

Sparse Latent Semantic Analysis

Xi Chen¹, Yanjun Qi², Bing Bai², Qihang Lin¹, Jaime G. Carbonell¹

- 1. Machine Learning Department, Carnegie Mellon University
 - 2. Machine Learning Department, NEC Lab America

The work is done during the internship at NEC Lab America

Background

Vector Space Model:

Document:
$$\mathbf{x} = [w_1, \dots, w_M] \in \mathbb{R}^M$$
 M : vocabulary size

 w_i : normalized weight (tf-idf) of the *i*-th word

N Documents:
$$\mathbf{X} = [\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^N] \in \mathbb{R}^{N \times M}$$
: Document-Word matrix

Latent Semantic Analysis:

D latent topics (dimensionality of the latent space)

LSA applies SVD to construct a *rank-D* approximation:

$$\mathbf{X} \approx \mathbf{U}_{N \times D} \mathbf{S}_{D \times D} (\mathbf{V}_{M \times D})^T, \quad \mathbf{U}^T \mathbf{U} = \mathbf{I}, \mathbf{V}^T \mathbf{V} = \mathbf{I}$$

Projection Matrix: $\mathbf{A} = \mathbf{S}^{-1} \mathbf{V}^T \in \mathbb{R}^{D \times M}$

Dimension reduction for a new document $q: q \in \mathbb{R}^M \Rightarrow \widehat{q} = \mathbf{A}q \in \mathbb{R}^D$

Optimization Formulation for LSA

Latent Semantic Analysis

$$\mathbf{X} \approx \mathbf{U}_{N \times D} \mathbf{S}_{D \times D} (\mathbf{V}_{M \times D})^T, \quad \mathbf{U}^T \mathbf{U} = \mathbf{I}, \mathbf{V}^T \mathbf{V} = \mathbf{I}$$

Relaxed Optimization Formulation:

[K. Yu et al. 05]

$$\min_{\mathbf{U}, \mathbf{A}} \quad \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\|_F^2$$

subject to:
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}$$

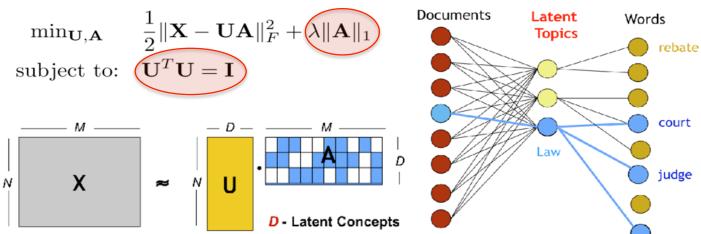
Sparse Latent Semantic Analysis:

Add sparsity constraint on the project matrix **A**:

$$\min_{\mathbf{U}, \mathbf{A}} \quad \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_1 \implies \|\mathbf{A}\|_1 = \sum_{d=1}^D \sum_{j=1}^M |a_{dj}|$$
subject to:
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}$$
$$\ell_1\text{-regularization}$$

Sparse LSA

Sparse LSA



New Document q: $\widehat{q} = \mathbf{A}q \in \mathbb{R}^D$

Simple Projection, Computational Efficient

Comparison to Sparse Coding

$$\min_{\mathbf{U}, \mathbf{A}} \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\|_F^2 + \lambda \|\mathbf{U}\|_1$$

subject to: $||A_j||_2^2 \le c$, j = 1, ... M

New Document q: $\widehat{q} = \arg\min_{\widehat{q}} \frac{1}{2} \|q - \mathbf{A}^T \widehat{q}\| + \lambda \|\widehat{q}\|_1$.

