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Background
Importance of Protein Interactions
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* Need comprehensive identification of Protein-
Protein Interactions (PPI)
— To systematically define proteins’ functions

— To decipher molecular mechanisms underlying given
biological functions

— Essential for diseases studies & drug discoveries

Better understanding of

function of protein “b”



Background
Previous Approaches

« Experimental:
— Direct large scale experimental data
 High false-positive and false-negative rate,

* Incomplete, with majority remains to be
discovered, especially for human

 Surprisingly small overlap among different sets

« Computational:

— Combine direct evidence and other implicitly
related biological information as features

« Example: If two proteins are co-expressed,
they may interact.

=>» Large portion of the PPIs still missing or noisy !



Background
Computational PPl Prediction through Data Fusion

Driholog interaction datasets: DIP Coexpression matrices: Shared biological functicn: GO Enriched domain pair: Interpro
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Target Problem

Our Aim

Predict novel direct physical interactions
between HIV-1 and human proteins
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Critical for designing strategies to get HIV-1 under control |
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Target Problem

HIV-1: Human Immunodeficiency Virus-1

Genes Proteins

. —envgpl60
e Causative agent of AIDS env — env gp120
. — envgp
— DeStFUCtS the Immune SYStem —.nuclgé)capsid
. . . . —>cap5|.
— Leads to opportunistic infections and gag __ Mt
malignancies — s
—P
e Current antiviral therapy prolonged the pol - Irtearace
. ) . — reverse transcriptase
patients’ survival rates — e
— Not accessible to everyone ..
— Cannot eradicate HIV from the body
. vpr ., vpr
— Drug resistance problems
. tat — tat
* No vaccine
nef —— nef
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Target Problem

Previous Work: Supervised Classification

* HIV-1 human protein pair is described with a feature
vector and a class label :

(x,,v) y€& {'Interact’,'Not Interact'}

1

* Given data learn a function that would map feature
space into one of the two classes:  f: X —Y

Each feature summarizes a biological information

e State-of-the-art performance: Random forest (Tastan
et al. (PSB 2009))



Target Problem: Features

* Features and reference sets are from paper:
— Tastan et al. (PSB 2009)

e 18 features calculated for each HIV-1, human
protein pair

10 features specific to HIV-1, human protein pair

8 features of human protein
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Target Problem: Features

L Differential gene expression in HIV
infected vs uninfected cells (4)

(J Human protein expression in HIV-1

susceptible tissues (1)

J Similarity of the two proteins in

terms of (4)

— Cellular location
— Molecular process
— Molecular function
— Sequence

J ELM-ligand feature (1)

(J Human PPl interactome
features (8)

d Similarity of HIV-1 protein to
human protein’s interaction
partner (5)

1 Topological properties of
human interaction graph (3)

Huma#’Protein/

HIV-1 protein
Intractome



Target Problem: Data Situation

e Partial positive labels from NIAID database

— ~2100 protein interaction pairs (extracted from
literature)

— Not enough evidence supporting reliabilities
(partial positive)
— Each associated with keywords

n

* (e.g. “interacts”, “binds”, “up-regulates”, ....)
* Some strong indication, some weak

e Positive labels annotated by HIV experts
— 361 possible pairs given to experts

— 158 out of above annotated as interaction
(positive)



Target Problem: Data Situation

* No negative (not interacting) set available

* Highly skewed class distribution

* Much more non-interacting pairs than interacting pairs

18 features per HIV-Human pair

20873 .

Host Prgtein == = =1 Pathogen Prot
Human Interactome 'ntefa?tome 17 HIV
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Method: Multi-Tasking with Semi-Supervised Auxiliary Task

* Multi-tasking two tasks
— Supervised main PPl classification task

— Semi-supervised auxiliary task with partial labels
e (1) Classification
* (2) Ranking
* (3) Embedding

* Add auxiliary task as a regularizer on the supervised MLP

L
Zé(f (xi),vi)+A Loss (Auxiliary Task)

i=1



Main: (0) Supervised PPI Classification (MLP)

Network Info
* Main task: Supervised cequence Info ; o weUT
PPI classification Genomicinfo [ |
 Multiple Layer Layer 1
Perceptron (MLP) l
* Binary classification Layer 2
(interact “1”, not l
interact “-1”) Layer 3
* Train with stochastic l
gradient descent ouTPUT : ()

L L
 Toward hinge loss Zf(f(xi),yi):ZmaX(O, 1 _ylf(xl))
i=1 i=1

*Assuming labeled data (x;, y;), i=1, ..., L



Auxiliary: (1) Classification with Partial Labels (SMLC)

Network Info [
* Auxiliary task: Pseudo- sequencelnfo  [] (— INPUT
Supervised classification senomicimto T | l
 MLP shares layers with aver
main task l
* Binary classification aver 2
* partial positive “1” v l
* not interact “-1” Layer 3 Layer 3
* Toward hinge loss with l l
pseudo-labels ouTPuUT': ) OUTPUT: f()
L+U
Loss (Auxiliary Task) = Z max(0, 1 — y]'-g(xj))
j=L+1

