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1 Introduction

Modern biology has experienced an increasing use of machine learning techniques
for large scale and complex biological data analysis. In the area of Bioinformatics,
the Random Forest (RF) [6] technique, which includes an ensemble of decision
trees and incorporates feature selection and interactions naturally in the learning
process, is a popular choice. It is nonparametric, interpretable, efficient, and has
a high prediction accuracy for many types of data. Recent work in computational
biology has shown an increased use of random forest, owing to its unique advantages
in dealing with small sample size, high-dimensional feature space, and complex data
structures.

The aim of this chapter is two-fold. First, to provide a review of notable exten-
sions of random forest in bioinformatics, whereby promising direction such as RF
based feature selection is discussed. Second, to briefly introduce the applications of
random forest and its extensions. RF has been applied in a broad spectrum of biolog-
ical tasks, including, for example; classifying different types of samples using gene
expression of microarrays data, identifying disease associated genes from genome
wide association studies, recognizing the important elements in protein sequences,
or identifying protein-protein interactions.

2 Random Forest and Extensions in Bioinformatics

Random forest provides a unique combination of prediction accuracy and model
interpretability among popular machine learning methods. The random sampling
and ensemble strategies utilized in RF enable it to achieve accurate predictions as
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well as better generalizations. This generalization property comes from the bagging
scheme which improves the generalization by decreasing variance, while similar
methods like boosting achieve this by decreasing bias [47].

Three features of random forest receive the main focus [6]:

1. It provides accurate predictions on many types of applications;
2. It can measure the importance of each feature with model training;
3. Pairewise proximity between samples can be measured by the trained model.

Extending random forest is currently a very active research area in the compu-
tational biology community, where most previous efforts focused on extending the
features above. Several notable techniques among them are briefly introduced in the
sections that follow.

2.1 Classification purpose

Random forest retains many benefits of decision trees while achieving better results
through the usage of bagging on samples, random subsets of variables, and a major-
ity voting scheme [6]. It handles missing values, a variety of variables (continuous,
binary, categorical), and is well suited to high-dimensional data modeling. Unlike
classical decision trees, there is no need to prune trees in RF since the ensemble and
bootstrapping schemes help random forest overcome overfitting issues. Motivated
by the excellent performance of random forest, developing RF variants is an active
research topic in computational biology [47].

One category of extension tried to revise how to construct trees in RF. For in-
stance, Zhang et al. [48] proposed a deterministic procedure to form a forest of
classification trees to maintain scientific interpretability in the structure of the trees.
This procedure screens trees by selecting a prespecified number, say 20, of top splits
of the root node and another prespecified number, say 3, of the top splits of the two
daughter nodes of the root node. This protocol of top nodes gives rise to a total of
180 possible (20 by 3 by 3) trees (Figure 1), among which, those with perfect or
near perfect classification precision are of particular interests. Finally, a fixed num-
ber of available trees are selected to form a deterministic forest. Their experiments
claimed that the deterministic forest performs similar to random forests, but with
better reproducibility and interpretability.

Researchers also tried to extend random forest by considering special properties
in biological data sets, e.g. too many noisy features in DNA microarray data. Ama-
ratunga et al. [2] designed so-called “enriched random forest” for when the number
of features is huge and the percentage of truly informative features is small. To
reduce the contribution of trees whose nodes are populated by non-informative fea-
tures, enriched RF used a simple adjustment to choose the eligible subsets at each
node by weighted random sampling instead of simple random sampling. When the
feature space is huge and the ratio of noisy features is large, the performance of the
base classifiers degrades. This is because almost all eligible features at each node
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Fig. 1 A schematic illustration of the “deterministic forest” method for binary classification (pro-
posed in [48]). I1, . . . , I20 are the top 20 splits of the root node. Each of these top splits leads to
a left (L) and a right (R) child node. The child nodes have their own splits (L j,i and R j,i, where
j ∈ {1, . . . ,20} and i ∈ {1,2,3}). Three top splits are drawn underneath each of them. Based on
the combinations of the root splits (I1,...,20) and the child splits (L j,i and R j,i), the method made
multiple trees with different terminal nodes (circles). The terminal nodes are color-coded based on
the counts of two classes. The more positive examples a terminal node has, the more black it is.
Nodes with “?” contain examples from both classes.

are predominated by non-informative ones. This issue can be remedied by using
weighted, instead of simple, random sampling. By utilizing weights tilted in favor
of informative features, the odds of trees containing more informative features be-
ing included in the forest increases. Consequently, the resultant enriched RF might
contain a higher number of better base classifiers, resulting in a better prediction
model.

