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Abstract— The present study investigates the effect of the 
number of controlled robots on performance of an urban search 
and rescue (USAR) task using a realistic simulation.   Task 
performance increased in going from four to eight controlled 
robots but deteriorated in moving from eight to twelve.  
Workload increased monotonically with number of robots.  
Performance per robot decreased with increases in team size.  
Results are consistent with earlier studies suggesting a limit of 
between 8-12 robots for direct human control.  This study 
demonstrates that these findings generalize to a more realistic 
setting and complex task. 

I. INTRODUCTION 
Applications for multirobot systems (MrS) such as 

interplanetary construction or cooperating uninhabited aerial 
vehicles will require close coordination and control between 
human operator(s) and teams of robots in uncertain 
environments.  Human supervision will be needed because 
humans must supply the perhaps changing, goals that direct 
MrS activity. Robot autonomy will be needed because the 
aggregate demands of decision making and control of a MrS 
are likely to exceed the cognitive capabilities of a human 
operator.  Controlling robots that must act cooperatively, in 
particular, will likely be difficult because it is these activities 
[1] that theoretically impose the greatest decision making 
load.   

Because some functions of a MrS such as identifying 
victims among rubble depend on human input, evaluating the 
operator’s span of control as the number of controlled entities 
scale is critical for designing feasible human-automation 
control systems. Current estimates of human span of control 
limitations are severe.  Miller [2], for example, showed that 
under expected target densities, a controller who is required 
to authorize weapon release for a target identified by a 
UCAV, could control no more than 13 UAVs even in the 
absence of other tasks. A similar breakpoint of 12 was found 
by [3] for retargeting Tomahawk missiles.  Smaller numbers 
(3-9) [4] have typically been found for ground robots. 

Controlling multiple robots substantially increases the 
complexity of the operator’s task because attention must 
constantly be shifted among robots in order to maintain 
situation awareness (SA) and exert control. In the simplest 
case an operator controls multiple independent robots 
interacting with each as needed. A search task in which each 
robot searches its own region would be of this category 

although minimal coordination might be required to avoid 
overlaps and prevent gaps in coverage.  Control performance 
at such tasks can be characterized by the average demand of 
each robot on human attention [4]. Under these conditions 
increasing robot autonomy should allow robots to be 
neglected for longer periods of time making it possible for a 
single operator to control more robots. 

 
 

Established methods of estimating MrS control difficulty, 
the neglect tolerance model, NT, [4] and the Fan-out measure 
[5] are predicated on the independence of robots and tasks.  In 
the NT model the period following the end of human 
intervention but preceding a decline in performance below a 
threshold is considered time during which the operator is free 
to perform other tasks.  If the operator services other robots 
over this period the measure provides an estimate of the 
number of robots that might be controlled.  Fan-out refers to 
maximum number of robots that can advantageously 
controlled under particular conditions.   Fan-out can be 
determined empirically as in [5] by adding robots and 
measuring performance until a plateau without further 
improvement is reached or indirectly by predicting the 
maximum number of robots using parameters from the NT 
model [4].  Both approaches presume that operating an 
additional robot imposes an additive demand on cognitive 
resources.  These measures are particularly attractive because 
they are based on readily observable aspects of behavior: the 
time an operator is engaged controlling the robot, interaction 
time (IT), and the time an operator is not engaged in 
controlling that robot, neglect time (NT).Because of the need 
to share attention between robots in MRS, teloperation can 
only be used for one robot out of a team [6] or as a selectable 
mode [7]. Some variant of waypoint control has been used in 
most of the MrS studies we have reviewed [4,6,7,8] (see 
Table 1) with differences arising primarily in behavior upon 
reaching a waypoint. A more fully autonomous mode has 
typically been included involving things such as search of a 
designated area [6], travel to a distant waypoint  [8], or 
executing prescribed behaviors [9]. In studies in which robots 
did not cooperate and had varying levels of individual 
autonomy [4,6,8] (team size 2-4) performance and workload 
were both higher at lower autonomy levels and lower at 
higher ones. So although increasing autonomy in these 
experiments reduced the cognitive load on the operator, the 
automation could not perform the replaced tasks as well. 
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Table 1. Recent Studies on Multiple Robots Research 

