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Abstract

Enabling interactions of agent-teams and humans for
safe and effective Multiagent rescue is a critical area of
research, with encouraging progress in the past few years.
However, previous work suffers from three key limitations:
(i) limited human situational awareness, reducing human
effectiveness in directing agent teams, (ii) the agent team’s
rigid interaction strategies that jeopardize the rescue oper-
ation, and (iii) lack of formal tools to analyze the impact
of such interaction strategies. This paper presents a soft-
ware prototype called DEFACTO (Demonstrating Effective
Flexible Agent Coordination of Teams through Omnipres-
ence). DEFACTO is based on a software proxy architec-
ture and 3D visualization system, which addresses the three
limitations mentioned above. First, the 3D visualization in-
terface enables human virtual omnipresence in the envi-
ronment, improving human situational awareness and abil-
ity to assist agents. Second, generalizing past work on ad-
justable autonomy, the agent team chooses among a variety
of "team-level” interaction strategies, even excluding hu-
mans from the loop in extreme circumstances. Third, anal-
ysis tools help predict the dangers of using fixed strategies
for various agent teams in a future disaster response simu-
lation scenario.

1. Introduction

One of the major issues in multi agent systems is safety
understood as the impact of a team of agents on a spe-
cific domain task. Analyzing the safety of using multi agent
teams interactiong with humans is critical in a large number
of current and future applications[2, 5, 14, 3]. For example,
current efforts emphasize humans collaboration with robot
teams in space explorations, humans teaming with robots
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and agents for disaster rescue, as well as humans collabo-
rating with multiple software agents for training [4, 6].

This paper focuses on the challenge of improving the ef-
fectiveness and analysing the dangers of human collab-
oration with agent teams. Previous work has reported
encouraging progress in this arena, e.g., via proxy-based in-
tegration architectures[10], adjustable autonomy[13, 4]
and agent-human dialogue [1]. Despite this encourag-
ing progress, previous work suffers from three key limita-
tions. First, when interacting with agent teams acting re-
motely, human effectiveness is hampered by low-quality in-
terfaces. Techniques that provide telepresence via video
are helpful [5], but cannot provide the global situa-
tion awareness. Second, agent teams have been equipped
with adjustable autonomy (AA)[14] but not the flexibil-
ity critical in such AA. Indeed, the appropriate AA method
varies from situation to situation. In some cases the hu-
man user should make most of the decisions. However,
in other cases human involvement may need to be re-
stricted. Such flexible AA techniques have been devel-
oped in domains where humans interact with individual
agents [13], but whether they apply to situations where hu-
mans interact with agent teams is unknown. Third, current
systems lack tools to analyze the impact of human in-
volvement in agent teams, yet these are key to flexible AA
reasoning.

We report on a software prototype system, DEFACTO
(Demonstrating Effective Flexible Agent Coordination of
Teams through Omnipresence), that enables agent-human
collaboration and addresses the three shortcomings outlined
above. First, DEFACTO incorporates a visualizer that al-
lows for the human to have an omnipresent interaction with
remote agent teams. We refer to this as the Omni-Viewer,
and it combines two modes of operation. The Navigation
Mode allows for a navigable, high quality 3D visualization
of the world, whereas the Allocation Mode provides a tra-
ditional 2D view and a list of possible task allocations that
the human may perform. Human experts can quickly ab-
sorb on-going agent and world activity, taking advantage
of both the brain’s favored visual object processing skills
(relative to textual search, [9]), and the fact that 3D repre-
sentations can be innately recognizable, without the layer
of interpretation required of map-like displays or raw com-



puter logs. The Navigation mode enables the human to un-
derstand the local perspectives of each agent in conjunction
with the global, system-wide perspective that is obtained in
the Allocation mode.

Second, to provide flexible AA, we generalize the no-
tion of strategies from single-agent single-human context
[13]. In our work, agents may flexibly choose among team
strategies for adjustable autonomy instead of only individ-
ual strategies; thus, depending on the situation, the agent
team has the flexibility to limit human interaction, and may
in extreme cases exclude humans from the loop. Third, we
provide a formal mathematical basis of such team strate-
gies. These analysis tools help agents in flexibly selecting
the appropriate strategy for a given situation.

