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ABSTRACT
Motivation: Protein-protein interactions (PPIs) are critical for virtually
every biological function. Recently, researchers suggested to use
supervised learning for the task of classifying pairs of proteins as
interacting or not. However, its performance is largely restricted by
the availability of truly interacting proteins (labeled). Meanwhile there
exists a considerable amount of protein pairs where an association
appears between two partners, but not enough experimental evidence
to support it as a direct interaction (partially labeled).
Results: We propose a semi-supervised multi-task framework for pre-
dicting PPIs from not only labeled, but also partially labeled reference
sets. The basic idea is to perform multi-task learning on a super-
vised classification task and a semi-supervised auxiliary task. The
supervised classifier trains a multi-layer perceptron network for PPI
predictions from labeled examples. The semi-supervised auxiliary task
shares network layers of the supervised classifier and trains with par-
tially labeled examples. Semi-supervision could be utilized in multiple
ways. We tried three approaches in this paper, (1) classification (to
distinguish partial positives with negatives); (2) ranking (to rate par-
tial positive more likely than negatives); (3) embedding (to make data
clusters get similar labels). We applied this framework to improve the
identification of interacting pairs between HIV-1 and human proteins.
Our method improved upon the state-of-the-art method for this task
indicating the benefits of semi-supervised multi-task learning using
auxiliary information.
Availability: http://www.cs.cmu.edu/∼qyj/HIVsemi
Contact: qyj@cs.cmu.edu

1 INTRODUCTION
Identifying protein-protein interactions in a comprehensive manner is
essential for understanding the molecular basis underlying biological
functions. Because of their importance in development and disease,
protein-protein interactions (PPIs) have been the subject of intense
research in recent years, both computationally and experimentally.

Experimental techniques for detecting protein-protein interactions
have been reviewed in (Shoemaker and Panchenko, 2007a). Traditio-
nally, PPIs have been studied individually through the use of genetic,
biochemical and biophysical experimental techniques (also termed
small-scale methods). Experiments in this paradigm are typically
expensive and time-consuming (months for detecting just one PPI).
In recent years, large-scale biological PPI experiments have been
introduced to directly detect hundreds or thousands of protein inter-
actions at a time. The two-hybrid (Y2H) screens (Ito et al., 2001; Uetz
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et al., 2000; Rual et al., 2005; Stelzl et al., 2005) and complex puri-
fication detection techniques using mass spectrometry (Gavin et al.,
2002, 2006; Ho et al., 2002) are the two most popular approaches
thus far applied successfully on a large scale . However their resul-
ting data sets are often incomplete and exhibit high false-positive and
false-negative rates (von Mering et al., 2002; Yu et al., 2008).

Computational methods have been successfully applied to pre-
dict protein interactions (reviewed in (Shoemaker and Panchenko,
2007b)). Taking into account that indirect sources may contain par-
tial evidence about protein interations, several approaches derive
their predictions on particular types of information, such as overre-
presented domain pairs in interacting proteins (Wang et al., 2007). An
alternative attractive approach is to integrate various indirect or direct
sources of evidence in a statistical learning framework. A classifier
is trained to distinguish between positive examples of truly inter-
acting protein pairs and negative examples of non-interacting pairs.
Various methods have been explored in this framework, including
naive Bayes classifier by Jansen et al. (Jansen et al., 2003), decision
tree from Zhang et al. (Zhang et al., 2004), kernel based methods
from (Yamanishi et al., 2004; Ben-Hur and Noble, 2005), random
forest based method (Qi et al., 2005), logistic regression (Lin et al.,
2004), and the strategies of summing likelihood ratio scores (Rho-
des et al., 2005; Scott and Barton, 2007; Lee et al., 2004). Most of
these studies have been carried out in yeast or human. They aimed
to predict PPIs within a single organism (termed ’intra-species PPI
prediction’ ). Recent work extends to predicting PPIs between orga-
nisms (’inter-species PPI prediction’) especially between host and
pathogens. Tastan et al. (Tastan et al., 2009) extended the supervised
learning framework to predict PPIs between HIV-1 and human prote-
ins. A random forest-based classifier was used to integrate multiple
biological information sources and defined the state-of-art perfor-
mance for this task. Additionally, Davis et al. in (Davis et al., 2007)
studied ten host-pathogen protein-protein interactions using structu-
ral information. Later, Evans et al. in (Evans et al., 2009) searched for
host protein motifs along virus protein sequences to obtain a list of
host proteins highly enriched with those targeted by HIV-1 proteins.

While the supervised framework was shown to enrich current
PPI data with additional inferred PPIs, its applicability is still limi-
ted. Supervised PPI detection requires a large number of labeled
training examples (truely interacting proteins) in order for the sta-
tistical classifier to predict with proper accuracy. Except several
well studied organisms, such as yeast or human, most inter or
intra-species PPI prediction tasks do not have a large number of
reliable PPIs available as training data. For instance, no reliable
global set of interacting pairs exist between HIV-1 and human prote-
ins (see Section 2.2). This limitation largely restricts the prediction
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Fig. 1. Target problem: Predicting protein interactions between HIV-1
(organge squre) and human (grey circle). There exist weakly labeled interac-
tion pairs from NIAID (dashed blue edges) and labeled interaction pairs from
experts’ annotation (solid blue edges). We aim to predict whether a given
unknown human to HIV-1 protein pair (dashed green) interacts or not.

ability of current computational PPI algorithms. To conquer this
limitation, recently semi-supervised approaches were proposed for
computational protein-protein interaction predictions. Yip et al. (Yip
and Gerstein, 2009) proposed to improve supervised predictions by
adding pseudo examples from previous runs of predictions. However
the predictions are prone to noise using this strategy.