 
Trouvain et al. [8] compared the navigation performance of 

two, four, and eight robots controlled by a single operator in a 
2D simulated world. Under conditions of waypoint-based 
independent robot control and simple robot simulation, the 
experiment shows that the operator is able to control up to 
four robots, with the larger number of robots resulting in a 
higher workload and a stronger impact on the operator’s 
monitoring ability than on the control ability. In a later study 
[10], the authors added autopilot capability to the robots, 
upgraded the world simulation to a 3D graph rendering 
system, and improved the simulated robot to a virtual fail-safe 
vehicle. The comparison of one, two, and four robots 
controlled during the exploration task shows that, in single 
robot control, human intervention improved performance but, 
when participants shifted to multi-robot (two or four robots) 
control, they “tend to reactive instead of proactive 
supervisory control” [10]. Overall performances under this 
latter condition were worse than those under the condition of 
full autonomy control. Again, increased human workload was 
found as the group size increased. In the most recent study 
[11], researchers used the UGV simulator, USARSim (also 

used in the current study), to compare robot control behaviors 
with six and nine independent heterogeneous robots. In this 
experiment, the high fidelity of the  simulator, which 
introduces realistic SA problems, such as robot collisions, 
entanglement with objects in the environment, or falls makes 
the results potentially more generalizable  to field robotics. 
The participants controlled the robots via teleoperation or 
prescribed behavior with a scalable interface. The results 
show that a higher number of robots caused a higher 
workload; however, the increment was less than the ratio of 
1:1, which indicates that the operator continued to benefit 
from control over additional robots at least in the range 
covered in the study. The experimenters report improving SA 
with added robots contradicting the common belief that more 
robots lead to worse SA, however, because only the 
attentional demand scale of the 3D SART was significantly 
higher, more robots may have required greater effort without 
actually benefiting SA in other ways. 

Multi-robot control appears to impact the human 
operator’s workload in three distinct ways: (1) building and 
maintaining awareness, (2) making decisions, and (3) 

Study Task World Robots Interaction 
Fong et al. (2001): robotic 
system of collaborative 
control 

Surveillance & 
reconnaissance 

Real world with 
flat terrain. 

 

2 UGVs 
(PionnerAT) 
 

Dialog + waypoint 
control 

Trouvain & Wolf (2002): 
user study of the impact of 

Navigation 2D simulated 

robot group size 
office world 

2, 4, 8 UGVs 
(homogeneous) 

Waypoint 

Trouvain et al. (2003): user 
study of map based and 

Exploration 
 

camera based user interface 

3D simulated 
outdoor world 
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Crandall et a (2005): user 
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Cummings & Mitchell 
(2005): Time management 
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Humphrey et al. (2006): 
user study of robot team 
visualization  

Robot selection 
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4 x 4 Agents (4 
teams of  4) 
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Search 
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scripted 
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of cooperating robot 
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Box pushing 3D simulated 
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(USARSim) 
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Manual, waypoint 



  

 
Figure 1. GUI for multirobot control 

 
controlling the robotic system. Increasing the autonomy 

level in robotic system, whether providing decision support 
or individual robot autonomy, allows us to shift the 
decision-making and robot control workload from the human 
to the robotic system. On the other hand, increased robot 
autonomy may cause an increase in perception and 
decision-making workloads. Thus, there is a trade-off 
between the autonomy level of the robotic system and the 
level of human intervention.   

The present study investigates the effect of the number of 
controlled robots on performance of an urban search and 
rescue (USAR) task using a realistic simulation.  The USAR 
task imposes high mental workload in all three ways by 
requiring high SA to detect victims and mark them on the 
map, frequent decisions in switching between robots, and 
both waypoint control and teleoperation of individual robots.  
By covering a wider range of team sizes than [11] we were 
able to bound the number of robots that could be effectively 
controlled at the USAR task.  Subsequent experiments are 
planned to distinguish the impacts of N of robots on SA 
(perceptual search with autonomous navigation) and 
navigation alone.  The results of these studies are intended to 
aid system designers in allocating functions statically or 
dynamically between the operator and robot autonomy.  

USARSIM AND MRCS 

The reported experiment was performed using the 
USARSim robotic simulation with 4-12 simulated UGVs 
performing Urban Search and Rescue (USAR) tasks.  
USARSim is a high-fidelity simulation of urban search and 
rescue (USAR) robots and environments we developed as a 
research tool for the study of HRI and multi-robot 
coordination.  USARSim supports HRI in ways lower fidelity 
simulations cannot by accurately rendering user interface 
elements (particularly camera video), accurately representing 
robot automation and behavior, and accurately representing 
the remote environment that links the operator’s awareness 
with the robot’s behaviors.  USARSim can be downloaded 
from www.sourceforge.net/projects/usarsim and serves as the 
basis for the Virtual Robots Competition of the RoboCup 
Rescue League.  The current version of USARSim includes 
detailed replicas of NIST USAR Arenas, as well as 
large-scale indoor and outdoor hypothetical disaster 
scenarios, and a large outdoor area along the Chesapeake 
Bay.    USARSim complements these maps with high fidelity 
models of commercial (pioneer P2-DX, P2-AT, iRobot’s 
ATRV Jr., Foster-Miller’s Talon, and Telerob’s Telemax) 
and experimental (PER from CMU, Zerg from University of 

http://www.sourceforge.net/projects/usarsim


  

