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Summary. As a paradigm for coordinating cooperative agents in dynamic envi-
ronments, teamwork has been shown to be capable of leading to flexible and robust
behavior. However, when teamwork is applied to the problem of building teams with
hundreds of members, its previously existing, fundamental limitations become ap-
parent. In this paper, we address the limitations of existing models as they apply
to very large agent teams. We develop algorithms aimed at flexible and efficient
coordination, applying a decentralized social network topology for team organiza-
tion and the abstract coordination behaviors of Team Oriented Plans (TOPs). From
this basis, we present a model to organize a team into dynamically evolving sub-
teams, in order to flexibly coordinate the team. Additionally, we put forward a
novel approach to sharing information within large teams, which provides for tar-
geted, efficient information delivery with a localized reasoning process model built
on previously incoming information. We have developed domain- independent soft-
ware proxies, with which we demonstrate teams of an order of magnitude larger
than those previously discussed in known published work. We implement the results
of our approach, demonstrating its ability to handle the challenges of coordinating
large agent teams.

1 Introduction

When a group of agents coordinates via teamwork, they can flexibly and ro-
bustly achieve joint goals in a distributed, dynamic and potentially hostile
environment[7, 12]. Using basic teamwork ideas, many systems have been suc-
cessfully implemented, including teams supporting human collaboration[4, 26],
teams for disaster response[19], for manufacturing[12], for training[28] and for
games[14]. While such teams have been very successful, their sizes have been
severely limited. To address larger and more complex problems, we need teams
that are substantially larger, yet retain the desirable properties of teamwork.
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The key to the success of previous teamwork approaches is the explicit,
detailed model each agent has of the other agents and the joint activity of
the team. Team members use these models to reason about actions that will
aid the achievement of joint goals[11, 28]. However, when the size of a team
is scaled up, it becomes unfeasible to maintain up-to-date, detailed models of
all other teammates, or even of all team activities. Specifically, the commu-
nication required to keep the models up to date does not scale well with the
number of agents. Without these models, key elements of both the theory and
operationalization of teamwork break down. For example, without accurate
models of team activities, STEAM’s communication reasoning[28] cannot be
applied, nor can Joint Intention’s reasoning about committments[11].

In this paper, we present a model of teamwork that does not rely on the
accurate models of the team that previous approaches to teamwork use. By
not requiring accurate models, we limit the required communication and thus
make the approach applicable to very large teams. However, giving up the
accurate models means that the cohesion guarantees provided by approaches
such as Joint Intentions can no longer be provided. Instead, our algorithms
are designed to lead to cohesive, flexible and robust teamwork with high prob-
ability.

The basic idea is to organize the team into dynamically evolving, overlap-
ping subteams that work on sub-goals of the overall team goal. Members of a
subteam maintain accurate models of each other and the specific subgoal on
which they are working. To ensure cohesion and minimize inefficiency across
the whole team, we connect all agents of the whole team into a network.
By requiring agents to keep their neighbors in the network informed of the
subgoals of subteams they are members of, there is high probability that in-
efficiencies can be detected and subsequently addressed. Using this model we
have been able to develop teams that were effective, responsive and cohesive
despite having 200 members. We identify three ideas in the model as being
the keys to its success.

The first idea is to break the team into subteams, working on subgoals of
the overall team goal. The members of a subteam will change dynamically as
the overall team rearranges its resources to best meet the current challenges,
respond to failures or sieze opportunities. Within these subteams, the agents
will have accurate models of each other and the joint activity, in the same
way a team based on the STEAM model would. Thus, using techniques de-
veloped for small teams, the subteam can be flexible and robust. Moreover,
we identify two distinct groups within the subteams: the team members ac-
tually performing roles within the plan; and team members who are not, e.g.,
agents involved via role allocation. The fidelity of the model maintained by the
role performing agents is higher than that of the non-role performing agents,
which is in turn higher than other agents in the wider team. Because models
are limited to subteams, communication overhead is limited.

To avoid potential inefficiencies due to subteams working at cross pur-
poses, our second idea is to introduce an acquaintance network. This network
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connects all agents in the team and is independent of any relationships due
to subteams. Specifically, the network is a small world network [30](see fig-
ure 1), so that any two team members are separated by a small number of
neighbors. Agents share information about their current activities with their
direct neighbors in the network. Although the communication required to keep
neighbors in the acquaintance network informed is low, due to the small world
properties of the network, there is high probability for every possible pair of
plans. Some agents will know both, and thus, can identify inefficiencies due to
conflicts among the plans. For example, it may be detected that two subteams
are attempting to achieve the same goal or one subteam is using plans that
interfere with the plans of another subteam. Once detected by any agent the
subteams involved can be notified and the inefficiency rectified. Moreover, in
this paper we investigate the influences of other social network properties to
the efficiency of coordinating large scale teams.

