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Summary. In fields as diverse as sociology and physics researchers have been in-
vestigating the rich networks that exist in nature. More recently, a small number of
multi-agent researchers have shown that the performance of a group can be signifi-
cantly impacted by the nature of the network that connects them. In this chapter,
we build on these initial efforts, performing systematic experiments in an attempt
to understand how and why social networks affect group performance. Our key con-
clusion is that performance of a team can sometimes be improved by imposing a
social network with relatively few connections even if it were feasible to connect the
agents with a complete network.

1 Introduction

In a variety of important domains hundreds or thousands of heterogeneous
agents are required to work together to achieve very complex goals. For ex-
ample, for a large scale disaster response police, firefighters, paramedics and
many others need to work together, albeit loosely, to mitigate the effects of
the disaster. With current and future high speed network infrastructure any
two members of the team could potentially communicate directly with one an-
other. However, some recent work by Gaston and des Jardinss [5] has hinted
that fully connected networks may not necessarily facilitate the most effective
coordinated behavior. In this chapter, we explore this question in detail and
attempt to quantify and explain the benefits of not having complete connec-
tivity between all members of a large team.

In disciplines outside of artificial intelligence, including physics, economics,
computer science and sociology, networks between people, social networks,
have been extensively studied. For example, Milgram showed that people were
often related into networks with a rich structural property called the small
worlds property [15] and recent work has discovered that such structures exist
not only between people but in a range of natural and man-made artifacts,
including the Internet and electrical grids [7]. In a typical multiagent system,
an agent can maintain connections with all other agents at negligible or no
cost. This leads to most multiagent systems having completely connected com-
munications graphs, although there are a small number of exceptions [5, 12].
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However, the implicit assumption that complete networks are best for facili-
tating coordination, an assumption that may not be correct.

Coordination involves solving several intertwined problems in a distributed
fashion. In this chapter, we first abstracted and isolated four key things that
coordination must do and then compared a team’s performance at those tasks
using seven different types of networks, including a complete network. The four
coordination problems were: (1) sharing information; (2) fusing information;
(3) allocating tasks and; (4) developing an aggregate picture of the team state.
We contend that these problems abstractly capture many of the things that a
team must do. The seven types of network were: (1) complete; (2) lattice; (3)
loop; (4) hierarchy; (5) random; (6) small worlds and; (7) scale free. The key
result was that for only one of the problems did the complete network lead
to the best performance. This result suggests that imposing a logical social
network with relatively few links on a team of agents, even when a complete
network is feasible, can improve performance in a variety of areas. Moreover,
no particular network type was best for each of the problems, suggesting that
networks might have to be carefully chosen for the situation.

Coordination requires that a team must address several problems in par-
allel. Our initial results showed that different networks had different perfor-
mance for the different sub-problems. However, since no particular network
was always best, choosing which network to use for overall coordination is
not straight forward. In fact it is reasonable to hypothesize that the “best”
network for a particular coordination application will depend on the relative
frequency of the different coordination sub-problems and the relative impor-
tance of different performance metrics. In an abstract coordination simulator
we tested networks with problems requiring relatively different emphasis on
each sub-problem. In many cases complete networks turned out to be best
although they were not best for sub-problems. However, this was largely due
to an additional coordination not described above and very suited to complete
networks. However when the coordination problem required relatively more
information fusion, complete was not best.

In a cooperative team, there is no concern paid to whether one team mem-
ber does more work than another. However, in practice, equitably sharing the
workload can be important, perhaps for the morale or energy requirements
of team members, for load balancing reasons or other reasons. While con-
ducting experiments to understand the impact of networks on performance,
a correlation was observed between the performance of a particular network
and the disparity between the loads on individual agents. More particularly,
the scale-free networks were often performing very well, but a small num-
ber of nodes with high degree, i.e., nodes with many links were performing
a high proportion of the work required to coordinate. The high degree nodes
were essentially allowing the team to centralize problem solving, which was
leading to good performance even with algorithms designed to be distributed.
If an equitable distribution of coordination load is important then the best
”performing” network might not be the best choice.
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2 Networks

A network N is a pair (A, E), where A is a set of agents, and E is a set of
edges between the agents, E = {{u, v}|u,v € A}. Many useful measurements
of networks have been developed [3], but only two are important here: network
width and the degree distribution of the network. The width of the network
is the average maximum distance from any agent in the network to any other
agent, where distance is the minimum number of edges that need to be tra-
versed to get from one agent to the other. The width gives an indication of the
maximum separation of the agents from one another. The number of edges
that agent a is involved with is the degree of a, which we write degree(a). The
degree distribution of the network is frequency distribution of the number of
edges involving each agent.

