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although minimal coordination might be required to avoid 
overlaps and prevent gaps in coverage.  Control performance 
at such tasks can be characterized by the average demand of 
each robot on human attention [3]. Under these conditions 
increasing robot autonomy should allow robots to be 
neglected for longer periods of time making it possible for a 
single operator to control more robots. 

 

 
Abstract—Conventional models of multirobot control assume 

independent robots and tasks.  This allows an additive model in 
which the operator controls robots sequentially neglecting each 
until its performance deteriorates sufficiently to require new 
operator input.  This paper presents a model of coordination 
demand, CD, and experiments intended to extend the neglect 
tolerance model to situations in which robots must cooperate to 
perform dependent tasks.  In the first experiment operators 
controlled 2 robot teams to perform a box pushing task under 
high cooperation demand, teleoperation, moderate demand 
(waypoint control/ heterogeneous robots), and low demand 
(waypoint control/homogeneous robots) conditions. In the 
second experiment participants performed a search and rescue 
task requiring cooperation between robots creating maps and 
others carrying cameras. Measured demand and performance 
were largely consistent with the CD model’s predictions. 

 For more strongly cooperative tasks and larger teams 
individual autonomy alone is unlikely to suffice. The 
round-robin control strategy used for controlling individual 
robots would force an operator to plan and predict actions 
needed for multiple joint activities and be highly susceptible 
to errors in prediction, synchronization or execution.  
Estimating the cost of this coordination, however, proves a 
difficult problem.  Established methods of estimating MRS 
control difficulty, neglect tolerance and fan-out [3] are 
predicated on the independence of robots and tasks.  In 
neglect tolerance the period following the end of human 
intervention but preceding a decline in performance below a 
threshold is considered time during which the operator is free 
to perform other tasks.  If the operator services other robots 
over this period the measure provides an estimate of the 
number of robots that might be controlled.  Fan-out works 
from the opposite direction, adding robots and measuring 
performance until a plateau without further improvement is 
reached. Both approaches presume that operating an 
additional robot imposes an additive demand on cognitive 
resources.  These measures are particularly attractive because 
they are based on readily observable aspects of behavior: the 
time an operator is engaged controlling the robot, interaction 
time (IT), and the time an operator is not engaged in 
controlling the robot, neglect time (NT).   

I. INTRODUCTION 
The performance of human-robot teams is complex and 
multifaceted reflecting the capabilities of the robots, the 
operator(s), and the quality of their interactions.  Recent 
efforts to define common metrics for human-robot interaction 
[1] have favored sets of metric classes to measure the 
effectiveness of the system’s constituents and their 
interactions as well as the system’s overall performance.  In 
this paper we present new measures of the demand 
coordination places on operators of multirobot systems and 
two experiments to test the usefulness of the measures. 
Applications for multirobot systems (MRS) such as 
interplanetary construction or cooperating uninhabited aerial 
vehicles will require close coordination and control between 
human operator(s) and teams of robots in uncertain 
environments.  Human supervision will be needed because 
humans must supply the perhaps changing, goals that direct 
MRS activity. Robot autonomy will be needed because the 
aggregate decision making demands of a MRS are likely to 
exceed the cognitive capabilities of a human operator. 
Autonomous cooperation among robots, in particular, will 
likely be needed because it is these activities [2] that 
theoretically impose the greatest decision making load. 

II. MEASURING COORDINATION DEMAND 
To separate coordination demand (CD) from the demands of 
interacting with independent robots we have extended 
Crandall’s [3] neglect tolerance model by introducing the 
notion of occupied time (OT) as illustrated in Figure 1. 

 
NT IT

OTFT FT 

NT: Neglect Time;  IT: Interaction Time;  
FT: Free Time, time off task; OT: Occupied Time  
IT+OT: time on task 

Time

Team Effectiveness

Controlling multiple robots substantially increases the 
complexity of the operator’s task because attention must 
constantly be shifted among robots in order to maintain 
situation awareness (SA) and exert control. In the simplest 
case an operator controls multiple independent robots 
interacting with each as needed. A search task in which each 
robot searches its own region would be of this category  