We present results from detailed experiments with DE-
FACTO, which reveal two major surprises. First, contrary
to previous results[14], human involvement is not always
beneficial to an agent team— despite their best efforts, hu-
mans may sometimes end up hurting an agent team’s per-
formance. Second, increasing the number of agents in an
agent-human team may also degrade the team performance,
even though increasing the number of agents in a pure agent
team under identical circumstances improves team perfor-
mance. Fortunately, in both the surprising instances above,
DEFACTO’s flexible AA strategies alleviate such problem-
atic situations.

2. DEFACTO System Details

DEFACTO consists of two major components: the
Omni-Viewer and a team of proxies (see Figure 1). The
Omni-Viewer allows for global and local views. The prox-
ies allow for team coordination and communication, but
more importantly also implement flexible human-agent in-
teraction via Adjustable Autonomy. Currently, we have
applied DEFACTO to a disaster rescue domain. The in-
cident commander of the disaster acts as the user of
DEFACTO. This disaster can either be “man made” (ter-
rorism) or “natural” (earthquake). We focus on two urban
areas: a square block that is densely covered with build-
ings (we use one from Kobe, Japan) and the University of
Southern California campus, which is more sparsely cov-
ered with buildings. In our scenario, several buildings are
initially on fire, and these fires spread to adjacent build-
ings if they are not quickly contained. The goal is to
have a human interact with the team of fire engines in or-
der to save the most buildings. Our overall system ar-
chitecture applied to disaster response can be seen in
Figure 1. While designed for real world situations, DE-
FACTO can also be used as a training tool for incident
commanders when hooked up to a simulated disaster sce-
nario.
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Figure 1. DEFACTO system applied to a dis-
aster rescue.

2.1. Omni-Viewer

Our goal of allowing fluid human interaction with agents
requires a visualization system that provides the human
with a global view of agent activity as well as showing the
local view of a particular agent when needed. Hence, we
have developed an omnipresent viewer, or Omni-Viewer,
which will allow the human user diverse interaction with
remote agent teams. While a global view is obtainable
from a two-dimensional map, a local perspective is best ob-
tained from a 3D viewer, since the 3D view incorporates
the perspective and occlusion effects generated by a partic-
ular viewpoint. The literature on 2D- versus 3D-viewers is
ambiguous. For example, spatial learning of environments
from virtual navigation has been found to be impaired rela-
tive to studying simple maps of the same environments [11].
On the other hand, the problem may be that many virtual
environments are relatively bland and featureless. Ruddle
points out that navigating virtual environments can be suc-
cessful if rich, distinguishable landmarks are present [12].

To address our discrepant goals, the Omni-Viewer in-
corporates both a conventional map-like 2D view, Alloca-
tion Mode (Figure 2-c) and a detailed 3D viewer, Naviga-
tion Mode (Figure 2-a). The Allocation mode shows the
global overview as events are progressing and provides a
list of tasks that the agents have transfered to the human.
The Navigation mode shows the same dynamic world view,
but allows for more freedom to move to desired locations
and views. In particular, the user can drop to the virtual
ground level, thereby obtaining the world view (local per-
spective) of a particular agent. At this level, the user can
“walk” freely around the scene, observing the local logis-
tics involved as various entities are performing their duties.
This can be helpful in evaluating the physical ground cir-
cumstances and altering the team’s behavior accordingly. It



a b
Figure 2. (O)mni-Viewer during a scén)ario: (&) An Incident Commander using the Navigation mode
spots multiple fires (b) The Commander navigates to quickly grasp the situation (c) The Commander
is transferred control of the task to fight the fire and uses the Allocation mode to send a fire engine
there (d) The fire has been extinguished.

(c) (d)

also allows the user to feel immersed in the scene where var-
ious factors (psychological, etc.) may come into effect.