It is sometimes possible to infer a relatively larger number of poten-
tially interacting proteins, which may not have enough evidence to
be confirmed as true positive labels. For instance, in the task of pre-
dicting PPIs between HIV-1 and human proteins, NIAID (Fu et al.,
2008) database retrieved protein pairs between HIV-1 protein and
human protein from the scientific literature (details in Section 2).
The extracted pairs are not experimentally-confirmed PPIs, but are
very likely to have interaction relationships. From a “machine lear-
ning” perspective, these pairs are weakly labeled positive examples.
In this case, an interesting question to ask is how to detect and add
weakly-labeled pairs to improve computational PPI predictions.

In this paper we present a multi-task learning framework to
make use of weakly-labeled examples together with conventionally-
labeled PPI pairs. A semi-supervised task is introduced in a network
consisting of multiple layer perceptron as an auxiliary task. We train
supervised PPI classification and the semi-supervised auxiliary task
under the same network simultaneously. We apply our method to
predict the set of interacting proteins between HIV-1 and human pro-
teins by information integration of multiple biological sources. Our
method improves upon the previous approach applied for this task.
The results indicate that with the proposed semi-supervised multi-
task approach, auxiliary information (weak labels) is able to improve
the accuracy of the predictive models for PPIs between HIV-1 and
human proteins.

The rest of the article is structured as follows. Section 2 describes
the task of predicting PPIs between HIV-1 and human proteins and the
available interacting data set in more details. Section 3 describes the
semi-supervised multi-task learning framework. Section 4 presents
the experimental results, and Section 5 concludes.

2 TARGET PROBLEM
HIV-1 causes the disease of acquired immune deficiency syndrome
(AIDS), which remains a serious and growing threat to public health
(Trkola, Oct). Both HIV-1 transmission and infection are complex
processes, where much remains to be elucidated. The HIV-1 RNA
encodes only a handful of proteins; however it subverts the cellular
machinery for its benefit. Virus-host protein-protein interactions are
key in deciphering virus strategies, and such understanding may lead

to designing novel ways to impede viral protein functions and thus
reduce or eliminate HIV-1’s potency as a deadly pathogen.

2.1 Information Integration with Multiple Data Sources
Recently, we made an attempt to predict the global set of interactions
between HIV-1 and human host cellular proteins in (Tastan et al.,
2009). The task was to predict whether a given human to HIV-1
protein pair interacts or not. Thus it was formulated as a binary
classification problem, where each protein pair belongs to either the
“interaction” or “non-interaction” class. A random forest classifier
was trained on a rich set of features including:

• co-occurrence counts of binding motifs to matched interacting
domains;

• gene expression profile reflecting human gene expression pat-
terns across HIV-1 samples: infected vs. uninfected;

• similarity in terms of cellular location, molecular function and
biological process;

• similarity of HIV-1 protein to human protein’s known binding
human partners (in terms of localization/function/process);

• pairwise sequence similarity between HIV-1 and human protein
or its known human binding partners;

• if the HIV-1 protein shares any post-translational modification
with human binding partners of the human protein;

• similarity of tissue distributions;
• topological properties of the human protein in human protein

interaction network, such as node degree;
• HIV-1 protein type;

All data sources and how they were converted into features repre-
senting protein pair between HIV-1 and human have been described
previously in (Tastan et al., 2009) and are available for download in
our supplement web.

2.2 Partial Positive Labels from NIAID
The gold standard positive set we used in (Tastan et al., 2009) were
collected from NIAID (Fu et al., 2008) database where interactions
between HIV-1 and human proteins reported in the scientific litera-
ture were manually curated. It includes 2620 protein pairs involving
1406 human proteins and 17 HIV-1 proteins (15 HIV-1 proteins plus
precursors of the envelope (env gp160) and gag (gag pr55)). Each
interaction in the database is associated with keywords extracted from
scientific literature reporting the interaction. Some of these keywords
are strong such as “interacts with” and “binds” (we named this set as
“GroupI” containing 955 protein pairs). While some other keywords
are rather weak indicators of direct interactions such as “upregulates”
or “inhibits” (this set of pairs was named as “GroupII” and inclu-
ded 1665 protein pairs). Our previous work (Tastan et al., 2009) used
those “GroupI” interactions (associated with strong keywords, 1)) as
training positive examples for binary PPI predictions.

Recent studies from (Cusick et al., 2008) pointed out that the
literature-curated protein interaction experiments can be error-prone
and possibly of lower quality than commonly assumed. The “gold
standard” reference set used in our previous work (Tastan et al., 2009)
was adhocly built from “GroupI” of NIAID. Clearly there exists
not enough evidence supporting the reliabilities of these interaction
labels from NIAID database.

2.3 Positive Labels from Experts’ Annotations
To increase the data quality, we consulted 16 HIV-1 experts about
the validity of the interactions reported in the NIAID database. 15 of
the experts are professors well known in the HIV-1 field and the last
expert is a PHD student, who had extensively worked on HIV1 for

1 Small difference exists in keyword splits here, to (Tastan et al., 2009)
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Table 1. Basic statistics of feature & “gold standard” set.