 
   Figure 1. Extended neglect tolerance model for cooperative robot control 

The neglect tolerance model describes an operator’s 
interaction with multiple robots as a sequence of control  
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episodes in which an operator interacts with a robot for period 
IT raising its performance above some upper threshold after 
which the robot is neglected for the period NT until its 
performance deteriorates below a lower threshold when the 
operator must again interact with it.  To accommodate 
dependent tasks we introduce OT to describe the time spent 
controlling other robots in order to synchronize their actions 
with those of the target robot. The episode depicted in Figure 
1 starts just after the first robot is serviced.  The ensuing FT 
preceding the interaction with a second dependent robot, the 
OT for robot-1 (that would contribute to IT for robot-2), and 
the FT following interaction with robot-2 but preceding the 
next interaction with robot-1 together constitute the neglect 
time for robot-1.  Coordination demand, CD, is then defined 
as: 

    (2) 

where lij  is the number of times an interaction occurs for 
robot j of type i and Ti is the total control time for robots of 
type i. 
 
One approach to investigating coordination demand is to 
design experiments that allow comparisons between 
“equivalent” conditions with and without coordination 
demands. Wang and Lewis [4], for example, compared search 
performance between a team of autonomously coordinating 
robots, manually (waypoint) controlled robots, and mixed 
initiative teams with autonomously coordinated robots that 
accepted operator inputs.  The impact of coordination 
demand was observable through the difference in 
performance between the manually controlled teams and the 
mixed initiative ones.  The fully automated teams provided a 
control ensuring that the benefits in the mixed initiative 
condition were not due solely to the superior performance of 
the automation.  While [4] examined coordination demand 
indirectly by comparing performance between conditions in 
which it was filled either manually or through automation, the 
present experiments attempt to manipulate and measure 
coordination demand directly.  In the first experiment robots 
perform a box pushing task in which CD is varied by control 
mode and robot heterogeneity.  The second experiment 
attempts to manipulate coordination demand by varying the 
proximity needed to perform a joint task in two conditions 
and by automating coordination within subteams in the third.  

   

NT
OT

NT
FT

CD ∑∑ =−= 1           (1)    

 
Where, CD for a robot is the ratio between the time required 
to control cooperating robots and the time still available after 
controlling the target robot, i.e.; the portion of a robot’s free 
time that must be devoted to controlling cooperating robots.  
Note that OTn associated with robotn is less than or equal to 
ITn because OTn covers only that portion of NTn needed for 
synchronization. A related measure, team task demand 
(TAD), adds IT’s to both numerator and denominator to 
provide a measure of the proportion of time devoted to the 
cooperative task; either performing the task or coordinating 
robots.   

Most MRS research has investigated homogeneous robot 
teams where additional robots provide redundant 
(independent) capabilities.  Differences in capabilities such as 
mobility or payload, however, may lead to more 
advantageous opportunities for cooperation among 
heterogeneous robots.  These differences among robots in 
roles and other characteristics affecting IT, NT, and OT 
introduce additional complexity to assessing CD.  Where 
tight cooperation is required as in the box-pushing 
experiment, task requirements dictate both the choice of 
robots and the interdependence of their actions.   In the more 
general case requirements for cooperation can be relaxed 
allowing the operator to choose the subteams of robots to be 
operated in a cooperative manner as well as the next robot to 
be operated.  This general case of heterogeneous robots 
cooperating as needed characterizes the types of field 
applications our research is intended to support.  To 
accommodate this more general case the Neglect Tolerance 
model must be further extended to measure coordination 
between different robot types.  This leads to a definition of 
CDi , coordination demand for robots of type i as: 

III. USARSIM AND MRCS 
Both experiments were conducted in the high fidelity 

USARSim robotic simulation environment we developed as a 
simulation of urban search and rescue (USAR) robots and 
environments intended as a research tool for the study of 
human-robot interaction (HRI) and multi-robot coordination. 
USARSim is freely available and can be downloaded from 
www.sourceforge.net/projects/usarsim.  USARSim uses Epic 
Games’ UnrealEngine2 to provide a high fidelity simulator at 
low cost. USARSim supports HRI by accurately rendering 
user interface elements (particularly camera video), 
accurately representing robot automation and behavior, and 
accurately representing the remote environment that links the 
operator’s awareness with the robot’s behaviors.  MrCS 
(Multi-robot Control System), a multirobot communications 
and control infrastructure with accompanying user interface 
developed for experiments in multirobot control and 
RoboCup competition [5] was used with appropriate 
modifications in both experiments. MrCS provides facilities 
for starting and controlling robots in the simulation, 
displaying camera and laser output, and supporting 
inter-robot communication through Machinetta [6] a 



 
 

 

distributed mutiagent system. The distributed control enables 
us to scale robot teams from small to large.  