In order to prevent communication bandwidth issues, we
assume that a high resolution 3D model has already been
created and the only data that is transfered during the disas-
ter are important changes to the world. Generating this suit-
able 3D model environment for the Navigation mode can
require months or even years of manual modeling effort, as
is commonly seen in the development of commercial video-
games. However, to avoid this level of effort we make use
of the work of You et. al. [15] in rapid, minimally assisted
construction of polygonal models from LiDAR (Light De-
tection and Ranging) data. Given the raw LiDAR point data,
we can automatically segment buildings from ground and
create the high resolution model that the Navigation mode
utilizes. The construction of the USC campus and surround-
ing area required only two days using this approach. LiDAR
is an effective way for any new geographic area to be eas-
ily inserted into the Omni-Viewer.

2.2. Proxy: Teamwork and Adjustable Autonomy

We have built teams based on previous proxy software
[13], that is in the public domain. The proxies were ex-
tended to our domain in order to take advantage of exist-
ing methods of communication, coordination, and task allo-
cation for the team. However, these aspects are not the fo-
cus of this paper.

Instead, we focus on another key aspect of the prox-
ies: Adjustable Autonomy. Adjustable autonomy refers to
an agent’s ability to dynamically change its own auton-
omy, possibly to transfer control over a decision to a hu-
man. Previous work on adjustable autonomy could be cate-
gorized as either involving a single person interacting with
a single agent (the agent itself may interact with others)
or a single person directly interacting with a team. In the
single-agent single-human category, the concept of flexi-
ble transfer-of-control strategy has shown promise [13]. A

transfer-of-control strategy is a preplanned sequence of ac-
tions to transfer control over a decision among multiple en-
tities, for example, an A H, Ho, strategy implies that an agent
(A7) attempts a decision and if the agent fails in the deci-
sion then the control over the decision is passed to a hu-
man H;, and then if H; cannot reach a decision, then the
control is passed to H». Since previous work focused on
single-agent single-human interaction, strategies were indi-
vidual agent strategies where only a single agent acted at a
time.

An optimal transfer-of-control strategy optimally bal-
ances the risks of not getting a high quality decision against
the risk of costs incurred due to a delay in getting that deci-
sion. Flexibility in such strategies implies that an agent dy-
namically chooses the one that is optimal, based on the situ-
ation, among multiple such strategies (H1 A, AH,, AH, A,
etc.) rather than always rigidly choosing one strategy. The
notion of flexible strategies, however, has not been ap-
plied in the context of humans interacting with agent-teams.
Thus, a key question is whether such flexible transfer of
control strategies are relevant in agent-teams, particularly
in a large-scale application such as ours.

DEFACTO aims to answer this question by implement-
ing transfer-of-control strategies in the context of agent
teams. One key advance in DEFACTO, however, is that
the strategies are not limited to individual agent strategies,
but also enables team-level strategies. For example, rather
than transferring control from a human to a single agent,
a team-level strategy could transfer control from a human
to an agent-team. Concretely, each proxy is provided with
all strategy options; the key is to select the right strategy
given the situation. An example of a team level strategy
would combine Ar Strategy and H Strategy in order to
make A H Strategy. The default team strategy, A, keeps
control over a decision with the agent team for the entire du-
ration of the decision. The H strategy always immediately
transfers control to the human. Ar-H strategy is the con-
junction of team level Ar strategy with H strategy. This



strategy aims to significantly reduced the burden on the user
by allowing the decision to first pass through all agents be-
fore finally going to the user, if the agent team fails to reach
a decision.

3. Mathematical Model of Strategy Selection

We develop a novel mathematical model for these
team level adjustable autonomy strategies in order to en-
able team-level strategy selection. We first quickly review
background on individual strategies from Scerri [13] be-
fore presenting our team strategies. Whereas strategies in
Scerri’s work are based on a single decision that is se-
quentially passed from agent to agent, we assume that
there are multiple homogeneous agents concurrently work-
ing on multiple tasks interacting with a single human user.
We exploit these assumptions (which fit our domain) to ob-
tain a reduced version of our model and simplify the com-
putation in selecting strategies.