To understand the basic impact of a social network on coordination, we
conducted experiments with seven different networks. The networks were cho-
sen to be be representative of those used in the literature, but diverse enough
to uncover interesting properties. Table 1 shows the networks used in the
initial experiments and their width and degree distribution. The Complete
network is most typically used in multiagent systems. The Lattice and Loop
networks might be used when wireless or other communications limitations
prevent more highly connected networks from being used. The Hierarchy is
rarely used within the multiagent community but is a standard communica-
tions framework for human organizations. The Random network provides a
sort of baseline low degree network. Finally, the Small Worlds and Scale Free
networks have been shown to be very common types of networks in nature [16].
Figure 1 shows small examples of each of the network types.

Notice that we are making no assumption about the underlying physical
network, which will in many cases be a complete network. In cases where
an agent needs to direct by communication to another specific agent whose
idenitity it knows, that communication does not need to go via the logical
network described here.

3 Key Coordination Problems

In the following, we formally describe the coordination problem that must be
solved by the team and that is the basis for this work.

Agents, A(t) = {a1,...,ar}, are cooperating on a joint goal. Informa-
tion, I = {i1,...,i,}, are discrete pieces of information. Some, I, C I,
are able to be sensed, at various times, in the environment. The predicate
Observable(i,t) returns true if it is possible for some agent to observe in-
formation ¢ at time ¢ and returns false otherwise. Some information, e.g.,
location of a fixed resource, will be always observable, while others, e.g.,
events, will be observable for short periods. There is no implication that
something will be sensed, even if it can be. Other information can only be
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lName [Description [Degree Dist. [Width ‘
Complete |Each agent is connected to each|All = 1 1
other agent
Lattice Agents are arranged into 2D grid |All = 4, except edges \/W
Loop Agents arranged in a circle All =2 L‘;"
Hierarchy |Traditional tree, branching factor =|All = 4 log,, |A]
3
Random Each new agent makes 2 connec-|Average is 4 log,, |A]
tions to other agents
Small World|Loop plus each agent makes one|Average is 4 log,, |A]
random connection
Scale Free |New agents connect to 3 exist-|Exponential log,, |A]
ing with probability proportional to
number of connections a node al-
ready has

Table 1. The seven different types of network investigated in this chapter.

Fig. 1. Examples of the seven network types. Clockwise from top left: Lattice,
Complete, Loop, Small World, Scale Free, Hierarchy, Random.

inferred by fusing observable information. iy can only be inferred from Ir C I
and, hence, must be inferred by some agent Knows(a,t) C Ir. Some sub-
set of the information is Knowable(t) C I but an agent might only know
some of the information, Knows(a,t) C Knowable(t). i, € Knowable(t) if
3t < t,Observable(ig,t') VVj € I3t <t,Observable(j,t)

The team A(t) is attempting to achieve a high level goal G, which is
broken into discrete sub-tasks aq, ..., a,, typically performed by individuals.
A subtask, alpha; is applicable when the predicate Applicable(I,,),In,) C I
is true.

For some tasks, agents require sharable resources. These resources, R(t) =
{r1,...,rm}, are a dynamically changing set of available resources. We assume
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that the resources are discrete and non-consumable. Agent a has exclusive
access to Holds(a) C R. Va,b € A,a # b, Holds(a) N Holds(b) = ().

Agents must perform the individual tasks, when they are applicable for
the team to receive reward. The reward received by the team when an agent
performs a task is a function of the agent and task as well as what the agent
knows and the resources it has. Specifically:

Reward(a, o, Knows(a), Holds(a),t) — R

Notice that unless I,,, C Knowable(t), Reward(-) = 0, i.e., unless the task
is currently applicable the team gets no reward for performing it.

We specifically distinguish between necessary and useful resources. Define
IR; C R as a set of substitutable resources. Necessary resources are those
where IR} if Holds(a) N IR} = () then Cap(a, o, Knows(a), Holds(a)) = 0.
Useful resources are those where IR} if Cap(a,a, Knows(a), Holds(a)) >
Cap(a, o, Knows(a), Holds'(a))if Holds(a) N IR} # 0N Holds(a) N IR} = 0.