Lasso Problem
More Computation
Time

Advantage of Sparse LSA

Better Interpretability:

Sparse LSA selects most relevant words for each topic ($a_{dj} \neq 0$) Compact representation of topic-word relationship

Efficient Projection:

Sparse $\mathbf{A} \Longrightarrow$ Efficient Projection for new documents: $\widehat{q} = \mathbf{A}q \in \mathbb{R}^D$

Cheap Storage:

Cheap storage for sparse A

- **Sparse Projected Documents:** sparse $\widehat{q} = \mathbf{A}q$
- ***** Document-Topic Relationship: $\widehat{q}_d = 0 \Leftrightarrow \widehat{q}$ not belong to d-th topic
- Advantage as compared to PCA:

Do not need to centralize **X** \Longrightarrow destroy the sparsity of **X**

Do not need the covariance matrix $\mathbf{X}^T\mathbf{X} \in \mathbb{R}^{M \times M} \Longrightarrow$ may not fit in the memory for large vocabulary size

Optimization Method

Alternating Approach

$$\min_{\mathbf{U}, \mathbf{A}} \quad \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_1$$

subject to: $\mathbf{U}^T \mathbf{U} = \mathbf{I}$

Fix **U** and optimize with respect to **A**:

$$\min_{\mathbf{A}} \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\| + \lambda \|\mathbf{A}\|_1$$

$$\min_{A_j} \frac{1}{2} \|X_j - \mathbf{U}A_j\|_2^2 + \lambda \|A_j\|_1; \quad j = 1, \dots, M. \ A_j: \ j\text{-th column of } \mathbf{A}$$

[J. Friedman et al. 10]

M independent lasso problem: Solved via Coordinate Descent

Fix A and optimize with respect to **U**:

$$\min_{\mathbf{U}} \quad \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\|_F^2 \Leftrightarrow \operatorname{tr}(\mathbf{U}^T \mathbf{X} \mathbf{A}^T)$$
subject to:
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}$$

Closed-form Solution:

Let $\mathbf{V} = \mathbf{X}\mathbf{A}^T$ (projected documents onto the latent space)

Perform SVD on V:
$$\mathbf{V} = \mathbf{P}\Delta\mathbf{Q} \longrightarrow \mathbf{U}^* = \mathbf{P}\mathbf{Q}$$

Note: SVD on $\mathbf{V} \in \mathbb{R}^{M \times D}$ is much *cheaper* than that on $\mathbf{X} \in \mathbb{R}^{N \times M}$ $\stackrel{\boldsymbol{U}}{\smile}$

Optimization Summary

Algorithm 1 Optimization Algorithm for Sparse LSA

Input: X, dimensionality of the latent space D, regularization parameter λ

Initialization: $\mathbf{U}^0 = \begin{pmatrix} \mathbf{I}_D \\ \mathbf{0} \end{pmatrix}$,

Iterate until convergence of U and A:

- Compute A by solving M indepdent lasso problems via coordinate descent
- 2. Project X onto the latent space: $V = XA^{T}$.
- 3. Compute the SVD of V: $V = P\Delta Q$ and let U = PQ.

Output: Sparse projection matrix A.

Extension I: Nonnegative Sparse LSA

Constraint: $A \ge 0$:

$$\min_{\mathbf{U}, \mathbf{A}} \quad \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_1$$

subject to:
$$\mathbf{U}^T \mathbf{U} = \mathbf{I}, \quad \mathbf{A} \ge 0.$$

Simulate the *probability* of the word w_i given the topic t_d :

Normalize each row:
$$\widetilde{a}_{dj} = \frac{a_{dj}}{\sum_{j=1}^{M} a_{dj}} \sim \mathbb{P}(w_j | t_d)$$

Optimization with respect to A:

$$\min_{A_j \ge \mathbf{0}} f(\mathbf{A}_j) = \frac{1}{2} ||X_j - \mathbf{U}A_j|| + \lambda \sum_{d=1}^{D} a_{dj}. \quad j = 1, \dots, M$$

Optimize via the *coordinate descent* approach:

