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Abstract—A cooperative team’s performance strongly depends
on the view that the team has of the environment in which it
operates. In a team with many autonomous vehicles and many
sensors, there is a large volume of information available from
which to create that view. However, typically communication
bandwidth limitations prevent all sensor readings being shared
with all other team members. This paper presents three policies
for sharing information in a large team that balance the value
of information against communication costs. Analytical and
empirical evidence of their effectiveness is provided. The results
show that using some easily obtainable probabilistic information
about the team dramatically improves overall belief sharing
performance. Specifically, by collectively estimating the value of
a piece of information, the team can make most efficient use of
its communication resources.

I. INTRODUCTION

Emerging and envisioned systems involve hundreds or thou-
sands of autonomous systems cooperating in an environment
to achieve complex joint objectives [8, 3]. A key to the
individual and joint effectiveness of the team is for each
member of the team to have accurate information about objects
in the environment and any uncertainty associated with those
objects [7]. Respecting communication constraints, the team
must ensure, in a distributed fashion, that each member has
the information it requires to perform its role in the team’s
mission. Algorithms to achieve this goal are critical to the
success of teams of autonomous systems for applications
ranging from tracking [8] to force protection [3] to searching
for lost hikers [4].

Previous work has looked at various approaches to the
problem of maintaining shared belief using techniques ranging
from particle filters [9] to Bayesian filters [5] to decision
theory [10]. However, previous work suffers from two key
limitations. First, it does not scale simultaneously in the size
of the shared state space and the size of the team. For
example, sensor networks can be large, but their view of the
environment is simple [6], while some UAVs have a complex
view of the world, but there are only a few of them [5].
Second, previous algorithms focus on ensuring every member
of the team has the most accurate view of the world. In
practice, this is not necessary and, thus, unnecessarily taxes
communication resources. For example, a UAV at one end of
a large space will likely need only approximate information
about the environment at the other end in order to be highly
effective (or even optimal).

In this work, individual sensor readings are sent from agent
to agent, as opposed to much previous work which forwarded
compressed beliefs [9]. This mitigates problems associated
receiving the same information multiple times and allows
information to be forwarded anonymously, which is useful in
a large team [5]. When an agent takes a reading with a sensor,
it looks at the information gain due to the sensor reading to
determine whether to share it. If it decides to share it, the
reading is encapsulated in a token along with a pseudo-unique
ID that distinguishes it from other potentially identical sensor
readings. The token is then forwarded to a teammate, who
integrates the sensor reading with their own beliefs. Depending
on the information gain the receiving team member gets from
that sensor reading, it can either pass the token on or stop
propagation. This basic technique effectively leads to multiple
members of the team jointly determining whether or not to
widely propagate some information, reducing the need for
any single agent to be precisely correct in estimating the
importance of the sensor reading to the team.

This token-based algorithm will be effective if tokens are
delivered to team members who gain information from the
sensor reading on the token. Thus, a policy for propagating a
token around the team has two components: (1) determining
whether to further propagate the token and (2) to whom to send
the token. This paper looks at three policies for determining
whether to propagate a token further: a constant “time-to-
live” propagation policy; one that allows agents to increase
or decrease a token’s “time-to-live”; and one that uses joint
estimates of the sensor reading’s value to the team to determine
a propagation distance. In this work, we make the assumption
that each agent has no specific information about any other
agent, hence the only thing that can be done for (2) is to send
the token randomly.

Analysis of the first two policies establishes performance
expectation as well as probabilistically bounding the expected
performance in limited cases. Empirical results support the
analysis, while also illustrating the effectiveness of the ap-
proach. Specifically, the policy based on an estimate of value
to the team performs at least as well as the other policies,
mimicking the performance of other policies in regions where
their policy performs well. When the agents receive a large
number of sensor readings with widely varying value, this
policy clearly outperforms the other policies.



II. PROBLEM STATEMENT

This section formally describes the problem addressed by
this paper. Agents A = {a1, . . . , am} are a team with a joint
objective in a partially observable domain. Decisions about
actions by the agents are based on state variables X(t) =
{x1(t), . . . , xn(t)}. The agents have uncertain sensors, thus
via some filter they must determine the probability of each
of the state variables. Agent ai’s probability distribution over
X at time t is P i(X(t), t). Communication between agents is
assumed to be point-to-point, with agents able to communicate
directly with a known subset of team mates at any time.