2.2 Measuring feature importance

The high dimensional nature of many tasks in bioinformatics has created an urgent
need [37] for feature selection techniques. The goal of feature selection in this field
are manifold, where the two most important are: (a) to avoid overfitting and improve
model performance, and (b) to gain a deeper insight into the underlying processes
that generated the data. The interpretability of machine learning models is treated
as important as the prediction accuracy for most life science problems.
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Random forest directly performs feature selection while classification rules are
built. In bioinformatics increased attentions of RF have focused on using it for vari-
able selection, e.g. to select a subset of genetic markers relevant for the prediction of
a certain disease. Feature importance is used to rank features and there exist many
possible ways [11] to define the measure. The following section discusses several
commonly used feature importance measures based on RF in bioinformatics.

2.2.1 Gini importance

The first commonly used importance measure from RF is the Gini importance. Gini
importance is directly derived from the Gini index [6] on the resulting RF trees.
The RF classifier uses a splitting function called “Gini index” to determine which
attribute to split on during the tree learning phase. The Gini index measures the
level of impurity / inequality of the samples assigned to a node based on a split at
its parent. For instance, under the binary classification case, where there are two
classes, let p represent the fraction of positive examples assigned to a certain node k
and 1− p as the fraction of negative examples. Then, the Gini index at m is defined
as:

Gk = 2p(1− p) (1)

The purer a node is, the smaller the Gini value is. Every time a split of a node is
made using a certain feature attribute, the Gini value for the two descendant nodes
is less than the parent node. A feature’s Gini importance value in a single tree is
then defined as the sum of the Gini index reduction (from parent to children) over
all nodes in which the specific feature is used to split. The overall importance in the
forest is defined as the sum or the average of its importance value among all trees in
the forest.

Learning on biological data is often characterized by a large number of features
and few available examples. As a simple estimate of the feature importance for the
prediction task, RF Gini feature importance is a popular choice used in biological
data mining tasks [37]. However, recent reports [41] pointed out that Gini measures
are biased in favor of variables taking more categories if predictors are categorical.

2.2.2 Permutation based variable importance

RF permutation importance [11] is another important feature ranking measure when
using RF for feature selections. Before introducing this concept, the term of “out-
of-bag (OOB) samples” needs to be explained. RF does not use all training samples
when constructing an individual tree. This leaves a set of OOB samples, which could
be used to derive the validated classification accuracy from the tree. RF permutation
importance is measured by randomly permuting the feature variables and computing
the increase in out-of-bag estimate of the accuracy loss. Specifically, to measure a
feature k’s importance in RF trees, the values of this feature is randomly shuffled
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in the OOB samples. If we use Vk to describe the difference of the classification
accuracy between the intact OOB samples and the OOB samples with the particular
feature permutated, RF “permutation importance” [6] for feature k is then defined
as the average of Vk over all trees in the forest.

RF permutation importance covers the impact of each variable individually while
considering multivariate interactions with other features at the same time. It uses an
intuitive permutation strategy, and is utilized more frequently than Gini importance
in the general “random forest” literature. However, it is time consuming to com-
pute and its magnitude does not have a bounded value range which can be negative.
Similar to Gini importance, RF permutation importance was also shown to unreli-
able when potential variables vary in their scale of measurement or their number of
categories [41].

2.2.3 Revised RF feature importance

The shortcomings mentioned in the two subsections above lead to several recent
variants of RF feature importance from the bioinformatics community. Chen et al.
[9] proposed the so-called “depth importance” measure to reflect the quality of the
node split which is similar to the Gini importance. The major difference is that
the depth importance takes into account the position of the node in the trees. It is
claimed to be effective in identifying risk genes responsible for complex diseases.

In another notable work, Strobl et al. [41] proposed a revised random forest
model based on conditional inference trees [21] (pruned trees using stopping cri-
teria based on multiple test procedures). The revised RF provides unbiased variable
selection in each individual classification tree. Using subsampling without replace-
ment, the resultant variable importance was claimed to provide reliable variable se-
lection even when the potential variables vary in their scales or vary in the number
of categories.