When limiting models of joint activities to the members of a subteam,
the overall team loses the ability to leverage the sensing abilities of all its
members. Specifically, an agent may locally detect a piece of information un-
known to the rest of the team but does not know which members would find
the information relevant[8, 33|. For example, in a disaster response team, a
fire fighter may detect that a road is impassable but not know which other
fire fighters or paramedics intend to use that road. While communication in
teams is an extensively studied problem, [5, 13, 21, 32], current algorithms
for sharing information in teams either require infeasibly accurate models of
team activities, e.g., STEAM’s decision theoretic communication[28], or re-
quire that centralized information brokers are kept up to date[27, 3], leading
to potential communication bottlenecks. Our solution for information sharing
among large teams is to perform distributed information sharing without the
cost of maintaining accurate models of all the teammates. An agent can easily
know what information it needs, but it will not know who has the informa-
tion, while another agent has the information but does not know who needs it.
By allowing the agents to simply forward the information to an acquaintance
in a better position to make the decision, we spread the reasoning across the
team, leveraging the knowledge of many agents. We also leverage the idea that
information is always interrelated and a received piece of information can be
useful in deciding where to send another piece of information, if there is a re-
lationship between two pieces of information. For example, when coordinating
an agent group in urban search and rescue, if agent a tells agent b about a fire
at 50 Smith St, when agent b has the information about the traffic condition
of Smith St, sending that information to agent a is a reasonable thing to do,
since a likely either needs the information or knows who does. By utilizing
the interrelationship between pieces of information, agents can more quickly
route new information through the acquaintance network. Moreover, agents
do not model information, rather they model the acquaintances to which they
send information. It may take several hops for a message to get to an agent
that needs the information. Since each piece of information informs the de-
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livery of other pieces and models are updated as the message moves, as the
volume of information to be shared among the team increases, the amount
of effort required per piece of information actually decreases. Moreover, since
agents need to only know about their acquaintances, the approach scales as
the number of agents in the team increases.

To evaluate our method for building large teams, we have implemented the
above approach in software proxies[22] called Machinetta. A proxy encapsu-
lating coordination algorithm works closely with a “domain level” agent and
coordinates with other proxies. Although Machinetta proxies build on the suc-
cessful TEAMCORE proxies|[28] and have been used to build small teams[24],
they were not able to scale to large teams without the fundamentally new
algorithms and concepts described above. In this paper, we report results of
coordinating teams of 200 proxies that exhibit effective, cohesive team behav-
ior. Such teams are of an order of magnitude larger than previously discussed
in known published work proxy-based teams[24], hence they represent a sig-
nificant step forward in building large teams. To ensure that the approach is
not leveraging peculiarities of a specific domain for its improved performance,
we tested the approach in two distinct domains using identical proxies.

2 Toward Flexible Team Coordination

In this section, we provide a detailed model of the organization and coordi-
nation of the team. At a high level, the team behavior can be understood as
follows: A team is organized as a social network and team members detect
events in the environment that result in plans to achieve the team’s top-level
goal. The team finds subteams to work on those plans and within the sub-
teams the agents communicate to maintain accurate models to ensure cohesive
behavior. Across subteams, agents communicate the goals of the subteams so
that interactions between subteams can be detected and conflicts resolved.
Finally, agents share locally sensed information on the associates’ network
to allow the whole team to leverage the local sensing abilities of each team
member.

2.1 Building Large Scale Teams

A typical large scale team meets the following basic characteristics: there are
large number of widely distributed team members with limited communica-
tion bandwidth. As a part of a large team, agents coordinate closely only with
a subset of the total agents of the team. Based on these characteristics, we
can define a logical model of the team organized as an acquaintance network.
The acquaintance network is a directed graph G = (A, N), where A is the
team of agents and N is the set of links between any two agents. Specifically,

3 A small amount of code was changed to interface to different domain agents.
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for < a;,a; >€ N for any two agents a;,a; € A denotes that «; and o
are acquaintances able to exchange tokens. Specifically, n(«) is defined as all
the acquaintances of agent . Note that the number of each agent’s acquain-
tances is much less than the size of the agent team | A|. We additionally require
that the acquaintance network be a small world network. Such networks exist
among people and are popularized by the notion of ”six degrees of separation”
[18]. When agents are arranged in a network, having a small number of neigh-
bours relative to the number of members in the team, the number of agents
through which a message must pass to get from any agent to any other, going
only from neighbour to neighbour, is typically very small. A subset of a typi-
cal acquaintance network for a large team is shown as figure 1. In the figure,
each node represents an agent member in the team. When pairs of agents are
connected, they can directly communicate with each other as acquaintances.