*Assuming partial Labeled data (x;, y’), i=L+1, ..., L+ U



Auxiliary: (2) Ranking with Partial Labels (SMLR)

* Auxiliary task: Pseudo- Networkinfo B
SequenceInfo [ ——>INPUT

Supervised ranking conomcno |
* MLP shares the same © [ layert
network as main task l
* Preference ranking Layer 2
* Rank “partial positive” l
more likely than Laver 3
“negative”
Margin Ranking \l'
Space

—> ouTPUT f{()

* Toward margin rank loss

Loss( Aux.) = ZZmax (0, 1—f(xp) +f(xn))

pePneN

P the set of partial positives and N the set of negative examples



Auxiliary: (3) Embedding with Partial Labels (SMLE)

* Embedding: Given data x,, ..., X,, find an embedding
function f(x;) by minimizing pairwise distance margin loss

Ifi — fill if Wi; =1,
max(0,m — || f; — fjll1) ifW;; =0

— W matrix should be supplied in advance and specity the
similarity between examples x; and x;

* Motivation: embedding could uncover hidden cluster
structure within the data based on partial examples’
similarities to the remaining examples

 We use partial labels to build matrix W for embedding
— Wij =1 if both examples from partial positive set
— Wij =0 if one partial positive example and the other a
negative example



Auxiliary: (3) Embedding with Partial Labels (SMLE)

v'Auxiliary task: Pseudo-

. Network Info =

EmbEddlng Sequence Info ] — SINPUT

e MLP shares the same network cenomicinfo O] l
as main task Layer 1

e Embedding adds an extra l
distance layer on output Layer 2

* Motivation: embedding could l
improve accuracy by helping Layer 3

data clusters get similar labels mbedding l

space  =————=> ouTPUT f()

 The whole network optimize

toward the loss
L+U

L
D LFGD)y)+A D LI ). f(x5), Wy)

i=1 i,j=1



Method: Semi-Multi-Embed Algorithm (SMLE case)

Input:

Labeled data (x;, y;), i=1, ..., L
Partial Labeled data x;, i=L+1,...,L+P

Repeat:

Pick a random labeled example (x;, y;)
Make a gradient step to optimize I( f(x;), y;)

Pick a random partially labeled example x,,
Pick another random example x, where W, =1
Make a gradient step to optimize AL( f(x, ), g(x,), 1)

Pick a random partially labeled example x,,
Pick another random example x, where W__=0
Make a gradient step to optimize AL( f(x,,), g(x,), 0)

Until stopping criteria is met



Evaluation: Performance Measures
 The Mean Average Precision (MAP)

— Mean of the average precisions where each average precision is
calculated when recall increases

* Precision-Recall breakpoint (PRB)
— Value where precision is equal to recall

* Area Under the Receiver Operating Curve (AUC):

ROC curve e Partial AUC scores :
=T AUC Area under the curve
L —~~ . . .
p; ~— until reaching N false positives

TP rate

FP rate



Evaluation: Performance Comparison

e 20 times of randomly repeated 5 folds cross validation
 Compare: SMLC, SMLR, SMLE, MLP and RF

— Torch for SMLC, SMLR, SMLE, and MLP

— RF Berkely package for RF

SMLC 0.277 0.263 0.312 0.905
SMLR 0.31 0.268 0.311 0.919
SMLE 0.309 0.277 0.326 0.908

RF 0.199 0.135 0.18 0.893
RF-P 0.23 0.213 0.281 0.896
MLP 0.204 0.197 0.257 0.859

MLP-P 0.229 0.21 0.282 0.893




Evaluation: Validation

 Statistics of overlaps between top predicted

human partners to those found in

— (i)(Ott, 2008) virion screen list,

— (ii) Combined 4 siRNA screens (Brass et al., 2008; Kénig et al., 2008;
Yeung et al., 2009; Zhou et al., 2008)

Predicted Interactions 2434
Interaction Confirmed by Partial Positive 223
Novel Interactions 2172
Human Gene in Predicted Interactions 721
Confirmed with Virion (316 genes) 61
Combined Four siRNA (1049 genes) 72

All experts labels / partial labels / top predicted interactions are shared online !
http://www.cs.cmu.edu/~qyj/HIVsemi




Conclusion

* Semi-supervised multitasking is promising for
HIV-Human PPI prediction task

* Easily extendable for incorporating other
auxiliary information, such as large-scale noisy
experimental PPl evidence

* Easily extendable for other PPI tasks, such as
PPl predictions in yeast or human



Thanks !

All experts labels / partial labels / top predicted interactions are shared online !
http://www.cs.cmu.edu/~qyj/HIVsemi




