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Abstract 

Camera motion detection is essential for automated 
video analysis. We propose a new probabilistic model for 
detecting zoom-in/zoom-out operations. The model uses 
EM to estimate the probability of a zoom versus a non-
zoom operation from standard MPEG motion vectors. 
Traditional methods usually set an empirical threshold 
after deriving parameters proportional to zoom, pan, 
rotate and tilt. In contrast, our probabilistic model has a 
solid probabilistic foundation and a clear, simple prob-
ability threshold. Experiments show that this probabilistic 
model significantly out-performs a baseline parametric 
method for zoom detection in both precision and recall. 

1. Introduction 

As digital video becomes more pervasive, effective 
ways of analyzing video content is increasingly important. 
Camera operations are one aspect in characterizing a shot 
to help infer higher-level semantic content [11].  

Several approaches have been developed to analyze 
camera motion of video sequences based on analyzing the 
optical flow computed between consecutive images 
[1][4][5]. A few methods directly manipulate MPEG-
compressed video to extract camera motion [2][3][6][7]. 
These approaches use the MPEG motion vectors as an 
alternative to optical flow.  

Intuitively, we know that the motion vectors for a 
zoom in and zoom out frame will have the “blow out” and 
“blow in” patterns, respectively. Therefore, in a perfect 
case, the motion vectors of the macro blocks will point 
inward or outward to/from the center of the zoom opera-
tion with vector length proportional to the distance from 
the center of the zoom operation.  

The difficulty in detecting camera zoom operation 
comes from noise in the motion vectors due to independ-
ent object motion in the frame or the MPEG encoding 
process, such as quantization errors and other artifacts. 
Other researchers [5] observed that although the MPEG 
motion vectors do not represent the true optical flow, they 
should be sufficient to estimate camera parameters in 
sequences that do not contain large uniform regions. 

In this paper, we propose a novel probabilistic model 
for detecting zoom in/out camera motion. It is based on 
the Expectation-Maximization (EM) algorithm for maxi-
mum likelihood estimation in the presence of incomplete 
data. Empirical experiments confirm the superiority of our 
probabilistic model over a published and high-accuracy 
parametric method [2][6] of camera motion estimation in 
terms of precision, recall and F1 score.  

1.1. MPEG Motion Vector Field Extraction 

MPEG-1 and MPEG-2 streams [12] encode one quan-
tized motion vector per block. Though these motion vec-
tors are not directly equivalent to the true motion vectors 
of a particular pixel in the frame, there are typically hun-
dreds of motion vectors in one frame, sufficient to esti-
mate camera model parameters. In this work, we use the 
motion vectors and temporal reference of the P frames 
extracted from the MPEG-compressed bitstream. 

2. A Probabilistic Model for Zoom Detection 

Our approach assumes a model where the motion vec-
tors for a frame are produced in part by a perfect zoom 
and in part by non-zoom noise. In each case, we use Esti-
mation-Maximization to derive the best possible parame-
ters for each of the two models of the motion vectors. We 
then compare the contribution of the zoom part versus the 
non-zoom part to the motion vectors for that frame.  

The advantage of a probabilistic model for zoom detec-
tion is that it naturally handles noisy data. A probabilistic 
model also produces output probabilities, which are much 
easier to interpret and utilize than arbitrary threshold 
values given by typical camera motion detection systems. 

2.1. Mathematical Description 

In our model, we assume the MPEG motion vector in-
formation for the frames is given. The goal of our model 
is to compute the probability that a given frame is in a 
zoom-in or zoom-out camera operation. For the i-th 
frame, let ),( yxvi

r

 be the motion vector for the macro 

block in the x-th column and y-th row and iM  be our 

model that explains how all the motion vectors are gener-



ated. To compute the probability for the i-th frame to be 
from a camera zoom operation, we want to find the opti-

mal model i
*M  that can best explain the frame’s motion 

vectors and see if that model is consistent with the model 
of a zoom. In other words, we need to find a model that 
maximizes the probability of generating all the motion 
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By assuming each motion vector ),( yxvi
r

is generated 

independently, we can decompose the conditional prob-
ability )|)},(({ ii yxvP M
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as 
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Each motion vector can be generated either due to a 
zoom-in/zoom-out camera motion or due to something 
else. Therefore, model iM  can be decomposed into two 

parts: iZ , i.e. the model accounting for zoom camera 

motion and iN , i.e. the model for non-zoom reasons. The 

probability )|)},(({ ii yxvP M
r

 can be rewritten as: 