Later, Strobl et al. [40] pointed out another issue of RF variable importance
which shows a bias towards correlated predictor variables. The issue of correlated
feature variables happens commonly in high-dimensional bioinformatics tasks, e.g.
genomics. This paper [40] developed a conditional permutation scheme which used
the partition automatically provided by the fitted model as a conditioning grid. The
resulting measure was claimed to reflect the true impact of each predictor (vari-
able) better than the original, marginal approach. Simulation results proved that
even though the conditional permutation cannot entirely eliminate the preference
of correlated predictor variables, it provides a more fair way of comparison that can
help to identify the truly relevant feature variables.

Most RF importance measures reflect the average contributions among all trees
in a forest. Recently measures based on extreme statistics in a forest are proposed
as well. A good example is the “maximal conditional chi-square importance” from
[44]. For a specific feature it is defined as the maximal chi-square statistic among
all nodes’ splits in a forest. This score was shown to improve the performance of RF
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when using top-ranked features to refit RF. It was claimed to be more powerful in
identifying feature interactions based on simulation studies [44].

More recently, Altmann et al. [1] introduced a heuristic scheme for normaliz-
ing feature importance measures that can correct the feature importance bias. The
method normalizes the biased RF measure based on a permutation test and returns
significance P-values for each feature. The repeated permutations are applied on the
response vector to preserve the relations between features. The P-value of the ob-
served importance provides a corrected measure that addresses the importance bias
issue. An improved RF model was then retrained to use top-ranked significant vari-
ables with respect to the proposed new importance and was shown to improve the
prediction accuracy.

2.3 Random forest proximity

RF could provide the measure of pairwise proximity between examples using the
trained forest. More specifically, for a given forest f and two samples xi and x j, the
RF similarity is calculated by the following procedure: First, we propagate the value
of each sample down all trees within f . Next, the terminal node position for each
sample in each of the trees is recorded. Let z(i) = (z(i)

1 , ...,z(i)
K ) be these tree node

positions for xi and similarly define z( j) for sample x j. Then the similarity between
xi and x j is set to:

S(xi,x j) =
∑

K
k=1 I(z(i)

k == z( j)
k )

K
(2)

Where I(·) is the indicator function. As proposed by [6], the sample proximity from
RF could be utilized to remove outlier data samples. Noise issues commonly exist in
bioinformatics data sets. This strategy has been proven to be successful in predicting
drug response for cell-line gene expression data by removing outlier cell lines in
[36].

RF proximity in bioinformatics can also be used for certain classification tasks
where the train set provides no negative examples and exhibits a highly skewed dis-
tribution between positive and negative classes. For these prediction tasks, relative
ranking among predictions normally matter, and the cost associated with various
classes are different. In order to overcome the issue of problematic training sets
and achieve good relative ranking, Qi et al. [35] converted the classification into a
ranking task and handled it with a two-step approach using RF proximity. First, it
computes a similarity measure between a pair of samples. Then, this measure is used
to rank samples by a weighted k-nearest-neighbor approach. The proposed method
has claimed to work well for the protein-protein interaction prediction in yeast.
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3 Bioinformatic Applications of Random Forest and Variants

In the past decade, random forest has been successfully applied to various problems
in computational biology. The popularity of random forest in this field arises from
the fact that RF can be applied to a wide range of data types, even if the problems
are nonlinear or involve complex high-order interaction effects. RF and its variants
have been applied on a variety of bioinformatic problems, such as gene expression
classification, mass spectrum protein expression analysis, biomarker discovery, se-
quence annotation, protein-protein interaction prediction, or statistical genetics. The
following survey tries to cover some representative applications.

3.1 Analysis of microarray gene expression data

Fig. 2 Schematic illustration for gene expression of microarray data. Figure modified from [47].
From the computational perspective, the microarray data is described as an N ×M matrix. Each
row describes a sample and each column represents a gene except the last column which means the
class label of each sample. gi, j is a numeric value representing the gene expression level of gene j
in the i-th sample. ci is the class label of the i-th sample [47].

