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Background: Cell

 Cell
 The basic living unit 

of life

 Protein
 Chief actors within 

the cell

 Participate in every 
biological process
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 City
 The basic unit of  

human society

 Human Being
 Main actors within 

the city

 Participate in every 
social activity



Cell Compartments
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Parts  Cell  City

1. Center

2. Information Center

5. Transport Network

9. Power Generator

…

Nucleolus

Nucleus

ER

Mitochondria

…

Chief executive

City hall

Subway

Power plant

…



Proteins and Interactions

 Every function in the living cell 
depends on proteins

 Proteins are made of a linear 
sequence of amino acids and 
folded into unique 3D structures

 Proteins can bind to other 
proteins physically
 Enables them to carry out diverse 

cellular functions 
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Protein-Protein Interaction (PPI) 
Network

 PPIs play key roles in many biological systems

 A complete PPI network (naturally a graph)

 Critical for analyzing protein functions & understanding the cell 

 Essential for diseases studies & drug discoveries
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PPI Biological Experiments

 Small-scale PPI experiments
 One protein or several proteins at a time

 Small amount of available data 

 Expensive and slow lab process

 Large-scale PPI experiments
 Hundreds / thousands of proteins at a time

 Noisy and incomplete data

 Little overlap among different sets

 Large portion of the PPIs still missing or noisy !
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Learning of PPI Networks
 Goal I: Pairwise PPI (links of PPI graph)

 Most protein-protein interactions (pairwise) have not 
been identified or noisy

  Missing link prediction ! 

 Goal II: “Complex” (important groups)
 Proteins often interact stably and perform functions 

together as one unit (“complex” ) 

 Most complexes have not be discovered

  Important group detection !

Pairwise 

Interactions

Protein ComplexPPI NetworkLink Prediction

Group Detection
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Goal I: Missing Link Prediction

Pairwise  

Interactions

PPI Network



PPI Prediction through Data Fusion

 Motivation
 Lots of other biological information available

 Implicitly related to PPI relationship (for example, 
co-expressed genes)

 Utilize this information to improve the quality of 
protein interaction data

 Objectives
 To infer PPI reliably and to provide interesting 

biological hypotheses for validation

 To provide useful information for the design of 
laboratory experiments
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Related Biological Data

 Overall, four categories: 

 Direct high-throughput experimental data: 
Two-hybrid screens (Y2H) and mass 
spectrometry (MS)

 Indirect high throughput data: Gene 
expression, protein-DNA binding, etc.

 Functional annotation data: Gene ontology 
annotation, MIPS annotation, etc.

 Sequence based data sources: Domain 
information, gene fusion, homology based 
PPIs, etc.
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direct

Indirect

 Utilize implicit evidence and available direct experimental results together
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Related Data Evidence

Relational Evidence 
Between Proteins

1
Synthetic lethal

Attribute 
Evidence of 
Each Protein

Expression

Structure

Sequence

Annotation

……

……

Relation expanding

1



Feature Vector for (Pairwise) Pairs

 For data representing protein-protein pairs, use directly

 For data representing single protein (gene), calculate the 
(biologically meaningful) similarity between two proteins 
for each evidence
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Synthetic lethal: 1

……
Sequence  Similarity

GeneExp  CorrelationCoeff
…

Pair A-B: fea1, fea2, fea3, …….

Sequence: mtaaqaagee… 

GeneExp: 233.94, 162.85, ...

….

Sequence: mrpsgtagaa…

GeneExp: 109.4, 975.3, ...

…

Protein B Protein A 

Pair A-B 
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Problem Setting

 For each protein-protein pair: 
 Target function: interacts or not ?
 Treat as a binary classification task 

 Feature Set

 Feature are heterogeneous 

 Most features are noisy

 Most features have missing values

 Reference Set: 

 Small-scale PPI set as positive training (thousands)

 No negative set (non-interacting pairs) available

 Highly skewed class distribution

 Much more non-interacting pairs than interacting pairs

 Estimated: 1 out of ~600 yeast; 1 out of ~1000 human 



Previous Work

 Jansen,R., et al., Science 2003
 Bayes Classifier

 Lee,I., et al., Science 2004
 Sum of Log-likelihood Ratio

 Zhang,L., et al., BMC Bioinformatics 2004
 Decision Tree

 Bader J., et al., Nature Biotech 2004
 Logistic Regression

 Ben-Hur,A. et al., ISMB 2005
 Kernel Method

 Rhodes DR. et al., Nature Biotech 2005
 Naïve Bayes
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Systematic Comparison