)|),(()()|),(()(

)|),((

iiiiii

ii

yxvPPyxvPP

yxvP

NNZZ

M
rr

r

+
=

 (3) 

Where )( iP Z  and )( iP N  stand for the prior probabil-

ity of using zoom model iZ  and non-zoom model iN  

to explain the motion vector data, respectively. The prob-
abilities )|)},(({ ii yxvP Z

r

 and )|)},(({ ii yxvP N
r

 are 

the probabilities of generating the motion vector ),( yxvi
r

 

using the zoom model iZ  and the non-zoom model iN , 

respectively. 
After the general description of the probabilistic 

model, we need to compute the generation probabilities 
)|)},(({ ii yxvP Z

r

 and )|)},(({ ii yxvP N
r

. For the non-

zoom model iN , we assume the motion vector ),( yxvi
r

 

is generated by two Gaussian distributions: one Gaussian 
distribution generates the amplitudes of motion vectors 
and the other generates the angles. Let ),( yxai  and 

),( yxiθ stand for the amplitude and angle of the motion 

vector ),( yxvi
r

. The probability )|),(( ii yxvP N
r

can be 

written as: 
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where iµ  and iη  are the mean amplitude and mean 

angle of the motion vectors in the i-th  frame, iα  and 

iβ  are the standard deviation for amplitudes and angles 

of motion vectors in the i-th frame.  
For the zoom model iZ , we follow the same idea as 

for the non-zoom model, i.e. using two Gaussian distribu-
tions to describe the generation of motion vectors. The 
only difference between them is that whereas, in non-
zoom model, the mean amplitude and mean angle of mo-
tion vectors are position independent, while in the zoom 
model, these two means are position dependent. As we 
discussed previously, ideally all the motion vectors should 
point toward/outward the center of the zoom operation 
with amplitudes proportional to the distance from the 
center. Therefore, the mean angle of the motion vector at 
the position (x, y) would be the angle of the line connect-
ing the position (x, y) and the center (xc, yc) and the mean 
amplitude of motion vector at the position (x, y) should be 
proportional to the distance between position (x, y) and 
the center (xc, yc). The probability )|)},(({ ii yxvP Z

r

 is 

)
2

)),(),((
exp(

2

1
)|),((

)
2

)),(),((
exp(

2

1
)|),((

)|),(()|),(()|),((

2

2

2

2

2

2

i

ii

i

ii

i

ii

i

ii

iiiiii

yxyx
yxP

yxyxa
yxaP

and

yxPyxaPyxvP

δ
ηθ

πδ
θ

γ
µ

πγ

θ

−
=

−
=

=

N

Z

ZZZ
r

 
(5) 

Where ),( yxiµ and ),( yxiη  are the mean amplitude 

and mean angle for the motion vector at position (x, y), 

iγ  and iδ  are the standard deviation for amplitudes and 

angles of motion vectors. The values of the mean angle 
and the mean amplitude for the motion vector at position 
(x, y) can be written as: 
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Where xc and yc are the center of the zoom camera mo-
tion. The positive and negative signs within the equation 
for ),( yxiη  will be used for the case of zoom in and 

zoom out, respectively. In the equation for ),( yxiµ , 



iλ stands for the proportional constant between the dis-

tance and velocity.  

The search for optimal model i
*M  can be divided 

into two steps. First we fix the center of the zoom motion, 
i.e. xc and yc, and find the parameters iµ , iη , iα , iβ , 

iγ , iδ and iλ  that maximize the probability of generat-

ing the motion vector data. Then, varying the center coor-
dinates xc and yc to find the best matching center. In the 
first step, we can employ the Expectation-Maximization 
algorithm (EM) [8]. The basic idea of EM algorithm is to 
iteratively update the parameters of the model so that the 
final model will be guaranteed to be better than the initial 
model in terms of explaining the motion vectors. For the 
second step, we can apply the gradient decent algorithm 
to find the reasonable good matching center coordinates. 
According to the EM algorithm, the updating equations 
for parameters iµ , iη , iα , iβ , iδ , iγ , iλ , 
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where factors ),(][ yxgi n , ,][n
ig  ),(][ yxz n

i , and ][n
iz  
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The superscript [n] stands for n-th iteration. 

Now the probability for the i-th frame to be in a se-
quence of zoom in/out camera motion can be computed as 
the averaged probability for motion vectors in the i-th 
frame to be explained by the zoom model iZ , or 
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Where i
*Z  is the zoom model within the optimal model 

i
*M  and )(zoomPi  is the probability for the i-th frame to 

be in a sequence of camera zoom in/out motion. To decide 
if a frame is in a sequence of zoom camera motion, we 
simply set the threshold for zoom probability as 0.5. 
When the probability )(zoomPi  is larger than 0.5, the 

frame is retrieved as a frame in a zoom sequence. Other-
wise, the frame is decided to be in a non-zoom sequence. 