The performance of the team will be adversely affected
whenever its estimate of the state of environment varies from
the actual state of the environment. The information difference
(KL-divergence or similar) is ∆i(X, P i(X(t), t)). The bigger
∆i(•), the higher the divergence. However, depending on
their current activities, individual agents will not be equally
effected by divergence. In general, they will only need to know
precisely some values, while others can be coarsely understood
or not known at all. Specifically, the cost of δi(•) divergence
to an agent ai at a particular time is: c(ai, δ

i(•)) → R. Define
C(ai, ∆i(•)) → R to be a sum over c.

Using their sensors, agents take sensor readings s ∈ S.
A sensor reading influences P i(X(t), t) via some filter φ,
P i′(X(t), t) = φ(P i(X(t), t), s). The only assumption made
about the filter is that it is always better to have more sensor
readings. Using the cost of information divergence and filter
equations, the value of that sensor reading to ai is:

v̂(s, ai) = C(ai, ∆i(X, P i(X(t), t)), t)−

−C(ai, ∆i′(X, P i(X(t), t)), t),

i.e., the change in cost. We assume v̂(s, a) ≥ 0. The value of
s to the whole team is:

V̂ (s) =
∑
a∈A

v̂(s, a)

To share a sensor reading s, an agent creates a token t
encapsulating s. The token includes a psuedo-unique ID and
may contain additional control information pertaining to the
propagation of s, as long as this information is of a reasonable
and strictly limited size. The agent then transmits token t to
a randomly selected agent.

An agent receiving a token t containing a sensor reading
s retains a history that it can use to identify repeat visits of
t. Practically, this history need only be for a short temporal
window, as outdated sensor readings will disappear when
their corresponding tokens cease to propagate. We assume
that integrating a sensor reading twice has no effect, thus,
v̂(s, a) = 0 after an agent has received s. After it integrates
s, it must determine whether to propagate t further, and if so,
transmits it randomly.

We define a unique visit to be the first visit of a token
containing a sensor reading s to an agent a. We also define
an interested agent for a given system state to be one with

v̂(s, a) > ε in that state. In the remainder of this paper, we
assume ε = 0.

The optimal behavior is to share s with as many agents in
As as possible while minimizing the number of communica-
tions needed. Clearly, these two goals are inversely related: the
best case for gaining value is for a token to visit each agent at
least once, which may require large numbers of visits because
tokens are constrained to move randomly, and the best case
for reducing visits is for agents never to send anything, which
gains no value. Thus, the behavior of the token policy must
be balanced between these two goals, such that both are met
sufficiently for the domain-specific task.

Suppose we have v̂(s, a) > 0 for a ∈ As ⊆ A and v̂(s, a) =
0 for a ∈ A \ As, i.e., As is the subset of agents interested
in sensor reading s. Let Av be the subset of agents visited
by token t containing sensor reading s in a particular case.
We can reformulate our problem as the optimization of two
objective functions.

First, we have the proportion of V̂ (s) attained:

fv =

∑
a∈Av

v̂(s, a)

V̂ (s)
(1)

Second, given a total number of visits N (N ≥ 1), we have
the proportion of necessary communications:

fs =
us

N − 1
N

, (2)

where us
N is the number of agents with v̂(s, a) > 0 (i.e., a ∈

As) who have seen the token t, and thus us
N − 1 corresponds

to the number of unique visits to agents in A with v̂(s, a) > 0.
We assume that the agent that creates the token is interested,
and subtract one to correct for this initial agent obtaining the
token without it making any visits.

The idea behind definition of us
N and fs is straightforward.

We wish to penalize unnecessary visits, so our metric must
decrease as the number of visits increases. However, we
should not penalize our desired behavior, visits to agents with
v̂(s, a) > 0. By using us

N , our metric will remain near one for
any number of visits, as long as those visits consistently lead
to agents for which v̂(s, a) > 0.

Clearly, fv ≤ 1 and fs ≤ 1. In an ideal scenario for gaining
value, in which the token visits all of the interested agents
in the team and the team gains all possible value, we can
see that fv = 1. Similarly, in an ideal scenario for reducing
visits, in which the token only visits interested (v(s, a) > 0)
agents, fs = 1. Thus, the overall goal of any token policy is
to maximize fv and fs.