IV. EXPERIMENT 1 

A. Experimental Design 
Finding a metric for cooperation demand (CD) is difficult 
because there is no widely accepted standard. In this 
experiment, we investigated CD by comparing performance 
across three conditions selected to differ substantially in their 
coordination demands. We selected box pushing, a typical 
cooperative task that requires the robots to coordinate, as our 
task.   We define CD as the ratio between occupied time (OT), 
the period over which the operator is actively controlling a 
robot to synchronize with others, and FT+OT, the time during 
which he is not actively controlling the robot to perform the 
primary task.  This measure varies between 0 for no demand 
to 1 for maximum demand.    When an operator teleoperates 
the robots one by one to push the box forward, he must 
continuously interact with one of the robots because 
neglecting both would immediately stop the box. Because the 
task allows no free time (FT) we expect CD to be 1. However, 
when the user is able to issue waypoints to both robots, the 
operator may have FT before she must coordinate these 
robots again because the robots can be instructed to move 
simultaneously.  In this case CD should be less than 1.  
Intermediate levels of CD should be found in comparing 
control of homogeneous robots with heterogeneous robots. 
Higher CD should be found in the heterogeneous group since 
the unbalanced pushes from the robots would require more 
frequent coordination. In the present experiment, we 
measured CDs under these three conditions. 

 
Figure 2.  Box pushing task 

 
Figure 2 shows our experiment setting simulated in 
USARSim [7]. The controlled robots were either two Pioneer 
P2AT robots or one Pioneer P2AT and one less capable three 
wheeled Pioneer P2DX robot.  Each robot was equipped with 
a GPS, a laser scanner, and a RFID reader. On the box, we 
mounted two RFID tags to enable the robots to sense the 
box’s position and orientation. When a robot pushes the box, 
both the box and robot’s orientation and speed will change. 
Furthermore, because of irregularities in initial conditions 

and accuracy of the physical simulation the robot and box are 
unlikely to move precisely as the operator expected.  In 
addition, delays in receiving sensor data and executing 
commands were modeled presenting participants with a 
problem very similar to coordinating physical robots. 

We introduced a simple matching task as a secondary task 
to allow us to estimate the FT available to the operator. 
Participants were asked to perform this secondary task as 
possible when they were not occupied controlling a robot.  
Every operator action and periodic timestamped samples the 
box’s moving speed were recorded for computing CD .  

A within subject design was used to control for individual 
differences in operators’ control skills and ability to use the 
interface.  To avoid having abnormal control behavior, such 
as a robot bypassing the box bias the CD comparison, we 
added safeguards to the control system to stop the robot when 
it tilted the box. 
The operator controlled the robots using a distributed 
multi-robot control system (MrCS) shown in Figure 3. On the 
left and right side are the teleoperation widgets that control 
the left and right robots separately. The bottom center is a 
map based control panel that allows the user to monitor the 
robots and issue waypoint commands on the map. On the 
bottom right corner is the secondary task window where the 
participants were asked to perform the matching task when 
possible. 

B. Participants and Procedure 
14 paid participants, 18-57 years old were recruited from the 
University of Pittsburgh community. None had prior 
experience with robot control although most were frequent 
computer users. 

 
Figure 3. GUI for multirobot control 

 
The experiment started with collection of the participant’s 

demographic data and computer experience. The participant 
then read standard instructions on how to control robots using 
the MrCS. In the following 8 minutes training session, the 
participant practiced each control operation and tried to push 



 
 

 

the box forward under the guidance of the experimenter. 
Participants then performed three testing sessions in 
counterbalanced order. In two of the sessions, the participants 
controlled two P2AT robots using teleoperation alone or a 
mixture of teleoperation and waypoint control. In the third 
session, the participants were asked to control heterogeneous 
robots (one P2AT and one P2DX) using a mixture of 
teleoperation and waypoint control. The participants were 
allowed eight minutes to push the box to the destination in 
each session. At the conclusion of the experiment participants 
completed a questionnaire about their experience. Heterogeneous

Robot1 CD
Homogenous
Average CD

Heterogeneous
TAD

Homogenous
TAD

0.4000

0.3000

0.2000

0.1000

0.0000

M
ea

n

Error bars: 95.00% CIC. Results  
Figure 5.  Team task demand (TAD) and Cooperation demand (CD)   