Fig. 1. Relationship between subteams and the acquaintance network

2.2 Team Oriented Plans

Team Oriented Plans (TOPs) are the abstraction that define team behavior.
The TOPs provide the mapping from team level goals to individual roles that
are performed by individual team members. Suppose the team A has a top
level goal, G. The team commits, with the semantics of STEAM to G [28].
Achieving G requires achieving sub-goals, g;, that are not known in advance
but are functions of the environment. For example, sub-goals of a high-level
goal to respond to a disaster could be to extinguish a fire and provide medical
attention to particular injured civilians. To achieve sub-goals, the team follows
plan templates represented in a library. These templates are parameterized
while instantiated plans contain the specific details [23]. For example, when
a particular fire in a building is detected by a team member, the plan will be
instantiated because it matches a template for disaster response.
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Each sub-goal is addressed with a plan, plan; =< g;, recipe;, roles;, d;, m; >,
that matches a plan template in the library. The overall team thus has plans
Plans(t) = {plani,...,plan,}. Individual team members will not necessar-
ily know all plans. To maximize the responsiveness of the team to changes
in the environment, we allow any team member to commit the team to the
execution of a plan, when it detects that subgoal g; is relevant. Team mem-
bers can determine which sub-goals are relevant by the plan templates spec-
ified in the library. Recipe; is a description of the way the sub-goal will be
achieved[11] including the execution order of the components in the plan.
Roles; = {ry,rq,rs,...r.} are the individual activities that must be performed
to execute recipe;. d; is the domain specific information pertinent to the plan.
For convenience, we write per form(r,a) to signify that agent, a, is working
on role, r. Subteam; includes any agents working on plan; and their neigh-
bors in the acquaintance network. The identities of those agents involved in
role allocation is captured with allocate(plan;). In the cases where either a
conflict or synergy is detected, all but one of the plans must be terminated.
The domain specific knowledge of a termination of a plan can be defined as
termpecipe;.

We can think about TOPs as active objects in a distributed database. Each
TOP “object” captures the state of a particular team plan. Team members
involved in the execution of that plan need to have up-to-date versions of the
TOP “object”, e.g., knowing which team members are performing which roles
and when TOPs are complete. Information needs to be shared to ensure there
is synchronization across the same object held by different team members.
Viewed in this manner, coordination can be thought of as a set of algorithms
to fill in fields on the TOP objects and ensure synchronized objects across the
team. For example, some coordination algorithms are triggered when there
are open roles in the TOP objects and other algorithms are triggered when
the post-conditions on the plan are satisfied.

2.3 Subteams

Although individual agents commit the team to a sub-goal, it is a subteam that
will realize the sub-goal. The subteams formation process commences when
an individual agent detects all the appropriate preconditions that matches a
plan template in the library and subsequently instantiates a plan, plan;. For
each of the roles; in plan;, a role token is created to be allocated to the team.
We are using LA-DCOP for role allocation[6], which results in a dynamically
changing subset of the overall team involved in role allocation. This works as
follows: the token is passed from one team member to the next until an agent
finally accepts the role. Once accepted, the agent becomes a member of the
subteam and makes a temporary commitment to perform the role represented
by the token. Note that agents can accept multiple tokens and therefor can
perform more than one role and thus, belong to multiple subteams. Since
allocation of team members to roles may change due to failures or changing
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circumstances, the members of a subteam also change. One example of this is
when a member decides to drop a role for a more suitable task. This will lead
to the best use of team resources because team members will execute roles
that they are most capable of doing.

All subteam members, agents performing roles and their informed acquain-
tances, must be kept informed of the state of the plan, e.g., they must be
informed if the plan becomes irrelevant. This maximizes cohesion and min-
imizes wasted effort. Typically |subteam;| < 20, although it may vary with
plan complexity and notice that typically, subteam; N subteam; # () where
1 # j. In the experiments that follow, a simple plan contains 1-2 roles and
1-2 preconditions compared to a complex plans that have 4-5 roles and 9-
10 preconditions. This occurs because agents can accept more than one role
and usually belong to more than one subteam due the acquaintance network.
These subteams are the basis for our coordination framework and leads to
scalability in teams.

2.4 Plan Deconfliction

In this section, we describe how to resolve plan conflicts. When using dis-
tributed plan creation, two problems may occur. Upon detecting the appro-
priate preconditions, different team members may create identical plans or
plans with the same p, but different precipe. To reduce the need for plan
deconfliction, we need to choose a rule for plan instantiation to reduce the
number of plans created with the same p,. These instantiation rules include
always instantiate, probabilistic and local information. The choice of the plan
instantiation rule will vary with the domain setting.

If two plans, plan; and plan; have some conflict or potential synergy, then
we require subteam; N subteam; # () to detect it. There must be a common
team member on both subteams to maintain mutuals beliefs of the plans and
hence detect the conflict. A simple probability calculation reveals that the
probability of a non-empty intersection between subteams, i.e., the probability
of an overlap between the teams, is:

(n—k)cm

P lap) =1 —
r(overlap) o

where ,C} denotes a combination, n = number of agents, k = size of subteam;
and m = size of subteam;.

Hence, the size of the subteams is critical to the probability of overlap. For
example, if [subteam;| = |subteam;| = 20 and |A| = 200, then P(overlap) =
0.88, despite each subteam involving only 10% of the overall team. Since the
constituents of a subteam change over time, this is actually a lower bound on
the probability that a conflict is detected.

After a conflict is detected, the plan needs to be terminated; the same
follows with completion of goals or recipes and irrelevant or unachievable
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plans. We capture the domain specific knowledge that defines these conditions
with "™ p,ccipe. In exactly the same way as STEAM, when any a € subteam;
detects any conditions in t”mprem-pe, it is obliged to ensure that all other
members of subteam,; also know that the plan should be terminated. In this
way, the team can ensure that plan; C plans(t), i.e., no agent believes the
team is performing any plan that it is not performing.

