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Abstract—Many applications require that a group of agents
share a coherent distributed picture of the world given commu-
nication constraints. This paper describes an analysis and design
methodology for coordination algorithms for extremely large
groups of agents maintaining a distributed belief. This design
methodology creates a probability distribution which relates
global properties of the system to agent interaction dynamics
using the tools of statistical mechanics. Using this probability
distribution we show that this system undergoes a rapid phase
transition between low divergence and high divergence in the
distributed belief at a critical value of system temperature. We
also show empirically that at the critical system temperature the
number of messages passed and belief divergence between agents
is optimal. Finally, we use this fact to develop an algorithm using
system temperature as a local decision parameter for an agent.

1. INTRODUCTION

The increasing availability of cheap, low power sensors
and processors has made large scale distributed networks of
coordinated autonomous systems appropriate for a range of
domains including distributed tracking [11], force protection
[3], and locating lost hikers[S]. In such systems agents must
act cooperatively in an incompletely observable environment.
To do so effectively it is critical for agents to leverage their
joint sensing ability to create an accurate view of the world.
Creating joint beliefs about the world is highly communication
intensive, since many individual sensor readings, over time, go
toward creating a view of the world. However, in all practical
systems the available communication bandwidth is strictly
limited.

Most approaches to distributed belief fusion, including the
one presented here, allow system scalability by limiting the
communication by an agent to a small number of neighbors.
Joint belief is achieved when information diffuses through
the system via many agent to agent interactions[8]. There
are many systems both natural and artificial that operate
analagously e.g. ferromagnetism in a metal [9]. Ferromag-
netism, or spontaneous magnetization, occurs when all of
the molecules in the metal exist in the same state or spin,
effectively forming one large cluster of molecules with the
same spin. However, the spin of a given molecule has a direct
effect only on it’s nearest neighbor, therefore the clustering is a
result of the diffusion of spin information between neighboring
molecules. Another example can be found in sociology where
segregation, a form of clustering, occurs in a population as
a result of the sharing of culture between individuals [14].

Our hypothesis is that similar system dynamics will occur in
belief sharing networks and can exploited for the design of
belief sharing policies.

Specifically, it is typical for such systems to exist in distinct
states or phases dependent upon a critical value of a system
property. This system property, traditionally called temperature
because the phenomenon was first discovered in physics,
is a scale factor for the probability of interaction between
individuals. Below the critical temperature T, clustering and
order is observed and information diffuses between individ-
uals. Conversely, above 7, most individuals exist in distinct
states and information flow stagnates. Furthermore, at 7, such
systems become ordered with the minimal interaction between
individuals. Striking similarities in the dynamics of systems
where information diffuses as a result of nearest neighbor
interactions have been shown through studies in a variety
of fields [7, 14, 9]. The similarities in dynamics between
the aforementioned systems and a large system of agents
maintaining a distributed belief suggests that order/disorder
phase transitions likely occur when agents use randomized
information sharing policies.

For complex systems consisting of large numbers of inter-
acting individuals or particles, the Potts model has been exten-
sively used to statistically model the relationship between local
interactions of individuals to global system properties[12]. A
Potts model of a belief sharing system allows us to analytically
determine randomized policies of information exchange for
individual agents which are optimal in terms of minimizing
both the number of messages exchanged and degree of global
belief divergence across the team. It does this by allowing
us to analytically determine critical values of control para-
meters which govern information exchange and at which an
order/disorder phase transition occurs. At this critical value
the number of messages exchanged and global divergence
are minimized. Thus, by determining this value we can elicit
system dynamics that both minimize information divergence
and minimize communication.

Characterizing a system of belief sharing agents using a
Potts model allows us to analytically relate the degree of al-
lowable global divergence in beliefs across the team to policies
individuals use to control interaction with their neighbors. This
is important because there are applications where complete
homogeneity in the beliefs of individuals is undesirable and
in fact sub-optimal. For example, in a tracking application,



spatially distant sensors, might only need to know that a
target is present in a distant sector but not its precise location.
Thus, the model provides a powerful mechanism not available
in previous approaches, specifically allowing a system to be
tuned to minimize communication while achieving different
divergence levels.

