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Abstract

High-throughput methods can directly detect the set of
interacting proteins in yeast but the results are often in-
complete and exhibit high false positive and false negative
rates. A number of researchers have recently presented
methods for integrating direct and indirect data for pre-
dicting interactions. However, due to missing data and
the high redundancy among the features used, different
samples may benefit from different features based on the
set of attributes available. In addition, in many cases it is
hard to directly determine which of the datasets led to the
prediction, which is an important issue for the biologists
using these predications to design new experiments.

To address these challenges we use a Mixture-of-Experts
method. We split the data into four (roughly) homoge-
neous sets. The individual experts use logistic regression
and their scores are combined using another logistic re-
gression. However, when combining the scores the weight-
ing of each expert depends on the set of input attributes.
Thus different experts will have different influence on the
prediction depending on the available features.

We applied our method to predict the set of interact-
ing proteins in yeast. Our method improved upon the
best previous methods for this task. In addition, using
the weighting of the experts the prediction can be easily
evaluated by biologists based on the features that they
feel are the most reliable.

1 Introduction

Correctly identifying the set of interacting proteins in an
organism is useful for deciphering the molecular mech-
anisms underlying given biological functions and for as-
signing functions to unknown proteins based on their in-
teracting partners. It is estimated that there are around
30,000 specific interactions in yeast, with the majority to
be discovered [3].

A number of high-throughput experimental approaches
have been applied to determine the set of interacting
proteins on a proteome-wide scale in yeast. These in-
clude the two-hybrid (Y2H) screens and mass spectrom-
etry methods. However, both methods suffer from high
false positive and false negative rates [3]. Roughly 80,000
interactions have been predicted in yeast by various high-
throughput methods, but only a small number (∼2,400)
are supported by more than one method.

In addition to direct interaction, there are many indi-

rect sources that may contain information about protein
interactions. For example, it has been shown that many
interacting pairs are co-expressed [3]. These datasets pro-
vides partial information about the interacting pairs and
suggest that direct data on protein interactions can be
combined with indirect data to improve the success of
protein interaction prediction when compared to direct
data alone.

Researchers have recently suggested a number of meth-
ods to predict protein interactions by combining multiple
data sources. Jansen et al. [4] combined direct and indi-
rect data sources using a Bayes classifier. Lin et al.[6]
compared Jansen’s method with two other classifiers,
Random Forest (RF) and Logistic Regression (LR) and
found RF to be the best among them. Zhang et al.[10]
constructed a decision tree to predict co-complexed pro-
tein pairs. Ben-Hur et al.[7] used kernels for protein in-
teraction prediction. Yamanishi et al.[9] predicted path-
way protein interactions using a variant of kernel canon-
ical correlation analysis. All of the above methods were
shown to improve the success of protein interaction pre-
diction when compared to direct data alone.

While useful, the above methods do not address two im-
portant problems in this domain. First, these classifica-
tion methods estimate a set of parameters that are used
for all input pairs. However, the biological datasets used
contain many missing values and highly correlated fea-
tures. Thus, different samples may benefit from using
different feature sets. The second problem is that biolo-
gists who want to use these methods to select experiments
cannot easily determine which of the features contributed
to the resulting prediction. Since different researchers
may have different opinions regarding the reliability of
the various features, it is useful if the method can indi-
cate, for every pair, which feature contributed the most
to the classification result.

In this paper we address the above challenges using a mix-
ture of experts method. We divide the biological datasets
into several groups. Each of the groups represents a spe-
cific data type and is used by an expert (classifier) to
predict interactions. Results from all experts are com-
bined such that the weight of each expert depends on the
input sample and thus varies between input pairs. This
weight can also be used to indicate the importance of the
features used by this expert for predicting a pair. The
importance can be used by biologists to determine their



Table 1: We used a total of 162 features from 17 differ-
ent data sources. The first column lists which expert the
feature source belongs to (Total four experts: P, E, F
and S). The second column lists the name of the feature
source. The third column lists the numbers of features
in each source. The fourth column presents the percent-
age of pairs for which information is available using this
feature.