2.5 Plan Instantiation Rules

In distributed plan instantiation, an agent can create a plan when all pre-
conditions have been fulfilled and the plan matches a template in a library.
However, since this may increase the total number of plans created, agents
can only create a plan using one of three rules for instantiating plans. These
rules differ in terms of the information needed to compute whether the instan-
tiation conditions apply. The first rule, the always instantiate rule, is used as
a baseline for the other instantiation rules. An agent is allowed to create a
plan when it knows of all the preconditions necessary for the plan.

The second rule, the probabilistic instantiation rule, requires no knowl-
edge of other team members. This method requires that team members wait
a random amount of time before creating the plan. If during that time, it
has not been informed by an informed acquaintance that another teammate
is creating the same plan, it will proceed and create the plan. Thus plans will
only be created during the time it takes for all team members to hear of the
plan. The advantage of this rule is that no information is required of other
team members. There are two disadvantages. First, there may be conflicting
plans which must be later resolved. Second, there may be a significant de-
lay between detection of the preconditions and the instantiation of the plan.
These disadvantages can be traded off in the following manner. By increasing
the length of time a team member can wait, the number of conflicts will be
reduced, but the delay will be increased.

We can use information about who locally senses information to define
another rule. This rule, which we refer to as the local information rule, requires
that a team member detect some of the plan’s preconditions locally in order to
instantiate the plan. Although this will lead to conflicting plans when multiple
agents locally sense preconditions, it is easier to determine where the conflicts
might occur and resolve them quickly. The major disadvantage of this rule is
that when a plan has many preconditions, the team members that may detect
specific preconditions may never get to know all the preconditions and thus
the plan will never be created.

3 Toward Efficient Communication in Large Scale Teams

Information is important in coordinating large scale multi-agent teams be-
cause each team member has to adjust its activity according to the changes
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in its team, teammates, and the environments. Communication is difficult
because the members only have a partial views of the environment and a
team member may have a piece of valuable information but not know who
needs the information [31]. In this section, we explain our objective of efficient
communication in terms of providing high quality information with targeted
information delivery.

3.1 Information fusion

Each of the agents, when working in physical working plate, can be deemed
as mobile sensors and the team can be deemed as a sensor network. We first
look at the problem of information fusion in large scale teams, which not
only observe physical phenomena, but also conduct high-level information
processing tasks, e.g., attacking a target in a battlefield. In large teams, the
sensor data generated by a single agent usually has low confidence. The low
confidence sensor data cannot be used directly for coordinating plans and
actions and needs to be fused with other relevant data in the team [25]. Many
power-aware protocols and algorithms have been developed for static sensor
networks, but very limited research has been done for the design of routing
algorithms for information fusion [1, 35]. For example, in directed diffusion
and geographic routing [9, 15], each source agent does not send the data back
to the sink until it receives a query from the sink. For this reason, these routing
protocols are called reactive protocols.

Reactive protocols are mainly designed for static sensor networks and
are not appropriate for large scale teams, which are mobile sensor networks.
Specifically, there are two key reasons. 1. The location of the data is not corre-
lated with existing positions of mobile sensors., i.e., agent b previously knew
agent a has the data in one location, but when his query comes, agent a has
moved to another location. 2. Sinks agents usually do not know when source
agents will have the data, so they have always sent out volume of query.

In this section we present a proactive protocol for information fusion in large
scale team based on our acquaintance network model. In proactive protocols,
there is no querying process and each source agent, when sensing a piece of
data, can proactively deliver the data to other nodes in the network. Without
the querying process, the source agent has to reason about who might have
other relevant data and can fuse its sensor data. In order to minimize the
traffic and redundant data in the network, each node forwards the sensor
data to only one of its neighbors. Without centralized control, the agent has
to intelligently deliver data for fusion solely based on itself and its neighbors.
The challenge, with various decisions being made by the individual agents,
is how to maximize the probability that relevant data will be fused in the
network, e.g., fused by at least one node in the network.

Random walks are a simple algorithm for information fusion. In random
walks, when an agent receivessensor data it randomly choses a neighbor to
send to. Once the neighbor receives the data, it repeats the same process
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until the events are successfully fused or the data reaches the stop condition.
However, random walks are not efficient for information delivery when more
than two agents detect the same event on the ground and there is a need
to fuse them together. We propose an efficient and failure-resistant localized
algorithm — path reinforcement algorithm [34], in which each node learns
routing decisions from past information delivery processes. The logic behind
the algorithm is that relevant information is likely to be fused earlier if agents
follow a path they have followed earlier. In the algorithm, a agent a may pass
the event to neighbor b if a has passed b relevant events before.

The experiments show that controlled information flows significantly in-
crease the probability of relevant information being fused in the network, such
that the probability could be improved by 2 - 5 times for the same hops of
information propagation in comparison with random walks [34]. Our exper-
iments indicate that the probability of fusion is surprisingly high even with
limited local knowledge of each node and relatively small hops.

3.2 Information Sharing

In the previous section, we showed how requiring mutual beliefs only within
subteams acting on specific goals can dramatically reduce the communication
required in a large team. However, individual team members will sometimes
get domain level information, via local sensors, that is relevant to members
of another subteam. Due to the fact that team members do not know what
each other subteam is doing, they will sometimes have locally sensed infor-
mation, while not knowing who requires it. In this section, we present an
approach to sharing such information, leveraging the small world properties
of the acquaintance network. The basic idea is to forward information to the
acquaintance in the acquaintance network who is most likely to either need
the information or have a neighbor who does.