3.1. Background on individual strategies

A decision, d, needs to be made. There are n entities, e,
...en, Who can potentially make the decision. These enti-
ties can be human users or agents. The expected quality of
decisions made by each of the entities, EQ = { EQe; 4(¢) :
R — R}™,, is known, though perhaps not exactly. P =
{Pr(t) : R — R} represents continuous probability distri-
butions over the time that the entity in control will respond
(with a decision of quality £Q. 4(t)). The cost of delaying
a decision until time ¢, denoted as {WV : ¢ — R}. The set of
possible wait-cost functions is W. W(t) is non-decreasing
and at some point in time, I", when the costs of waiting stop
accumulating (i.e., vVt > T',YW € W, W(t) = W(I)).

To calculate the EU of an arbitrary strategy, the model
multiplies the probability of response at each instant of time
with the expected utility of receiving a response at that in-
stant, and then sum the products. Hence, for an arbitrary
continuous probability distribution if e. represents the en-
tity currently in decision-making control:

EU = / " Pr () EU. (1) .t )
0

Since we are primarily interested in the effects of delay
caused by transfer of control, we can decompose the ex-
pected utility of a decision at a certain instant, EU.,_ q(),
into two terms. The first term captures the quality of the
decision, independent of delay costs, and the second cap-
tures the costs of delay: EU., 4t = EQ. 4(t) — W(t). To
calculate the EU of a strategy, the probability of response
function and the wait-cost calculation must reflect the con-
trol situation at that point in the strategy. If a human, H;

has control at time ¢, P (t) reflects H,’s probability of re-
sponding at ¢.

3.2. Introduction of team level strategies

A Strategy: Starting from the individual model, we in-
troduce team level A strategy, denoted as Ar in the fol-
lowing way: We start with Equation 2 for single agent Ar
and single task d. We obtain Equation 3 by discretizing
time, ¢t = 1,...,7 and introducing set A of tasks. Prob-
ability of agent A performing a task d at time ¢ is de-
noted as P, 4(t). Equation 4 is a result of the introduc-
tion of the set of agents AG = ay, as, ..., ar. We assume
the same quality of decision for each task performed by
an agent and that each agent At has the same quality so
that we can reduce EQ, 4(t) to EQ(t). Given the assump-
tion that each agent A at time step ¢ performs one task,
we have ), Paa(t) = 1 which is depicted in Equation
5. Then we express Y o* | >~ c A Pa,a(t) X Wo a(t) as the
total team penalty for time slice ¢, i.e, at time slice ¢ we sub-
tract one penalty unit for each not completed task as seen in
Equation 6. Assuming penalty unit PU = 1 we finally ob-
tain Equation 7.

EUaq = /oo Pro(t) x (EQa.a(t) — W(t)).dt 2
0
T
EUqA = Z Z Py a(t) x (EQq,q(t) — W(t)) (€)]
t=1deA

T ap
EUnp.a =30 3 3 Paa(®) x (BEQua(t) ~ Waa(t)) (@

t=1a=a1 dEA

T g ag
EUap,aac = (> EQW) = > > Paalt)x Waa(t)) &

t=1 a=aq a=aq deEA
T

EUap.aac =Y (JAG| x EQ(t) — (|A] — |[AG| x t) x PU)  (6)
t=1

|A]

T
EUap.aac = |AG| x > (EQ(t) — (A_G _—

t=1

™

H Strategy: The difference between EUg A a¢ and
EUa, a,ac results from three key observations: First, the
human is able to choose strategic decisions with higher
probability, therefore his EQ g (t) is greater than EQ(t)
for both individual and team level A strategies. Second,
we hypothesize that a human cannot control all the agents
AG at disposal, but due to cognitive limits will focus on a
smaller subset, AG ;y of agents (evidence of limits on AG i
appears later in Figure 5-a). | AG g | should slowly converge
to B, which denotes its upper limit, but never exceed AG.
Each function f(AG) that models AG should be consis-
tent with three properties: i) if B — oo then f(AG) — AG,;



ii) f(AG) < B;iii) f(AG) < AG. Third, there is a de-
lay in human decision making compared to agent decisions.
We model this phenomena by shifting H to start at time
slice ty. For ty — 1 time slices the team incurs a cost
|A|x (tg—1) forall incomplete tasks. By inserting EQ g (t)
and AG g into the time shifted utility equation for A strat-
egy we obtain the H strategy (Equation 8).