The coordination problem is to maximize the reward to the team, while
minimizing the costs of coordination. The overall reward is simply:

n
Z Reward(a, o;, Knows(a), Holds(a),t)
i=0

The costs of coordination can be very general and in some cases difficult to
define. Here we are specifically concerned with only two elements: the volume
of communication and the equity with which the efforts of the team were
spread over its team members.

This basic coordination problem imposes a number of coordination require-
ments on a team. These can be viewed as four abstract problems: (1) sharing
information; (2) fusing information; (3) allocating tasks and; (4) gaining a
joint perspective. Many of the things that a team must do to coordinate can
be mapped to one of these basic activities.

3.1 Information Sharing

The agent that senses an event or situation in the environment will not nec-
essarily be the same agent that needs that information. Moreover, unless it
has complete knowledge of a teams activities, it may not know which, if any,
agent needs the information. Most solutions to this problem use some sort
of information broker or other centralized approach, but Xu [19] presented a
distributed approach which we follow here.

To model how information sharing occurs in a social network, we adapt
the common technique of using Markov chains [2]. We begin by assuming a
randomly distributed selection of source agent, as and target agent, as. as
does not know the identity of a; but it knows the properties of an agent that
would be interested in the information and it may know something about its
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neighbors in the network (see below). The information is passed from agent
to agent along links in the network encapsulated in a .

The state, s;, is defined to be the situation where the mimimum length
path to a; from the current location of the token is of length 7. The special
state sg corresponds to the token, i.e., information, arriving at the target.

If the token moves randomly from agent to agent, then the structure of the
network will govern the behavior of the random walk through the network.
Specifically, the structure of the network will define the transition function for
the Markov chain. We can write P(s;, s;) as the probability of transitioning
from s; to s;, where only P(s;,s;—1), P(s;,si+1) and P(s;, s;) are possible.
We determined values for P(s;, s;) empirically, for all the networks considered
here. Notice that we average P(s;,s;) over each node at distance ¢, though
this will vary from node to node.

Once P is known, the expected time to transition from s; to sg, t; can be
calculated in a straightforward way:

ti = n(l—P(si,s;)P(si,5) " (P(si, 8i-1)ti1 (1)
n=1
+P(si, si41)tit1) (2)
¢ = 14 P(si,si—1)ti—1 + P(5i,8i41)tit1
v 1-— P(Si, Sz)

Intuitively, in Equation 1, the first term after the sum captures the amount
of time the token is expected to stay this distance away from the target and
the second captures how long it will take after leaving this distance (and going
either closer or further.)

Figures 2 and 3 show the relative rates of P(s;, s;—1), marked “Closer”,
P(si, 8i41), marked “Further” and P(s;,s;), marked “Same” for Scale Free
and Random networks. The x-axis shows the distance of a node to the target
node, i.e., the subscript ¢. Notice that the closer to the target the more likely
random movement is to lead further from the target and conversely, the further
from the target the more likely random movement will lead the token closer.
The figures show that the closer a token is to the target, the easier it is
to move away. Moreover, since the figures show different distributions, their
information sharing characteristics are likely to be different.

However, in teams, information does not just move randomly from agent
to agent. Often the agents will know something (perhaps a lot) about the
characteristics of their network neighbors and even the neighbors of their
neighbors. Several sociologists have shown how information delivery can be
very efficient in human teams with simple models of acquaintances [15, 17]
and Xu [19] has effectively illustrated this for multi-agent teams.

To model the fact that the movement is not completely random, but
is in fact biased towards the target location, we use a parameter [ to
make P(s;,s;—1) larger and P(s;, s;+1) smaller. However, this bias should
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Fig. 2. The relative proportions of links in a Scale Free network that lead closer to,
keep the same distance from or move further from some target node, as the distance
to the target is varied.

be stronger nearer to the target location, since it is more likely that agents
need the target information know what is required to intelligently route the
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Fig. 3. The relative proportions of links in a Random network that lead closer to,
keep the same distance from or move further from some target node, as the distance
to the target is varied.
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information. We can model this by using (i) = e% Informally, one can think
of 3 as the total learning learning of the team about the team and « as how
much more agents “near” an agent know about it than do agents “far” from
it. Using « and 8 the Markov chain state transitions can be rewritten as:

