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Abstract—This paper presents a decentralized approach to
path planning for large numbers of autonomous vehicles in
sparse environments. Unlike existing approaches, which are
either computationally expensive or communication intensive, the
presented approach allows large numbers of vehicles to plan
independently with low communication overhead. The key to the
algorithm is to observe that, in sparse environments, collisions
are exceptional and that most of the time vehicles will simply not
hit each other. Hence, it is reasonable to allow vehicles to plan
independently and then resolve the small number of conflicts.
We operationalize this by having each vehicle send their planned
paths to a small number of their team mates via tokens. Each
team member is required to check for conflicting paths that they
have been informed about via a token and inform those involved
when any conflict is detected. Both analytic and empirical results
show that the approach has very high probability of detecting
all potential collisions for large numbers of vehicles in both 2D
and 3D environments.

I. INTRODUCTION

In emerging applications, large numbers of cooperative au-
tonomous vehicles, such as autonomous ground vehicles [1] or
unmanned aerial vehicles (UAVs) [2], will be required to share
the same physical space. Of particular interest are domains
where many sensor assets are simultaneously working in a
shared environment. A critical challenge in such applications
is to plan paths that ensure collisions do not occur as vehicles
move around. While there are many applications with different
specific requirements, this paper focuses on ones where there
are up to 100s of vehicles performing time-critical missions,
e.g., disaster response [3], [4] and battlefield operations [5],
[6], in a relatively sparse 2D or 3D environment. Notice
that fast moving vehicles typically do not have sensors on
board to detect collisions sufficiently far in advance to safely
avoid the collision. This is particularly the case for small and
medium sized UAVs which have no ability to detect other
similarly sized UAVs. Without such sensors, the vehicles must
proactively cooperate to avoid collisions.

Recently, a number of researchers have looked at real-time
cooperative path planning for multiple fast-moving vehicles
such as UAVs, but typically in a centralized and computation-
ally expensive manner [5], [7], [8], [9], [10]. Most previous
work casts the problem as a centralized optimization problem
and many solve it using linear programming techniques. A
notable exception is [7], however, that approach does not
consider the communication overhead of the broadcast for
sharing the path information among vehicles and is impractical

for large teams. Hence, despite much research into path plan-
ning, there are not readily available solutions for environments
where many vehicles must share an environment.

The main reason why most previous approaches are ineffi-
cient is they attempt to ensure that the planner has complete
knowledge prior to planning, so that it will never plan a path
that will conflict with another vehicle. However, in sparse
environments, we observe that collisions between vehicles will
be the exception rather than the rule. That is, even if vehicles
moved without consideration of one another, extended periods
might pass without a collision occurring. Thus, we hypothesize
that it will be more efficient to plan paths independently, then
resolve conflicts, rather than to gather information about all
vehicle paths before planning. Such an approach can allow
distributed planning but still ensure collision free paths with
low communication overhead.

Motivated by recent work on foken passing algorithms [11],
[12], we have developed a token-based approach to detecting
path conflicts in a distributed manner. Specifically, when a
vehicle plans a path, it creates a token encapsulating its path
and sends it to one of its team mates. That team mate checks
the path to determine whether it conflicts with any other paths
that it knows about and, if not, passes the token to another
team mate. This process continues until either a conflict is
found or the token has been passed to a fixed, small number
of team mates. If a conflict is found, the vehicles with the
conflicting paths are notified and generate new, non-conflicting
paths. Vehicles plan slightly in advance of when their plans are
needed, to allow time for conflicts to be detected and resolved.

In this paper we present an efficient conflict free path
planning algorithm for large numbers of autonomous vehi-
cles with various kinematic constraints in both 2D and 3D
environments. Additionally, we provide a quantitative study
of token movements for collision detection applying random
walk theory to the communication graphs. We demonstrate
that, for a given team, a lower bound on the number of
agent a token must visit can be determined, so that tokens
containing conflicting paths will meet at some vehicle with
very high probability. We validate the proposed algorithm with
two different path planners and both 2D and 3D simulation en-
vironments containing both stationary and dynamic obstacles.
Both analytic and empirical results show that our approach
has very high probability of detecting all potential collisions
for large numbers of vehicles.