ArH Strategy: The ApH strategy is a composition of
H and A strategies (see Equation 9).

T
EUpn aac =|AGH| x > (EQmu(t)

t:tH
(4Eh = = ) 181 % - 1) ®
Sy N
EUapu,a,a6 = |AG| x ; (EQ(t) — (w — )
T
Al = |AG]
+AGH| x Y (BQu(t) — (W —(t—tn))) O

t=tp

Strategy utility prediction: Given our strategy equa-
tions and the assumption that £Q i, A, a¢ IS constantand in-
dependent of the number of agents we plot the graphs rep-
resenting strategy utilities (Figure 3). Figure 3 shows the
number of agents on the x-axis and the expected utility of a
strategy on the y-axis. We focus on humans with different
skills: (a) low EQ g, low B (b) high EQg, low B (c) low
EQgq, high B (d) high EQ g, high B. The last graph rep-
resenting a human with high £Q and high B follows re-
sults presented in [13] (and hence the expected scenario),
we see the curve of AH and A H flattening out to eventu-
ally cross the line of Ar. Moreover, we observe that the in-
crease in EQ g increases the slope for AH and ArH for
small number of agents, whereas the increase of B causes
the curve to maintain a slope for larger number of agents,
before eventually flattening out and crossing the A line.

4. Experimentsand Evaluation

Our DEFACTO system was evaluated in three key ways,
with the first two focusing on key individual components
of the DEFACTO system and the last attempting to eval-
uate the entire system. First, we performed detailed experi-
ments comparing the effectiveness of Adjustable Autonomy
(AA) strategies over multiple users. In order to provide DE-
FACTO with a dynamic rescue domain we chose to con-
nect it to a simulator. We chose the previously developed
RoboCup Rescue simulation environment [8]. In this sim-
ulator, fire engine agents can search the city and attempt
to extinguish any fires that have started in the city. To in-
terface with DEFACTO, each fire engine is controlled by
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Figure 3. Model predictions for various users.

a proxy in order to handle the coordination and execution
of AA strategies. Consequently, the proxies can try to al-
locate fire engines to fires in a distributed manner, but can
also transfer control to the more expert user. The user can
then use the Omni-Viewer in Allocation mode to allocate
engines to the fires that he has control over. In order to fo-
cus on the AA strategies (transferring the control of task
allocation) and not have the users ability to navigate inter-
fere with results, the Navigation mode was not used during
this first set of experiments.

The results of our experiments are shown in Figure 4,
which shows the results of subjects 1, 2, and 3. Each sub-
ject was confronted with the task of aiding fire engines in
saving a city hit by a disaster. For each subject, we tested
three strategies, specifically, H, AH and A H; their perfor-
mance was compared with the completely autonomous A
strategy. AH is an individual agent strategy, tested for com-
parison with A H, where agents act individually, and pass
those tasks to a human user that they cannot immediately
perform. Each experiment was conducted with the same ini-
tial locations of fires and building damage. For each strat-
egy we tested, varied the number of fire engines between 4,
6 and 10. Each chart in Figure 4 shows the varying num-
ber of fire engines on the x-axis, and the team performance
in terms of numbers of building saved on the y-axis. For in-
stance, strategy A7 saves 50 building with 4 agents. Each
data point on the graph is an average of three runs. Each run
itself took 15 minutes, and each user was required to partic-
ipate in 27 experiments, which together with 2 hours of get-
ting oriented with the system, equates to about 9 hours of
experiments per volunteer.