]5(52', 31‘—1) = P(Si, Si—l) + (1 — eﬁ(i))P(Si, Si) + (1 — €2ﬂ(i))P(8i, Si+1)
P(si, s;) = P(si,8;) — (1 — eﬁ(i))P(si, Si)
P(si,8i41) = P(siy5i11) — (1 — e2*D)P(s;,5:41)

Figure 4 shows the effect on the scale free distribution from Figure 2.
Especially close to the target, i.e., the left of the graph, tokens are much more
likely to get closer to the target. Clearly, the result will be more efficient
delivery of information when there is a bias as described above.
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Fig. 4. The relative proportions of links that lead closer to, keep the same distance
from or move further from some target node, as the distance to the target is varied.
This plus: an « value of 1.5 is used to bias the links towards moving to the target
node.

3.2 Information Fusion

In a distributed team, different members of the team may take sensor readings
that must be fused together to allow action to occur. This basic phenomena
can occur for a number of different reasons, including fusing of low confidence
sensor readings to get high confidence in the occurrence of some event, for
detecting conflicts or synergies between different activities or to know that
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multiple preconditions for some course of action have all been met. In a co-
operative environment, it is typically only necessary for one member of the
team to know the sensor readings to be fused and, in the following, we assume
there is no preference ordering across agents for who fuses the information.

The probability that an agent a senses the information itself is, sense,
which is assumed to be uniform across the team. If each piece of sensed
information is randomly passed from neighbor to neighbor then the prob-
ability that a gets it in a particular step is v, = degree(a)/2|E|. Thus,
if the event occurs at ¢ = 0 the probability that a knows about it at ¢ is
IL(t) =1—((1—sense)(1 —~)h).

If n of m sensor readings must be “fused” for action to occur, the proba-
bility that a can do the fusion at ¢ is:

Fuse(a,t) = Y mCn’ x Tu(t)" x (1—T,(t)™™) (3)
Informally, this says that the agent can get any combination of sensors
readings with equal probability.

Fuse(A,t) =1~ [] (1 - Fuse(a,t)) (4)
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Fig. 5. The probability of fusion over time for two types of network. At each time
step five pieces of information move randomly from one agent to another, three must
meet for fusion to occur.
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Figure 5 shows the probability of fusion for scale free and random net-
works. The probability of fusion for the scale free network is clearly higher.
Examination of Equations 3 and 4, suggests that the advantage of the scale
free network is primarily due to the small number of nodes with very many
links, since this leads to a high value for v and consequently I'. Empirical
results bear out this observation (see Section 4).

3.3 Task Allocation

When tasks dynamically arise, capable and available team members need to
be found to execute those tasks. There are a large number of different task
allocation algorithms that might be used to allocate the tasks. In this chapter,
we consider the impact of network structure on LA-DCOP [13] an algorithm
that encapsulates a task in a token and moves it around the team until some
agent is available and has capability above a threshold recorded on the token.

The same formal model developed for the information sharing problem can
be applied to understanding the impact of network structure on LA-DCOP.
The key is to observe that there are n agents in the team that will accept
the task if it reaches them. Each of these n agents can be thought of as a
target for the token and we can perform the same analysis as in Equation 2
to determine how far the token will be from an agent that would accept it.
Figure 6 shows the relative proportion of different distances to any of n target
nodes (on the x-axis) for a random network with 500 agents. The lowest area
shows the proportion that are capable of the task themselves, the next area
up shows the proportion that is adjacent to an adjacent to an agent capable
of the task, the next shows agents 2 links from a capable agent and so on. The
figure clearly shows that even if only about 2% of agents are capable, every
agent in the network is close to some capable agent.

Task allocation is a specialized coordination task for which it is intuitively
important precisely which agent is next to which other. Specifically, it seems
intuitive that if agents with different capabilities are close to each other in
a network, task allocation can function more effectively, since if the agent is
not capable of a task, it is more likely to be able to find someone that is.
To evaluate this hypothesis, we configured random networks in two ways: one
where random links are created with a strong preference to agents with similar
capabilities and one where random links are created with a strong preference
for linking to agents with different capabilities. Figure 7 shows an experiment
with 500 agents and 2500 tasks. Tasks take some duration to execute and an
agent may perform only one task at a time, hence the availability of agents to
perform tasks will change over time. As expected the network where agents
were connected to others with different capabilities did lead to better results,
but the difference was not unexpectedly small.
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Fig. 6. Percentage of nodes that are of distance 0-5 from an agent capable of
performing some task as the number of capable agents is increased. There are 500
agents in all, arranged in a random network.
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Fig. 7. The number of messages required to allocate 2500 tasks in two random
500 agent networks. One random network arranges agents so those with similar
capabilities are near one another (More) and the other arranges agents so that
agents with similar capabilities are far from one another (Less).