Features Positive PPIs Partial Remaining HIV-1 Human
(experts) Positive Pairs Protein Protein

18 158 2119 352338∗ 17 20873

This also excludes 226 pairs experts labeled as “unsure”

five years. More details of experts’ annotation process is provided in
our supplementary web. HIV-1 experts were sent lists of interacting
pairs along with the interaction keywords and the links to the articles
reporting the interactions in NIAID. Experts are asked to annotate
each pair with the “interact” label if they believe the reported pair
is a true direct interaction. If, on the other hand, either they do
not believe two proteins interact, annotating it with the label “not
interacting”, or they think the interaction might be indirect or they
are unsure about the label, annotating it as “unsure or indirect”. For
each HIV-1 protein, the rules to select potential interaction partners
sent to experts are different. If for a certain HIV-1 protein, the total
number of interactions reported in NIAID is not many, we sent all
of the interactions reported in the database. In other cases, only the
subset of interactions associated with keywords "binds" or "interacts
with" was sent (the longer the list is, the slower and more reluctant
the experts’ responses were). In this way 361 interacting pairs were
annotated. Most of the interactions (256/361) were annotated by a
single expert and the rest received labels from multiple experts. In
cases where there was a disagreement between experts’ opinions on
the labels, the “majority vote” strategy was used to decide which
label should be assigned. Finally this resulted in 158 protein pairs
that HIV-1 experts annotated as direct interactions between HIV-1
and human proteins.

Thus, this set serves as our positive “gold standard” set. The rest of
the NIAID dataset are treated as “partial positives” examples since
not enough evidence is yet accumulated for them to be considered
as direct interactions but they are likely candidates.

In summary, this binary classification task contains 158 “experts-
annotated” positive example and 2119 partial positive (with 552
from “groupI” and 1567 from “groupII”) PPI pairs (after remo-
ving those pairs labeled as ’not interact’ and ’interact’ from the
experts). Each HIV-1 human protein pair is represented with 18 fea-
tures. Related statistics of data sets used for this task are listed in
Table 1.

The feature set used in our previous work (Tastan et al., 2009)
contains totally 35 attributes for each potential HIV-1 to Human
protein pair. Among them, 17 items represent which one (assuming i)
of the 17 HIV-1 proteins this pair involves with (with the i dimension
set to 1 and all the other 16 dimensions set to zero). As mentioned
above, since the creation process of experts annotated (positive)
labels is correlated non-randomly with the type of HIV-1 proteins, we
have to remove these 17 features, and use the remaining 18 features
to describe each HIV-1 human protein pair. All labeled & partially
labeled examples are shared in our supplementary web.

3 METHOD
A d-dimensional (d = 18) feature vector x was constructed for
every protein pair (between a HIV-1 protein and a human protein).
Each entry in the feature vector summarizes one biological evidence
(asking, for example, “Does this HIV-1 protein include a certain
motif that is highly likely to interact with one of the domains in the
human protein?” (See Section 2.1). The target variable y ∈ {±1}

represents whether this pair interacts (1) or not (-1). Thus, the
problem of predicting protein interactions is handled as a binary
classification task.

Considering the small number of positive labels (158) and a larger
set of partial labels (2119), we propose to design semi-supervised
multi-task learning (SML) strategies for making use of both sets, to
achieve better prediction performance.

Given a set of labeled examples (x1, ...xL) and corresponding
labels (y1, ...yL), our goal is to learn a supervised classifier (e.g.
choose a discriminant function) f (x), such that “ f (xi ) > 0 if
yi = 1” or “ f (xi ) < 0 if yi = −1”.

3.1 A Multi-Layer Perceptron Network for Supervised
PPI Prediction

The supervised classifier we chose is a multi-layer perceptron (MLP)
network with M layers of hidden units that gives a 1-dimensional
output:

f (x) =

∑
j

wO
j hM

j (x) + bO , (1)

where wO is the weight vector for the output layer. The mth hidden
layer is defined as

hm
i (x) = S

( ∑
j

wm,i
j hm−1

j (x) + bm,i
)
, m = 2, ..., M (2)

and S is a non-linear squashing function like “tanh”. To train
this supervised classifier, we employ the Hinge loss (on labeled
examples):

L∑
i=1

`( f (xi ), yi ) =

L∑
i=1

max(0, 1 − yi f (xi )). (3)

3.2 Multi-Task Learning with Semi-Supervised
Auxiliary Task

According to the available labels, we could formalize our objective as
two tasks: (1) supervised classification with positive (from experts)
and negative labels; (2) the usage of partial positive labels in order to
improve the supervised classification. One natural way to combine
two objectives is through multi-task learning.

Multitask learning is the procedure of learning several tasks at the
same time with the aim of mutual benefits. A good overview of multi-
task learning, especially focusing on neural networks, can be found
in (Caruana, 1997). The idea of sharing information learnt across
sub-tasks seems a more economical use of data, where presumably
all tasks are learnt jointly. A typical example is a MLP network
where first layers will be shared to all tasks and typically learn levels
of feature processing that are useful to all tasks.

In our problem, the second task aims to make use of weak positive
labels and is auxiliary to the main classification. We call them “semi-
supervised auxiliary task” in this paper since the task, uses just weak
labels with diverse levels of confidence (e.g. various keywords asso-
ciated in NIAID database). Typical semi-supervised learning refers
to the use of both labeled and unlabeled data during training. For our
task, though not the typical semi-supervised setting, we view it as
a similar setup and the proposed auxiliary tasks could be naturally
extended to unlabeled data with side information, e.g. functional
association between proteins.