Feature Source Size Coverage

P HMS-PCI MS 1 8.3
P TAP MS 1 8.8
P Yeast-2-Hybrid 1 3.9
F GO Function 21 80.7
F GO Process 33 76.1
F GO Component 23 81.5
F Essentiality 1 100
F MIPS protein class 25 4.6
F MIPS mutant phenotype 11 9.4
S Gene fusion/cooccurence 1 100
S Sequence similarity 1 100
S Homology derived PPI 4 100
S Domain interaction 1 100
E Gene Expression 20 88.9
E Protein Expression 1 42.8
E Trans Factor Binding 16 98.0
E Synthetic Lethal 1 7.6

confidence in the classification results.

We applied our method to predict protein interactions in
yeast and the method improved upon previous methods.
For a specific Yeast pathway, the pheromone pathway, we
show that it is possible to extract information from the
weight distribution, in addition to providing new predic-
tions.

2 Feature Set

There are many biological sets related to protein-protein
interaction. In this paper, we collected a total of 162 fea-
ture attributes from 17 different data sources (Table 1).
Overall, these data sources can be divided into four fea-
ture experts: (1) P: Direct high throughput experimental
PPI data, (2) E: indirect high throughput data (3) S:
sequence based data sources and (4) F: functional prop-
erties of proteins.

In addition to the features, we also need a reference set to
train/test the method. For the positive set (or interact-
ing pairs) ∼3000 yeast protein pairs were extracted from
the database of interacting proteins (DIP ). This set is
composed of interacting protein pairs which have been
experimentally validated and thus can serve as a reliable
positive set. Unlike positive interactions, it is rare to find
a confirmed report on non interacting yeast pairs. Here
we follow [10] which have used a random set of protein
pairs as their negative set instead. This selection is jus-
tified because of the small fraction of interacting pairs

Figure 1: Mixture of Four Feature Experts

in the total set of potential protein pairs. It is estimated
that roughly only 1 in 600 possible pairs actually interact.

3 Method

Mixture of Experts: We apply the Mixture-of-experts
model [2] to the protein-protein interaction prediction
task. As Figure1 shows, our framework can be viewed
as a single layer tree, with experts at the leaves. Each
expert uses one of the dataset groups to predict interac-
tions. A root gate is used to integrate predictions from
multiple experts. The weights assigned to each of the
experts by the root gate depends on the input set for a
given pair.

For every protein pair we construct a d dimensional input
vector X consisting of all the features presented in Table1.
Given our model the conditional probability of the target
variable Y given the input data X could be written as:

P (Y |X) =
∑

M

P (M |X)P (Y |X, M) (1)

where Y ∈ {−1, 1} is the label (does this pair interacts
(1) or not (-1)). M is a four dimensional indicator vector
with each item in {0, 1}, representing the choice of the
experts. The sum is over all configuration of M . In other
words, target class label Y is dependent on the input data
X and the choice of expert M . The choice of M is also
dependent on the input X. P (M |X) is modeled using the
root gate, while P (Y |M, X) is modeled by each expert.
Thus, the target Y is dependent on the input X and the
multinomial random variable M .

For the nth training pair, the conditional probability
P (y(n)|x(n)) is formulated using equation (1) as:

4∑

i=1

P (m
(n)
i = 1|x(n)

, v) ∗ P (y(n)|x(n)
, m

(n)
i = 1, ωi) (2)

The overall model parameters include the gate parame-
ters v and the experts parameters ωi.