II. PROBLEM

In the following, we formally describe the cooperative path
planning problem. Vehicles V' = {v1,...,v,} are able to
move around some 2D or 3D environment. The communi-
cation network connecting the team is a connected undirected
graph G = (V, E), where F is the set of links between vehi-
cles.! For v;, v; € V, (v;,v;) € E denotes that vehicles v; and
v; are neighbors and are able to exchange tokens directly. The
environment contains stationary obstacles, O = {o1,...,0,}.
A predicate intersects({x,y, z),0;) — {true, false} is true
if and only if the stationary obstacle o; does not allow the
vehicle to be at location (z,y, ).

We define L(v;,tr) = ((z,y, 2),tx) as the location of the
vehicle v; at time ¢;. The path planning algorithm must find
a continuous path, I'(v;) = (L(v;, to), L(vs, t1), ... L(v;,tg))
satisfying kinematic constraints on the vehicle and ending at
the vehicle’s destination. £(v;,t9) = s; is the start location
of the vehicle and £(v;,ty) = g; is the goal location of the
vehicle. Paths must not intersect with stationary obstacles, i.e.,
Vt,Yo € O, —intersects(L(v;,t),0). Cost(T'(v;)) — R is a
function of the energy exerted traversing the path I'(v;) and
will differ from vehicle to vehicle. For example, tight turns by
a UAV consume more energy than broader ones.

Physical vehicles will typically not be able to exactly follow
a planned path, hence the paths need to ensure some miniu-
mum safe distance, MinDist, apart to ensure no collisions.
If two planned paths never take vehicles within MinDist of
one another, we say they are conflict free. Formally, paths are
conflict free if and only if

Vt, Y, v; € Vi # j, Dist(L(vs, t), L(vj,t)) > MinDist

where Dist(L(v;,t), L(vj,t)) is the Euclidean distance be-
tween two locations.

In a sparse environment, if each vehicle plans an optimal
path from its start location to its goal location not taking into
account any other vehicles, there is a good probability that the
paths will be conflict free. Baseline experiments in Section V
show this to be the case.

The optimization problem is to have the vehicles arrive as
quickly as possible to their goal locations, avoiding collisions
and minimizing energy use (we assume each vehicle has
enough fuel). Thus, we can write the optimization problem
as

inimi t Cost(I'(v;
minimize o max g+ 0 ;, ost(T'(v;))

s.t. Vt, Vv, v; € V)i # j, Dist(L(v;,t), L(v;,t)) > MinDist

and
Vi, Yo € O, —intersects(L(v;,t),0)

I An alternative would be to assume a broadcast network, which is used by
some types of autonomous vehicles. We believe that using a point-to-point
model is more general, since a logical point-to-point network can be created
even if physical communication is done by broadcast. Moreover, in the next
section, we briefly describe how the algorithm would be adapted for broadcast
communications.

where o and (3 are constants. Notice that this optimization
function minimizes the time that the last vehicle arrives at its
goal, but other functions, e.g., the average time the vehicles
reach their goals, would also be possible.

III. COOPERATIVE PATH PLANNING

The approach presented in this paper, relies on two key
components. First, a path planner is used to determine a
path, given known dynamic and stationary obstacles. Second,
a token-based algorithm is used to detect conflicts between
planned paths. Both of these algorithms run at each vehicle
and run asynchronously to one another and their counterparts
at other vehicles. Two different planners are described, an A*
planner for optimal planning in smaller environments and an
RRT planner for heuristic planning in larger environments. The
intention of illustrating the algorithm with two different path
planners for different types of domain is to emphasize that the
basic algorithm is independent of of the planner.

A. Cooperative Deconfliction Algorithm

Algorithm 1 has two basic tasks: (1) planning paths for
the vehicle (lines 4-13), and (2) ensuring the whole team
avoids conflicts (lines 14-35). The vehicle starts with accurate
knowledge of the stationary obstacles in the environment?,
SObs, and has an initial path planned, path (which is assumed
to be conflict free), but no knowledge of the paths of other
vehicles (line 1). If the vehicle has almost completed traversing
its current planned path (line 5), it invokes the planner to plan
a new path (line 7). Planning slightly in advance gives the team
some time to detect and resolve conflicts before the vehicle
starts traversing the path. The new path is passes to a team
mate, encapsulated in a token (lines 8-10). If the current path is
complete, the vehicle switches to its next planned path, which
was planned earlier and should have been vetted of conflicts.