 Previous methods differ in three aspects

 Reference sets for training and testing;

 Features and how they were extracted

 Learning methods

 Thus, we collect a benchmark data set for 

supervised PPI prediction

 To investigate how three aspects affect the 
prediction performance
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Y. Qi, Z. Bar-Joseph, J. Klein-Seetharaman, Proteins 2006



Systematic Comparison

 Key Factors

 Prediction target (three types)
 Not equally difficult (computationally)

 (1) physical interaction, (2) co-complex relationship,

(3) pathway co-membership task

 Feature encoding 
 (1) “detailed” style, and (2) “summary” style

 Feature importance varies

 Classification method
 Random Forest & Support Vector Machine

19
Y. Qi, Z. Bar-Joseph, J. Klein-Seetharaman, Proteins 2006

Details in the paper
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Methods Proposed  

 Combined approach for sub-network PPI

 Infer PPI reliably and validate experimentally

 PPI prediction using ranking

 Find protein pairs that are “similar” to positive PPIs

 PPI prediction by multiple view learning

 Infer PPI reliably and generate guidance info. to help 
biological experiments’ design
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Human Membrane Receptors
Ligands

Signal Transduction Cascades

extracellular
Other Membrane 
Proteins

transmembrane

cytoplasmic

Type I Type II (GPCR)
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PPI Predictions for Human 
Membrane Receptors

 A combined
approach

 Binary 
classification

 Global graph 
analysis

 Biological 
feedback & 
validation

23
Y. Qi, et al 2008



 Random Forest Classifier
 A collection of independent decision trees ( ensemble classifier)

 Each tree is grown on a bootstrap sample of the training set

 Within each tree’s training, for each node, the split is chosen 
from a bootstrap sample of the attributes

Step 2: Binary Classification
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GeneExpress

TAP

Y2H

GOProcess N HMS_PCI N

GeneOccur Y GOLocalization Y

ProteinExpress

GeneExpress

Gene Express

Domain

HMS-PCISynExpress ProteinExpress

• Robust to noisy feature
• Can handle different types of features



 Compare 
Classifiers

 Receptor PPI (sub-
network) to general 
human PPI prediction
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Step 2: Binary Classification

( 27 features extracted from 8 
different data sources, modified 
with biological feedbacks)



Step 3-4: Global Graph Analysis 

 Degree distribution / Hub analysis / Disease checking

 Graph modules analysis (from bi-clustering study)

 Protein-family based graph patterns (receptors / receptors 
subclasses / ligands / etc ) 26



Step 4: Global Graph Analysis 

 Network analysis reveals interesting features of 
the human membrane receptor PPI graph
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For instance: 

• Two types of receptors 
(GPCR and non-GPCR (Type I))

• GPCRs less densely  
connected than non-GPCRs
(Green: non-GPCR 
receptors; blue: GPCR)
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Step 5: Experimental Validation

 Five of our predictions were chosen for 
experimentally tests and three were verified

 EGFR with HCK (pull-down assay)

 EGFR with Dynamin-2 (pull-down assay)

 RHO with CXCL11 (functional assays, fluorescence 
spectroscopy, docking)

 Experiments @ U.Pitt School of Medicine

Y. Qi, et al 2008

Details in the paper
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Methods Proposed  

 Combined approach for sub-network PPI

 Infer PPI reliably and validate experimentally

 PPI prediction using ranking

 Find protein pairs that are “similar” to positive PPIs

 PPI prediction by multiple view learning

 Infer PPI reliably and generate guidance info. to help 
biological experiments’ design
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Motivation

 Current situation of PPI task
 Only a small positive (interacting) set available

 No negative (not interacting) set available

 Highly skewed class distribution
 Much more non-interacting pairs than interacting pairs

 The cost for misclassifying an interacting pair is 
higher than for a non-interacting pair

 Accuracy measure is not appropriate here

 Try to handle this task with ranking 
 Rank the known positive pairs as high as possible

 At the same time, have the ability to rank the unknown 
positive pairs as high as possible
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Method

 Handle this task using ranking
 Find a distance / similarity function to measure 

the pairwise difference / similarity between 
protein pairs

 Use kNN (or similar methods) to calculate the 
confidence score of a candidate pair based on 
the training set 