Formally speaking, multi-task learning of supervised classifica-
tion and semi-supervised auxiliary task equals to learning two tasks
jointly with the optimization of the following loss function:

L∑
i=1

`( f (xi ), yi ) + λ Loss(AuxiliaryT ask) (4)

There exist many ways to build this auxiliary task using MLP net-
works (e.g. different network structure and/or distinct loss function).
In the following, we propose three possibilities (in Figure 2).
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(a) With classification (b) With ranking (c) With embedding (on
output)

Fig. 2. To perform multi-task learning with the supervised PPI classification, three semi-supervised tasks have been proposed to extend the network structure
of multi-layer perceptron: (a) training another classifier to distinguish partial positive and negative examples; (b) training a ranker to sort partial positive and
negative data; (c) training an embedding on the output of the supervised classifier;

3.3 Auxiliary Task I: Classification
Figure 3(a) illustrates the first strategy to use partial labels. This is the
classical way of multi-tasking in the MLP framework. Our auxiliary
task shares the first m layers of the original MLP, but have a new
output layer:

g(x) =

∑
j

wAUX
j hM

j (x) + bAUX (5)

This network is trained to distinguish partial positive examples
from negative examples (e.g. classification), simultaneously as we
train the original network on labeled data. Assuming a set of partially
labeled examples (xL+1, ...xL+U ). In this auxiliary task, they are
assigned with corresponding pseudo labels (y′

1+U , ...y′

L+U ). We train
this pseudo classficiation with hinge loss as well, which means,

Loss(Auxiliary T ask) =

L+U∑
j=L+1

max(0, 1 − y′

j g(x j )) (6)

3.4 Auxiliary Task II: Ranking
Illustrated in Figure 3(b), this time we use the same network archi-
tecture for both two tasks. The auxiliary information we know for
the second task is “partial labeled PPI pairs are more likely to be true
than negative pairs”. This could be formalized as a “ranking” task
using MLP: to rank “weak positive examples” highly than “nega-
tive examples” if ordering them by the output f (x) from the MLP.
Naturally the above assumption comes to minimize a ranking-type
margin cost:

Loss(Aux .) =

∑
p∈P

∑
n∈N

max
(
0, 1 − f (x p) + f (xn)

)
, (7)

where P means the index of partial positives and N represents the
set of negative examples. The training is handled with stochastic
gradient descent which samples the cost online w.r.t. (p, n).

3.5 Auxiliary Task III: Embedding on Output
One key assumption used by many semi-supervised algorithms is
the structure assumption, which assumes that points within the same
structure (such as a cluster or a manifold) are likely to have the
same label (Chapelle et al., 2006). In Figure 2(c), we explore the
partial labeled examples as a guidance to explore the hidden structure
assumption in our data.

This could be pursued through an embedding technique propo-
sed in (Weston et al., 2008). The proposed model contains a network
with two identical copies of the same function, with the same weights,
and with outputs fed into a “distance”-measuring layer. Given two
examples xi and x j , we can feed each of them into these two iden-
tical networks, and use the last “distance” layer to compute whether

the two examples are similar or not (i.e. in terms of their network
outputs). If we know in advance whether they are similar or not,
this pairwise “labeling” could function as “hidden structure” gui-
dance and can be used for learning of parameters in the network
(Figure 2(c)). A margin-based loss following (Weston et al., 2008)
is chosen for training:

L( fi , f j , Wi j ) =

{
|| fi − f j ||2 if Wi j = 1,
max(0, m − || fi − f j ||2) if Wi j = 0

(8)

This loss function encourages similar examples (where Wi j = 1)
to be close in output space, and dissimilar ones to have a distance
of at least m from each other’s output. Wi j specifies the similarity
or dissimilarity between examples xi and x j , which serves as the
“pairwise labeling” guidance for the embedding loss function.

With partially labeled examples in our data, we could derive a set
of Wi j labels to embedding training. Three strategies are considered
in our experiments to derive Wi j :

• Wi j = 1, if both examples from the partially labeled set;
• Wi j = 1, if one partially labeled example and the other from

the positively labeled set;
• Wi j = 0, if one partially labeled example and the other a

negatively labeled example;

The main motivation is that even though examples of partial positive
PPI sets have not enough evidence to be considered as direct inter-
actions, they are highly likely candidates. Thus in the embedding of
output space, these examples should be similar to each other, and
dissimilar to negative examples. The embedding model is trained
by the pairs of examples with Wi j labels. The training is also hand-
led with stochastic gradient descent which samples the cost online
w.r.t (i, j). Training steps either “push” similar examples together or
“pull” dissimilar examples apart from each other. This hidden struc-
ture is exactly what we want to preserve in the space of output f (·)
in our data.

It is very natural to multi-task embedding task with our main
supervised classification task. Since embedding model makes use
of a neural network with two identical copies and an extra “distance
measuring” layer, we can just use our supervised classifier MLP as
the base network for embedding. This equals to add the embedding
as a regularizer on our main classifier MLP. In Figure 2(c), a semi-
supervised regularizer is added on the supervised loss measured on
the entire network’s output (1):

L∑
i=1

`( f (xi ), yi ) + λ

L+U∑
i, j=1

L( f (xi ), f (x j ), Wi j ) (9)

4



Semi-Supervised Multitask Learning for Predicting Interactions between HIV-1 and Human Proteins

Algorithm 1 Multi-Tasking with Embedding on Layer
Input: labeled data (xi , yi ), i = 1, . . . , L , partially labeled data
xi , i = L + 1, . . . , L + U , set of functions f (·), see Eq. (1):
repeat

Pick a random labeled example (xi , yi ).
Make a gradient step to optimize `( f (xi ), yi ), see Eq. (3).
Pick a random partially labeled example x p .
Pick a random example xq , where Wpq = 1.
Make a gradient step for λL( f (x p), f (xq), 1), see Eq. (9).
Pick a random partially labeled example xm .
Pick a random example xn , where Wmn = 0.
Make a gradient step for λL( f (xm), f (xn), 0), see Eq. (9).

until stopping criteria is met.