The advent of DNA microarray technology [37] has enabled researchers to mea-
sure the expression levels of large numbers of genes simultaneously. The resul-
tant large-scale data sets have stimulated a large body of research in bioinformat-
ics, which also created great challenges for computational techniques. Most mi-
croarray gene expression data sets suffer from the commonly known “curse-of-
dimensionality” issue where the dimensionality is huge (up to several tens of thou-
sands of genes), and the sample size is small (normally up to hundreds). Moreover,
high ratio of noise and variability from microarray experiments raise even more
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challenges. As shown in Figure 2, computational methods normally treat the mi-
croarray data as an N×M matrix, where N is large, M is small and N �M.

One important task in biomedical research is to distinguish disease samples from
nondisease samples as well as to classify different disease subtypes [39]. The sam-
ple could be a patient, a tissue or even tissue parts whose features are expressed
values of a set of genes or proteins, i.e. the so-called “molecular signature or pro-
file”. For using gene expression data to classify disease versus nondisease samples,
Lee et al. [26] carried over an extensive study to compare the k-nearest-neighbor
(KNN) approach, various versions of linear discriminant analysis (LDA), bagging
trees, boosting and random forest under the same experimental settings. They found
that random forest was the most successful technique used on the seven microarray
datasets they tested.

A closely related popular topic tries to identify a set of biomarkers (normally
genes) from gene expression datasets that could maintain high classification accu-
racy of samples when used alone. Fast and efficient feature selection techniques have
attracted a lot of attention since the related datasets are high dimensional and small.
Gene-gene interactions are importance factors to consider when selecting features
for disease classification, however, popular univariate selection methods could not
take them into account. Thus, researchers have proposed a number of techniques
to capture the correlations between genes using random forest based variable im-
portance [15, 46, 40, 2]. Several related methods have been covered in Section 2.2.
These importance measures could be used to filter the original feature set and then
the classification model could be retrained, which might be a better fit. For instance,
the “enriched ranom forest” method, proposed by Amaratunga et al. [2], claims to
improve the RF performance on ten real gene expression data sets by selecting top-
ranked features using a weighted random sampling scheme for biomedical sample
classification. Diaz-Uriarte et al. [15] showed that random forest is able to preserve
predictive accuracy while yielding smaller gene sets selected for the analysis of mi-
croarray data when compared to LDA, KNN, and SVM.

In summary, as an important subfield in bioinformatics, using gene expression
microarray has emerged as a popular tool to identify common genetic factors that
influence health and disease. Random forest methods and its feature importance
measures provide state-of-art performance for analyzing and identifying patients’
molecular profiles from gene expression data sets.

3.2 Analysis of mass spectrometry-based proteomics data

Modern mass spectrometry technologies allow the determination of proteomic fin-
gerprints (e.g. expression levels of many proteins) of body fluids like serum or urine.
Differently from DNA microarrays which only relate to genetic (static) factors of
diseases, mass spectrum measurements can be used to diagnose the dynamic status
or to predict the evolution of a disease. In modern biology, mass spectrometry tech-
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nology grows to be an attractive framework for cancer diagnosis and protein-based
biomarker detection [5].

Figure 3 provides a schematic description of mass spectrometry-based pro-
teomics data sets. A typical mass spectrum sample is characterized by thousands of
different mass/charge (m/z) ratios on x-axis, and their corresponding signal inten-
sity values are on y-axis. The mass spectrum features of a set of samples are treated
as a data matrix by computational mining methods. Such mass spectrum datasets
are also characterized by a small number of samples and a very high-dimensional
feature space. Like DNA microarray data, this “curse-of-dimensionality” issue re-
quires the computational algorithm to select the most relevant features and to make
the most use of the limited data samples [47].

Fig. 3 Schematic illustration of mass spectrometry-based proteomics data sets. Figure modified
from [47]. The proteomics data generated by mass spectrometer are very similar to gene microar-
ray data in terms of the computational analysis. Differently from microarray data, it decribes the
abundance of a protein or peptide in the sample.