III. APPROACH

In this section, we evaluate the performance of three policies
for token propagation. The first is a simple constant “time-to-
live” (TTL) policy, referred to as the C-policy, which is the
norm for most packet-based routing schemes. We define TTL
as the number of visits remaining before the propagation of a
token stops. The second is a simple linear policy, referred to as
the S-policy, which increases the TTL by a constant whenever
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Fig. 1. C policy: Constant TTL policy, c0 = 200. Agent a1 generates a
token t, sets t.TTL = c0, then passes it to a2. Agent a2 decrements t.TTL,
verifies that t.TTL ≥ 1, and passes it to a3.

a token reaches an interested agent. Finally, we present an
optimization based policy, referred to as the S-OPT-policy, that
maximizes our objective functions directly at each agent that
receives the token.

A. C-policy (Constant TTL policy)

First, we describe the most common and basic policy,
a constant TTL. For every sensor reading s, the C-policy
initializes the token t = {s, TTL = c0}, then passes the token
randomly to another agent. An agent receiving the token does
the following:

1) Set t.TTL = t.TTL − 1.
2) If t.TTL = 0 stop the transmission of the token t.
3) Otherwise select another agent a uniformly randomly,

and pass the token t to a.
An example of this policy is shown in Figure 1. The value

of c0 is the only parameter of the policy.

B. S-policy

Next, we describe a simple policy for adjusting the TTL of
a token based on the value function v(s, a). Now, each agent
that the token visits will be able to modify the token TTL,
with the intuition that this will allow agents to collectively
determine an appropriate TTL for the token during its lifetime.
This reduces the risk of an inaccuracy in a single agent’s belief
state leading to a poor communications decision that costs the
entire team valuable bandwidth.

The S-policy begins by initializing the token in the same
way as the C-policy, i.e., t = {s, TTL = c0}. If the initializing
agent is uninterested, the token is simply discarded. Otherwise,
it is randomly propagated, and each agent a receiving the token
does the following:

1) Set t.TTL = t.TTL − 1.
2) If v̂(s, a) > 0 then set t.TTL = t.TTL + c.
3) If t.TTL = 0 stop the transmission of the token t.
4) Otherwise, select another agent a uniformly randomly,

and pass t to a.
An example of this policy is presented in Figure 2. The

values of c0 and c are parameters of the policy.

C. S-OPT-policy

The third policy is directly derived from the objective
functions in (1) and (2). The overall goal is to maximize the
following weighted objective function, constructed from the
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Fig. 2. S policy: Linear TTL policy, c0 = 10, c = 11. Agent a1 generates
a token t, sets t.TTL = c0, then passes it to a2 . Agent a2 verifies that
t.TTL ≥ 1, and checks if the sensor reading s has value to itself. It does,
so t.TTL is incremented by c and then passed to a3.

linear combination of the original two objective functions of
interest:

f = fv − γ
1
fs

, (3)

where γ is a weighting parameter of the policy, which can
be interpreted as a penalty for unnecessary visits. It can be
observed that f in (3) will be maximized if we maximize fv

and fs.
Initially, agent a0 has some sensor reading s, which it has

deemed worthy of transmission (we assume that v̂(s, a0) > 0).
We create a token

t = {s, V̂ c
i (s), us

i , i}, (4)

where i is the total number of visits for token t (initially i = 0),
V̂ c

i (s) =
∑

a∈Av
v̂(s, a), i.e., the value received by the team

after i visits and us
i is the number of unique visits to agents

with v̂(s, a) > 0, i.e., a ∈ As.
The S-OPT-Policy locally maximizes (3) at each agent a

visited in order to incorporate the value v̂(s, a) and local
estimates of V̂ (s) and As. The policy starts by initializing the
token, t = {s, V̂ c

i (s), us
i , i}, with t.i = 0, t.V̂ c

0 (s) = v̂(s, a0),
t.us

0 = 1. Then each agent receiving the token performs the
following steps:

1) If a ∈ A\As or a was visited before, then t.us
i+1 = t.us

i .
2) If v̂(s, a) > 0 then set t.us

i+1 = t.us
i + 1.