Here labeled training examples are denoted as xi , i = 1, . . . , L and
partially labeled examples are denoted as xi , i = L + 1, . . . , L +U .
Essentially, multi-tasking tries to classify labeled examples, whilst
simultaneously the embedding tries to push the classification score
of partial positive examples close to the scores of positive examples,
and apart from those scores of negative labeled examples.

3.6 Semi-Supervised Multi-Task Learning (SML)
The overall goal of the auxiliary task is to improve accuracy on
the supervised task by uncovering hidden structures in the original
data. All tasks, including classification, ranking and embedding,
are trained by stochastic gradient descent. The training cooperation
between the main task and the auxiliary task could be summaried as
looping over two tasks:

1. Select the next task.
2. Select a random training example for this task.
3. Update the MLP network parameters for this task by taking a

gradient step with respect to this example.
4. Go to 1.

To give a concrete example, the pseudocode of multitasking with
“embedding output” case is given in Algorithm 1.

4 RESULTS
4.1 Experimental Setting
When training the classification model, negative (non-interacting)
examples are required. However it is almost impossible to show
two proteins do not interact, a large set of non-interacting protein
pairs does not exist. A commonly applied strategy is to randomly
select protein pairs from all possible protein pairs as the negative
set, excluding those known interacting ones. Here we exclude all
those pairs that are in NIAID database. For interacting pairs between
HIV-1 and human proteins, it is estimated that roughly only 1 in
about 100 possible pairs actually interacts (Tastan et al., 2009). This
is an extremely unbalanced ratio between positive and negative sets.
We use this ratio to build the negative set which includes ∼ 16, 000
random negative pairs.

The positive pairs in our setting include only those PPIs pairs
confirmed by the HIV-1 experts as “interacting” (158 pairs). The
partial positive pairs (2119 left pairs of NIAID) function as auxillary
information in the training phase only.

The experimental evaluation is based on five folds cross-validation
(CV) with 20 randomly repeated CV runs to obtain average perfor-
mance scores. The reason we repeat cross-validation runs is that
randomness exists when sampling the negative training set. To con-
quer this random effect, we pursued multiple CV runs on multiple

(a) Regular training (b) Adding partial positive in

Fig. 3. Two ways to train baseline classifiers for performance comparison.
(a) train with positive + negative; (b) train with positive + partial positive
(treat as positive) + negative.

independently sampled negative sets. Averaged performance scores
are used for comparisons.

To measure the predictive power of SML for identifying protein
interactions between HIV-1 and Human, we compared three variants
of SML with two baseline classifiers. The SML models are named
as: (1) SMLC: SML with auxiliary classification task; (2) SMLR:
SML with auxiliary ranking task; (3) SMLE: SML with embedding
on output space. Two baselines include: (1) RF: Random Forest; (2)
MLP: Multi-Layer Perceptron Neural Net. Three SML methods and
the MLP model are implemented using Torch 5 package (Weston
et al., 2008). Random Forest was from the Berkeley RF package
(Breiman, 2001).

4.2 Baselines to Compare
Our task formulation is closely related to the framework of super-
vised classification of protein pairs through information integration.
(Tastan et al., 2009) showed that RF give the state-of-art perfor-
mance for the HIV-1 to human PPI prediction task (though partial
labels “GroupI” used as positive for training in that case). Our SML
models are built on MLP networks. Thus it is worth to compare
and investigate how much improvement we could achieve beyond
the baselines: MLP network classifier and the state-of-the-art RF
classifier.

Moreover, we also evaluate the performance of both two base
classifiers when adding those partially labeled positive pairs into the
training positive (from experts). Ideally these partial labels should
be weighted differently in the training compared to those experts’
labels. But since partial positive pairs are associated with different
keywords in NIAID, it is tricky to select the weights. We finally used
a simple strategy in evaluation: just adding them as training positive
examples into the current positive set. Figure 3 summarized two ways
we utilized in training baseline classifiers. For the case in Figure 3(b),
two baselines are named as: (1) RF-P: Random Forest adding partial
positives in training; (2) MLP-P: Multi-Layer Perceptron Neural Net
adding partial positives in training.