Next the vehicle checks to see whether it has new messages.
If it has received a token, it updates its knowledge of dynamic
obstacles (i.e., other paths) (line 16), updates its token model
(line 17) then checks for conflicts with any other plans it
knows about (line 19) and reports any conflicts that it finds
(lines 20-21).

If the incoming message informed the vehicle that it has
planned a conflicting path (line 26), a negotiation with the
other involved vehicle determines which vehicle should change
paths. We currently use a simple heuristic to determine who
changes path, specifically, the vehicle with the lexiographically
earliest name changes path, but more sophisticated policies are
envisioned. If the vehicle changes its own path, it sends out
a Revoke message revoking its originally planned path (line
30) and informing the team of its newly planned path (lines
32-34). On receipt of a Revoke message, the vehicle adjusts
its knowledge base to reflect the fact that no vehicle is using
that path (line 36) and, if required, forwards the message on
(lines 37-41).

2This is not strictly required, but makes the description of the algorithm
clearer



Algorithm 1: The overall path planning algorithm
AGENT(SObs, plan)

(1) DObs « ||

(2) tokenM .init()

(3) nextPlan +— NULL

(4) while true

(5) if plan.endTime >t + PLAN_AHFEAD
(6) g < NEXTGOAL()

@) nextPlan <— PLANPATH(SObs, Dobs, g)
(8) token «— MAKETOKEN(token)

) dest < tokenM.dest(token)

(10)  SEND(token, dest)

(11) else if plan.endTime > t

(12)  plan «— nextPlan

(13) nextPlan «— NULL

(14)

(15) msg «— RECV_NO_BLOCK()
(16) if msg is Token

(17)  DObs.update(msg)

(18)  tokenM.recv(msg)

(19)  conflict — tokenM.getConflicts()
(20)  foreach c € conflict

(21) SEND(c)

22) msgTTL +— msg.TTL—1
23) ifmsgTTL>0

(24) dest «— tokenM .dest(token)
(25) SEND(token, dest)

(26) else if msg is Conflict

(27)  replan? < NEGOTIATE()

(28)  tokenM.adjust(msg)

(29)  DObs.adjust(msg)

(30) if replan?

(31)  SEND(MAKEREVOKE(nextPlan))
(32) nextPlan < PLANPATH(SObs, Dobs, g)
(33) token «— MAKETOKEN(token)
(34) dest — tokenM.dest(token)
35) SEND(token, dest)

(36) else if msg is Revoke

(37)  DObs.remove(msg)

(38 msg.TTL +— msg.TTL—1
(39) iftmsgTTL>0

(40) dest — tokenM.dest(token)
41 SEND(token, dest)

Notice that this algorithm translates easily to a situation
where communication is performed by broadcast instead of
point-to-point. Specifically, rather than creating a token with
the planned path (lines 8-10), it simply broadcasts that plan to
whoever is within hearing range. Those hearing the broadcast
message should check for conflicts with other paths they know
about and broadcast the detection of a conflict if one is found.

1) Optimal Path Planning for Small Environments: To plan
optimal paths in an environment containing both stationary and
dynamic obstacles, A* search is used [13].> Typically, optimal
algorithms like A* will only be appropriate for vehicles
with relatively simple kinematic constraints operating in 2D
environments. Following [14], an efficient representation of the
space for path planning, called a quad-tree, is adopted. The
space is divided into a quad-tree (or its 3D-equivalent), with
the division of area stopping either when a quad contains either

3Successors to A* such as D* or AD*[10], could just as easily be used.

no obstacles or is of some minimum size. In the case where a
quad contains another vehicle, it is marked with the expected
entry and exit times of the other vehicle allowing paths to be
planned to pass through that area before or after the vehicle.
Figure 1 shows a 2D quad tree overlayed on several stationary
obstacles (solid squares) and vehicle paths (lines with starting
points marked with a filled circle.)