3) Set t.V̂ c
i+1(s) = t.V̂ c

i (s) + v̂(s, a).
4) Set i = i + 1 and analytically solve the following

optimization problem (as described below):

δ∗ = argmax
δ

f =
V̂ c

i (s) + V̂δ

Ṽa

− γ
i + δ

us
i + us

δ

, (5)

where Ṽa is the estimation of V̂ (s) by agent a, V̂δ is
the expected value the team receives after an additional
δ visits, us

δ is the expected number of visits to agents
with v(s, a) > 0 (that is the number of unique visits to
agents in As) during these δ visits.
In order to calculate us

δ, we need Ãa
s , which is the

estimation of As by agent a. Given these, the solution
function is determined by analytically solving for a
global maximum using ∂f

∂δ = 0. The resulting expression
can be used to directly evaluate δ∗ computationally. This
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Fig. 3. S-OPT policy: Optimized TTL policy. Agent a1 generates a token
t, with the default initial values, adds its own value to V c

1 , then passes it to
a2. Agent a2 updates the V c

1 by adding its own value, and increments us

because it has not received t before. It calculates δ∗ and verifies that δ∗ ≥ 1,
so t.N is incremented and then t is passed to a3.

analytic solution need only be calculated once for given
expressions of us

δ and V̂δ .
5) Stop the token t if δ∗ < 1 (i.e., additional visits are

expected to decrease the value of f ).
6) Otherwise select another agent a uniformly randomly,

and pass t to a.

An example of this policy is presented in Figure 3.
Observe that if γ = 0 (i.e., communication is not tightly

constrained) then according to the S-OPT-Policy, the token
will be transmitted as long as it is expected to gain value
for the team. Conversely, if γ = +∞ (i.e., communication
resources are tightly constrained) then we can only continue
the execution of the algorithm (i.e., the objective function in
(5) will not be decreasing for δ ≥ 1) if we can guarantee that
the next agent a has value v(s, a) > 0 with probability 1.

While gathering large proportions of value for the team,
a token will revisit many agents before it is passed to new
agents. This is purely due to the assumption that the token is
randomly routed around the team and does not maintain any
history. If any one of these visited agents underestimates the
value of the token, the token’s propagation may be stopped
prematurely, because the policy may calculate the remaining
agents or value in the system to be less than zero. In contrast,
if an agent overestimates these values, there is little cost as
subsequent agents will quickly stop propagation. Thus, slight
inaccuracies in estimation are compounded when underesti-
mating, but averaged out when overestimating. These problems
are alleviated by bounding the estimation functions to be strict
overestimate, i.e., Ṽa ≥ V̂ (s) and Ãa

s ≥ As.

IV. ANALYSIS

In this section we provide some analysis of token propa-
gation using the above described policies, specifically the C-
policy and S-policy. This creates a framework for reasoning
analytically about their performance. Furthermore, these ex-
pressions can be used to cross-verify later experimental results.

Since at each step of the described policies we select the
next agent a uniformly randomly, we can calculate the ex-
pected number of interested agents, i.e., agents with v̂(s, a) >

0, who have seen the token t after n visits:

us
n = (us

0 − |As|)
(

1 − 1
|A|

)n

+ |As|, n ≥ 0. (6)

where us
0 is 1.

Therefore, we can estimate the expected proportion of
necessary communications, fs, as

E[fs|N = n] =
1
n
· (us

n − 1). (7)

By our initial assumption, the agent ã, which initiates the
token passing, is interested, i.e., v(s, ã) > 0, and this value
is counted towards the total value that the team receives from
the token t. Therefore, in the general case the expected value
of

∑
v(s, a) the team receives during n visits should depend

on the value v(s, ã). Let us simplify the analysis by assuming
that the agent that initiates token passing is selected uniformly
randomly among agents in As. Let Xa be a random variable,
which is equal to 1 if agent a ∈ As has seen the token after
n visits (i.e., its value v(s, a) is collected by token t), and 0,
otherwise. Then

E[fv|N = n] =
∑

a∈A v(s, a)E[Xa|N = n]

V̂ (s)
=

=
us

n

|As| = 1 −
(

1 − 1
|As|

)(
1 − 1

|A|
)n

(8)

With these basic definitions in place, it is possible to directly
evaluate the expectations of our optimization functions. First,
we present these expressions for the C-policy.