For each classifier, parameter optimization was carried out inde-
pendently in identical cross-valiation fashion. Each method has
distinct sets of parameters to tune. For SMLE, we need to learn the
underline MLP network structure (hidden layer, hidden units, etc),
the learning rate, choices of embedding pairs, ratio between embed-
ding and classification during the joint training. For SMLC, we need
to learn the underline MLP network structure, ratio between the main
classification and the pseudo classification, and the learning rate. For
SMLR, we need to learn the underline MLP network structure, ratio
between the main classification and the pseudo ranking, the learning
rate and the choices of pairwise ranking pairs. To avoid overfitting,
we did not try very deep MLP architecture. Thus either linear (if
possible) or adding one hidden layer was tried for MLP architecture.
The best parameters found for the classification auxiliar model is
with one hidden layer, 15 hidden units and learning rate 0.005. For
the ranking model, the best setup is with linear layer with learning
rate 0.01. For the SML “embedding output” model, the choice is
one hidden layer, five hidden units, learning rate 0.005 and we train
embedding with only the pushing apart step.
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4.3 Evaluation Metrics
When evaluating the performance of a classifier on an imbalanced
test set such as is the case here, computing accuracy is not useful
because a high true-negative (TN) rate can easily be obtained by
chance. Therefore, we evaluated the quality of our predictive model
using four metrics which ignore the success on the TN rate and sum-
marize prediction performance over a range of output thresholds.
(1) Mean Average Precision (MAP) score is used to summarize the
precision recall curve and is the mean of the average precision sco-
res across recall levels. Precision refers to the fraction of interacting
pairs predicted by the classifier that are truly interacting (“true posi-
tives”). Recall measures how many of the known pairs of interacting
proteins have been identified by the learning model. (2) Precision
Recall breakpoint (PRB) score is the value of when precision is equal
to recall across different cutoffs on the predicted score. (3) Recei-
ver Operator Characteristic curves plot the true positive rate against
the false positive rate for different cut-off values of the predicted
score. The area under the ROC curve (AUC) is commonly used as a
summary measure of diagnostic accuracy. (4) R50 is a partial AUC
score that measures the area under the ROC curve until reaching 50
negative predictions, e.g. low false positive rate. For our prediction
task where classes are extremely unbalanced, we are predominantly
concerned with the condition where false positive rate is low.

All these score range between 0 and 1, where values close to 1
indicates more successful predictions.

4.4 Performance
Table 2 compares three proposed SML models and two baseline
classifiers (each have two cases of training) using AUC R50, MAP,
PRB and AUC scores. The scores are averaged from 20 randomly
repeated five-folds Cross-Validation runs.

For two baselines, the second type of training (adding partial labels
in) achieves better performance than the regular training, which
is not surprising. MLP model (MAP-P 0.21) makes comparable
performance to the state-of-the-art RF (MAP 0.213) model.

All SML models perform better than baseline strategies (the best
MAP achieves 0.277, e.g. about 0.06 better than RF-P; the best R50
gets 0.310, about 0.08 better than RF-P). This is expected since
our partial positive examples are associated with keywords descri-
bing PPIs. SML auxiliary tasks tried to capture the intrinsic patterns
underlying these weak labels, from either labels themselves, or their
pairwise relationships with other examples. Multi-tasking with MLP
improve the performance compared to MLP alone. We conclude that
SML achieves the state-of-art performance on the task of predicting
interactions between HIV-1 and human protein.

Among three SML models, the SMLR- “ranking” and SMLE-
“embedding on output” task seem to capture the patterns of partial
labels better compared SMLC- “classification”. We think this obser-
vation makes sense since essentially the only reliable assumption we
could derive from weak positive labels is “partial positives are more
likely to be interacting than negative random pairs”. The ranking
auxiliar task - SMLR performed training on this assumption exactly,
which achieved the best R50 (0.310) and the best AUC (0.919) sco-
res. Under the best parameter setup (learned by CV), the “embedding
output”-SMLE task is similar to SMLR where it tried to push the net-
work output value of partial positives apart from the output of random
negatives. This achieved the best MAP (0.277, about 0.067 increase
to RF-P) and the best PRB (0.326, about 0.045 increase to RF-P)
scores. SMLC model could not capture this assumption directly,
consequently resulting in less improvement from multi-tasking.

Furthermore, we tried to compare SML models directly with pre-
vious results in (Tastan et al., 2009). Our current “gold standard”

Table 2. Performance Comparison (with multiple metric scores).
SMLC: SML with classification task; SMLR: SML with ranking task;
SMLE: SML with embedding on output; RF: Random Forest; MLP:
Multi-Layer Perceptron Net. RF-P: RF adding partial positive; MLP-P:
MLP adding partial positive.

Method R50 MAP PRB AUC
SMLC 0.277 0.263 0.312 0.905
SMLR 0.310 0.268 0.311 0.919
SMLE 0.309 0.277 0.326 0.908
RF 0.199 0.135 0.180 0.893
RF-P 0.230 0.213 0.281 0.896
MLP 0.204 0.197 0.257 0.859
MLP-P 0.229 0.210 0.282 0.893

positive set uses the 158 experts annotated interactions between HIV-
1 and human proteins. Differently, (Tastan et al., 2009) used 955
“GroupI” pairs as training positive. We tried to apply SMLR model
on the same supervised PPI prediction runs in (Tastan et al., 2009)
and multi-task with the ranking task using “GroupII” 1665 pairs as
partially labeled examples. This model gets an averaged 0.253 MAP
score and RF achieved 0.230 MAP score in (Tastan et al., 2009). The
improvement is less impressive in this setting and we guess this is
because “GroupII” set is not much larger than“GroupI” set.

4.5 Validation
A final model was trained with all available expert labeled interac-
tions using the best parameter setting we found for SMLE. Since
randomness exists when sampling the negative training set, we utili-
zed multiple independently sampled negative sets to overcome this
random effect and to reduce the potential bias inherent in using a sin-
gle training set. Through bagging models trained with five randomly
sampled negative sets, our final score is obtained through value ave-
raging. We then ranked all HIV-1 to human protein pairs according
to their classification score. The derived ranked order list were thres-
holded and the top ranked 2500 pairs build our list of predicted PPIs.
This list is downloadable from our supplementary web.