3.4 Perspective Aggregation

Some coordination algorithms or activities require that each member of the
team builds an accurate view of the team’s state. For example, the way that
an individual agent uses shared resources such as communication bandwidth
or fuel should depend on the team’s overall need for such resources.
Technically, we can think of every member of the team having a local value
for some variable, e.g., their local need for some resource, and needing to know
the average value of that variable across the whole team, e.g., the average need
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for some resource. Formally, each agent has some variable v. The perspective
aggregation problem is for each agent to know v = Z’I‘SA °.

One way of building up a perspective across the team is to have a small
number of propagators move from agent to agent, taking the current per-
spective from one agent and adding it to the current perspective at the next
agent. If there are multiple propagators simultaneously moving around the
team, perspectives build up very quickly. Notice that it is typically infeasi-
ble for a propagator to record precisely which agents it has collected values
for, since it would need to record all the agent IDs as it moved from agent
to agent. In a large team this imposes an unreasonable communication load.
However, because the propagator does not know precisely which agents it has
visited, some will be visited repeatedly and their values counted repeatedly,
distorting the average results.

A simple model of how quickly these perspectives build up can be straight-
forwardly created by considering how many other values each agent knows
about. Before any propagators move, each agent knows only their value.
Thus, the average number of values known by each agent Awvg(v,0) is 1.
When a propagator moves, one of the agents gets to know 1 new value, hence
Avg(v,1) = 1+ ﬁ. In general, the average number of values known by an

Avg(v,t—1)
Al
Because propagators collect information as they move, Avg(v, t) rapidly grows

with ¢. Figure 8, shows Avg(V,t) for a team with 500 members. The x-axis
shows the number of propagator moves divided by the number of agents and
the y-axis shows Avg(V,t) on a logarithmic scale. The figure suggests that
perspective aggregation is not a communication intensive task for a team,
even one with relatively few edges.

The average value does not capture two key aspects of the perspective
aggregation problem. First, nodes with higher degree will be visited more
often by a randomly moving propagator than nodes with lower degree. This
effect can be modelled by changing the denominator in % to be plA|,
i.e., agents with higher than average degree will have p < 1.0 and those with
lower than average degree will have p > 1.0. Thus, networks with many nodes
with low degree are likely to perform poorly on this task. Second, clearly many
of the values an agent gets to know will be repeated. The distortion caused
to the agent’s perspective by the repeats will be proportional to the relative
rates at which repeats occur, i.e., if some values are repeated many times and
others are not, the agent’s perspective will get very distorted. An agent will
likely get to know about another agent’s value more often if that agent is close
to it in the network than if it is far from it. Thus, networks with higher width
are likely to perform poorly on this task.

agent after move ¢ of the propagators is Avg(v,t) = Avg(v,t—1)+
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Fig. 8. The average number of samples each agent has (y-axis) after a propagator
has moved a fixed number of steps (x-axis). The y-axis has a logarithmic scale.

4 Experiments

To empirically evaluate all the different networks, we developed simple Java
programs to simulate each of the algorithms and networks. For each sub-
problem we created 100 networks of 500 agents of each type and measured
two things: the performance of the algorithm on the network and the standard
deviation of the contribution of each agent to the observed performance. For
example, for the information fusion problem, we randomly allowed five agents
to “sense” five pieces of information and then propagated that information
around the network until some agent knew of three of the pieces of information.
For this information fusion, we measured the time taken to fuse and the
number of times each agent performed the fusion. A summary of the results
is shown in Figures 9 (algorithm performance) and 10 (distribution of effort).
The results have been normalized for clarity. In Figure 10 the distribution
of effort is computed as the magnitude of the standard deviation of effort,
based on the idea that higher standard deviation means more variability in
effort. The experiments indicate that no network outperforms all others on
all tasks and there is often an inverse relationship between performance and
distribution of effort.