Because vehicles typically have kinematic constraints it will
not always be possible for a vehicle to move from one quad
to an adjacent quad, even if both are free of obstacles. For
example, a ground vehicle may require a certain radius to make
a turn. To account for this, open states in the A* search are
annotated with the current state of the vehicle, and new states
are only opened if a feasible kinematic path can be computed
from the current quad to the new adjacent quad.

Additional desirable properties on paths, e.g., long slow
turns are preferred over fast tight ones, are built into the cost
function for state transitions. Our simulation results show that,
partly due to the relative sparsity of the environment, low cost
paths are quickly generated with this approach.

% Planned Path ) m]

Figure 1. Example quad-tree and paths in a 2D environment, where solid
squares are stationary obstacles, lightly shaded squares have dynamic obstacle,
and lines are vehicle paths.

A* search proceeds by opening up new states along the most
promising paths to the goal. Since some of the quad-tree cells
are annotated with times at which they may not be entered (i.e.,
when there will be another vehicle there), it is important for
the vehicle performing the planning to know at which time
it will enter that cell. Moreover, because the vehicles have
kinematic constraints, it may not be possible for any spatially
adjacent cells to be reached by the vehicle. Hence, the current
kinematic state of the vehicle and the current time must be
stored for open states in the search.

A function K : X x Y x State x ¢ — [0,00) exists
to evaluate the cost of moving from one state to another.
If K(o) = oo then it is not kinematically feasible for the



vehicle to move from its current state to the cell ¢ witho
passing through some other cell. For example, it may n
be possible for a vehicle to make a tight turn when movin
quickly. Notice that for some vehicles, computing this functic
may be computationally expensive, but for the purposes ¢
this algorithm, a reasonable, pessimistic approximation wi
suffice.

Algorithm 2 shows the details of how next states ai
generated for the A* search. state is whatever vehicle specif
parameters about the current state of the vehicle need to t
known to calculate K (o). The function GETNEXT in Alg
rithm 3 is used to determine which cell to consider dependin
on current state (line 4-15). The function SHARESFACE returt
true if and only if two cells share a side (in 2D) or a face (i
3D) (line 3).

Algorithm 2: Next state generation

GETNEXT(z,y, QuadTree, time, state)

(1) returnList «— ]

(2) startC «— QuadTree.cellFor(x,y)

(3) possible — {c € QuadTlree,c.children == [JA SHARES-
FACE(c, startC) }

(4) foreach c € possible

(5) if K(x, y, state, c) is less than a threshold

(6) if —c.StationaryObs

(7) if cell.dynamicObs == ||

(8) returnList.append(cell)

9 else

(10) ok «— true

(11) foreach < t5,t. >€ cell.dynamicObs

(12) if ts < time — startC.diagSize N\ te > time +
startC.diagSize

(13) ok — false

(14) if ok

(15) returnList.append(cell)

CoMPTIMES determines when known paths will be entering
and leaving a cell, leaving a small amount of slack to handle
minor uncertainty (Handling a large degree of uncertainty in
execution of a path is an area for future work.). The function
DIVIDE breaks a cell into four, if 2D, or eight if 3D pieces. In
this paper, our function simply limits the maximum turn and
climb rates of the vehicle, but more sophisticated algorithms
could be used if vehicles have more complex constraints.

Example: Figure 2 shows the expansion of one state in
the A* search in a 2D environment. The current open state
is the large cell in the middle of the figure, with the path
to that point shown by the double line. A stationary obstacle
prevents the vehicle from going NorthWest. The path of wve
prevents the vehicle from going EastNorthEast, but going
NorthNorthEast is OK because v2 will have already passed
that point. Kinematic constraints prevent the vehicle for going
back to the west. Hence, in this example, the A* search will
open up three new states from exploration. These paths are
shown with dotted lines and marked OK. In an environment
with up to 200 by 200 cells, 50 stationary obstacles and 100
dynamic obstacles, the A* algorithm finds paths, if they exist,
in on the order of 1s.
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An example of evaluating new states for a vehicle entering from