Freiburg, Kurt 3D from University of Osnabruk) robots, 
including a snake (Soyu from Tohoku University), air 
(Air-robot helicopter) and a large Ackerman-steered UGV 
(Hummer) and sensor models for many common robotic 
sensing packages.  USARSim uses Epic Games’ 
UnrealEngine2 [12] to provide a high fidelity simulator at 
low cost.  Validation studies showing agreement for a variety 
of feature extraction techniques between USARSim images 
and camera video are reported in Carpin et al. [13].   Other 
sensors including sonar and audio are also accurately 
modeled.  Validation data showing close agreement in 
detection of walls and associated Hough transforms for a 
simulated Hokuyo laser range finder are described in [14].  
The current UnrealEngine2 integrates MathEngine’s Karma 
physics engine [15] to support high fidelity rigid body 
simulation.  Validation studies showing close agreement in 
behavior between USARSim models and real robots being 
modeled are reported in [16,17,18,19,20].  
MrCS (Multi-robot Control System), a multirobot 
communications and control infrastructure with 
accompanying user interface developed for experiments in 
multirobot control and RoboCup competition [21] was used. 
MrCS provides facilities for starting and controlling robots in 
the simulation, displaying camera and laser output, and 
supporting inter-robot communication through Machinetta a 
distributed mutiagent system.  Figure 1 shows the elements of 
the MrCS.  The operator selects the robot to be controlled 
from the colored thumbnails at the top of the screen.  To view 
more of the selected scene shown in the large video window 
the operator uses pan/tilt sliders to control the camera. Robots 
are tasked by assigning waypoints on a heading-up map on 
the Mission Panel (bottom right) or through a teleoperation 
widget  (bottom left). The current locations and paths of the 
robots are shown on the Map Data Viewer (middle left).  

II. METHOD 
A large USAR environment previously used in the 2006 

RoboCup Rescue Virtual Robots competition [21] was 
selected for use in the experiment.  The environment was a 
maze like hall with many rooms and obstacles, such as chairs, 
desks, cabinets, and bricks. Victims were evenly distributed 
within the environment. A second simpler environment was 
used for training. The experiment followed a repeated 
measures design with participants searching for victims using 
4, 8, and finally 12 robots. Robot starting points were varied 
over the three trials.  Because our primary concern was with 
changes in performance as N robots increased, trials were 
presented in a fixed order.  This design confounding learning 
effects and starting points with N of robots was adopted 
because the randomly selected starting points were 
sufficiently comparable not to bias results and any learning 
effect would attenuate rather than accentuate the expected 
decrements.    

PARTICIPANTS 

15 paid participants, 8 male and 7 female were recruited 
from the University of Pittsburgh community. None had prior 

experience with robot control although most were frequent 
computer users.  

 PROCEDURE 

After collecting demographic data the participant read 
standard instructions on how to control robots via MrCS. In 
the following 20 minute training session, the participant 
practiced control operations and tried to find at least one 
victim in the training environment under the guidance of the 
experimenter.  Participants then began three testing sessions 
(15 minute each) in which they performed the search task 
using 4, 8, and finally 12 robots. After each task, the 
participants were ask to file the NASA-TXL workload survey 
immediately. 

III. RESULT AND DISCUSSION 
Overall participants were successful in searching the 
environment in all conditions finding as many as 12 victims 
on a trial. The average number of victims found was 4.80 
using 4 robots, 7.06 for 8 robots, but only 4.73 when using 12 
robots. A paired t-test shows that in the 8 robots condition 
(R8) participants explored larger regions, t (15) = -10.44, p = 
0.000, while finding more victims, t (15) = -3.201, p = 0.003, 
than using a 4 robot team (R4). On the other hand, adding 
four addition robots degraded performance with participants 
in the 8 robot condition (R8) exploring larger regions, t (15) = 
-1.19, p = 0.059, as well as finding more victims, t (15) = 
-3.014, p = 0.005, than they did using a 12 robot team (R12). 
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Figure 2. Explored Regions 
Victims Founded
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Figure 3. Victims Found 

Figure 4 shows that as the number of robots is increased, fewer 
victims were found per robot.  This measure should remain constant 
if robots were controlled to the same level of effectiveness.  
However, these differences were not significant. 
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Figure 4. Victims Found per Robot 

With increasing numbers of robots operators tended to 
neglect some robots either entirely or after an initial 
movement as shown in Table 2. A paired t-test indicates that 
participants neglected more robots in the 12 robot condition, t 
(15) = -1.922, p = 0.064, than under 4 robots team (R4).  