Figure 4 enables us to conclude the following:

e Human involvement with agent teams does not nec-
essarily lead to improvement in team performance.
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mance, as seen by human-involving strategies per-
forming worse than the A strategy in some instances.
For instance, for subject 3, human involving strate-
gies such as AH provide a somewhat higher quality
than Ap for 4 agents, yet at higher numbers of agents,
the strategy performance is lower than A. While our
strategy model predicted such an outcome in cases of
High B, Low EQ g, the expected scenario was High B,

e Providing more agents at a human’s command does
not necessarily improve the agent team performance
As seen for subject 2 and subject 3, increasing agents
from 4 to 6 given AH and ArH strategies is seen to
degrade performance. In contrast, for the A strategy,
the performance of the fully autonomous agent team
continues to improve with additions of agents, thus in-
dicating that the reduction in AH and ApH perfor-
mance is due to human involvement. As the number of
agents increase to 10, the agent team does recover.

e No strategy dominates through all the experiments
given varying numbers of agents. For instance, at 4
agents, human-involving strategies dominate the Arp
strategy. However, at 10 agents, the A strategy out-
performs all possible strategies for subjects 1 and 3.

e Complex team-level strategies are helpful in practice:
ArH leads to improvement over H with 4 agents for
all subjects, although surprising domination of AH
over Ar H in some cases indicates that AH may also
a useful strategy to have available in a team setting.

Note that the phenomena described range over multiple
users, multiple runs, and multiple strategies. The most im-
portant conclusion from these figures is that flexibility is
necessary to allow for the optimal AA strategy to be ap-
plied. The key question is then whether we can leverage our
mathematical model to select among strategies. However,
we must first check if we can model the phenomenon in our
domain accurately. To that end, we compare the predictions
at the end of Section 3 with the results reported in Figure

Subject 2 138 | 129 | 180 146 | 144 72 109 | 120 | 38

Subject 3 117 | 132 | 152 133 | 136 97 116 58 57

Table 1. Total amount of allocations given.
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4. If we temporarily ignore the “dip” observed at 6 agents
in AH and A H strategies, then subject 2 may be mod-
eled as a High B, High EQ g subject, while subjects 1 and
3 modeled via High B, Low EQg. (Figure 5-(b) indicates
an identical improvement in H for 3 subjects with increas-
ing agents, which suggests that B is constant across sub-
jects.) Thus, by estimating the £Q g of a subject by check-
ing the “H” strategy for small number of agents (say 4), and
comparing to A strategy, we may begin to select the appro-
priate strategy.

Unfortunately, the strategies including the humans and
agents (AH and A H) for 6 agents show a noticeable de-
crease in performance for subjects 2 and 3 (see Figure 4),
whereas our mathematical model would have predicted an
increase in performance as the number of agents increased
(as seen in Figure 3). It would be useful to understand which
of our key assumptions in the model has led to such a mis-
match in prediction.

The crucial assumptions in our model were that while
numbers of agents increase, AGy steadily increases and
EQ g remains constant. Thus, the dip at 6 agents is essen-
tially affected by either AG g or EQ 5. We first tested AG g
in our domain. The amount of effective agents, AG g, is cal-
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culated by dividing how many total allocations each subject
made by how many the A strategy made per agent, as-
suming A strategy effectively uses all agents. Figure 5-(a)
shows the number of agents on the x-axis and the number
of agents effective used, AG g, on the y-axis; the A strat-
egy, which is using all available agents, is also shown as
a reference. However, the amount of effective agents is ac-
tually about the same in 4 and 6 agents. This would not ac-
count for the sharp drop we see in the performance. We then
shifted our attention to the EQ g of each subject. One re-
duction in EQg could be because subjects simply did not
send as many allocations totally over the course of the ex-
periments. This, however is not the case as can be seen in
Table 1 where for 6 agents, the total amount of allocations
given is comparable to that of 4 agents. To investigate fur-
ther, we checked if the quality of human allocation had de-
graded. For our domain, the more fire engines that fight the
same fire, the more likely it is to be extinguished and in
less time. For this reason, the amount of agents that were
tasked to each fire is a good indicator of the quality of al-
locations that the subject makes. Our model expected the
amount of agents that each subject tasked out to each fire

| Strategy || 4 agents | 6agents | 10 agents |

AH 34 75 14
ArH 54 231 47

Table 2. Task conflicts for subject 2.

would remain independent of the number of agents. Figure
7 shows the number agents on the x-axis and the average
amount of fire engines allocated to each fire on the y-axis.
AH and ArH for 6 agents result in significantly less av-
erage fire engines per task (fire) and therefore less average
EQp.