Finally, to perform a more complete test on the effects of networks on co-
ordination, we used an abstract coordination simulator called CoordSim. This
simulator is capable of simulating the major aspects of coordination including
sensor fusion, plan management, information sharing, task assignment and
resource allocation. CoordSim abstracts away the environment, instead just
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simulating its effects on the team. Uncertain sensor readings are received ran-
domly by some agent or agents in the team at a parameterizable rate. Agents
cannot "know” anything they do not sense or is not communicated to them
from a teammate. Time is simulated and all agents are allowed to ”think”
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and "act” at each step, although the effects of their ”actions” are abstractly
simulated. Communication is implemented via object passing, making it very
fast. Reward is simulated as being received by the team when the agent is al-
located the task, the agent’s simulated location is at the task location and it
has exclusive access to required resources. Reward is received while the agent
is simulating the task, which takes one time step.

One key element simulated by CoordSim that is not addressed in the sub-
problems above is that of deconflicting plan instantiations. In CoordSim, when
any agent comes to know that the preconditions for some joint activity are
known, it initiates that joint activity and informs its neighbors in the network.
As tasks are allocated for the joint activity, agents assigned roles in the joint
activity also inform their neighbors in the network of the joint activity. If any
agent gets to know of two activities achieving the same goal, they initiate a
process to stop one of the activities. If two activities aimed at achieving the
same goal are executed, the team only gets reward for one.

Figures 11-14 show the results from CoordSim for four different coordi-
nation instances. In each case, there are 200 agents and 50 plans. Unless
otherwise noted: (i) plans are initiated when two preconditions are true and
some agent gets to know both preconditions and starts the plan; (ii) there
are between one and four roles per plan; (iii) there are one to five pieces of
information available that can improve execution of a task, if the agent per-
forming the task knows of that information; (iv) there are 20 different types of
task and each agent can perform between one and five of them and; (v) there
are 150 pieces of information that can be known, each must be fused from at
least three of five sensor readings randomly distributed to the team. Figure 11
shows a baseline configuration. Figure 12 shows a case where fusion is more
important, specifically four preconditions must be known to instantiate a plan
and four of five sensor readings are required to fuse a piece of information.
Figure 13 shows a case where task allocation is more important, with between
five and ten roles per plan, fifty different types of task and each agent only
capable of one thing. Finally, Figure 14 shows a case where information shar-
ing is important, because five to ten pieces of information can improve the
reward of the agent performing the task.

In all but one case, Figure 12, the complete network performed best. A
primary reason for this was that is was never executing conflicting plans,
because whenever one agent initiated execution of a plan, it would inform all
others and any duplicate instantiations would be immediately removed. The
low number of role allocation messages is testemant to this efficiency. This
ability to remove conflicting plans, overwhelmed any other advantages the
other networks had. However, in the configuration in Figure 12 instantiating
plans relies on very effective information fusion, both to get the pieces of
information from the sensor readings and then to have one agent know four
readings and instantiate the plan. Since fusion was so difficult, relatively few
duplicate plans were created and hence deconfliction became less important.
Instead, the networks more suited to sensor fusion performed relatively better.
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Fig. 11. Coordination experiment baseline case
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Fig. 12. Coordination experiment with more emphasis on fusion sub-problem

5 Related Work

Social networks have been an active area of interest since Milgram observed
the small worlds effect nearly 40 years ago [15]. Recent interest in such net-
works was inspired by models by Barabasi [1] and Watts [16] who observed
that similar networks occurred in nature. Over time an amazing array of fields
of research have contributed to our understanding of networks [11], from biolo-
gists [18], to mathematicians [14] to physicists [10]. Some economists explained
such networks by balancing the cost of maintaining an acquaintance against
the value of that acquaintance [6]. Sociologists, including Carley, showed the
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Fig. 13. Coordination experiment with more emphasis on task allocation sub-
problem
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Fig. 14. Coordination experiment with more emphasis on information sharing sub-
problem

rich network structure underlying some organizations and how that network
facilitates effective organizational behavior [9].