Proposition 1 Equations (7), (8) define performance of the
C-policy for c0 = n.

Let us now consider the more interesting case of the S-
policy. In order to estimate E[fv] and E[fs], we need to
calculate Pr{N = n}, which is the probability that token
t makes exactly n visits before its propagation is stopped by
the algorithm.

Let c0 and c be the parameters of the S-policy. Suppose
after n visits the token visited i agents from As. Then the
probability that during the next visit the token will encounter
an unvisited agent a ∈ As is equal to

pi =
|As| − i

|A| . (9)

The probability that the token will get to a visited agent, or
an uninterested agent from A \ As is equal to

qi = 1 − |As| − i

|A| (10)

and, clearly,
pi + qi = 1.

The linear nature of our policy implies that termination
only occurs in a very limited set of stopping states. For u
unique interested agents visited, the token must stop after it



has exhausted the TTL accumulated by u−1 successful visits.
Thus, the total number of visits must be exactly

N = c0 + u + (u − 1)(c − 1), (11)

where u = 1, . . . , |As|. For example, at u = 1, the case where
only one unique interested agent was visited, we have N = c0.
This is because we know that token t visited only 1 interested
agent (the agent that initiated the transmission) and must have
subsequently made exactly c0 visits to uninterested agents in
order for it to have stopped. Then in terms of (9) and (10)
the probability that token t makes exactly n visits before its
propagation is stopped can be calculated as follows:

Pr{N = n} =

=
{

0, ∀u N �= c0 + u + (u − 1)(c − 1)
p1 . . . pu−1

∑
i1,...,iu∈Pu

qi1
1 . . . qiu

u , otherwise
(12)

where set Pu describes all possible paths to a stopping state
with exactly N visits:

Pu = {i1, . . . , iu : i1 + . . . + iu = c0 + (u − 1)(c − 1),

∀j

j∑
k=1

ij < c0 + (j − 1)(c − 1), j = 1 . . . (u − 1)}

Therefore, for any values of parameters c0 and c we can
estimate the performance of the S-policy in terms of fv and
fs using (7)-(12) as follows:

E[fv] =
|As|∑
u=1

u

|As|p1 . . . pu−1

∑
i1,...,iu∈Pu

qi1
1 . . . qiu

u , (13)

E[fs] =
|As|∑
u=1

u − 1
cu

p1 . . . pu−1

∑
i1,...,iu∈Pu

qi1
1 . . . qiu

u , (14)

where cu = c0 + u + (u − 1)(c − 1).
We can also estimate the expected number of total visits:

E[N ] =
|As|∑
u=1

cup1 . . . pu−1

∑
i1,...,iu∈Pu

qi1
1 . . . qiu

u , (15)

Proposition 2 Equations (13), (14), (15) define performance
of the S-policy.

Probabilistic bounds on performance. We can also esti-
mate the probability of scenarios when the token visits only a
small portion ε of interested agents from As, that is:

Pr{
∑

a∈As

Xa ≤ ε · |As|}, (16)

where 0 ≤ ε ≤ 1. Then we can calculate this probability as

Pr{
∑

a∈As
Xa

|As| ≤ ε} = (17)

=
Nε∑

u=1

p1 . . . pu−1

∑
i1,...,iu∈Pu

qi1
1 . . . qiu

u , (18)

(a) Network Parameters
Variable Value
A 500
As 0.5 · A
σV 0.1 · V (s)
σA 0.1 · A

(b) Policy Parameters
Policy Variable Value
C c0 2000
S c0 10
S c 10
S − OPT γ 0.0464

TABLE I
DEFAULT PARAMETERS OF THE NETWORK MODEL.

where Nε = 	ε · |As|
 is the maximum possible total number
of the visited agents with v(s, a) > 0.

If we assume that v(s, a) is a 0–1 function defined as

v(s, a) =
{

1, a ∈ As

0, otherwise,
(19)

then equation (18) also defines the proportion of the total value
V̂ (s) that the team receives from the token, since in this case:

Pr{fv ≤ ε} = Pr{
∑

a∈As
Xa

|As| ≤ ε}. (20)

Knowing the values of parameters c0, c, and |As|, we can
now estimate the probability of scenarios when the token visits
only a small portion ε of interested agents from As using
equation (18).