 Rank the test pairs to an ordered list by this 
score 

Y. Qi, J. Klein-Seetharaman, Z. Bar-Joseph, PSB 2005

Details in the paper
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Methods Proposed  

 Combined approach for sub-network PPI

 PPI prediction using ranking

 PPI prediction by multiple view learning
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Motivation: Multiple View Learning

 Features are heterogeneous in nature

 Give guidance information for biological 
experimental design

 Useful for biologists to know how features 
contributed to a specific prediction

 Researchers may have various opinions 
regarding the liability of diverse features 
sources

 Intrinsically different PPI pairs correlate 
differently with feature sources

Y. Qi, J. Klein-Seetharaman,Z. Bar-Joseph, BMC Bioinformatics 2007
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Split Features into Multi-View

 Overall, four feature groups: 

 P: Direct highthroughput experimental 
data: Two-hybrid screens (Y2H) and mass 
spectrometry (MS)

 E: Indirect high throughput data: Gene 
expression, protein-DNA binding, etc.

 F: Functional annotation data: Gene 
ontology annotation, MIPS annotation, etc.

 S: Sequence based data sources: Domain 
information, gene fusion, homology based 
PPIs, etc.

Direct

Genomic

Functional

Sequence

Y. Qi, J. Klein-Seetharaman, Z. Bar-Joseph, BMC Bioinformatics 2007
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Mixture of Feature Experts (MFE)

 Make protein interaction prediction by
 Weighted voting from the four roughly homogeneous 

feature categories

 Treat each feature group as a prediction expert

 The weights are also dependent on the input example

P

F

S

E Interact ?
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Mixture of Feature Experts (MFE)

 A single layer tree with experts at 
the leaves

 A root gate is used to integrate 
experts

 Weights assigned on each expert 
by the root gate 
 Depends on the input set for a 

given pair

 Hidden variable “M” represents 
the choice of expert


M

XMpMXYpXYp )|(),|()|(

X

Y

M
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Mixture of Four Feature Experts

 Parameters              are trained using EM

 Experts and root gate use logistic regression (ridge 
estimator)

Expert P
Direct PPI High throughput 

Experiment Data

Expert F

Function Annotation

of Proteins

Expert S
Sequence or Structure 

based Evidence

Expert E
Indirect High throughput 

Experimental Data







4

1

)()()()()()()( ),1,|(*),|1()|(
i

i

n

i
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i

nn wmxypvxmpxyp
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Mixture of Four Feature Experts

 Handling missing value 
 Add additional feature column for each feature having low 

feature coverage

 MFE uses present / absent information when weighting 
different feature groups

 The posterior weight for expert i in predicting pair n
 The weight can be used to indicate the importance of that 

feature view ( expert ) for this specific pair  



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Performance
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• 162 features for 
yeast physical PPI 
prediction task

• Features extracted in 
“detail” encoding

• Under “detail” 
encoding, the ranking 
method  is almost the 
same as RF (not shown)



A Simple Usage of Experts’ Weights
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Figure: The frequency at which each of the four 
experts has maximum contribution among 
validated and predicted pairs

 300 candidate 
protein pairs

 51 predicted 
interactions 

 33 validated 
already

 18 newly 
predicted
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Goal II: Important Group Detection

Protein ComplexPPI Network
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Protein Complex

 Proteins form associations with 
multiple protein binding partners 
stably (termed “complex”) 

 Complex member interacts with 
part of the group and work as an 
unit together

 Identification of these important 
sub-structures is essential to 
understand activities in the cell

 Group detection within the PPI network
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Identify Complex in PPI Graph

 PPI network as a weighted 
undirected graph

 Edge weights derived from 
supervised PPI predictions: Goal I

 Previous work

 Unsupervised graph clustering style

 All rely on the assumption that 
complexes correspond to the dense 
regions of the network
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Some Facts

 Many other possible topological structures

 A small number of complexes available from 
reliable experiments

 Complexes also have functional /biological 
properties (like weight / size / …)
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Possible topological structures

Edge weight color coded 
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Identify Complex in PPI

 Objectives

 Make use of the small number of known 
complexes  supervised

 Model the possible topological structures 
 subgraph statistics

 Model the biological properties of 
complexes  subgraph features

Y. Qi, F. Balem, J. Klein-Seetharaman, C. Faloutsos, Z. Bar-Joseph, ISMB 2008
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Properties of Subgraph