For a system of belief sharing agents, the Potts model
allows us to study the relationship between the communication
network topology and the optimal operating point for local in-
teractions between agents. This allows us to design the optimal
randomized information sharing policy for an application with
a given network topology. Furthermore, for applications where
we are allowed to choose the network topology we can use
our model to pick the one that is the best fit based on local
interaction constraints.

The remainder of this paper is organized as follows. Section
II formally describes the problem being addressed. Section
III introduces Potts model, describing its key functions and
properties. Section IV maps the belief sharing problem to
Potts model, then section V describes the resulting algorithm
followed by the agents. Section VI shows empirical results,
illustrating that a critical point does indeed exist for the
belief sharing system and comparing performance against
other approaches. Sections VII and VIII give related work,
conclusions and future work.

II. PROBLEM STATEMENT

This section formally describes the problem addressed by
this paper. Agents A = {a1,...,a,,} are a team with a joint
objective in a partially observable domain. Decisions about
actions by the agents are based on state variables X (¢) =
{z1(t), ..., 20 ()}

The agents have uncertain sensors, thus via some filter
they must determine the probability of each of the state
variables. Agent a;’s probability distribution over X at time ¢
is P'(X(t),t). For convenience, define p’(z;(t),1).

The performance of the team will be adversely affected
whenever their estimate of the state of environment varies from
the actual state of the environment. The information difference
(KL-divergence or similar) is A*(X, P{(X(t),t)). The bigger
this number, the higher the divergence. However, depending
on their current activities, individual agents will not be equally
effected by divergence in all variables. In general, they will
only need to know precisely some values, while others can
be coarsely understood or not known at all. Specifically, the
cost of §%(e) divergence to an agent a; at a particular time is:
(i, 5(s)) — R.

Using their sensors, agents take sensor readings r € R.
A sensor reading influences P*(X(t),t) via some filter f,
PY(X(t),t) = f(P(X(t),t),r). The only assumption made
about the filter is that estimates of variables improve monoton-
ically with more sensor readings. Using the cost of informa-
tion divergence and filter equations, the value of that sensor
reading to a; is 9(s,a;) = C(a;, A X, PH(X(t),1)),t) —
Clas, A¥ (X, PI(X(t),1)),t), ie., the change in cost. We

assume ¥O(s,a) > 0. The value of s to the whole team is:

V(s) = S en 005 0).
Thus, the overall optimization function is to minimize:

"
C(a;, A(e)).dt + CommCost

a; EA =0

where CommCost is the cost of communication. Intu-
itively, the team should receive reward by sharing the sensor
reading unless the added value exceeds the communication
cost.

III. POTT’S MODEL

A Pott’s model can be defined for any system with the
following characteristics:

- A group of individuals or particles, related through a
neighborhood system.

- A finite set of states common to all individuals in which
each individual can exist.

- Some type of interaction between neighboring individuals
or particles which encourages homogeneity in the states in
which they exist.

We can represent such a system formally as a graph. Define
a graph G = (V. E), where V = {v1,...,v,} is the set of
vertices. These represent the individuals in the system under
study. The set of edges F = {e1,..., ¢y}, determine which
individuals are neighbors. Each v; can take on a label from
the finite set @ = {¢1,...,¢}. The ¢; correspond to the states
that individuals can exist in.

For example in the case of ferromagnetism, each molecule
has a certain spin. When the spins of neighboring molecules
are different a magnetic force is exerted between them which
encourages the molecules to switch to the same spin. In the
case of belief sharing neighboring agents can share informa-
tion. A strong impetus to share information, like a magnetic
force between them, encourages neighboring agents to have
the same belief.

Defining a Pott’s model for a system with the aforemen-
tioned properties consists of defining an energy function
d(¢i,q;) which gives the strength of the pull between two
neighbors existing in states ¢; and ;.