Figure 4 shows a time distribution of robot control commands 
recorded in the experiment. As we expected no free time was 
recorded for robots in the teleoperation condition and the 
longest free times were found in controlling homogeneous 
robots with waypoints. The box speed shown on Figure 4 is 
the moving speed along the hallway that reflects the 
interaction effectiveness (IE) of the control mode. The IE 
curves in this picture show the delay effect and the frequent 
bumping that occurred in controlling heterogeneous robots 
revealing the poorest cooperation performance.   

required in controlling the P2DX under heterogeneous 
condition is marginally higher than the CD required in 
controlling homogenous P2ATs, t(13)=-1.868, p=0.084 
(Figure 5). Surprisingly, no significant difference was found 
in CDs between controlling P2AT and P2DX under 
heterogeneous condition (p=0.79). This can be explained by 
the three observed robot control strategies: 1) the participant 
always issued new waypoints to both robots when adjusting 
the box’s movement, therefore similar CDs were found 
between the robots; 2) the participant tried to give short paths 
to the faster robot (P2DX) to balance the different speeds of 
the two robots, thus we found higher CD in P2AT; 3) the 
participant gave the same length paths to both robots and the 
slower robot needed more interactions because it trended to 
lag behind the faster robot, so lower CD for the P2AT was 
found for the participant. Among the 14 participants, 5 of 
them (36%) showed higher CD for the P2DX contrary to our 
expectations. 

None of the 14 participants were able to perform the 
secondary task while teleoperating the robots. Hence, we 
uniformly find TAD=1 and CD=1 for both robots under this 
condition. Within participants comparison found that under 
waypoint control the team attention demand in heterogeneous 
robots is significantly higher than the demand in controlling 
homogeneous robots, t(13)=2.213, p=0.045 (Figure 5). No 
significant differences were found between the homogeneous  

V. EXPERIMENT 2 
To test the usefulness of the CD measurement for a weakly 
cooperative MRS, we conducted an experiment assessing 
coordination demand using an Urban Search And Rescue 
(USAR) task requiring high human involvement [8] and of a 
complexity suitable to exercise heterogeneous robot control.  
In the experiment participants were asked to control explorer 
robots equipped with a laser range finder but no camera and 
inspector robots with only cameras.  Finding and marking a 
victim required using the inspector’s camera to find a victim 
to be marked on the map generated by the explorer.  The 
capability of the robots and the cooperation autonomy level 
were used to adjust the coordination demand of the task. 

 Figure 4 The time distribution curves for teleoperation (upper) and waypoint 
control (middle) for homogeneous robots, and waypoint control (bottom) for 

heterogeneous robots The experiment was conducted in simulation using 
USARSim and MrCS.  P2AT robots in terms of the individual cooperation 

demand (P=0.2). Since the robots are identical, we compared 
the average CD of the left and right robots A. Experimental design 1 with the CDs 
measured under heterogeneous condition. Two-tailed t-test 
shows that when a participant controlled a P2AT robot, lower 
CD was required in homogeneous condition than in the 
heterogeneous condition, t(13)=-2.365. p=0.034. The CD  

Three simulated Pioneer P2AT robots and 3 Zergs [5], a small 
experimental robot were used. Each P2AT was equipped with 
a front laser scanner with 180 degree FOV and resolution of 1 
degree. The Zerg was mounted with a pan-tilt camera with 45 
degree FOV. The robots were capable of localization and able 
to communicate with other robots and control station. The 
P2AT served as an explorer to build the map while the Zerg 

 
1 In the following, without specific claim, the CD of homogeneous robots 

means the average individual CD of the robot group.  



 
 

 

could be used as an inspector to find victims using its camera. 
To accomplish the task the participant must coordinate these 
two types robot to ensure that when an inspector robot finds a 
victim, it is within a region mapped by an explorer robot so 
the position can be marked. 
 
Three conditions were designed to vary the coordination 
demand on the operator. Under condition 1, the explorer had 
20 meters detection range allowing inspector robots 
considerable latitude in their search.  Under condition 2, 
scanner range was reduced to 5 meters requiring closer 
proximity to keep the inspector within mapped areas. Under 
condition 3, explorer and inspector robots were paired as 
subteams in which the explorer robot with a sensor range of 5 
meters followed its inspector robot to map areas being 
searched.   We hypothesized that CDs for explorer and 
inspector robots would be more even distributed under 
condition-2 (short range sensor) because explorers would 
need to move more frequently in response to inspectors’ 
searches than in condition-1 in which CD should be more 
asymmetric with explorers exerting greater demand on 
inspectors.  We also hypothesized that lower CD would lead 
to higher team performance. Three equivalent damaged 
buildings were constructed from the same elements using 
different layouts. Each environment was a maze like building 
with obstacles, such as chairs, desks, cabinets, and bricks 
with 10 evenly distributed victims.  A fourth environment 
was constructed for training. Figure 6 shows the simulated 
robots and environment.  
A within subjects design with counterbalanced presentation 
was used to compare the cooperative performance across the 
three conditions. The same control interface shown in Figure 
7 allowing participants to control robots through waypoints 
or teleoperation was used in all conditions. 

