

Yanjun Qi¹, Fernanda Balem², Christos Faloutsos¹, Judith Klein-Seetharaman^{1,2}, Ziv Bar-Joseph¹

¹School of Computer Science, Carnegie Mellon University,

²University of Pittsburgh School of Medicine

Protein-Protein Interaction (PPI)

- Involved in most activities in the cell
 - Can be used to infer function
 - Combined to infer pathways and complexes
- Lots of experimental work
- Mass spectrometry (Gavin et al 2006; Krogan et al 2006)
 - Yeast two-hybrid (Rual et al 2005)
- Lots of computational work
 - Bayesian networks (Jansen et al 2003)
 - Random Forest (Qi et al 2006)

- A set of proteins working together as a 'super machine'
- Complex member interacts with all or part of the group
- Correct identification leads to better understanding of function and mechanisms

Identifying complexes in a PPI graph

- Problem statement: Given a PPI graph identify the subsets of interacting proteins that form complexes
 - Algorithms for addressing this problem were used in the high throughput mass spec papers
 - Many other algorithms suggested for this task

Methods for identifying complexes in PPI graph focus on cliques ...

- Prior methods looked for dense subgraphs (cliques)
- Methods mainly differed in how the graph was segmented
- Most methods treated the graph as a binary graph ignoring weight on the edges
 - such weight can be obtained from both, computational predictions and experimental data
- Example: MCODE (Bader et al 2003) detects densely connected regions in PPI networks using vertex weights representing local neighborhood density

... while many other topological structures are present

Systems

Biology

Group

Projecting computationally predicted PPI graph on curated MIPS complexes

Method

Key ideas for our method

- Utilize available data for training
 - Supervised instead of unsupervised methods
- Summarize properties of the possible topological structures
 - Use common subgraph features
- Take into account the biological properties of complexes
 - Use information about the weight and size of proteins

Features used to model subgraphs

- Subgraph properties as features
 - –Various topological properties from graph
 - Biological attributes of complexes
- Can be computed on projections of known complexes on our PPI graph

No.	Sub-Graph Property			
1	Vertex Size			
2	Graph Density			
3	Edge Weight Ave / Var			
4	Node degree Ave / Max			
5	Degree Correlation Ave / Max			
6	Clustering Coefficient Ave / Max			
7	Topological Coefficient Ave / Max			
8	First Two Eigen Value			
9	Fraction of Edge Weight > Certain Cutoff			
10	Complex Member Protein Size Ave / Max			
11	Complex Member Protein Weight Ave / Max			

Example

	A B C	(A)—(B) (C)—(D)	A B C D	A B C D	A B C D E
Node Size	3	4	4	4	5
Density	1	0.5	1	0.667	0.4
•••••					

Probabilistic model for complex features

 We use a Bayesian Network to represent the joint probability distribution of the various features we use

Log likelihood ratio for complexes

- We use a Bayesian Network to represent the joint probability distribution of the various features we use
- Bayesian Network (BN)
 - C: If this subgraph is a complex(1) or not (0)
 - N: Number of nodes in subgraph

$$L = \log \frac{p(c=1 | n, x_1, x_2, ..., x_m)}{p(c=0 | n, x_1, x_2, ..., x_m)}$$

Learning

- BN parameters were learned using MLE
 - Trained from known complexes and random sampled subgraphs with of the same size (non-complexes)
 - Discretize continuous features
 - Bayesian Prior to smooth multinomial parameters
- Evaluate candidate subgraphs with the log ratio score L

$$L = \log \frac{p(c=1 \mid n, x_1, x_2, ..., x_m)}{p(c=0 \mid n, x_1, x_2, ..., x_m)} = \log \frac{p(c=1)p(n \mid c=1) \prod_{k=1}^{m} p(x_k \mid n, c=1)}{p(c=0)p(n \mid c=0) \prod_{k=1}^{m} p(x_k \mid n, c=0)}$$

Searching for high scoring complexes

- Given our likelihood function we would like to find high scoring complexes (maximizing the log likelihood ratio)
- Lemma: Identifying the set of maximally scoring subgraphs in our PPI graph is NP-hard
- We thus employ the iterated simulated annealing search on the log-ratio score

Evaluation and Results

Experimental Setup

- Positive training data (complexes)
 - Set1: MIPS Yeast complex catalog: a curated set of ~100 protein complexes
 - Set2: TAP06 Yeast complex catalog (Gavin et al 2006): a reliable experimental set of ~150 complexes
 - Complex size (nodes' num.) follows a power law
- Negative training data (pseudo non-complexes)
 - Generated from randomly selected nodes in the graph
 - Size distribution is similar as the positive complexes (for each of the two sets)

Node size distribution

Feature distribution

Evaluation

- Train on set1 and evaluate on set 2 and vice versa
- Precision / Recall / F1 measures
- A cluster "detects" a complex if

A: Number of proteins only in the cluster

B: Number of proteins only in the complex

C: Number of proteins shared between the two

We set the threshold (p) to be 50%

$$\frac{C}{A+C} > p \quad \& \quad \frac{C}{B+C} > p$$

Performance Comparison: Training on MIPS

- On yeast predicted PPI graph (Qi et al 2006, ~2000 nodes)
- Compared to three other methods:
 - MCODE which looks for highly interconnected regions (Bader et al 2003)
 - Search relying on density feature only
 - Same set of features using SVM rather than BN
- Training on MIPS, testing on TAP06

Methods	Precision	Recall	F 1
Density	0.217	0.409	0.283
MCODE	0.293	0.088	0.135
SVM	0.247	0.377	0.298
BN	0.312	0.489	0.381

Performance Comparison: Training on TAP

- Training on TAP06, testing on MIPS
- Compared to three other methods:

Methods	Precision	Recall	F 1
Density	0.143	0.515	0.224
MCODE	0.146	0.063	0.088
SVM	0.176	0.379	0.240
BN	0.219	0.537	0.312

MCODE tends to find a few big clusters ...

Examples of identified new complexes

Conclusions and future work

- Supervised method can identify complexes that are missed when using strong topological assumptions
- Utilizing edge weight leads to higher predictions and recall
- Can be used whenever weight information is available
- Further improvements:
 - Better local search algorithm
 - Other features

Acknowledgements

- Funding
 - NSF grants CAREER 0448453, CAREER CC044917, NIH NO1 AI-5001
 - ISMB Travel Fellowship (though unable to use it ...)

www.cs.cmu.edu/~qyj/SuperComplex/index.html

Heuristic Local Search

Search:

- Accept the new cluster candidate if with higher score
- If lower, accept with probability exp(l' l)/T
- T: temperature parameter, decreasing by a scaling factor alpha after each round
- Accepted cluster must score higher than a threshold

When to Stop:

- N(i, k+1) = \emptyset (k-th round)
- Number of round since the last score improvements larger than a specified number
- k is larger than a specified number

Expand current cluster:

- Generate a sub-set V* from all neighbors of current cluster
- Top M nodes ranked by their max-weight to current cluster

Algorithm

Input:

- Weighted protein-protein interaction network;
- A training set of complexes and non-complexes;

Output:

Discovered list of detected clusters;

Complex Model Parameter Estimation:

- Extract features from positive and negative training examples;
- Calculate MLE parameters on the multinomial distributions;

Search for Complexes:

- Starting from the seeding nodes, apply simulated annealing search to identify candidate complexes;
- Output detected clusters ranked with log-ratio scores