2) RRT Planners for High Dimensionality Environments:
When path-planning in high dimensional environments, e.g.,
for UAVs, optimal plan planning algorithms such as A* can
be infeasibly computationally expensive. Hence, for large
environments a heuristic planner is required. Specifically, we
have experimented with a Rapidly-Expanding Random Tree
(RRT) planner[15], which has been shown to be a fast effective
way of planning in such dynamic environments with both
stationary and dynamic obstacles. RRT planners use a map
of the costs in the environment to determine the cost of
small segments of path. In this case, the paths of other UAVs
are stored precisely as they are received in this cost map.
Unlike A* search, which relies on states, RRT planners use
an underlying continuous distribution and hence costs are
represented in a continuous way. Notice, that the algorithm
below works slightly differently to a normal RRT planner,
specifically differing in the way that new nodes are added
to the search tree.

Algorithm 3 shows the modified RRT planning process.
Input to the algorithm includes a cost map encoding the goals
of the vehicle and another cost map with the known paths
of other vehicles. Lines 1-5 initialize the algorithm, creating
a priority queue (plist) and initial node (n). The ordering
of the priority queue is very important for the functioning
of the algorithm, since the highest priority node will be
expanded. The function COMPUTEPRIORITY uses both the
cost of the node and the number of times it has been expanded
to determine a priority. Intuitively, the algorithm works best
if good nodes that have not been expanded too many times
previously are expanded. The main search loop is lines 6-
17 and is repeated 20,000 times (about 500ms on a standard
desktop computer.) The highest priority node is taken off
the queue (then added again with new priority). This node,
representing the most promising path, is expanded 10 times
in the inner loop, lines 10-17. The expansion creates a new
node, representing the next point on a path, extending the
previous best path by a small amount. The EXPAND function



is designed so that all new nodes lead to kinematically feasible
paths. The function COMPUTECOST then determines the cost
for the new search node, taking into account the cost of the
node it succeeds and the cost maps. The cost map representing
other paths will return +oc if the new node leads to a path
segment that would lead to a collision. The expanded nodes
are added to the priority list for possible future expansion and
the process continues. Finally, the node with the lowest cost
is returned. The best path is found by iterating back over the
prev pointers from the best node.

Algorithm 3: RRT Planning Process
RRTPLANNER(z,y, CostMaps, time, state)
(1) plist — []

(2) n «— (z,y,t,cost = 0, prev = (), priority = 0)
(3) n — COMPUTEPRIORITY(n)

(4) plist.insert(n)

(5) best =n

(6) foreach 20000

(7) n < plist.removeFirst()

(8) n.priority — COMPUTEPRIORITY(n)
(9) plist.insert(n)

(10) foreach 10

(11)  n' «— EXPAND(n)

(12) n'.prev=n

(13)  n'.cost = CosT(n, CostMaps)

(14)  n'.priority «— COMPUTEPRIORITY(n')
(15)  plist.insert(n’)

(16)  if n'.cost < best.cost

17 best —n

(18)Return best

IV. BOUNDING TOKEN MOVEMENT

The communication efficiency of the algorithm is derived
from the fact that the token does not need to visit all vehicles
in order to detect conflicts. However, visiting too few can
lead to potential conflicts escaping detection. In this section, a
qualitative analysis of how far a token should optimally move,
its TTL (time to live), is presented. Specifically, the theory of
random walks is applied to determine a lower bound on the
TTL.

Given a graph G with n nodes and m edges, a random
walk starts at some node v; of GG, and at each step moves to
one of the neighbors of the current node. For example, if the
random walk is at a node v;, it moves to a neighbor of v; with
probability 1/d(v;), where d(v;) is the number of neighbors
of v; in G.

The probability that at step h the token is at v; can be
denoted as Py (v;). The theory of random walks [16], says
that if a walk starts from any node in an undirected connected
graph G, Py, (v;) converges to 7(v;) = d(v;)/2m, where 7(v;)
represents the probability a token will be at node v; at any
particular time.