The key to the algorithm is the model that the agent maintains of its
acquaintances. P, is a matrix where P,[¢,b] — [0,1],b € N(a),i € I represents
the probability that acquaintance b is the best to send information ¢ to. To
obey the rules of probability, we require Vi € 1,3 ,cn(q P!li,b] = 1. For
example, if P,[i,b] = 0.7, then a will usually forward 7 to agent b as b is very
likely the best of its neighbors to send to. This situation is illustrated in Figure
4. The more accurate the model of P,, the more efficient the information
sharing because the agent will send information to agents that need it more
often and more quickly. P, is inferred from incoming messages and thus the
key to our algorithm is for the agents to build the best possible model of P,.

Information is encapsulated in messages, with some supporting informa-
tion which is helpful for information sharing. Specifically, a message consists
of two parts, M =< i,path >. i € I is the information being communicated.
path records the track over which the message has been taken in the network.
last(path) denotes the last agent to which the message was sent previous to
current agent recipient, via acquaintance network. To ensure that messages
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do not travel indefinitely around the network, we stop the message when
|path| >MAX_STEPS.

When a message arrives, the agent state, S,, is updated by the transition
function, d, which has three parts, 0y, 0k, 0p . First, the message is appended
to the history, 6 (m, H,) = H,Um. Secondly, the information contained in the
message is added to the agent’s local information knowledge K, dg(m, K,) =
K, Um.i.* Finally, and most critically for the purpose of the algorithm, §p is
used to update agent’s probability matrix, to help route future message. (We
described 0p in the next section.)

Each agent in the team runs the following algorithm when receiving mes-
sage m:

Algorithm 1: Information Share (S,)

(1) While(true)

(2) m «— getMsg

(3) Sq —d(m, S,)

(4) if m.|path| < MAX_STEPS

(5) APPEND(self, m.path)

(6) next «— CHOOSE(PIi,m.j])

(7) SEN D(next,m)

In Algorithm 1, when an agent gets a message, it updates its state ac-
cording to function . If an agent finds that the message does not meet the
stop condition (line 4), then the function CHOOSE (line 6) selects an acquain-
tance, according to the probabilities in matrix to pass the message to. Notice,
CHOOSE can select any acquaintance, with the likelihood of choosing a partic-
ular acquaintance being proportional to their probability of being the best to
send to.

The key to our algorithm is for the agent to often pass information to
an acquaintance who either needs it or knows who does. These models are
created based on previously received information. This requires us making
use of the relationship between pieces of information and then mapping it
into a mathematic description, i.e. via Bayes Rule. We define the relationships
between pieces of information as rel(i,j) — [0,1],4,j € I, where rel(i,j) >
0.5 indicates that an agent interested in ¢ will also be interested in j, while
rel(i, j) < 0.5 indicates that an agent interested in 4 is unlikely to be interested
in j. If rel(i, ) = 0.5 then nothing can be inferred. Since rel relates two pieces
of domain level information, we assume that it is given (or can be easily
inferred from the domain).

Our information sharing algorithm defined an action of §p for each piece of
relative information ¢ when a received message containing j can be described
as follows: assuming information j arrives to agent a from b, then agent a will
first decrease the probability of sending this information back to b because
clearly b already knows that information. Then H, should be searched for to

4 In this paper, we ignore difficult issues related to contradictory information.
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find any relevant former information. For each piece of relevant information
1, 7 should be additional evidence for a to make a decision about sending ¢,
and the probability of sending 7 to b should be strengthened.

The update of agent a’s P,based on an incoming message m containing j
which is received from ¢ can be achieved by leveraging Bayes Rule as follows:

Vi,j € I,b € N(a) 65(P,[i,b],m =< j,path >,d =
first(N(a), m.path))

P,i,b] x rel(i, j) x ﬁ ifi#j,b=d
= q Pali,b] X 1 ifi#j,b#d

€ if i = 4,b € m.path N N(a)

Then P must be normalized to ensure Vi € 1,3, n(q) Ptli,b] = 1. The
first case in our equation is the most interesting. It updates the probability
that the agent that just sent some information is the best to send other in-
formation to, based on the relationships of other pieces of information to the
one just sent. Please note, to avoid potential path detours, the message path
is determined not according to who directly sent the message, but rather ac-
cording to the fact that it was a’s acquaintance who first got the message.
The latter condition changes the probability of sending that information to
agents other than the sender in a way that ensures the normalization works.
Finally, the third case encodes the idea that you typically would not want to
send a piece of information to an agent that sent it to you.