Random forest holds a unique position in analyzing mass spectrometry-based
proteomics data for clinical classifications [22, 18, 23, 24, 20], since it considers
feature interactions in learning and is well suited for high-dimensional data sam-
ples. For instance, RF has been demonstrated by Izmirlian et al. [22] in classifying
SELDI-TOF (surface-enhanced laser desorption/ionization time of flight) proteomic
data well with the advantages of robustness to noise and less dependence on tuning
parameters. Later, Geurts et al. [18] presented a related tree ensemble approach
named “extra-trees” [17] which selects at each node the best among K randomly
generated splits. Unlike random forest which is grown with multiple sample sub-
sets, the base trees of extra-trees are grown from the complete training set and by
explicitly randomizing the splits. The approach was successfully validated on two
SELDI-TOF datasets for the diagnosis of rheumatoid arthritis and inflammatory
bowel diseases.
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Recently, Kirchner et al. [24] showed that a random forest based approach is
feasible to achieve the real-time classification of the fractional masses in mass spec-
trometry experiments. Similarly, Karpievitch et al. [23] proposed a modified ran-
dom forest, named as “RF++”, to deal with cluster-correlated data. Many mass
spectrometry-based studies produce cluster-correlated data where there exist repli-
cated samples for the same subject. A common practice for dealing with replicated
data is to average each subject’s replicate sample set, which will reduce the dataset
size and might incur loss of information. However, the failure to account for cor-
relation among samples may result in overfitting the training data, and producing
over-optimistic error estimations. Two strategies were utilized in RF++ to tackle the
issue [23]: (1) a modified random forest grown using subject-level averages, and (2)
a modified random forest using subject-level bootstrapping to substitute the origi-
nal resampling step. The second scheme was shown to be effective for classifying
clustered mass-spectrum proteomics data.

3.3 Genome-wide association study

Fig. 4 Schematic illustration of pairwise SNP-SNP interaction effects on sample classification.
The data matrix obtained from the SNP chip is similar to DNA microarray studies except that each
column describes a SNP variable. The pairwise SNP-SNP interactions are schematically illustrated
as the gray boxes in the right heat map where darker colors indicating stronger interactions and
associations with the disease of interest. Figure modified from [47].

Like gene expressions from microarray experiments and protein expressions
from mass-spectrum based technologies, comparing the genomes (whole DNA se-
quences) of different samples can also give critical information of different diseases
[47]. More importantly, such studies, termed as “genome-wide association study”
(GWAS), can help to determine the susceptibility of each different individual to
complex diseases, as well as the response to different drugs based on individuals’
genetic variations [45].
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With the revolutionary advancements of next-generation sequencing technolo-
gies, huge volumes of high-throughput sequence data have become easily obtained
and extremely cheap. This information has largely enhanced biologists’ knowledge
of many organisms and also expanded the impact of the genomes on biomedical
research. Genome-wide association study is becoming increasingly important for
clinical decision support with respect to the diagnosis of complex diseases [45].

GWAS computational task involves scanning markers across the complete sets
of DNA sequences, or genomes, from many people to find genetic variations asso-
ciated with a particular disease or a biological symptom. One important concept in
GWAS is the so-called “SNPs” (single nucleotide polymorphisms), which is gen-
erated from the following procedure. GWAS studies normally compare two groups
of samples, (people with or without the disease) by extracting DNA from each per-
son’s sample of cells. DNA is then spread on gene chips which could read millions
of DNA sequences. Rather than reading the entire DNA sequence, GWAS usually
reads the single nucleotide polymorphisms (SNPs) which are markers indicating
the DNA sequence variation at a single nucleotide position. It is estimated that the
human genome has approximately seven million of SNPs [25].

To fully understand the basis of complex disease, it is critical to identify the
important genetic factors involved, and the complex relationships between these
factors. Many complex diseases such as diabetes, asthma or cancer arise from a
combination of multiple genes which often regulate and interact with each other to
produce the disease. Therefore, the goal of studying GWASs is to identify the com-
plex interactions among multiple SNPs together with environmental factors, which
may substantially increase the risk of developing these diseases [45]. This difficult
task is commonly formulated into simpler tasks that try to identify pairwise SNP-
SNP interactions or SNP-environment interactions. Figure 4 provides a schematic
illustration of pairwise interaction relationships between multiple SNPs. Again, the
set of samples (N) and their SNP features (M) could be treated as a data matrix from
a computational perspective (see Figure 4).

Owing to the intrinsic ability to consider multiple SNPs jointly in a nonlinear
fashion [32], random forest [6] has become a popular choice of many recent GWAS
studies for SNP-SNP interaction identification [3, 45, 9, 4, 30]. Using the feature
importance estimated from RF, it is possible to identify important SNP subsets that
are associated with the outcome disease.