Each expert uses binary logistic regression for predicting
if a pair of proteins interact. For the i-th expert we set

P (y(n)|x(n)
, m

(n)
i = 1, ωi) =

1

1 + exp(−y(n) ∗ (wT
i ∗ x(n)))

(3)

The root gate can take any functional form that is consis-
tent with the estimation of probabilities. [2] used multi-
nomial logit models for the gates. Here, we extend the
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binary logistic regression to model multinomial probabil-
ity through voting. The binary logistic regression model
is run once for each output branch of the gate. Next a
modified probability is calculated by combining all the
models. Assuming we have i branches (i = 1...4 for our
gate), set:

P (c
(n)
i = 1) =

1

1 + exp(−(vT
i ∗ x(n)))

(4)

then

P (m
(n)
i = 1|x(n)

, v) =
P (c

(n)
i = 1)

∑C

j=1 P (c
(n)
j = 1)

(5)

Note that P (m
(n)
i = 1|x(n), v) depends on the input at-

tributes (x(n)) and represents the weight for expert i when
predicting the nth pair. In all of the above logistic re-
gression steps, we use the ridge estimator to regularized
parameters.

Expectation-Maximization: The overall set of pa-
rameters are trained using maximum likelihood estima-
tion. The log-likelihood is,

N∑

n=1

log(

4∑

i=1

P (m
(n)
i = 1|x(n)

, v) ∗ P (y(n)|x(n)
, m

(n)
i = 1, ωi))

(6)

[1] proposed an expectation-maximization (EM) algo-
rithm for adjusting the parameters of the ME. The EM
algorithm consists of two steps.

For the E-step, we compute h
(n)
i , the posterior weight

for expert i in predicting pair n:

h
(n)
i = P (m

(n)
i = 1|x(n), y(n), Θt)=

P (m
(n)
i = 1|x(n), vt) ∗ P (y(n)|x(n), m

(n)
i = 1, ωt

i)∑4
j=1 P (m

(n)
j = 1|x(n), vt) ∗ P (y(n)|x(n), m

(n)
j = 1, ωt

j)

(7)

The M-step solves the following maximization problems:

v
t+1 = argmaxv

N∑

n=1

4∑

j=1

h
(n)
j ∗ log(P (m

(n)
i = 1|x(n)

, v
t))

(8)
and for each expert,

ω
t+1
i = argmaxωi

N∑

n=1

h
(n)
i ∗ log(P (y(n)|x(n)

, m
(n)
i = 1, ω

t
i))

(9)

Therefore, the EM algorithm is summarized as

1. For each data pair (x(n), y(n)), compute the poste-

rior probability h
(n)
i using the current values of the

parameters.

2. For each expert i, solve a maximization problem in
Eq.9 with observation {x(n), y(n)}N

n=1 and observa-

tion weights {h
(n)
i }N

n=1.

3. For the root gate, solve the maximization problem
in Eq.9 with observation {x(n), y(n)}N

n=1.

4. Iterate by using the updated parameter values.

Handling missing values: Biological datasets contain
many missing values. The coverage (Table 1) ranges from
3.9% for Yeast Two-Hybrids to over 88.9% for gene ex-
pression data sets (in average) and 100% for sequence
related features.

Using our input dependent method, missing values can
be overcome by adding an additional feature column for
each feature that has low feature coverage. This new fea-
ture uses 0 to represent missing values and 1 to represent
present values. While this increases the size of our fea-
ture set, it is still very small (∼200) compared to the to-
tal number of protein pairs (∼18M). Since the weighting
for the ME root gate depends on the input features, our
classifiers can use the present / absent information when
weighting the different features. We have found that this
method works better than traditional methods that as-
sign mean or median value to missing data (results not
shown).

4 Results

Performance Comparison: We compared our ME
method with five other classifiers that have been sug-
gested in the past for this task: Decision Tree, Logistic
Regression, Naiv̈e Bayes, Support Vector Machines and
Random Forest. All comparisons were based on the fol-
lowing training and testing procedures. We randomly
sampled a training set containing 100,000 yeast protein
pairs to learn the decision model. Then we sampled a
test set (another 30,000 pairs) from the remaining pro-
tein pairs, and used the trained model to evaluate the
performance of the classifier. The above steps were re-
peated 10 times for each classifier and average values are
reported.

