max-pooling is used during FV construction.

Baseline The proposed SSE method is a supervised
alternative to the SPM procedure. In our experiments,
the SPM baseline is computed using three scales: 1×1,
2 × 2 and 4 × 4. The latent embedding of SPM repre-
sentation (dx ∈ RM ) is modeled using a single linear
projection φ : R21·|D| → RM .

Parameters and Training In the case of SSE
method, every image is partitioned into 4×4 regions and
3× 3 sliding windows are encoded in M̂ = 100 dimen-
sional latent space. As was mentioned earlier, for MLR
classifier we set M = C = 1000. For WARP classifier
we use M = 300 for both SSE and SPM methods. We
split the 1.2 million training images into 30 slices where
images for each synset are divided evenly among the
slices. The training proceeds in distributed fashion with

2http://www.vlfeat.org/



Table 1. Classification Error. FL and HI de-
note flat and hierarchical cost, respectively. The
FL numbers marked with † are statistically signif-
icantly better than SPM baseline with p < 10−4.
Classification results are obtained using one (Top-
1) and five (Top-5) label predictions per image.

MLR WARP
Cost # Lbls SPM SSE SPM SSE
FL Top-5 60.7 56.5† 60.9 59.6†

FL Top-1 77.5 75.5† 80.3 79.4†

HI Top-5 29.0 26.6 28.8 28.3
HI Top-1 46.2 43.7 46.3 45.3

ten work nodes, each updating the model parameters us-
ing 35,000 samples from a randomly selected slice. The
parameters of models computed by work nodes are then
averaged together and saved as a latest trained model.
These models are regularly evaluated using validation
images and the best performing model is retained for
each method. After the classification performance stops
improving, we use the best performing model to obtain
label predictions for test images and submit the predic-
tions to the ILSVRC2011 evaluation server 3. For both
SSE and SPM methods, the training took less than a
week to complete. The FL and HI classification costs
can be found in Table 3.

4 Discussion and Future Work

The SSE method results in statistically significant
improvement over SPM with p < 10−4 for both clas-
sifiers we considered in this work. It worth noting that
our method relies on construction of FVs at a single
scale and performs feature selection via two-stage la-
tent projection. The baseline SPM method on the other
hand, requires extraction of FVs at three scales. We
also note that the classification performance of both
SPM and SSE methods correspond to the tail of ranked
list of participants in ILSVRC2011. Moderately cho-
sen parameters of BoF pipeline allowed us to train the
models in a timely fashion but significantly degraded
classification performance. For example, a variant of
LLC [5] resulted in the state-of-art performance on
ILSVRC2010. The method scaled images to at most
500 pixels, used 20,480 codewords, two types of image
descriptors (HoG and LBP), and 20 closest codewords
to describe each LID (we used 5). In our future work
we plan to improve the LIC performance of our method

3http://www.image-net.org/challenges/LSVRC/
2011/test_server

by using additional low-level image features: color his-
tograms and local binary pattern [5]. In addition, we
believe that using SSE to encode image partitions com-
puted at different scales should improve the LIC perfor-
mance even further.
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