RF is especially useful to identify features that show small marginal contribu-
tions individually, but gives a larger effect when combined together. For example,
the initial attempt from [28] utilized random forest permutation importance (Sec-
tion 2.2.2) as a screening procedure to identify small numbers of risk-associated
SNPs among large numbers of unassociated SNPs using 16 complex disease mod-
els. RF was concluded to outperforme Fisher’s exact test when interactions between
SNPs exist. Later, a similar study from Bureau et al. [7] used a similar RF impor-
tance measure and extended the concept on pairs of predictors, in order to capture
joint effects. These early studies normally limited the number of SNPs under analy-
sis to a relatively small range ( 30).
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Fig. 5 Evidence was integrated using a random forest classier for protein-protein interaction pre-
diction. Figure modified from [35].

Recent studies developed feature importance variants from RF to a much larger
dimensional range, e.g. several hundred thousands of candidate SNPs. Besides, the
issue of correlated variables are also taken into account which commonly exist in
GWAS data. Cheng et al. [9] investigated the power of random forest in identifying
SNP interaction pairs by proposing the “depth importance” measure (Section 2.2.3)
from RF trees. It was applied to analyze the complex disease of age-related macular
degeneration. Later, Wang et al. [44] proposed an alternative importance measure,
“maximal conditional chi-square” (MCC in Section 2.2.3), for feature selection in
GWASs. MCC measures the association between a SNP and the outcome where the
association is conditional on other SNPs. The method estimated empirical P-values
of SNPs by revising the RF permutation importance. Compared with the existing
importance measures, the MCC importance showed more sensitivity to complex
effects of risky SNPs.

Both GWASs and biomarker discovery involve feature selection technology.
Therefore, their technologies are closely related to each other [47]. However, they
have different goals with respect to feature selection. The objective of biomarker
discovery is to find a small set of biomarkers (e.g. genes or proteins) to achieve
good prediction accuracies. This allows the development of cheaper and more effi-
cient diagnostic tests. Instead, the goal in GWASs is to find important genetic fators
that are associated with the outcome symptoms and to estimate the significance level
of the association.
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3.4 Protein-protein interaction prediction

Protein-protein interactions (PPIs) are critical for virtually every biological func-
tion in the cell. However, experimental determination of pairwise PPIs is a labor-
intensive and expensive process. Therefore, predicting PPIs from indirect informa-
tion is an active field in computational biology. Recently, researchers suggested su-
pervised learning for the task of classifying pairs of proteins as interacting or not.
Three independent studies [33, 27, 10] compared the performance of multiple clas-
sifiers in predicting protein interactions. In all three studies, RF achieved the best
performance on this task when integrating various biological features such as gene
expression, gene ontology features and sequence data. Figure 5 shows a schematic
illustration of how a random forest performs information integrations for the task of
classifying pairs of proteins as interacting or not in yeast.

Most of the early studies have been carried out in yeast or in human [34], which
aimed to predict protein interactions within a single organism (called “intra-species
PPI prediction”). More recently, researchers extended RF to predicting PPIs be-
tween organisms (called “inter-species PPI prediction”), especially between host
and pathogens. For instance, Tastan et al. [43] applied the supervised random forest
classification framework to predict PPIs between HIV-1 viruses and human pro-
teins. By integrating multiple biological information sources, random forest defined
the state-of-art performance for this task. Figure 6 shows a schematic illustration of
protein interactions between HIV-1 and human proteins.

Fig. 6 Schematic illustration
of protein-protein interactions
between HIV-1 (red circle)
and human proteins (gray
circle). Figure modified from
[43].

3.5 Biological sequence analysis

Computational analysis of biological sequences is a classic and still expanding
subfield in bioinformatics. Biological sequence decribes continuous chains of nu-
cleotide acids (DNA) or amino acids (protein) which can be categorized based on
the type of underlying molecules: DNA, RNA, or protein sequence. Since more
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and more species genomes have been sequenced, this area remains one of the most
important in bioinformatics. With biological mutations and evolution, sequence
datasets are usually enormous and complex, where efficient and accurate learning
models become critical factors [8].

Though there exist enormous biological sequence mining tasks, this section cov-
ers only four typical ones where RF achieved good results. All these tasks try to
computationally identify the functional properties of subregions (sites) of DNA or
protein sequences.