 Subgraph properties
as features in BN

 Various topological 
properties from graph

 Biological attributes 
of complexes

No. Sub-Graph Property

1 Vertex Size

2 Graph Density

3 Edge Weight Ave / Var

4 Node degree Ave / Max

5 Degree Correlation Ave / Max

6 Clustering Coefficient Ave / Max

7 Topological Coefficient Ave / Max

8 First Two Eigen Value

9 Fraction of Edge Weight > Certain Cutoff

10 Complex Member Protein Size Ave / Max

11 Complex Member Protein Weight Ave / Max
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Model Complex Probabilistically

 Bayesian Network (BN)

 C : If this subgraph is a 
complex (1) or not (0)

 N : Number of nodes in 
subgraph 

 Xi : Properties of subgraph

C

N

X X X X

),...,,,|0(

),...,,,|1(
log

21

21

m

m

xxxncp

xxxncp
L






 Assume a probabilistic model (Bayesian Network) 

for representing complex sub-graphs



Model Complex Probabilistically

 BN parameters trained with MLE
 Trained from known complexes and random sampled 

non-complexes 

 Discretize continuous features

 Bayesian Prior to smooth the multinomial parameters

 Evaluate candidate subgraphs with the log 
ratio score L
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Discover Complexes through 
Heuristic Local Search

 Identify Complexes  Search for high 
scoring subgraphs

 Lemma: Identifying the set of maximally 
scoring subgraphs in our PPI graph is NP-
hard

 Employ the iterated simulated annealing 
search on the log-ratio score
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Experimental Setup

 Positive training data:
 Set1: MIPS Yeast complex catalog: a curated set of 

~100 protein complexes

 Set2: TAP05 Yeast complex catalog: a reliable 
experimental set of ~130 complexes 

 Complex size (nodes’ num.) follows a power law

 Negative training data
 Generate from randomly selected nodes in the graph 

 Size distribution follows the same power law as the 
positive complexes



Data Distribution

Feature distribution Node size distribution
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Evaluation 

 Train-Test style (Set1 & Set2)

 Precision / Recall / F1 measures

 A cluster “detects” a complex if

A : Number of proteins only in cluster
B : Number of proteins only in complex
C : Number of proteins shared

If overlapping threshold p set as 50%
A C B

Detected 
Cluster

Known 
complex

p
CA

C



p

CB

C



&
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Performance Comparison

 On yeast predicted PPI graph (~2000 nodes)

 Compare to a popular complex detection package: 
MCODE (search for highly interconnected regions)

 Compare to local search relying on density evidence only

 Compared to local search with complex score  from SVM 
(also supervised)

Methods Precision Recall F1

Density 

MCODE

SVM

BN

0.180

0.219

0.211

0.266

0.462

0.075

0.377

0.513

0.253

0.111

0.269

0.346
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Thesis Statement

This dissertation provides a systematic 
computational framework for discovering 
protein-protein interactions (PPI) and for 
identifying important patterns within PPI 
networks. 

The computational predictions yielded by 
this framework suggest a number of novel 
biological hypotheses that have been verified 
with subsequent laboratory experimentations.



Contributions

1. A systematic study and a benchmark dataset for
supervised PPI prediction in yeast

2. Infer PPI reliably and validate experimentally  A 
combined computational and experimental method for 
human receptor PPI predictions

3. Find protein pairs that are “similar” to positive PPIs  PPI 
prediction with ranking for yeast PPI identifications

4. Infer PPI reliably and generate guidance info. to design 
biological experiments  Mixture of feature experts 
method for PPI identifications in yeast and human

5. Supervised group detection for protein complexes

6. Two web services (one for yeast PPI predictions and one 
for human receptor PPI predictions)

57



Future Work
 Link prediction 

 Active learning to assist biological experiments

 Semi-supervised learning for hard cases

 Joint learning considering multiple links

 Virus to host PPI predictions (bipartite graph)

 Group detection 

 better complex model

 better search algorithm

 Pathway identification (chain structure)

 Global graph analysis of PPI network

 Protein function prediction (hierarchy labels)

 Domain/motif interaction detection (binding sites)
58



Human-PPI (Revise 08)
HIV-Human PPI (Revise)

Learning of PPI Networks
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Pairwise 

Interactions

Pathway

Function 

Implication
Func ?Func A

Protein ComplexPSB 05
PROTEINS 06
BMC Bioinfo 07
CCR 08

ISMB 08

Prepare

Genome Biology 08

PPI Network

Domain/Motif 

Interactions



Thanks ! 

Questions ?