V. RESULTS

The three policies described above were evaluated in an
abstracted simulation. The simulation model used a fully
connected network of A agents, of which As have v̂(s, a) > 0.
In each run, a token is spawned at an interested agent
(v̂(s, a) > 0) chosen randomly from the subset of interested
agents in the team. The token is propagated according to a
given policy, passed to agents selected randomly from the
network. As each agent is visited, its value is set to zero,
reflecting the assumption that the team will not gain any
further value by having the token revisit the agent. The token
continues to propagate until the policy determines it should
be stopped, at which point the total number of visits, N , the
proportional value gained by the agents visited, fv, and the
number of interested agents reached, us

N are used to evaluate
the performance of the run.

Multiple parameters of the model are varied to simulate
various effects in the system, but the nominal values for the
model are provided in Table I(a). Using the simulation, it is
straightforward to confirm the results of the analysis on the
S-policy. For this, we consider a reduced team of size A = 50.
Within this team, |As| is varied between 1 and 50. For each
agent a ∈ As, v(s, a) = N (100, 20). Each value of As is
simulated for 20 runs, and the mean of each batch of runs
is plotted in Figure 4 for N , fs and fv. Even with the high
amount of variation introduced by the Gaussian value function,
it is clear that the expectation functions are consistent with the
simulated results.

With this analytic knowledge of the behavior of the two
simpler policies, we can now begin to empirically gauge the
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Fig. 4. Averaged simulation results compared to expected results for S-policy

quality of the third policy. The nature of the S-OPT policy
requires that agents be able to strictly overestimate the total
value and total number of interested agents in the system.
Thus, the absolute value of 10% Gaussian noise was added to
the actual values of the system to create strictly overestimating
functions:

Ṽ (s) = V (s) + |N (0, σV )| (21)

Ã(s) = A(s) + |N (0, σA)| (22)

In order to deal with the various parameterizations of each pol-
icy, a baseline simulation was run using the nominal network
settings while varying the tuning parameters of each policy. A
rough scaling of parameters was obtained that corresponded to
similar performance in each policy for the nominal network in
terms of fv and N . It was found that a linear scaling of c0 (for
the C-policy), c (for the S-policy) and logarithmic scaling of
γ (for the S-OPT-policy) satisfy the necessary requirements.
The other parameter (c0 for the S-policy) was set to a constant
value. These ranges are detailed in Figure 5.

Interestingly, when evaluated by proportional value col-
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Fig. 5. Varying policy parameters. Along the x-axis, γ varies logarithmically
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lected, the C-policy follows a roughly logarithmic path, the S-
policy follows a sigmoid path, and the S-OPT-policy appears
to form a piecewise combination of the two paths, starting
out with a logarithmic path, then switching to a sigmoid at a
critical point. This hints that the underlying behavior of the
S-OPT-policy is emulation of the most useful simple policy in
a given region.

Using this baseline, a set of parameters can be chosen that
yield similar performance in each metric. The parameters used
here are recorded in Table I(b).

With these parameters held constant, the network size was
varied from 10 to 5000 agents. The results are presented in
Figure 6. As the number of agents is increased, moving right
along the x-axis, the effect on the C-policy is significant,
dropping along fv. This is an intuitive result: the number of
visits stays constant, meaning that as the team gets larger,
the value gained by the team passing a token does not scale
along with the increase in value in the team. The S-policy and
S-OPT-policy perform much better, increasing their number
of visits linearly as the network size increases, and thus
maintaining the proportional value collected. This is because
these policies continue to see value in token propagation, while
the C-policy does not take the context into account.

Next, the proportion of interested agents (As/A) in the
network was varied between 0 - 100%, with the results in
Figure 7. When the proportion of interested agents in the
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Fig. 6. Varying network size.

team is varied, the C-policy remains fairly constant in its
effectiveness, as can be seen by the flat fv over the entire
range of (As/A). The S-policy, however, does not handle
the variation as gracefully. At small values of (As/A), cor-
responding to only a few agents in the team being interested,
it becomes prone to failure, dropping tokens prematurely if
a few uninterested agents are visited sequentially. This is
intuitive, as its linear increase in TTL depends finding a
steady supply of interested agents. At higher proportions,
corresponding to many agents in the team being interested, the
S-policy overestimates its TTL. This causes a linear increase in
the number of visits the token makes while not significantly
increasing value collected. In fact, when the entire team is
interested, the S-policy propagates the token 2.5 times farther
than the other two policies, with fewer than a 5% gain in
value. The S-OPT-policy mediates between the two policies,
increasing TTL logarithmically such that when few agents
are interested, a linearly proportional number of visits are
made, but as the network grows more interested, an asymptotic
number of visits are made such that a sufficient, but not
unnecessary amount of value is collected by each token.