Two measures of a random walk are helpful for the analysis:
hitting time and commute time. The hitting time H (v;,v;)
is the expected number of steps before node v; is visited
by a token that starts from node v;. The sum rk(v;,v;) =
H(vi,vj) + H(vj,v;) is called the commute time, which is

the expected number of steps in a random walk starting at v;,

before node v; is visited and then node v; is reached again.
Proposition 1 The commute time of a random walk starting

at v; visits v; before returning to v; can be estimated as follows

k(vi,v5) > 2m/d(v;)

Proof: Let T be the first time when a random walk starting
at v; returns to v;, and o the first time when it returns to v;
after visiting v;. We can determine E(7) = 2m/d(v;) from
the probability 7(v;) = d(v;)/2m. By definition E(c) =
k(v;,v;). Clearly we have 7 < o. Hence the proposition
K(vi,vj) > 2m/d(v;) holds.

The idea is that if we start a random walk from v;, the
random walk will choose a neighbor of v; uniformly and then
visit other nodes before it returns to v;. From Proposition 1,
we can find that, for a given undirected connected graph G, if
we choose v; uniformly from the set of neighbors of v;, then
the expectation of H (v;,v;) is exactly one step less than the
commute time from v; to v;. We know that the hitting time
H(vj,v;) = 1 and the commute time x(vj,v;) > 2m/d(v;).
Therefore,

H(vi,vj) = k(vj,v;) —1 >2m/d(v;) — 1

The following proposition holds when we choose v; uniformly
from the stationary distribution over V' and v; # v;. Note that
for a node v; and a uniformly chosen node v;, the hitting time
H (v, v;) is minimal when v; is a neighbor of v;. According
to Proposition 1, we have H(v;,v;) > k(v;,v;) — 1 and
k(vsi,vj) > 2m/d(v;). Hence, the following proposition holds.

Proposition 2 If we choose v; uniformly from the stationary
distribution over V and v; # v;, then we have H(v;,v;) >
(2m/d(v;)) - 1.

In order to detect a collision, the second token needs to
visit any node visited by the first token. Assume that the
first token moves TTL steps in graph G. The first token
generates a random spanning tree in a subgraph of graph
G. Formally, we can take the subgraph G’ covered by the
first token and represent it as a single node v; in the new
graph G”. Specifically, we assume (1) G’ has c; edges; (2)
the single node v; has ¢, neighbors in G”. Then the problem
of determining an optimal TTL reduces to determining the
hitting time of the second token to this new node v; in graph
G”, which has m — ¢; edges. The degree of v; in G” is ca.

T

>

Figure 3. A subgraph of G, G’, which covers the random spanning tree
traversed by the first token
According to Proposition 2, we have
2(m —cl)
C2

TTLZH(’UZ',’UJ')Z -1



Thus, a lower bound on the TTL is TTL = 2("27:(31) —1.
In order to compute this value, we have to know the average
number of distinct nodes N visited by the first token (NN is
also the size of the subgraph G').

This average number of distinct nodes N was first stud-
ied by Dvoretzky and Erdos[17]. They found that number
N ~ lr?;%L for a connected undirected graph when T7TL
is relatively small compared to N. The relationship between
the average number of distinct nodes N and its relationship
to ZSZT%L for a connected undirected random graph with 100
nodes can be represented as N ~ a;Z for small TTLs,
where 1.91 < a <2.22, and 10 < TTL < 20. For simplicity,
we choose o = 2 in this paper.

Now we can estimate ¢; and ¢y for the subgraph G, where
we have |G'| = N = 2LLL Erdos and Renyi showed that
in general the number of leaves in a random spanning tree on
N nodes approaches the normal distribution A (N/e; N(e —
2)/€?) [18]. In particular, the expected number of leaves, the
mean of this distribution, approaches N/e.

Hence, we can estimate ¢; and co as follows.
w (1+ (CZ — 1)E

e n

cle/e(l—l—(d—l)%)—i— )+ ..

where d is the average degree of graph G. The item N/e(1+
(d—1)2) includes two parts: (1) the edges between leaf nodes
and their parents nodes; (2) the edges between leaf nodes and
other nodes in the subgraph G’. (N —N/e) denotes the number
of nodes in G’ after removing N/e leaf nodes.