The higher the energy, the greater the pull. The total energy
for the system is given by the Hamiltonian function H which
sums the energy between all pairs of neighboring individuals.
At higher values of H the system is more likely to be
disordered, i.e., there is likely to be great heterogeneity in
the states in which individuals exist. This is because with
neighbors constantly pulling on each other there is great
impetus for any given individual to continually switch states.
Conversely at lower values of H there is more likely to be
homogeneity in the states in which individuals exist accross
the system.

We write the set of all possible assignments of the states in
@ to the vertices in V' as S. Formally, S = @ x V. Recall
that d(¢;, q;) is a function which gives the energy that exists
in a graph edge e € Y which connects individuals occupying



states ¢; and g;. Let s € S be a vector which gives a particular
labelling of the individuals v € V in terms of states ¢ € Q).
Given these definitions the total energy for the system with a
particular assignment of states to individuals s is given by the
Hamiltonian below:

H(s) = d(ai 4;)
E

Using a Hamiltonian as defined above, the Potts formalism
gives us the probability of the system existing with a particular
assignment s of states to individuals. This distribution is a
function of the Hamiltonian and system temperature 7". The
system temperature 7' serves as a scaling parameter for the
distribution which is proportional to its entropy. Intuitively
T dictates how sensitive an individual is to the pull of its
neighbors. At higher values of 7" and individual is more likely
to switch states in response to a strong pull from its neighbors.
The critical temperature 7 is the temperature below which the
system is most likely to have minimal energy. That is when
most individuals in the system are most likely to occupy the
same state.

Within the Potts formulation, the probability of the system
existing with a given assignment of states to individuals s € S
is given by:

H(s)

e~ kT
P(s)= — (h
Dlses € FT

where k is Boltsmann’s constant.

If we could evaluate Equation 1 exactly we could answer
questions about the system by calculating expectations over
system variables. Most important to this work, we could
find the critical system temperature 7, in the following way.
Recall that 7, is the temperature below which the system
energy is minimal. Using Equation 1 we could calculate
the expected value of H, the total energy of the system as
E(H)=73",P(s)H(s) for a range of values of T'. T, would
then be the value of 7' which corresponds with the minimal
value of H on the resulting graph of H versus 7.

However, calculating the denominator of Equation 1, which
normalizes the distribution, is generally undecidable for even
the smallest sytems. This is because the computational com-
plexity of evaluating the denominator, commonly known as
the partition function, is exponential in the number of possible
ways to assign states to individuals. For this reason we turn
to the Metropolis algorithm [10] which allows us to calculate
expectations over H using samples of states s drawn according
to the distribution P(s).

An example of a Pott’s model where each individual can
exist in one of three states and a neighborhood system defined
by a two dimensional lattice is show in Figure 1. This example
is intended to give an intuition for how the model works. The
bond energy in this case is simply a constant for bonds that
link individuals occupying the same states and zero when the
two states differ. In this example the divergence metric is given

by, dg;.q; = 0qs.q; Where:
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Fig. 1. Hamiltonian for a three state Pott’s model with a neighborhood system
defined by a two dimensional lattice. States of individuals are indicated by
the color of the corresponding site in the lattice. J is a constant which gives
the energy in a bond between individuals occupying the same state.

IV. BELIEF SHARING MAPPED TO POTT’S MODEL

In this Section, we describe formally how the Pott’s model
maps to the belief sharing problem of interest here.

N agents maintain a distributed belief. There is a com-
munication network defined by the set 2 where Jde;; €
FE if a communication link exists between agents ¢ and j
The belief of agent i is represented by a vector X'(t) =
{z1(t),...,2},(t)} where 2%(t) € R. Ground truth is given
by X9 = {zf,...,2%}. At time ¢ agent i takes readings
Ri(t) = {ri(t),r4(t),...,rt(t)} readings are generated by
adding zero mean gaussian noise to the groundtruth according
to ;(t) = 2 + N(0,01). Each agent ¢ maintains a filter f
that is simply a maximum likelihood estimate of «’(¢). That
is x; (t) = Zio 7";- (t)