To understand the impact this has in an actual system, we set
up a common scenario for multi-agent belief sharing. As for
each token is sampled from a bimodal Gaussian distribution,
with one peak at 1

4A and the other peak at 3
4A. This represents

a scenario where sensor readings are frequently of interest to a
small portion of the team, but occasionally contain significant
information that is of interest to a large portion of the team. By
varying the amplitude of each peak in the distribution, as seen
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Fig. 7. Varying proportion of interested agents.

in Figure 8(a), we can adjust how often “important” sensor
data is collected. The three policies were simulated over these
distributions for a team size of 500, with 100 runs per policy,
using the nominal parameters specified in Table I.

It can be clearly seen in Figure 8(b) that the three policies
perform similarly in gaining value for the team. The largest
change is in the S-policy, which improves very slightly, mini-
mally surpassing S-OPT-policy. However, the corresponding
graphs in Figure 8(c) reveal a large difference in the effi-
ciency of the algorithms. Unsurprisingly, the C-policy remains
constant. The S-policy sharply increases its number of visits
as the high value peak of the As distribution becomes more
prevalent, increasing by almost 50%. The S-OPT-policy, while
remaining competitive in the value gained for the team, is able
to use far fewer visits than either of the other policies in all
cases. This includes the first case, where the S-OPT-policy is
actually surpassing the S-policy in value gain as well.

VI. RELATED WORK

There has been recent interest in the use of decentralized
Bayesian filters such as the ones proposed in [5, 2] to manage
beliefs over a large team. Communicating these beliefs, how-
ever, is expensive, prompting several selective communications
approaches. Divergence metrics such as Hellinger affinity and
KL-divergence are commonly used to measure the information
gain of individual communications. However, existing methods
of integration such as channel managers [1] or query-based
particle filters [9] face scaling issues, in these cases, dealing
with redundant data and polynomial-time scaling with team
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(c)

Fig. 8. Performance of policies with bimodal Gaussian distribution of As.
Panel (a) depict the PDFs of the three bimodal test distributions. Panel (b)
shows the cumulative total value collected by each policy over 100 runs. Panel
(c) represents the cumulative total number of visits made by each policy over
100 runs.

size, respectively. Consensus protocols over communication
networks are another method to achieve consistent belief
among agents. Multi-hop relay protocols have been demon-
strated to allow for fast consensus seeking [13], but previous
work has focuses on trading robustness and convergence,
rather than information gain and overall network traffic.

Token passing using random walks has been proposed in
the field of peer-to-peer networking as a method of distributed
search over large, unstructured networks, as it has been shown
to approximate uniform random sampling [11]. Furthermore,
token passing algorithms have recently been proposed as a
suitable framework for large-scale team coordination [12]. In
the area of communications, however, most this previous work
has focused primarily on methods to improving routing of
tokens, rather than on optimizing token lifetimes to reduce
communications overhead.

VII. CONCLUSIONS

This paper presented a novel token-based approach to
maintaining shared belief in a large team. Departing from
previous work, it was not assumed that every agent needed an

identical and best possible view of the environment. Relaxing
this assumption allowed the development of a token-based
belief sharing policy that used and refined an estimate of the
value of a sensor reading to the team that was scalable and
out-performed simpler policies. Analytic and empirical results
identified the key properties of the approach.

Planned future work will make more increasingly realistic
assumptions to make the algorithms described above more
practically applicable. Such assumptions include assumptions
about independence between sensor readings and Gaussian
properties of value estimates. Additionally, we see that the
key way to improve the practical efficiency of the algorithm
is to find more intelligent ways of routing tokens around the
network. Improved routing models will increase the complex-
ity of analysis, likely requiring new analytic techniques. 1
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