Similarly,
n—N

n—N N—-NJe, -
n e

ca~ Nje(d—1) )+ (d—2) )+

As an example, let’s e§timate the lower bound of TTLs
when n = 50, m = 100, d = 4. When TTL = 12, we have
N ~ 9.6, ¢c; =10, and c5 =~ 12

TTL<2%90/12—1

When TT'L = 13, we have N ~ 10, ¢; ~ 12, and ¢ ~ 14
TTL >2%88/14—1

Therefore we choose TT'L = 13 for the given graph.

V. EXPERIMENTS

To evaluate this approach, we used two simulators. The first
was a 2D simulator appropriate for the A* planner and capable
of running much, much faster than real-time, hence allowing
many experiments to be performed. The second was a fully
distributed UAV simulation environment, appropriate for the
RRT planner, but much slower than the 2D planner, making
large numbers of experiments infeasible. The UAV simulation
environment has the additional complicating factor that in 3D
space collisions very rarely occur, so many hours of simulated
flight time was required. We partially compensated for this, by
having a definition of “collision” where UAVs came within
some relatively large distance of each other. Notice that the
smaller set of results for the 3D environment largely matches
the 2D results and we expect that all 2D results can be
extrapolated to the 3D environment.

A. A* Planner

The 2D environment size was fixed to be 2000 by 2000
units, with cells limited to be no smaller than 15 units wide.
All vehicles move at 1 unit per step. 50 stationary obstacles, 50
by 50 units in size were randomly placed in the environment
potentially overlapping. Vehicles were considered to have
crashed at the time they committed to a path that would bring
them within 5 units of another vehicle’s path (Algorithm 1,
line 26).

This metric for collisions, specifically counting it from the
time at which the vehicle started moving along the path is
very conservative but gives a good measure of how well the
cooperation worked at preventing collisions. New destinations
for vehicles were generated when they were ten units from
their current goal. New goals were randomly selected, but they
were constrained to be between 100 and 400 units from the
current goal. Unless otherwise stated, each token had a TTL
of 20 and moved to 10 vehicles in the time a vehicle moved
one unit. Each point in the experiments was averaged over 20
runs.

In the first experiment, we tested the basic functionality of
the algorithm by testing four different configurations. First,
we used a centralized path planner (labeled as CENTRAL) to
provide a baseline. Second, we used the algorithm described
above (labeled as TOKEN). Third, we used the token algo-
rithm to send tokens with planned paths but did not report
conflicts (labeled as PASSIVE). This algorithm allowed us to
distinguish between the effect of sending out paths and the
effect of having team mates report conflicts. Finally, as a lower
baseline we used no coordination and allowed the vehicles to
plan their paths independently (labeled as NONE). Vehicles
were allowed to travel until one committed to a path that
would cause a collision with another planned path or until
5,000 time steps had passed (enough to go back and forth
across the environment 2.5 times).

We measured three values: (1) the time before the first
vehicle committed to a path that would lead to a collision;
(2) the number of new goals that the vehicles accepted which
is an indirect measure of efficiency and; (3) the number of
times a vehicle had to replan due to a potential collision to
gauge the amount of work being done by TOKEN. Each data
point represents the average over 20 runs.

Figure 4 shows that both the TOKEN and CENTRAL
approaches reliably prevent all collisions when there are up
to 60 vehicles. When there are more vehicles the TOKEN
approach will begin to have some collisions, however notice
that the TTL is kept fixed at 20 and that raising the TTL
leads to the TOKEN approach avoiding collisions for higher
numbers of vehicles. Surprisingly, except for very small num-
bers of vehicles, where acts like the CENTRAL approach,
the PASSIVE approach is barely better than NONE. This
shows that the key to TOKEN is that team mates inform
one another of potential collisions, rather than having to know
of all potentially conflicting paths when they plan. Figure 5
shows that CENTRAL is slightly more efficient, because the
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Figure 4. The average time until a vehicle commits to a conflicting path,
with a maximum of 5000.
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Figure 5. The number of goals visited by all vehicles within 5000 time steps

TOKEN algorithm occasionally plans around paths that have
been revoked, but that information has not been propagated to
the vehicle doing the planning.
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Figure 6. The time of no collision and the number of targets being visited
for different TTLs

In the second experiment for A* planner the number of
vehicles was held fixed at 40 and the tokens were routed
randomly. Figure 6 shows the average time until a collision
happens and the number of goals completed for different
TTLs. Note that there is a distinct shift to reliable collision
avoidance for a TTL of 11. This corresponds exactly to the
predicted lower bound computed via the analysis described in
the previous section.