As a measure of information divergence we use the mean
square error MSE as a metric. Formally the divergence
between the belief of agent ¢ and groundtruth is given by
>y (a5(t) — 2f(t))* while the divergence between the be-
liefs of agents i and k is given by Y7, (z5(t) — z(t))* As
a simple measure of the divergence between the beliefs of two
agents 7 and j we use d(i,7) = Y7, («4(t) — 2%(t))>. The
value d(,7) maps to d(g;, q;) the energy in the link between
neighbors as defined in Section III. Using this measure of
divergence the Hamiltonian of the belief share system is given

by:

H=> d(i,j)s:;
4,]



where

1 Eci_j er,
0i.j = ’
0 £6i7j S

and E is the set of communication links between agents.

Consequently the probability P(H ) of the distributed belief
having total divergence or energy as defined by H above is
given by:

o

e kT
P(H) = —H
ZSESC K
Inserting the belief sharing H into this function we get:
X4, ()8 5
e kT
2,5 2G.5)8

ZSES ¢ k1

P(H) =

V. ALGORITHM

T, can be used in a belief sharing algorithm by aping the
operation of the Metropolis algorithm [10] while calculating
the partition function for the Potts model of the agent system.
The Metropolis algorithm approximates the partition function
by sampling states of the system in proportion to P(s;), the
probability that the system will occupy a point s € S where S
is the space of possible system configurations. These samples
are then used to calculate the partition function. The algorithm
achieves this by randomly choosing an agent, changing it’s
state, and accepting the change randomly weighted by the
change in system energy. An agent can detect the change in
system energy resulting from it’s change in state locally since
the total system energy is given by the sum of the bond energy
between nearest neighbor agents.

Algorithm 1: Algorithm used by agent to decide when and

with whom to share information
BELIEESHARE(S, nlist, readings)

(1)  while true

2) i < RANDOMINTEGER(SIZE(nlist))
3) n « nlist.get(i)

“) n.belief = REQUESTBELIEF(n)

5) d — DIVERGENCE(n.belief, belief)
6) r < UNIFORMRANDOM([0, 1])

(@) p — ExXp(—f3 % d)

® ifr<p

)] SEND(readings, n)

VI. EXPERIMENTS

This section presents experimental results using the agent
system, working according to the Potts model. For the ex-
periments we have used a simulator which allows us to vary
different variables in order to examine their effect. Each agent
in the simulator has its own belief which is created from a
Gaussian model. The simulator has four different, parame-
terizable network implementations. Communication between
agents is simulated to allow many experiments to be per-
formed.

In each of the graphs the model was run for 1000 phases
for each value of kT and the resultant energy averaged over 10
runs. Figures 2 - 5 show the energy on the Y-axis and log(kT)
on the X-axis.
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Fig. 2. Comparing performance across network types.

Fig. 3. Examples of the four various network types. Clockwise from top
left: Lattice, Scale Free, Small World, and Random.

Figure 2 shows the results of four different network im-
plementations. A simple lattice network was implemented
whereby each agent was able to exchange beliefs with each of
its 8 neighbors. A random world network was implemented by
randomly pairing each agent with two other agents. The small
world network involved pairing agents with close agents then
randomly repairing some agents with those further away[16].
The scale free network consists of several hubs, with con-
nections to many agents[17]. The various network types are
shown in Figure 3. The key feature of this graph is that in
each case there was a clear and large phase shift, occurring
at the same critical point for each network. This supports the
key hypothesis of this paper that the system dynamics of a
Potts model apply to a belief sharing problem. The networks
had close to the same performance, but both the lattice and
small-worlds networks had lower divergence after the critical
point, probably due to the clustering in these network types.
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Fig. 4. Performance as noise is varied.

Figure 4 shows the result of varying the standard deviation
of the Gaussian model from which the beliefs were derived.
Values of 1.0, 2.0, 4.0, 8.0 and 16.0 were used. As the noise
is varied, the critical point varies, with lower noise having
a lower critical temperature. This is perhaps not surprising,
since one would expect that if the beliefs start closer to being
the same, less interaction is required to make them the same.
Importantly, even with low noise, a phase transition is still
observed.