Iterating over d: fix $a_{\widehat{d}j}$ for $\widehat{d} \neq d$ and optimize over a_{dj}

$$a_{dj}^* = \begin{cases} \frac{b_d - \lambda}{c_d} & b_d > \lambda \\ 0 & b_d \le \lambda \end{cases},$$

$$c_d = \sum_{i=1}^N u_{id}^2, b_d = \sum_{i=1}^N u_{id}(x_{ij} - \sum_{k \ne d} u_{ik} a_{kj}).$$

Extension II: Group Structured Sparse LSA

- Application: latent gene-function identification: determine relevant pathways (groups of genes) to a latent gene function (topic)
- Group Structured Sparse LSA:

The set of groups of input features $\mathcal{G} = \{g_1, \dots, g_{|\mathcal{G}|}\}$ (available as a priori)

$$\min_{\mathbf{U}, \mathbf{A}} \qquad \frac{1}{2} \|\mathbf{X} - \mathbf{U}\mathbf{A}\|_F^2 + \lambda \sum_{d=1}^D \sum_{g \in \mathcal{G}} w_g \|\mathbf{A}_{dg}\|_2$$

subject to: $\mathbf{U}^T\mathbf{U} = \mathbf{I}$.

Optimization with respect to A:

Optimize via the *coordinate descent* approach:

$$\mathbf{A}_{dg}^* = \begin{cases} \frac{\mathbf{B}_{dg}(\|\mathbf{B}_{dg}\|_2 - \lambda w_g)}{C_d \|\mathbf{B}_{dg}\|_2} & \|\mathbf{B}_{dg}\|_2 > \lambda w_g \\ \mathbf{0} & \|\mathbf{B}_{dg}\|_2 \le \lambda w_g \end{cases}.$$

$$C_d = \sum_{i=1}^N u_{id}^2, (\mathbf{B}_{dg})_{j \in g} = \sum_{i=1}^N u_{id}(x_{ij} - \sum_{k \neq d} u_{ik} a_{kj}).$$

Experimental Setup

Methods Compared

Traditional LSA

Sparse Coding (Code from Lee et. al. 07)

Latent Dirichlet allocation (LDA) (Code from Blei et. al. 03)

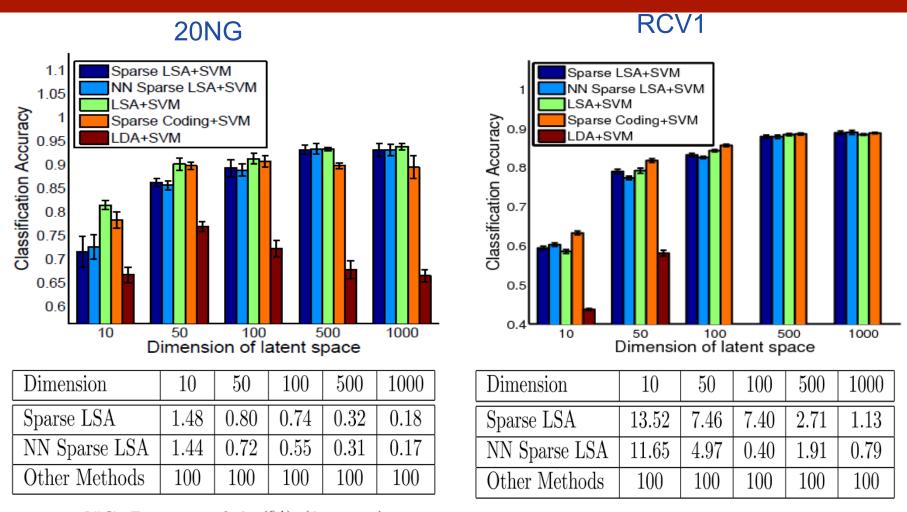
Sparse LSA

Nonnegative Sparse LSA (NN Sparse LSA)

Text Classification Data	N (No. of Documents)	M (Vocabulary Size)
20 news group (20NG) (alt.atheism vs talk.religion.misc)	1,425	17,390
RCV1 (20 classes)	15,564	7,413

Topic-Word Relationship Data	· · ·	M (Vocabulary Size)
NIPS Proceedings from 98 to 99	1,714	13,649

Text Classification Performance



20NG: Density of \mathbf{A} (%) (λ =0.05) RCV1: Density of \mathbf{A} (%) (λ =0.05)

Conclusion: For large D, the classification performance of $Sparse\ LSA$ is almost the same as LSA but with a much more sparse projection matrix A.