Following (Tastan et al., 2009), we carry two validations by
checking whether the human proteins reported in the functional
siRNA screen are ranked high in our predicted list. The siRNA screen
identified 282 human genes to have an effect on HIV-1 infection
(Brass et al., 2008). Also we check the human proteins in our top
ranked PPI list, whether they have been detected in virion (Ott, 2008)
or not. This functional assay found that 316 human proteins are high-
jacked by HIV-1 in its virion. The predicted pairs that involve with
the virion related human genes would be of great interest to HIV-1
virologists. Table 3 gives the statistics of overlapps between our pre-
dicted human partners to proteins found in the two reported functional
screens. Clearly there is a good portion of predictions confirmed by
these functional screens. Recently three other functional screened
human gene lists (König et al., 2008; Yeung et al., 2009; Zhou et al.,
2008) related to HIV-1 become available online. We combine these
three human gene lists with the one in (Brass et al., 2008) to form a
combined list called as “CombineFourSiRNA” in Table 3. We then
check the overlap of this combined list to our top predicted human
protein partners. The last column in Table 3 describes that nearly
10% predicted partners are validated by four siRNA screens, which
gives strong indications of how good our predictions are.

5 CONCLUSIONS
Supervised learning methods have been used for the task of classify-
ing pairs of proteins as interacting or not. However their performance
is restricted by the availability of labeled training examples, i.e.
known PPIs. In many cases, there exist considerable amount of pro-
tein pairs, where an association is proposed in the literature but not
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Table 3. Statistics of overlaps between top predicted human partners to those found in (1) (Brass et al., 2008) siRNA screen list, (2) (Ott,
2008) virion screen list, (3) combined four siRNA screens (Brass et al., 2008; König et al., 2008; Yeung et al., 2009; Zhou et al., 2008).

Score Num Predicted Confirmed Novel Num Human Protein Overlap Overlap Overlap
Cutoff Interactions by NIAID Interactions In PredInteractions siRNA Virion CombineFourSiRNA

-1.8 3428 259 3123 1027 24 72 96
-1.5 2434 223 2172 721 21 61 72

enough experimental evidence is available to determine the existence
of a direct interaction. Such is the case for the task of predicting
human to HIV-1 inter-species interactome.

In this paper we designed a semi-supervised multi-task learning
framework to integrate a larger set of potentially interacting protein-
pairs retrieved from literature (weak labels) and a smaller set of
interactions annotated by experts. The proposed SML combine a
semi-supervised auxiliary task with a supervised PPI classifier. A
multi-layer perceptron network is trained for PPI classification on
labeled examples. Simultaneously we multi-task this network with
an auxiliary task which aims to use weak positive labels to improve
the supervised classification. Three auxiliary strategies are evaluated
on the task of predicting interactions between HIV-1 and human pro-
teins. Through cross-validation, our method was shown to improve
upon the best previous method for this task indicating the benefits of
multi-tasking with auxiliary information.

In addition to improved performance on inferring human HIV-
1 PPIs, the proposed SML structure provides a flexible framework
for general computational PPI prediction tasks. SML models could
be easily extended to other species or pairs of species, or to incor-
porate other auxiliary information, such as other kinds of weak
labels or supporting information between unlabeled protein pairs.
For instance, the noisy interaction pairs from high throughput expe-
riments in human could be used to build neighbor pairs for training
SML model (e.g. embedding on output) very naturally and thus the
method has significant potential for intra-species PPI predictions
such as in human.

REFERENCES
Ben-Hur, A. and Noble, W. (2005). Kernel methods for predicting protein-protein

interactions. Bioinformatics (Proceedings of the Intelligent Systems for Molecular
Biology Conference), 21, i38–i46.

Brass, A. L., Dykxhoorn, D. M., Benita, Y., Yan, N., Engelman, A., Xavier, R. J.,
Lieberman, J., and Elledge, S. J. (2008). Identification of host proteins required for
hiv infection through a functional genomic screen. Science, 319(5865), 921–926.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. article.
Caruana, R. (1997). Multitask learning. In Machine Learning, pages 41–75.
Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-Supervised Learning

(Adaptive Computation and Machine Learning). MIT Press.
Cusick, M. E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A.-R., Simonis, N.,

Rual, J.-F., Borick, H., Braun, P., Dreze, M., Vandenhaute, J., Galli, M., Yazaki, J.,
Hill, D. E., Ecker, J. R., Roth, F. P., and Vidal, M. (2008). Literature-curated protein
interaction datasets. Nature Methods, 6(1), 39–46.

Davis, F. P., Barkan, D. T., Eswar, N., McKerrow, J. H., and Sali, A. (2007). Host
pathogen protein interactions predicted by comparative modeling. Protein Sci, 16(12),
2585–2596.

Evans, P., Dampier, W., and Tozeren, A. (2009). Prediction of HIV-1 virus-host protein
interactions using virus and host sequence motifs. BMC medical genomics, 2(1).

Fu, W., Sanders-Beer, B. E., Katz, K. S., Maglott, D. R., Pruitt, K. D., and Ptak, R. G.
(2008). Human immunodeficiency virus type 1, human protein interaction database
at NCBI. Nucl. Acids Res., 37, D417–22.

Gavin, A., Aloy, P., Grandi, P., et al., and Superti-Furga, G. (2006). Proteome survey
reveals modularity of the yeast cell machinery. Nature, 440(7084), 631–6.

Gavin, A.-C., Bosche, M., Krause, R., et al., and Superti-Furga, G. (2002). Functio-
nal organization of the yeast proteome by systematic analysis of protein complexes.
Nature, 415(6868), 141–7.

Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S.-L., et al., and
Tyers, M. (2002). Systematic identification of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature, 415(6868), 180–3.