600 B.E+HIE
F R L i Energy
500 n ki Count 4.EHIB
essageCount] 4
400 ¢ 1 4.EHIB
=300 t 1 3EHE =
2 B
- o
w200 - 12E+6 2
100 1 1.EHIB
] 0.E+10
0oz 003
Fig. 6. System energy and messages as the temperature is varied.

phase transition occurs at a value where a substantial number
of messages are sent. This is important because predicting this
number of messages, about 100,000 messages in the figure,
has not been possible to estimate in the past. Even the ability
to control the number of messages (and thus get this optimal
behavior) has not been previously possible.
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Fig. 5. Performance as team size is varied.

Figure 5 shows the results of varying the number of agents
in the team. Team sizes of 100, 400, 900 and 1600 were used.
The critical point, where the phase transition occurs, is at
the same location for each of the team sizes. This may be
somewhat surprising, since one might expect bigger teams to
require more interaction to reduce divergence, but the local
nature of the interactions reduces the impact of team size.

Figure 6 shows the number of messages between agents
next to the resultant energy. The left Y axis shows the energy
and the right Y axis shows the number of messages after 1000
phases. The x axis shows the change in kT. It is clear that the
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Fig. 7. Comparison with other approaches.

Figure 7 shows how the Potts derived model compares
to a token based model[18] and a broadcast model. The
token model was implemented by creating five tokens which
contained a belief and a visit counter. The agent averaged his
belief with the belief contained in the token, incremented the
visit counter and passed the token on to a random neighbor.
The broadcast model consisted of random agents “broadcast-
ing’ their belief to 20% percent of the population. Agents who
received a broadcast belief averaged it with their own. Notice
that the Potts derived model uses more messages and is thus
less efficient than the other two models. This is not because the
Potts model is not optimizing performance, it is because of the
constraints we arbitrarily imposed on our interaction model,
constraints not imposed on the other algorithms. Relaxing



these constraints, specifically giving the Potts model a richer
interaction model would allow it to, presumably, achieve the
same level of performance.

VII. RELATED WORK

There has been recent interest in the use of decentralized
Bayesian filters such as the ones proposed in [6, 2] to man-
age beliefs over a large team. Communicating these beliefs,
however, is expensive, prompting several selective commu-
nications approaches. Divergence metrics such as Hellinger
affinity and KL-divergence are commonly used to measure
the information gain of individual communications. However,
existing methods of integration such as channel managers [1]
or query-based particle filters [13] face scaling issues, in
these cases, dealing with redundant data and polynomial-
time scaling with team size, respectively. Decision theoretic
approaches have also been successfully used for small teams
[15]. Consensus protocols over communication networks are
another method to achieve consistent belief among agents.
Multi-hop relay protocols have been demonstrated to allow for
fast consensus seeking [19], but previous work has focuses on
trading robustness and convergence, rather than information
gain and overall network traffic

Uses of the Potts model in the literature include statistical
models of ferromagnetism in metals[9], the explanation of the
phenomenon of segregation in socio-economic models [14],
and the study of political districting [4].

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach to a key problem
for distributed systems. Specifically, the Potts model from
statistical mechanics was applied to the problem of analysis
and design of interaction protocols for maintaining shared
belief. Our hypothesis was that a critical femperature exists
at which a phase transition occurs and belief divergence and
communication are both minimized. Empirical results show
that this was indeed the case, under a variety of circumstances.

However, this paper represents only a first step. The paper
showed that Potts model is applicable to the design and
analysis of multiagent systems, but did not leverage the huge
range of analytic tools that have been built on Potts work. It is
the application of these tools that will fully realize the potential
of the approach presented here. One specific direction for
future work is to relax the constraints on the system imposed
in this paper, thus giving the Metropolis algorithm broader
range in optimizing performance. We anticipate that this will
lead to better performance than any competing algorithms. !
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