B. RRT Planner

The deconfliction algorithm using the RRT planner was
implemented within the Machinetta proxy[19] framework and
integrated with the Sanjaya UAV simulation environemnt[20].
Figure 7 shows a 2D screenshot of the simulator, with 50
UAVs, illustrating the complexity of the deconfliction problem.
The code is used is exactly the same code as being used in an
ongoing flight test, with the exception of the code between
the proxy and the autopilot. The simulated environment is
50km by 50km and the results below represent approximately
150 hours of simulated flying time. The UAVs move at
approximately 25km/h and can change altitude at 1m/s. The
UAVs are planning paths in 15km segments. A collision is
recorded if vehicles come within 1km horizontally and 150m
vertically. For each number of UAVs, TTL is set to three times
the log of the number of UAVs. Notice that for larger numbers
of UAVs this makes the space very highly constrained, as
shown in Figure 7.
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Figure 7. A screenshot of the UAV simulation environment showing planned
paths (black lines) of UAVs (triangles).

Notice that there were several engineering issues that make
the UAV case difficult. Most importantly, the UAVs, under
the control of an autopilot, do not always follow the planned
path precisely, deviating either spatially or temporally. This
led to a need to require UAVs try to avoid each other by a
long distance, making the planning more difficult. Since the
simulation was fully distributed over 13 machines, commu-
nication latencies and path planning times required careful
attention. Figure 8 summarizes the results, with each bar in the
graph representing an average of 10 runs, with deconfliction
“on” (ACTIVE) or “off” (NONE). Notice that while having
deconfliction on dramatically improves the performance, the
deconfliction algorithms do not remove all conflicts. We be-
lieve that at least some of these conflicts are due to unresolved
engineering issues, not algorithmic issues.

VI. RELATED WORK

Cooperative path planning for multiple UAVs was recently
studied by [21], [5], [7], [9]. Most of the existing approaches
consider the problem as a centralized optimization problem
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Figure 8. Results with RRT planner in 3D simulation environment.

and solve it using linear programming techniques. These
centralized approaches only work for a small number of UAVs
and tasks and cannot meet the real-time requirements for large-
scale UAVs teams due to either communication or computation
bottlenecks. The only exceptions are [7] and [22], where
Lechliter presents a distributed task allocation framework for
UAVs, and Alami el al. give a framework for coordinating
multiple robots. However, both approaches do not consider the
communication overheads for sharing the information about
dynamic obstacles. They simply assume all vehicles know
what every other vehicles is doing. This is impractical for
large-scale teams, where communication bandwidth is rare in a
real-time environment. We develop a distributed path planning
algorithm for a UAVs team under communication constraints.
Our approach reduces the amount of information shared for
coordination using tokens and enables each UAV to produce
acceptable and collision-free paths in nearly real-time.

VII. CONCLUSIONS

This paper presents a decentralized approach to conflict-
free path planning with low communication overhead. The
algorithm relies on vehicles passing their planned paths to
a small number of team mates who proactively check for
conflicts in paths they know about. Both analytic and empirical
results show that each token needs to visit only a relatively
small proportion of the team to have very high probability
of detecting all potential collisions. We find that for sparse
environments the token-based approach is as reliable and
efficient at avoiding collisions as a centralized approach.
Even when the environment is crowded with vehicles and
obstacles the token-based approach is almost as effective as a
centralized approach. Two separate planners, one optimal and
one heuristic, were used to illustrate the independence of the
basic algorithm from the actual planner.

However, while this paper presents a significant advance,
there are a range of issues that require further work. One key
area for future work is whether there are ways of intelligently
routing the tokens to increase the probability of detecting con-
flicts, without increasing the TTL. For example, to determine

where to send a particular token, each vehicle might guess
which of its neighbors is most likely to know about conflicts
with a particular path.
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