B. Participants 
19 paid participants, 19-33, years old were recruited from the 
University of Pittsburgh community. None had prior 
experience with robot control although most were frequent 
computer users. 6 of the participants (31.5%) reported 
playing computer games for more than one hour per week. 

C. Procedure 
After collecting demographic data the participant read 
standard instructions on how to control robots via MrCS. In 
the following 15~20 minute training session, the participant 
practiced each control operation and tried to find at least one 
victim in the training arena under the guidance of the 
experimenter. Participants then began three testing sessions 
in counterbalanced order with each session lasting 15 
minutes. At the conclusion of the experiment participants 
completed a questionnaire. 

VI. Results 
Overall performance was measured by the number of victims 
found, the explored areas, and the participants’ 
self-assessments. To examine cooperative behavior in finer 

detail, CDs were computed from logged data for each 
typerobot under the three conditions. We compared the 
measured CDs between condition 1 (20 meters sensing range) 
and condition 2 (5 meters sensing range), as well as condition 
2 and condition 3 (subteam). To further analyze the 
cooperation behaviors, we evaluated the total attention 
 

 
Figure 6 The robots and environment 

 
Figure 7 The GUI 

demand in robot control and control action pattern as well. 
Finally, we introduce control episodes showing how CDs can 
be used to identify and diagnose abnormal control behaviors. 

A. Overall performance 
Examination of data showed two participants failed to 
perform the task satisfactorily.  One commented during 
debriefing that she thought she was supposed to mark 
inspector robots rather than victims.  After removing these 
participants a paired t-test shows that in condition-1 (20 
meters range scanner) participants explored more regions, 
t(16) = 3.097, p = 0.007, as well as found more victims, t(16) 
= 3.364, p = 0.004, than under condition-2 (short range 



 
 

 

scanner).  In condition-3 (automated subteam) participants 
found marginally more victims, t(16) = 1.944, p = 0.07, than 
in condition-2 (controlled cooperation) but no difference was 
found for the extent of regions explored. 

As auxiliary parameters, we evaluated the total attention 
demand, i.e. the occupation rate of total interaction time in the 
whole control period, and the action pattern, the ratio of 
control times between inspector and explorer, as well. Paired 
t-test shows that under long sensing conditions, participants 
interacted with robots more times than under short sensing  

In the posttest survey, 12 of the 19 (63%) participants 
reported they were able to control the robots although they 
had problems in handling some interface components, 6 of 
the 19 (32%) participants thought they used the interface very 
well, and only one participant reported it being hard to handle 
all the components on the user interface but still maintained 
she was able to control the robots.  Most participants (74%) 
thought it was easier to coordinate inspectors with explorers 
with long range scanner. 12 of the 19 (63%) participants rated 
auto-cooperation between inspector and explorer (the 
subteam condition) as improving their performance, and 5 
(26%) participants though auto-cooperation made no 
difference. Only 2 (11%) participants judged team autonomy 
to make things worse. 

IT distribution
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Figure 1 Typical (IT,FT) distribution (higher line indicates the interactions of 
explorers). 
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B. Coordination effort 
During the experiment we logged all the control operations 
with timestamps. From the log file CDs were computed for 
each type robot according to equation 2 in section 2. Figure 1 
shows a typical (IT,FT) distribution under condition 1 (20 
meters sensing range)  in the experiment with a calculated CD 
for the explorer of 0.185, a CD for the inspector of 0.06. The 
low CDs reflect that in trying to control 6 robots the 
participant ignored some robots while attending to others. 
The CD for explorers is roughly twice the CD for inspectors. 
After the participant controlled an explorer, he needed to 
control an inspector multiple times or multiple inspectors 
since the explorer has a long detection range and large FOV. 
In contrast, after controlling an inspector, the participant 
needed less effort to coordinate explorers.  