To see how 0p works, consider the following example at some point doing
execution:

b ¢ d e
1 10.60.10.20.1
P,=7104020.30.1
k 104040.10.1

The first row of the matrix shows that if a gets information 4 it will likely
send it to agent b, since P[i,b] = 0.6. We assume that agents wanting in-
formation ¢ also probably want information j but those wanting k definitely
do not want j. That is, rel(i,j) = 0.6 and rel(k,j) = 0.2. Then a message
m =< j,{,,d,,b} > with information j arrives from agent b. Applying d% to
P, we get the following result:

b c d e
i [0.5769 0.096 0.2308 0.096
P,=3j € 0.67 € 033
k | 0.4255 0.4255 0.0426 0.1064

The effects on P can be inferred as follows: (i) j will likely not be sent back
to d and b who previously have gotten j, i.e., P,[i,b] = &; (ii) the probability
of sending 7 to d is increased because agents wanting j probably also want
i; (iii) the probability of sending k to d is decreased, since agents wanting
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j probably do not want k. Notice a knows nothing of the network topology
beyond its acquaintances n(a).

3.3 Effects of Network Topology on Sharing Efficiency

As noted by social scientists, information sharing efficiency will be impacted
by network topology. We have found that in order to share information among
large-scale teams, agents adopt the same manners as exhibited by humans
operating in social groups.

The properties of social network structures have been comprehensively
studied [2, 17]. According to such research, there are several parameters that
are important for helping us to understand or predict the behavior of informa-
tion sharing in large-scale teams. Key factors include the small-world effect,
degree distributions, clustering, network correlations, random graph models,
models of network growth and preferential attachment, and dynamical pro-
cesses taking place on networks [11]. Most of them are interrelated. For the
purpose of this paper, we specifically focus on only three properties: average
distance, degree distribution and average acquaintance.

o Average distance: (commonly studied as “small world effect” [30]. The av-

erage distance [ = m > distance(a;,aj), where n = |A] and
2 aj,a;€EAI>]

distance(a;, a;) represents the minimum number of agents a,, a; that a

message must pass through one agent to another via acquaintance net-

work. For example, if agent a;and ay are not acquaintances but share an

acquaintance, distance(ay,as) = 1.

o Degree distribution: (Commonly studied as “scale free effect”) The fre-
quency of agents having different number of acquaintances. The distribu-
tion can be represented as a histogram where the bins represent a given
number of acquaintances and the size of a bin is how many agents have
such number of acquaintances [2].

e Average acquaintances: is the average number of acquaintances that agents
have in the teams. Its value can be used to infer how many choices agents
may have when delivering a message.

Well-known types of social networks can be described using these properties.
For example, a random network has the “flat” degree distribution. While grid
network is distinct in that all nodes have the same degree (e.g, four is the only
degree in a two dimension grid network). Small World Network and Scale Free
Network [2] are two important types of social network topologies and research
has shown that each of them possesses some interesting properties. Small world
networks have much shorter average distances as compared with regular grid
networks. We hypothesize that the low average distance will improve informa-
tion sharing efficiency because information can potentially take less "hops” to
reach a defined destination. A scale-free network is a specific kind of network
in which the degree distribution forms a power-law, i.e, some nodes are very
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connected hubs and connect to other nodes much more than ordinary nodes.
The hubs in scale-free networks give the advantages of centralized networks,
in which the distribution provides the advantages of centralized approaches.

4 Machinetta

A number of algorithms work together to achieve the teamwork, given the
framework described above. There are algorithms for allocation roles[6], in-
stantiating plans[16], sharing information[31], human interaction[20] and re-
source allocation. To avoid requiring a reimplementation of the algorithms
for each new domain, the coordination algorithms are encapsulated in a
prozy[10, 29, 21, 24]. Proxies are becoming a standard mechanism for building
heterogeneous teams. Each team member works closely with a single proxy
that coordinates with the other proxies to implement the teamwork. The basic
architecture is shown in Figure 2. The proxy communicates via a high-level,
domain-specific protocol with the robot, agent or person it is representing in
the team. Most of the proxy code is domain-independent and can be readily
used in a variety of domains requiring distributed control. Our current proxy
code, known as Machinetta, is a substantially extended and updated version of
the TEAMCORE proxy code[29]. Machinetta proxies are in the public domain
and can be downloaded from http://teamcore.usc.edu/doc/Machinetta.

Communication
I

= |
B

Control Control Control
Code Code Code

T 21 B

Fig. 2. The basic system architecture showing proxies, control code and Unmanned
Aerial Vehicles (UAVs) being controlled.

In a dynamic, distributed system, protocols for performing coordination
need to be extremely robust. When we scale the size of a team to hundreds
of agents, this becomes more of an issue than simply writing bug-free code.
Instead we need abstractions and designs that promote robustness. Towards
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this end, we are encapsulating “chunks” of coordination in coordination agents.
Each coordination agent manages one specific piece of the overall coordina-
tion. When control over that piece of coordination moves from one proxy to
another proxy, the coordination agent moves from proxy to proxy, taking with
it any relevant state information. We have coordination agents for each plan
or subplan (PlanAgents), each role (RoleAgents) and each piece of informa-
tion that needs to be shared (InformationAgents). For example, a RoleAgent
looks after everything to do with a specific role. This encapsulation makes it
far easier to build robust coordination.

Role Info.
Agent Agent

Info. Plan
Agent Agent
Role Role
Agent | Proxy [Role Agent | Proxy | Plan info. | Proxy | Agent
Agent Agent Agent

K CK K CK

! f

ENV. ENV. ENV.