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A
comprehensive two-hybrid analysis to explore the yeast proteininteractome. Proc.

Natl. Acad. Sci. USA, 98(8), 4569–4574.

Jansen, R., Yu, H., Dreenbaum, D., Kluger, Y., and et. al. (2003). A bayesian networks
approach for predicting protein-protein interactions from genomic data. Science, 302,
449–53.

König, R., Zhou, Y., Elleder, D., Diamond, T. L., Bonamy, G. M. C., Irelan, J. T.,
Chiang, C.-Y., Tu, B. P., Jesus, P. D. D., Lilley, C. E., Seidel, S., Opaluch, A. M.,
Caldwell, J. S., Weitzman, M. D., Kuhen, K. L., Bandyopadhyay, S., Ideker, T., Orth,
A. P., Miraglia, L. J., Bushman, F. D., Young, J. A., and Chanda, S. K. (2008). Global
analysis of host-pathogen interactions that regulate early-stage hiv-1 replication. Cell,
135(1), 49–60.

Lee, I., Date, S., Adai, A., and Marcotte, E. (2004). A probabilistic functional network
of yeast genes. Science, 306(5701), 1555–8.

Lin, N., Wu, B., Jansen, R., Gerstein, M., and Zhao, H. (2004). Information assessment
on predicting protein-protein interactions. BMC Bioinformatics, 5, 154.

Ott, D. E. (2008). Cellular proteins detected in hiv-1. Rev Med Virol, 18(3), 159–175.
Qi, Y., Klein-Seetharaman, J., and Bar-Joseph, Z. (2005). Random forest similarity for

protein-protein interaction prediction from multiple sources. Proceedings of Pacific
Symposium on Biocomputing, 10, 531–542.

Rhodes, D. R., Tomlins, S. A., Varambally, S., Mahavisno, V., Barrette, T., Kalyana-
Sundaram, S., Ghosh, D., Pandey, A., and Chinnaiyan, A. M. (2005). Probabilistic
model of the human protein-protein interaction network. Nat Biotechnol., 8, 951–9.

Rual, J. F., Venkatesan, K., et al., Roth, F. P., and Vidal, M. (2005). Towards a proteome-
scale map of the human protein-protein interaction network. Nature, 437(7062),
1173–8.

Scott, M. S. and Barton, G. J. (2007). Probabilistic prediction and ranking of human
protein-protein interactions. BMC Bioinformatics, 8, 239.

Shoemaker, B. A. and Panchenko, A. R. (2007a). Deciphering protein-protein interac-
tions. part i. experimental techniques and databases. PLoS Comput Biol, 3(3), e42.
1553-7358 (Electronic) Journal Article Research Support, N.I.H., Intramural Review.

Shoemaker, B. A. and Panchenko, A. R. (2007b). Deciphering protein-protein inter-
actions. part ii. computational methods to predict protein and domain interaction
partners. PLoS Comput Biol, 3(4), e43. 1553-7358 (Electronic) Journal Article
Research Support, N.I.H., Intramural Review.

Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F., et al., and Wanker, E.
(2005). A human protein-protein interaction network: A resource for annotating the
proteome. Cell, 122(6), 830–2.

Tastan, O., Qi, Y., Carbonell, J., and Klein-Seetharaman, J. (2009). Prediction of
interactions between hiv-1 and human proteins by information integration. In Pacific
Symposium on Biocomputing (PSB), volume 14.

Trkola, A. (2004 Oct). HIV-host interactions: vital to the virus and key to its inhibition.
Curr Opin Microbiol, 7(5), 555–559.

Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., et al., and Rothberg, J. M. (2000). A
comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.
Nature, 403, 623–627.

von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., and
Bork, P. (2002). Comparative assessment of large-scale data sets of protein-protein
interactions. Nature, 417(6887), 399–403.

Wang, H., Segal, E., Ben-Hur, A., Li, Q., Vidal, M., and Koller, D. (2007). InSite: A
computational method for identifying protein-protein interaction binding sites on a
proteome-wide scale. Genome Biology, 8(9), R192.1–R192.18.

Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised
embedding. In ICML ’08: Proceedings of the 25th international conference on
Machine learning, pages 1168–1175. ACM.

Yamanishi, Y., Vert, J., and Kanehisa, M. (2004). Protein network inference from
multiple genomic data: a supervised approach. Bioinformatics, 20, 363–370.

Yeung, M. L., Houzet, L., Yedavalli, V. S. R. K., and Jeang, K.-T. (2009). A genome-
wide short hairpin rna screening of jurkat T-cells for human proteins contributing to
productive HIV-1 replication. J Biol Chem, 284(29), 19463–19473.

Yip, K. Y. and Gerstein, M. (2009). Training set expansion: an approach to improving the
reconstruction of biological networks from limited and uneven reliable interactions.
Bioinformatics, 25(2), 243–250.

Yu, H., Braun, P., et al., and Vidal, M. (2008). High-quality binary protein interaction
map of the yeast interactome network. Science, 322(5898), 104–110.

Zhang, L., Wong, S., King, O., and Roth, F. (2004). Predicting co-complexed protein
pairs using genomic and proteomic data integration. BMC Bioinformatics, 5, 38.

Zhou, H., Xu, M., Huang, Q., Gates, A. T., Zhang, X. D., Castle, J. C., Stec, E., Ferrer,
M., Strulovici, B., Hazuda, D. J., and Espeseth, A. S. (2008). Genome-scale rnai
screen for host factors required for hiv replication. Cell Host Microbe, 4(5), 495–504.

7