3. Experiments 

The effectiveness of a camera zoom detector can be 
evaluated from two aspects frequently used for 
information retrieval (IR) [9]:  
1) Precision: Among the zoom segments detected by the 
system, how many are truly zoom segments?  
2) Recall: For all possible zoom segments, how many 
were found? 

A good camera zoom detector should have both high 
precision and high recall, i.e. a good detection system 
should retrieve all the zoom segments and nothing else. 

If we let d be the number of segments detected by the 
system, z be the number of segments manually judged as 
zoom, and dz be the number of segments judged as zoom 
among the detected segments, the precision and recall for 
the system are: 

zdzddz /Recall    /Precision ==  (10) 
F1 is another common metric used by IR systems that 

combines precision and recall [9]. It is defined as 

RecallPrecision

RecallPrecision2
F1

+
××=  (11) 

F1 is high only when precision and recall are both high. 

3.1. Baseline Model: Threshold-based Paramet-
ric Zoom detection 

To evaluate our probabilistic method, we compared it 
to an implementation of the parametric model described 
in [2][6].  This model uses four parameters to estimate 
camera motion: zoom, tilt, pan, and rotate. Equation (12) 
clarifies the relationship between motion vectors (two 
parameters) and camera operations as:  
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Where (u v)T is a motion vector, (x y)T is the vertical 
and horizontal position of each frame, azoom, brotate, cpan, 
and dtilt, are scalar coefficients concerned respectively, 
with zooming, rotation, panning, tilting. The parametric 
method described in [2] further uses a variation of least-
square principle that rejects outliers at each iteration by 
using a Gaussian distribution to model how well the 
global motion parameters matches the motion field. When 
the zoom coefficient is above a global threshold, a frame 
is classified as part of a ‘zoom’ camera motion [6]. 

We carefully implemented the threshold-based para-
metric system described in [2][6] as our baseline system, 
since it is typical for traditional, state-of-the-art ap-
proaches to camera motion estimation. The global thresh-
old was set based on experiments with training data. Fur-
ther analysis showed it to be near optimal.  

3.2. Experimental Results 

To experimentally validate our zoom detection system, 
we asked a person to mark camera motion operations for 
92 different video segments in five different movies from 
the TREC10 video archive [10]. In addition to zoom in 
and zoom out camera motions, pan left, pan right, pan up, 
pan down and rotate camera motions were marked. Out of 
the 92 segments [about 68.6 minutes], 13 were marked as 
zoom-out and 13 segments were manually marked as 
zoom-in segments. We applied both our probabilistic 
model for detecting camera zooms described earlier and 
an implementation of the baseline threshold-based para-
metric model described above to detect zoom in and zoom 
out segments and then computed precision, recall and F1 
scores.  

Zoom In Zoom Out  
ProbM BaseM ProbM BaseM. 

Precision 0.433 0.267 0.650 0.347 
Recall 0.590 0.300 0.667 0.400 

F1 0.499 0.282 0.658 0.371 
Table 1. Results for zoom detection on 92 seg-
ments. “ProbM” is the new probabilistic model 

and “BaseM” is the traditional model. 

According to the results listed in Table 1, the probabil-
istic model significantly out-performs the traditional 
model in terms of precision, recall and F1 score in detect-
ing zoom in and zoom out segments.  

4. Conclusions 

We proposed a novel probabilistic model for detecting 
zoom in and zoom out camera motion. In our empirical 
experiment, our probabilistic model significantly outper-
forms a typical parametric method in terms of precision, 
recall and F1 score. Three factors contribute to the suc-
cess of the new probabilistic model:  

1) The probabilistic model handles noise better than 
traditional methods. We introduced a non-zoom model Ni 
to account for noise information in the motion vectors.  
2) The EM algorithm was used to find an optimal model 
M*

i. EM is an algorithm widely used in statistics and is 
guaranteed to find a local maximum.  
3) Universal threshold value. In our model, if the prob-
ability Pi(zoom) > 0.5 then the frame is determined to be 
part of a zoom operation. In contrast, the parametric 
methods have to rely on arbitrary threshold values, which 
may not be appropriate for a specific video. 

Finally we believe our probabilistic model can easily 
be extended other camera motions, such as pan and tilt, by 
simply incorporating models of these camera motions. 
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