The next question is then to understand why for 6 agents
AH and ArH result in lower average fire engines per
fire. One hypothesis is the possible interference among
the agents’ self allocations vs human task allocations at 6
agents. Table 2 shows the number of task changes for 4, 6
and 10 agents for AH and ArH strategies, showing that
maximum occurs at 6 agents. A task change occurs be-
cause an agent pursuing its own task is provided another
task by a human or a human-given task is preempted by
the agent. Thus, when running mixed agent-human strate-
gies, the possible clash of tasks causes a significant increase
task changes, resulting in the total amount of task alloca-
tions overreaching the number of task allocations for the
A strategy (Figure 6 ) . While the reason for such interfer-
ence peaking at 6 may be domain specific, the key lesson is
that interference has the potential to occur in complex team-
level strategies. Our model would need to take into account
such interference effects by not assuming a constant EQ g.

The second aspect of our evaluation was to explore the
benefits of the Navigation mode (3D) in the Omni-Viewer
over solely an Allocation mode (2D). We performed 2 tests
on 20 subjects. All subjects were familiar with the uni-
versity campus. Test 1 showed Navigation and Allocation
mode screenshots of the university campus to subjects. Sub-
jects were asked to identify a unique building on campus,
while timing each response. The average time for a subject
to find the building in 2D was 29.3 seconds, whereas the 3D
allowed them to find the same building in an average of 17.1



seconds. Test 2 again displayed Navigation and Allocation
mode screenshots of two buildings on campus that had just
caught fire. In Test 2, subjects were asked first asked to al-
locate fire engines to the buildings using only the Alloca-
tion mode. Then subjects were shown the Navigation mode
of the same scene. 90 percent of the subjects actually chose
to change their initial allocation, given the extra informa-
tion that the Navigation mode provided.

5. Related Work and Summary

We have discussed related work throughout this pa-
per, however, we now provide comparisons with key pre-
vious agent software prototypes and research. Given our
application domains, Scerri et al’s work on robot-agent-
person (RAP) teams for disaster rescue is likely the most
closely related [13]. Our work takes a significant step for-
ward in comparison. First, the omni-viewer enables naviga-
tional capabilities improving human situational awareness
not present in previous work. Second, we provide a mathe-
matical model based on strategies, which we experimentally
verify, absent in that work. Third, we provide extensive ex-
perimentation, and illustrate that some of the conclusions
reached in [13] were indeed preliminary, e.g., they con-
clude that human involvement is always beneficial to agent
team performance, while our more extensive results indicate
that sometimes agent teams are better off excluding humans
from the loop. Human interactions in agent teams is also in-
vestigated in [15,2], and there is significant research on hu-
man interactions with robot-teams [5, 3]. However they do
not use flexible AA strategies and/or team-level AA strate-
gies. Furthermore, our experimental results may assist these
researchers in recognizing the potential for harm that hu-
mans may cause to agent or robot team performance. Signif-
icant attention has been paid in the context of adjustable au-
tonomy and mixed-initiative in single-agent single-human
interactions [7, 1]. However, this paper focuses on new phe-
nomena that arise in human interactions with agent teams.

This paper addresses the issue of safety in multi-agent
systems understood as the performance the multi agent sys-
tem shows when applied to a real world domain. To this
end, we present a large-scale prototype, DEFACTO, that is
based on a software proxy architecture and 3D visualiza-
tion system and provides three key advances over previous
work. First, DEFACTO’s Omni-Viewer enables the human
to both improve situational awareness and assist agents, by
providing a navigable 3D view along with a 2D global al-
location view. Second, DEFACTO incorporates flexible AA
strategies, even excluding humans from the loop in extreme
circumstances. Third, analysis tools help predict the bahav-
ior of the agent team and choose the safest strategy for the
given domain.

We performed detailed experiments using DEFACTO,

leading to some surprising results. These results illustrate
that an agent team must be equipped with flexible strate-
gies for adjustable autonomy, so that they may select the
safest strategy autonomously.
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