CK

Fig. 3. High level view of the implementation, with coordination agents moving
around a network of proxies.

Coordination agents manage the coordination in the network of proxies.
Thus, the proxy can be viewed simply as a mobile agent platform that facil-
itates the functioning of the coordination agents. However, the proxies play
the additional important role of providing and storing local information. We
divide the information stored by the proxies into two categories, domain spe-
cific knowledge, K, and the coordination knowledge of the proxy, CK. K is
the information this proxy knows about the state of the environment. For ex-
ample, the proxy for a UAV knows its own location and fuel level as well as the
the location of some targets. This information comes both from local sensors,
reported via the domain agent, and from coordination agents (specifically In-
formationAgents, see below) that arrive at the proxy. CK is what the proxy
knows about the state of the team and the coordination the team is involved
in. For example, CK includes the known team plans, some knowledge about
which team member is performing which role, and the TOP templates. At the
most abstract level, the activities of the coordination agents involve moving
around the proxy network, adding and changing information in C and CK
for each agent. The content of K as it pertains to the local proxy, e.g., roles
for the local proxy, govern the behavior of that team member. The details of
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how a role is executed by the control agent, i.e., the UAV, are domain- (and
even team member-) dependent.

5 Experimental Results

In this section, we present empirical evidence of the above approach with a
combination of high and low fidelity experiments.

Average

Fires Extinguished vs. Threshold
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140 &0
2y
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100 OFar E’ 40
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=
40 +— 10
20 4 0
0 — 280 200 100 50 30

Fires Extingushed Conflicts Msg/sgent Maximum Distance to Travel

(a) (b)
Fig. 4. Coordinating 200 agents in (a) disaster response simulation (average on
y-axis, fires, extinguished, conflicts and messages per agent on x-axis); and (b) the
number of fires extinguished by 200 fire trucks versus threshold.
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Fig. 5. Simulated coordinating 200 UAVs in a battlespace (a) time vs the number
of targets hit and (b) the number of targets hit versus threshold.

5.1 Machinetta

In Figures 4 and 5, we show the results of an experiment using 200 Ma-
chinetta proxies running the coordination algorithms described in Section 3.
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These experiments represent high fidelity tests of the coordination algorithms
and illustrate the overall effectiveness of the approach. In the first experi-
ment, the proxies control fire trucks responding to an urban disaster. The
trucks must travel around an environment, locate fires (which spread if they
are not extinguished) and extinguish them. The top level goal of the team, G,
was to put out all the fires. A single plan requires that an individual fire be
put out. In this experiment, the plan included only one function, which was
to put out the fire. We varied the sensing range of the fire trucks (”‘Far”’ and
”¢Close”’) and measured some key parameters. The most critical thing to note
is that the approach was successful in coordinating a very large team. The
first column compares the number of fires started. The ”‘Close”’ sensing team
required more searching to find fires, and as a result, unsurprisingly, the fires
spread more. However, they were able extinguish them slightly faster than
the ”‘Far”’ sensing team, partly because the ”‘Far”’ sensing team wasted re-
sources in situations where there were two plans for the same fire (see Column
3, 7*Conflicts”’). Although these conflicts were resolved it took a nontrivial
amount of time and slightly lowered the team’s ability to fight fires. Resolving
conflicts also increased the number of messages required (see Column 4), al-
though most of the differences in the number of messages can be attributed to
more fire fighters sensing fires and spreading that information. The experiment
showed that the overall number of messages required to effectively coordinate
the team was extremely low, partially due to the fact that no low- level co-
ordination between agents was required (given the one fire truck per plan).
Moreover, we varied the thresholds corresponds to the maximum distances
the truck will travel to a fire and 4(b) shows increasing thresholds initially
improves the number of fires extinguished, but too high a threshold results in
a lack of trucks accepting tasks and a decrease in performance.

In the second domain, figure 5(a) shows high level results from a second
domain using exactly the same proxy code. The graph shows the rate at
which 200 simulated UAVs, coordinated with Machinetta proxies, searched
a battle space and destroyed targets. Moreover, figure 5(b) shows while we
have effectively allocated tasks across a large team, thresholds (correspond
to the maximum distances UAVs can hit a target) are of no benefit. Taken
together, the experiments in the two domains show not only that our approach
is effective at coordinating very large teams, but it also suggests that it is
reasonably general.

5.2 Information Sharing

We test our information sharing algorithm by using a team with 400 agents
and each of them has, on average, four acquaintances. One agent is randomly
chosen as the source of some information and another is randomly picked as
the sink for that information. The sink agent first sends out 20 messages con-
taining relative information j, each with MAX_STEPS=50. Then the source
agent sends out a message with information ¢ with rel(s, j) varied. We measure
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how many steps or messages that it takes ¢ to be encapsulated into message
and sent to get to the sink agent. In our experiments, four different types of
acquaintance network topologies are involved: two dimension grid networks,
random networks, small world networks, and scale free networks. The small
world network is based on the grid network with 8% links randomly changed.
The key difference between the random network and the scale free network is
that the random has a “flat” degree distribution but the scale free network has
a power law distribution. Each point on each graph is based on the average
of 1000 runs in a simple simulation environment.