 
More robots were neglected after an initial move in the 8 

robot (R8) condition t (15) = -2.092, p = 0.046, than for 4 
robots (R4); and still more comparing a 12 robot team (R12) 
to the 8 robot (R8) condition t (15) = -3.761, p = 0.001. 
 

Table 2. Neglected Robots 
Number of Robots R4 R8 R12 

Totally  0.00 0.13 0.80 
After the Initial Move 0.00 0.33 1.87 
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Figure 5. Neglected Analysis 

As in earlier studies we found a positive relation between 
the number of times the operator switched between robots 
and the victims that were found. Higher switching rates are an 
indicator of shortened ITs or more efficient use of NT to 
service additional robots and hence should improve team 
performance.  Figure 6 shows the number of switches 
observed under each of the three conditions.  There were 
significant differences in number of switches between robots 
for the 4 robot and 8 robot conditions (t= -2.914, P<0.007) 
and the 4 robot and 12 robot conditions (t= -2.620, P<0.014). 
Similar results were found for numbers of missions (waypoint 
assignments) between the 4 robot and 8 robot condition (t= 
-3.079, P<0.005) and the 4 robot and 12 robot condition (t= 
-2.118, P<0.043). 
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Figure 6. Number of Switches 

Mission Numbers
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Figure 7. Mission Numbers 

Table 3 shows Fan-out for the three conditions estimated by 

=− outFan  1+
IT
NT

  as proposed in [4]. 

Table 3 Fan-out 
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Figure 8. NASA-TLX Measurement of Mental workload 

The result of the workload assessment indicates that 
workload increased with increasing numbers of robots to be 
controlled.  This difference in workload was significant 
between the 4 robot and 12 robot conditions (P<0.0146). 

 IT NT Fan-out 
R4 0.230079 0.769921 4.402437 
R8 0.115556 0.884444 9.116028 

R12 0.079661 0.920339 13.46839 



  

Our results show that we have successfully bounded the 
number of directly controllable robots for a realistic USAR 
task at between 8-12.  This can be seen for both the number of 
victims found and the regions explored which improve 
between the four robot and eight robot conditions but decline 
again between 8 and 12 robots.  Determining Fan-out 
empirically as in [5] the Fan-out plateau (point at which 
performance is no longer improved by adding additional 
robots) lies somewhere within this region.  The point at which 
operator capabilities become saturated can be estimated more 
closely by observing the number of robots that are either 
completely neglected or neglected after the first move.  This 
number is approximately 2.7 for the 12 robot condition 
suggesting that the actual limit for this experiment is 
approximately 9 robots.   An examination of the number of 
switches between robots supports this estimate because the 
number of switches is essentially the same in both the 8 and 
12 robot conditions.  This means that operators have reached 
their limit for interactions and are neglecting the robots for 
slightly longer times to accommodate the additional robot 
they are actively controlling.  Similar conclusions can be 
drawn from the relation between number of missions 
(waypoint assignments) and regions explored.  There is an 
increase in assigned missions between the 4 and 8 robot 
conditions that is accompanied by a substantial increase in the 
area explored.  The decrease in mission numbers in the 12 
robot condition is likewise reflected in a decline of the 
explored regions.   

Although we do not have a direct measure of robot 
effectiveness such as AT (active time during which robot is 
moving) used in [5] using the estimate proposed in [4] 
Fan-out neatly parallels the number of robots operators were 
assigned to control.  This suggests operators were using a 
satisficing strategy in which they attempted to distribute their 
attention approximately equally among the robots.  This 
resulted in a lowering of the accepted standard of 
performance in order to accommodate the additional robots.  
This conjecture is borne out by examining per-robot 
performance which declines steadily across the three 
conditions. 

With this initial experiment we are establishing a baseline 
for exploring the effects of robot team size on human 
performance.  Even these early results suggest that the 
navigation component of the operator’s task and the 
perceptual tasks involved in search may be somewhat 
differently impacted by increases in team size.  We hope to be 
able to use such results to guide system designers in 
allocating functions statically or dynamically between the 
operator and robot (team) autonomy.       
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