Efficiency and Storage

20NG

	Proj. Time (ms)	Storage (MB)	Density of Proj. Doc. (%)
Sparse LSA	0.25 (4.05E-2)	0.6314	35.81 (15.39)
NN Sparse LSA	0.22 (2.78E-2)	0.6041	35.44 (15.17)
LSA	31.6 (1.10)	132.68	100 (0)
Sparse Coding	1711.1 (323.9)	132.68	86.94 (3.63)

RCV1

	Proj. Time (ms)	Storage (MB)	Density of Proj. Doc. (%)
Sparse LSA	0.59 (7.36E-2)	1.3374	55.38 (11.77)
NN Sparse LSA	0.46 (6.66E-2)	0.9537	46.47 (11.90)
LSA	13.2 (0.78)	113.17	100 (0)
Sparse Coding	370.5 (23.3)	113.17	83.88 (2.11)

Conclusion: Sparse LSA or NN Sparse LSA

- Efficient projection with less time
- Less storage for the projection matrix **A**
- Sparse projected documents: more efficient for subsequent retrieval tasks, e.g. ranking, text categorization, etc

$$D=1,000, \lambda=0.05$$
 Table entry : mean (std)

Topic-Word Relationship

NIPS from 1988 to 1999

Nonnegative Sparse LSA

	_	_
- 1	$\overline{}$. ^
- 1		
- 1		
- 1		

Topic 2

figure

model

Topic 3

method

algorithm

Topic 4

single

general

	Tronnegative oparac Lorr							
	Topic 1	Topic 2		Topic 3		Topic 4		Topic 1
	network	learnii	ng netwo			model		learning
	neural	reinfo	rcement	learning	Š	data		data
	networks	algorit	$^{ m thm}$	data		models		model
	system	function	on	neural		parameters		training
	neurons	rule		training	5	mixture		information
	neuron	contro	ol	set		likelihood		number
	input	learn		function	ı	distribution		algorithm
	output	weight	-	model		gaussian		performance
	$_{ m time}$	action		input		m em		linear
	systems	policy		network	s	variables		input
	Topic 5		Topic 6	6 Topic 7			Topic 5	
ſ	function		input		in	nage		rate
	functions		output		in	nages		unit
	approximation		inputs	re		ecognition		data
	linear		chip		vi	isual		$_{ m time}$
	basis		analog		ol	bject		estimation
	threshold		circuit		sy	rstem		node
	theorem		signal	signal f		feature		set
	loss		current		figure			input
	time		action	ı iı		ıput		neural
	systems poli		policy	networks			properties	

model	output		networks		sets	
training	neurons		process		time	
information	vector		learning		maximum	
number	ne	tworks	input		paper	
algorithm	sta	ate	based		rates	
performance	lay	ver	function		features	
linear	sy	stem	error		estimated	
input	or	der	parameter		neural	
Topic 5	-		6	Topic 7		
rate alge		algorit	thms function		nction	
unit		set		ne	neural	
data		problem		hi	idden	
time		weight	;	networks		
estimation		tempo	ral	recognition		
node	1 *			output		
set obtai		obtain	ı	visual		
input para		param	eter	noise		
neural neural			parameters			
properties sim		simula	ited	d references		

Conclusion: The topics learned by NN Sparse LSA are discriminative while the topics learned by LDA are all closely related to neural network.

Thank You!