 
Figure 2 CDs for each robot type 

which implies that more robot interactions occurred. The 
mean action patterns under long and short range scanner 
conditions are 2.31 and 1.9 respectively. This means that with 
20 and 5 meters scanning ranges, participants controlled 
inspectors 2.31 and 1.9 times respectively after an explorer 
interaction. Within participant comparisons shows that the 
ratio is significantly larger under long sensing condition than 
under short range scanner condition, t(18) = 2.193, p = 0.042. 

Figure 2 shows the mean of measured CDs. We predicted that 
when the explorer has a longer detection range, operators 
would need to control the inspectors more frequently to cover 
the mapped area. Therefore a longer detection range should 
lead to higher CD for explorers. This was confirmed by a two 
tailed t-test that found higher coordination demand, t(18) = 
2.476, p = 0.023, when participants controlled explorers with 
large (20 meters) sensing range.  

C. Analyzing Performance 
 
As an example of applying CDs to analyze coordination 
behavior,  Figure 10 shows the performance over explorer 
CD and total attention demand under the 20 meters sensing 
range condition. Three abnormal cases A, B, and C can be 
identified from the graph. Associating these cases with 
recorded map snapshots, we observed that in case A, one 
robot was entangled by a desk and stuck for a long time, for 
case B, two robots were controlled in the first 5 minutes and 
afterwards ignored, and in case C, the participant ignored two 
inspectors throughout the entire trial.  

We did not find a corresponding difference, t(18)=.149, 
p=0.884, between long and short detection range conditions 
for the CD for inspectors. This may have occurred because 
under these two conditions the inspectors have exactly the 
same capabilities and the difference in explorer detection 
range was not large enough to impact inspectors’ CD for 
explorers. Under the subteam condition, the automatic 
cooperation within a subteam decreased or eliminated the 
coordination requirement when a participant controlled an 
inspector. Within participant comparisons shows that the 
measured CD of inspectors under this condition is 
significantly lower than the CD under condition 2 
(independent control with 5 meters detection range), t(18) = 
6.957, p < 0.001. Because the explorer always tries to 
automatically follow an inspector, we do not report CD of 
explorers in this condition.   

VII. DISCUSSION 
We proposed an extended Neglect Tolerance model to allow 
us to evaluate coordination demand in applications where an 
operator must coordinate multiple robots to perform 
dependent tasks.  Results from the first experiment that 
required tight coordination conformed closely to our 



 
 

 

hypotheses with the teleoperation condition producing CD=1 
as predicted and heterogeneous teams exerting greater 
demand than homogenous ones.  The CD measure proved 
useful in identifying abnormal control behavior revealing 
inefficient control by one participant through irregular time 
distributions and close CDs for P2ATs under homogeneous  
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Figure 10. distribution of victims found over CDexp 
and TAD (total attention demand). 

and heterogeneous conditions (0.23 and 0.22), a mistake with 
extended recovery time (41 sec) in another, and a shift to a 
satisficing strategy between homogeneous and heterogeneous 
conditions revealed by a drop in CD (0.17 to 0.11) in a third.      
As most target applications such as construction or search and 
rescue require weaker cooperation among heterogeneous 
platforms the second experiment extended NT methodology 
to such conditions.  Results in this more complex domain 
were mixed.  Our findings of increased CD for long sensor 
range may seem counter intuitive because inspectors would 
be expected to exert greater CD on explorers with short 
sensor range.  Our data show, however, that this effect is not 
substantial and provide an argument for focused metrics of 
this sort which measure constituents of the human-robot 
system directly.  Moreover, this experiment also shows how 
CD can be used to guide us to identify and analyze aberrant 
control behaviors. 
 We anticipated a correlation between found victims and the 
measured CDs. However, we did not find the expected 
relationship in this experiment. From observation of 
participants during the experiment we believe that high level 
strategies, such as choosing areas to be searched and path 
planning, had a significant impact on the overall 
performance. The participants had few problems in learning 
to jointly control explorers and inspectors but needed time to 
figure out effective strategies for performing the task.  
Because CD measures control behaviors not strategies these 
effects were not captured.  These experiments have 
demonstrated the utility of measuring the process of 
human-robot interaction as well as outcomes to diagnosing 
operator performance and identifying aspects of the task, 
particularly for multiple robots, that might benefit from 

automation.  While our approach to measuring CD was 
supported in both experiments the second experiment 
suggests the need for more sophisticated measures that can 
take into account strategies and patterns of actions as well as 
their durations.  
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