The first type of task is to predict the phenotypes (symptoms) based on protein
sequence or DNA sequence. Segal et al. [38] utilized random forest to predict the
replication capacity of viruses, such as HIV-1, based on amino acid sequence from
reverse transcriptase and protease. Similarly, Cummings et al. [13] used random for-
est to model the relationships between the amino acid sequence of gene “rpoB” and
the rifampin resistance (“rifampin” is a bactericidal antibiotic drug ). Gene “rpoB”
is the gene encoding the beta subunit of DNA-dependent RNA polymerase.

The second related task tries to cope with RNA editing. RNA editing represents
the process whereby RNA is modified from the sequence of the corresponding DNA
template. For instance, cytidine-to-uridine conversion (abbreviated as C-to-U con-
version) is common in plant mitochondria. The mechanisms of this conversion re-
main largely unknown, although the role of neighboring nucleotides is emphasized.
Cummings et al. [12] suggested to use information from subregions’ flanking sites
of interest to predict if C-to-U editing happens on mitochondrial RNA sequences.
Random forest was applied for this prediction task in three plant species: “Arabidop-
sis thaliana”, “Brassica napus” and “Oryza sativa” [12]. Recently, Strobl et al. [41]
proposed to work on the same C-to-U editing task by employing a revised random
forest method based on learning conditional inference trees.

The third typical bio-sequence task RF has been applied to is the identification
of “Post translational modifications (PTMs)”. PTMs occur in a vast majority of pro-
teins and are essential for certain protein functions. Prediction of the sequence loca-
tion of PTMs is an important step in understanding the functional characterisation of
proteins [19]. Among many possible PTMs, glycosylation site and phosphorylation
site are the two critical kinds of functional sites in protein sequences. Their accurate
localization can elucidate many important biological processes such as protein fold-
ing, subcellular localization and protein transportation. Hamby et al. [19] utilized
the random forest algorithm for glycosylation sites prediction and prediction rule
extraction for yeast. Their work made use of the pairwise patterns surrounding gly-
cosylation sites for better predictions. The authors claimed to observe a significant
increase of prediction accuracy in the prediction of “Thr” and “Asn” glycosylation
sites.

The last task to cover in this section is associated with HIV-1 viruses. Human
Immunodeficiency Virus (HIV) is the pathogen causing the disease AIDS. The in-
vasion of the HIV-1 Virus into human cells relies on the contact of its glycoprotein
“gp120” with two human cellular proteins, a receptor and a co-receptor. The type
of co-receptor is crucial for the aggressiveness of the virus and the available treat-
ment options. Hence, Dybowski et al. [16] proposed to predict co-receptor usage
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based on the viral genome sequences. A random forest based method is developed
to predict co-receptor usage for new sequences using structures and sequences of
“gp120”. The good accuracy achieved in [16] made random forest a strong candi-
date for computational diagnosis of viral diseases.

3.6 Some other related applications

Random forest has been tried on many other biomedical domains. For instance, RF
[14] shows to be a powerful statistical classifier in computational ecology. Cutler
et al. [14] compared the accuracies of RF and four other commonly-used statistical
classifiers on three different ecological data sets describing: (1) the presence of in-
vasive plant species in US California; (2) the presence of the rare lichen species in
the US Pacific Northwest; and (3) the nest sites for cavity nesting birds in Utah. RF
showed high classification accuracy in all three applications.

Another interesting application is for computational drug screening [29, 36],
where panels of cell-lines are used to test drug candidates for their ability to in-
hibit proliferation. Riddick et al. [29] built regression models using random for-
est to predict drug response for 19 Breast-Cancer and 7 Glioma cell-lines. RF was
used in three specific ways: (1) feature selection of drug gene-expression signatures
based on RF permutation importance, (2) removing outlier cell-lines based on RF
proximity, and (3) RF multivariate regression model for predicting continuous drug
response.

More applications of random forests can be found in other different fields like
quantitative structure-activity relationship modeling [42], nuclear magnetic reso-
nance spectroscopy [31], or clinical decision supports in medicine in general [11].

4 Summary

With the data explosion in modern biology, machine learning algorithms are becom-
ing increasingly popular. Since the data complexity is always rising, as a nonpara-
metric model, random forest provides a unique combination of prediction accuracy
and model interpretability. This chapter mainly focused on explaining the notable
extensions and applications of random forest in bioinformatics. The covered refer-
ences are by no means an exhaustive list, but are topics which have received much
attention. We, therefore, sincerely apologize to related papers that are not covered
in this chapter.
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