Information sharing with different information relevance
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Messages

Fig. 6. The number of messages dramatically reduces as the association between
information received and information to be sent increases.

We first verify our basic algorithm in different types of acquaintance net-
work topologies. In Figure 6, we show the average number of steps taken to
deliver i as we varied the strength of the relationship between the information
originally sent out by the sink agent and the information 4 sent by the source
agent from 0.5 to 1. As expected, our algorithm works on the four different ac-
quaintance networks; further, the stronger the relationship between originally
sent information and the new information the more efficient is the information
delivery.

Information sharing with different number of previous messages

Next, we look in detail at exactly how many messages must be sent by the
source to make the delivery from the sink efficient. We use the same settings
as above except the number of messages the sink sends out is varied and the
relationship between these messages and i, rel (i, j) is forced at 0.9. Notice
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Fig. 7. The number of messages reduces as the related previous messages increased.

that only a few messages are required to dramatically impact the number of
messages required. This result also shows us that a few messages is enough
for agents to make a ”precise guess” about where to send messages.

The influence of average acquaintances
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Fig. 8. The number of messages increases sligthly if each agent has more average
acquaintances in acquaintance networks.

In next experiment, we looked in detail at exactly how the number of
acquaintances can help to make the information sharing efficient. We run
experiments with rel(i,j) = 0.8 and in acquaintance networks in which each
agent has an average of from 2 to 8 acquaintances. The result in Figure 8
shows that the greater the number of acquaintances, the more messages that
are necessary to deliver ¢. This means that information sharing cannot be
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enhanced by connecting agents with more acquaintances. Moreover, in our
experiment, we don’t consider the limitation of communication breadth for
agent members.

Algorithm efficiency among different size teams
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Fig. 9. Information sharing algorithm works even slightly better on large scale
teams according to the measure of percentage.

To investigate the influence of team scale on information sharing per-
formance, as shown in Figure 9, we ran experiments using different sizes of
agent teams, from 100 to 550 with rel(i,j)=0.7. The information sharing effi-
ciency is measured as the percentage of agents involved for information sharing
use percentage = age;iiﬂw#oi?gg tof:iz”y. The experiment result shows that
with different team sizes, the efficiency of information sharing is almost the
same. This indicates that the team size is not a factor for information sharing

efficiency.

5.3 Plan Deconfliction

We use TeamSim, a simple simulator, to analyze the effect our acquaintance
model with dynamically changing subteams. TeamSim, which runs the coor-
dination algorithm without simulating time intensive communication, quickly
evaluates different combinations of parameter settings on the order of thou-
sands. These parameters settings, which correspond to various domains, in-
clude free parameters based on our model and domain parameters. Free pa-
rameters are specific to our algorithm and include the acquaintance network
density, and plan instantiation rule. A few of the domain parameters included
team size, total preconditions, and roles per plan (see Figure 10). Our algo-
rithm is based on the fact that the acquaintances network will detect conflicts
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Parameter Minimum Maximum Parameter Type
Number of Team Members 10 999 Domain Dependent
Number of Plan Templates 1 20 Domain Dependent
Roles Per Team Member 1 1 Domain Dependent
Total Preconditions 20 219 Domain Dependent
Preconditions Per Plan 1 10 Domain Dependent
Roles Per Plan 1 5 Domain Dependent
Number of Capability Types 2 21 Domain Dependent
Percent Capable 0.1 1.1 Domain Dependent
Instantiate Rate 0 1 Input (Free Parameter)
New Precondition Rate 0.0020 0.5020 Domain Dependent
Precondition Detection Rate 0.0020 0.2020 Domain Dependent
Associate Network Density 2 16 Input (Free Parameter)
Information Token 1 10 Input (Free Parameter)
Instantiation Rule* 1 3 Input (Free Parameter)
Percentage Possible 0 100 Output
Reward 0.00 85.35 Output
Messages per agent 0.10 1977.38 Output

*Instantiation Type( 1-Always 2-Local 3-Probabalistic)

Fig. 10. Parameter Table

with a high probability. As team size is scaled, we can assume that the num-
ber of duplicate plan will also increase. This is shown in Figure 11 where the
average number of plans increases with respect to team size using the proba-
bilistic instantiation rule. In the graph, both the actual and expected conflicts
are shown. Figure 12 shows a non-linear relationship between an input param-
eter, team size and an output parameter, and messages per agent.

Number of Conflicts
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Fig. 11. The average number of plan conflicts increases with respect to team size
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Fig. 12. Messages per Agent as Team Size is increased

6 Summary

In this paper, we have presented an approach to building large teams that
has allowed us to build teams of an order of magnitude larger than those
discussed in previously published work. To achieve these unprecedented scales,
fundamentally new ideas were developed and new, more scalable algorithms
were implemented. Specifically, we presented an approach to organizing the
team based on an acquaintance network with dynamically evolving subteams.
Potentially inefficient interactions between subteams were detected by sharing
information across a network independent of any subteam relationships. We
leveraged the social network properties of these networks to very efficiently
share domain knowledge across the team. While much work remains to be done
to fully understand and be able to build large teams, this work represents a
significant step forward.
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