

A Mixture of Feature Experts Approach for Protein-Protein Interaction Prediction

Yanjun Qi¹, Judith Klein-Seetharaman^{1,2} and Ziv Bar-Joseph¹

¹School of Computer Science, Carnegie Mellon University, Pittsburgh ²Department of Pharmacology, University of Pittsburgh Medical School, Pittsburgh

Email: {qyj, judithks, zivbj}@cs.cmu.edu

Importance of Protein Interactions

- Need: comprehensive identification of Protein-Protein Interactions (PPI)
 - To systematically define proteins' functions
 - To decipher the molecular mechanisms underlying given biological functions

Approaches

Experimental:

- direct high throughput data: mass spectrometry and yeast-two-hybrid, Y2H
 - High false-positive and false-negative rate, especially Y2H
 - Incomplete, with majority remains to be discovered, especially for human
 - Surprisingly small overlap among different sets

Computational:

- treat direct data as features and use in combination with other implicitly related biological information
 - Example: If two proteins are co-expressed, they may interact.

3

Our Goal:

- Integrate multiple biological data sources to:
 - Predict protein interacting pairs in yeast more accurately and completely
 - Different example may benefit from using different feature sets
 - Give guidance /help for biological lab experiments
 - Useful for biologists to know which features contributed to specific predictions
 - (Researchers may have various opinions regarding the liability of diverse features)
 - (Different features also have diverse reliability)

Related Works

- Jansen, R. et al., Science 2003
 - Use Bayes classifier to classify candidate protein pairs interact or not
- Zhang, L. et al., BMC Bioinformatics 2004
 - Decision tree to classify a candidate protein pair in same complex or not
- Ben-Hur, A. et al., ISMB 2005
 - kernel method in conjunction with a support vector machine classifier
- Qi,Y., et al, PSB 2005
 - Random Forest Similarity based weighted k-NN classifier

supervised classification

Above methods either estimate feature importance globally or implicitly for a specific interaction prediction!

Features Used

- Overall, four categories: (roughly homogeneous within category)
 - Direct high-throughput experimental data
 - (two-hybrid screens and mass spectrometry)
 - Indirect high throughput data
 - (gene expression, protein-DNA binding etc.)
 - Functional annotation data
 - (gene ontology annotation, mips annotation, etc.)
 - Sequence based data sources
 - (domain information, gene fusion, homology based PPIs, etc.)

Data Properties

Challenges:

- Most data are noisy
- Many missing values
- Data is often correlated

Potential advantages:

- Data from heterogeneous sources
- Redundant features are also important and can provide complementary information

Method – Mixture of Feature Experts

- Make protein interaction prediction by
 - Weighted voting from the four roughly homogeneous feature categories
 - Treat each feature category as a prediction expert
 - The weights are also dependent on the input feature

Mixture of Experts (ME)

- A single layer tree with experts at the leaves
- A root gate is used to integrate experts
- Weights assigned on each expert by the root gate
 - Depends on the input set for a given pair
- Hidden variable "M" represents the choice of expert

$$p(Y | X) = \sum_{M} p(Y | X, M) p(M | X)$$

Mixture of Four Feature Experts

$$p(y^{(n)} \mid x^{(n)}) = \sum_{i=1}^{4} p(m_i^{(n)} = 1 \mid x^{(n)}, v) * p(y^{(n)} \mid x^{(n)}, m_i^{(n)} = 1, w_i)$$

- Parameters (w_i, v) are trained using EM
- Experts and root gate use logistic regression (ridge estimator)

- Handling missing value
 - Add additional feature column for each feature having low feature coverage
 - ME could then also use present / absent information when weighting different features
- The posterior weight for expert i in predicting pair n
 - The weight can be used to indicate the importance of that feature category (expert) for this specific pair

$$h_{i}^{(n)} = P(m_{i}^{(n)} = 1 \mid y^{(n)}, x^{(n)}, v^{t}, w^{t}) = \frac{P(m_{i}^{(n)} = 1 \mid x^{(n)}, v^{t}) * p(y^{(n)} \mid x^{(n)}, m_{i}^{(n)} = 1, w_{i}^{t})}{\sum_{j=1}^{4} P(m_{j}^{(n)} = 1 \mid x^{(n)}, v^{t}) * p(y^{(n)} \mid x^{(n)}, m_{j}^{(n)} = 1, w_{j}^{t})}$$

Experiments

- Measurements
 - AUC score: The area under the ROC curve
 - Partial AUC score: measures the area under the ROC curve within a specific region
 - We are interested with the performance where the false positive rate is low
 - Tradeoff between accurateness / completeness

Reference Set

- Only a small positive (interacting) set available (small scale interaction experimental result)
- Highly skewed class distribution
 - Much more non-interacting pairs than interacting pairs
- The ratio of positive pairs to negative (random) pairs is roughly
 1:600 in yeast

Performance Comparison

- Compare with four other classifiers
 - Random Forest (RF)
 - Logistic regression (LR)
 - Support Vector Machine (SVM)
 - Naïve Bayes (NB)
- Used randomly train & test style to evaluate the performance

Methods	AUC	AUC STD	R50	R50 STD
LR	0.8823	0.0330	0.2866	0.0707
NB	0.9349	0.0158	0.2486	0.0472
RF	0.9321	0.0142	0.2688	0.0482
SVM	0.9159	0.0247	0.2585	0.0638
ME	0.9463	0.0137	0.3080	0.0780

Validate on Yeast Pheromone Pathway

- 25 proteins involved in this pathway
- Test all possible 300 protein pairs
- 51 predicted interactions
 - 33 validated already
 - 18 newly predicted

Figure: The frequency at which each of the four experts has maximum contribution among validated and predicted pairs

Future Work

- Extend to other species
 - (for example, Human)

 Graph mining on the full predicted protein interaction network

Thank You

Questions?

Extra Slides

Features

Expert	Feature Category	Num. Features	Coverage (Percentage)
P expert	HMS_PCI Mass	1	8.3
-	TAP Mass	1	8.8
	Yeast-2-Hybrid	1	3.9
F expert	GO Molecular Function	21	80.7
-	GO Biological Process	33	76.1
	GO Component	23	81.5
	Essentiality	1	100
	MIPS Protein Class	25	4.6
	MIPS Mutant Phenotype	11	9.4
S expert	Gene Neighborhood / Gene Fusion / Gene Co-occur	1	100
•	Sequence Similarity	1	100
	Homology based PPI	4	100
	Domain-Domain Interaction	1	100
E expert	Gene Expression	20	88.9
1	Protein Expression	1	42.8
	Protein-DNA TF group binding	16	98.0
	Synthetic Lethal	1	7.6

Reference Set Situation

Existing PPI Set:

- Only a small positive (interacting) set available (small scale interaction experimental result)
- No negative (not interacting) set available
- Highly skewed class distribution
 - Much more non-interacting pairs than interacting pairs

Reference set we use:

The ratio of positive pairs to negative (random) pairs is roughly 1 : 600 in yeast

	SET	#PAIRS	NOTE
Reference Set	Positive Set	~ 3000	From [DIP]
	Random Set		Random Generated (excluded above POS set)