Computer scientists and agents researchers have also been interested in
these network structures. For example, Kleinberg [8] shows some of the in-
formation requirements on an agent to replicate Milgram’s results in multia-
gent systems. Gaston recently published two key papers showing how network
structure has an impact on multiagent systems and proposing an algorithm
for designing networks for multiagent systems [5, 4].
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6 Conclusions

This chapter presented a quantitative investigation of the impact of social net-
works on multi-agent coordination. Our results support previous work which
indicated the importance [5, 4] and utility [20] of social networks. For ab-
stracted coordination tasks, networks with relatively low degree were shown
to often significantly outperform completely connected networks. Some of the
advantage low degree networks were shown to have was due to a small number
of nodes performing a relative large proportion of the work, essentially par-
tially centralizing the coordination. However, we showed that the advantage
of social networks disappeared when all coordination tasks were taken into
account.

While this chapter advances our understanding of the impact of social net-
works on coordination, key work is required to utilize this new understanding.
Most urgently, we showed that none of the networks we used were best for all
coordination problems. A key question is whether there is a particular net-
work that is best in all situations. It is possible, or even likely, that changing
structure over time is better than any fixed structure. Finally, although initial
experiments that looked more carefully at which agent should be adjacent to
which other showed little effect, it is likely there are some more significant
effects for other adjacencies. Our future work will investigate these questions
and apply these social networks to practical multiagent systems.

Another possibility is to have different logical networks for each task in the
same team, with networks chosen to be specifically good for the sub-problems
they are used for.

References

1. A.-L. Barabasi and E. Bonabeau, Scale free networks, Scientific American, pp.
60-69, May 2003.

2. V. Buskens and K. Yamaguchi, A new model for information diffusion in het-
erogeneous social networks, Sociological methodology, Vol. 29(1), 1999.

3. L. Freeman, Centrality in social networks: Conceptual clarification, Social
Networks, Vol. 1(3), pp. 215-239, 1979.

4. M. Gaston and M. desJardinss, Agent-organized networks for dynamic team
formation, In Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, Utrecht, Netherlands, 2005.

5. M. Gaston and M. desJardinss, Agent-organized networks for multi-agent pro-
duction and exchange, In Proceedings of the Twentieth National Conference on
Artificial Intelligenc, Pittsburgh, PA, 2005.

6. J. Geunes and P. Pardalos, Network optimization in supply chain management
and financial engineering: An annotated bibliography, Networks, Vol. 42(2),
2003.

7. P. Harrison and W. Knottenbelt, Networks, dynamics, and the small-world
phenomenon, The American Journal of Sociology, Vol. 105, No. 2:493-527,
1999.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Social Networks for Effective Teams 313

J. Kleinberg, The small world phenomenon: An algorithmic perspective, In
Proceedings of Symposium on Theory of Computing, 200.

Z. Lin and K. Carley, Dycorp: A computational framework for examining or-
ganizational performance under dynamic conditions, Journal of Mathematical
Sociology, Vol. 20, 1995.

R.M. May and A.L. Lloyd, Infection dynamics on scale-free networks, Physical
Review E., 2001.

M. Newman, The structure and function of complex networks, SIAM Review,
Vol. 45(2), 2003.

P. Scerri, Y. Xu, E. Liao, J. Lai, and K. Sycara, Scaling teamwork to very large
teams, in Proceedings of AAMAS’04, 2004.

P. Scerri, A. Farinelli, S. Okamoto and M. Tambe, Allocating tasks in extreme
teams, In AAMAS’05, 2005.

C. Topper and K. Carley, A structural perspective on the emergence of network
organizations, Journal of Mathematical Sociology, Vol. 24(1), 1999.

J. Travers and S. Milgram, An experimental study of the small world problem,
Sociometry, Vol. 32, pp. 425—443, 1969.

D. Watts and S. Strogatz, Collective dynamics of small world networks, Nature,
Vol. 393, pp. 440-442, 1998.

D.J. Watts, P.S. Dodds and M. E. J. Newman, Identity and search in social
networks, Science, Vol. 296(5571), pp. 1302-1305, 2002.

Y.I. Wolf, G. Karevand, E.V. Koonin, Scale-free networks in biology: new in-
sights into the fundamentals of evolution? BioFEssays, 2002.

Y. Xu, M. Lewis, K. Sycara and P. Scerri, Information sharing in very large
teams, in In AAMAS’04 Workshop on Challenges in Coordination of Large
Scale MultiAgent Systems, 2004.

Y. Xu, P. Scerri, B. Yu, S. Okamoto, M. Lewis and K. Sycara, An integrated
token-based algorithm for scalable coordination, in AAMAS’05, 2005.