We use AUC area and R50 partial area under the Receiver
Operator Characteristic curve to evaluate performance.
The area under the ROC curve (AUC) is commonly used
as a summary measure of diagnostic accuracy. It can
take values from 0.0 to 1.0. In our prediction task, we
are predominantly concerned with the detection perfor-
mance under conditions where the false positive rate is
low. Here, we use 50 as a cut-off, i.e. R50 is a partial
AUC score that measures the area under the ROC curve
until reaching 50 negative predictions.

Table 2 lists the AUC score and R50 scores of the six
methods. As can be seen the ME method achieves the
best values for both criteria.

Comparison of experts: Next, we investigated the
utility of the ME method in helping biologists analyze
the interaction predictions with the goal of using them
in the design of new experiments. For this purpose, we
applied the ME method to a specific pathway, the yeast
pheromone response and compared the contribution of
different experts in the predictions made. We selected 25
proteins that are known to participate in this pathway
and applied the ME algorithm (using a different train-
ing set) to classify the 300 (25*24/2) potentially inter-
acting pairs. We determined a prediction threshold us-
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Table 2: Average AUC and R50 scores. LR: Logistic
regression; NB: Naive Bayes; RF: Random Forest; SVM:
Support Vector Machine; ME: mixture of feature experts.

Method AUC AUC R50 R50
mean std mean std

LR 0.8823 0.033 0.2866 0.070
NB 0.9349 0.015 0.2486 0.047
RF 0.9321 0.014 0.2688 0.048
SVM 0.9159 0.024 0.2585 0.063
ME 0.9463 0.013 0.3080 0.078
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Figure 2: Frequency of each expert having maximum con-
tribution. For definition of P,F,S,E experts, see Table1.

ing the training set. 51 of the pheromone response pairs
were above the threshold and were thus predicted to be
interacting. Among them, 33 interactions (64.7%) had
been experimentally validated. The remaining 18 pairs
are new predictions. Figure2(a) shows the frequency at
which each of the four experts had maximum contribution
among validated pairs. In line with biological intuition,
the direct high-throughput evidence (expert P) and func-
tional databases (expert F) are the predominant experts
in the correct predictions. Figure2(b) shows that the ma-
jority of the 18 new predictions are based on recommen-
dations by expert F. Based on the reliability of expert F
in making correct predictions, this result indicates that
the majority of the new predictions may turn out to be
correct, once experimentally tested.

Interestingly, expert E (indirect experimental data cate-
gory) is rarely used. This is seemingly in contradiction
to previous estimations in which tree based feature rank-
ing methods ranked gene expression features very highly
[8]. Note that, when the feature sets are not grouped the
wide availability of gene expression data and its high cov-
erage may result in an increased use of this feature, even
though it may lead to overfitting. As our results sug-
gest, splitting the data into more homogeneous groups
may help increase the prediction accuracy by decreasing
its reliance on these high throughput data sources.

5 Conclusions and Future Work

In this paper we presented a mixture of experts method
for predicting protein-protein interactions in Yeast. Di-

verse high-throughput biological datasets are split into
four homogeneous experts. Each expert uses a subset
of the data to predict protein interactions and experts
predictions are combined such that the weight of each
expert depends on the input data for the predicted pro-
tein pair. This method is useful for overcoming missing
values which are a major issue when analyzing biological
datasets. In addition, the weights can be used by biol-
ogists to determine confidence in the prediction for each
pair. Using data from yeast we have shown that this al-
gorithm improves upon previous methods suggested for
this task.

We believe that as the prediction task becomes harder
(for example, when analyzing human protein interactions
[11]) the need for methods that can accommodate high
levels of missing values and are directly interpretable by
biologists increases. The next step will be to apply our
method to the human protein interaction prediction task
where missing values and the small number of positive
examples are major obstacles in acquisition of an accurate
protein interaction map.
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