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Abstract. The performance of a cooperative team depends on the views
that individual team members build of the environment in which they
are operating. Teams with many vehicles and sensors generate a large
amount of information from which to create those views. However, band-
width limitations typically prevent exhaustive sharing of this informa-
tion. As team size and information diversity grows, it becomes even
harder to provide agents with needed information within bandwidth
constraints, and it is impractical for members to maintain any detailed
information for every team mate. Building on previous token-based algo-
rithms, this chapter presents an approach for efficiently sharing informa-
tion in large teams. The key distinction from previous work is that this
approach models differences in how agents in the team value knowledge
and certainty about features. By allowing the tokens passed through the
network to passively estimate the value of certain types of information
to regions of the network, it is possible to improve token routing through
the use of local decision-theoretic models. We show that intelligent rout-
ing and stopping can increase the amount of locally useful information
received by team members while making more efficient use of agents’
communication resources.

1 Introduction

Emerging and envisioned systems involve hundreds or thousands of autonomous
platforms cooperating in an environment to achieve complex joint objectives [1,
2]. These systems will generate incredible volumes of sensor data that need to
be fused and disseminated to the platforms that need the produced informa-
tion. In a distributed system, getting sensor data to platforms that require it
in a timely manner while respecting tight communication constraints is a key
problem. Algorithms to achieve this goal are critical to the success of teams of
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autonomous systems for applications ranging from tracking [1] to force protec-
tion [2] to searching for lost hikers [3].

The problem of distributed data fusion is a broad one, where many success-
ful solutions have been developed for specific problem instances. The specific
problem addressed in this chapter is characterized by three properties: (1) large
numbers of agents generate a large volume of data about many features, (2)
each agent gains different value from information about different features, e.g.,
an agent will be more interested in features in its spatial vicinity, and (3) the
value an agent gains from information about a particular feature is not precisely
known to the rest of the team in advance. While previous solutions have dealt
with problems having one or two of these properties, using techniques ranging
from particle filters [4] to Bayesian filters [5] to decision theory [6], there are
no previous solutions that can handle distributed fusion problems with all three
characteristics.

In many situations, especially in heterogeneous teams, agents will require
information at varying levels of precision. In many approaches, this distinction
is lost altogether, and information is distributed equally among teammates in
this situation. However, this is highly inefficient when most of the agents do not
need high precision about most of the features. For instance, a ground robot
may require very extensive information about the position of nearby ground-
level obstacles, while an aerial robot might need only rough estimates of large
ground obstacles over a wide area. Notice that the agents that need particular
information are not always the same as those that sense it. In this case, the aerial
robot can use its perspective to get very detailed ground obstacle data over a
wide area. Often, very few agents will attribute high value to precise knowledge of
a particular feature, while equally few will be able to sense relevant information
about that feature. For example, in a large team in a large outdoor environment,
a few robots might be descending into a canyon. Information about the canyon,
which might only be visible to a few robots exploring the cliffs above, is extremely
valuable to this small subset. In situations like these, information must be shared
asymmetrically, i.e., not all agents will receive the same information or even the
same amount of information.

In this work, individual sensor readings are encapsulated into tokens and
“pushed” from agent to agent. Each agent decides whether to continue to for-
ward the token based on how useful to the team it believes the reading is. By
encapsulating sensor readings and utilizing unique identifiers, we can altogether
avoid the “double-counting” problem faced by other methods that condense or
splice belief representations. In addition, sensor readings are usually compact,
can be exchanged between agents with different filter algorithms, and are atomic
and unordered.

In previous work [7], if the agent chose to forward the token, it did so ran-
domly. In an asymmetric information environment this strategy is inefficient
since, on average, all agents will receive the same information regardless of their
need for that information. In this chapter, this inefficiency is addressed by build-
ing on the following two key ideas.



First, instead of considering the problem of whether to forward a token in-
dependent of where to forward it, we can combine both into a decision problem.
Given a known cost of communication, we can estimate the value to the team
of either forwarding the token to some teammate or terminating it, and use
decision-theoretic methods to determine the optimal action. Previously received
tokens encapsulate observations that influence the probabilities for the decision
problem, e.g., receiving an observation indicating that a token was not useful
to the previous agent along with information about a particular feature may
indicate that it would not be useful to send another reading of the same feature
to that agent in the near future.

However, if an agent only considers the impact of its routing on neighbors,
its routing decisions can significantly impair communications throughout the
network by redirecting tokens to greedy, suboptimal paths. The second key idea
is to avoid making these myopic decisions about if and where to route the token
by requiring the agent that has the token to estimate the token’s impact on
agents in other parts of the network. Our key insight here is that the token itself
is an ideal carrier and accumulator for this information. If each token captures
information about the agents it visits, it might be possible for recipient agents
to make better estimates of the value of that information to the team. This,
in turn, has the potential to improve the routes that agents use for subsequent
tokens. However, in a large team, it is impractical for tokens to carry individual
information about each visited agent. Instead, we have the token itself contain
the aggregated estimate of the value to the team along a given path, calculated
and updated by each agent it visits. This way, the decisions made by an agent can
be based on summarized network statistics, while the estimate itself involves only
constant time computations at each agent. We demonstrate that these simple
estimates can improve the routing of tokens through a small worlds network
(in which each node has relatively few neighbors, but any pair of nodes can
be connected by a short path [8]) while maintaining or reducing the number of
communications required.

2 Problem Statement

This section formally describes the problem addressed by this chapter. Agents
A = {ay,...,a,} are a team with a joint objective in a partially observable
domain. Decisions about actions by the agents are based on state variables
X(t) ={z1(¢),...,2,(t)} that describe their environment. These state variables
can have any mathematical type (e.g., discrete, continuous, boolean) as long as
the following functions are defined appropriately.

Agents take readings with their sensors. These sensors are imperfect, thus
agents must use a filter to estimate a distribution over each of the state vari-
ables. Agent a has a probability distribution over X at time ¢ of P,(X(t),t).
While agents need not be homogeneous, it is assumed that each agent’s filter
can handle sensor readings from any other agent’s sensor. Communication be-
tween agents is assumed to be fixed cost and point-to-point, with agents able



to communicate directly with a known, static subset of teammates at any time,
which are referred to as neighbors. No assumptions are made about the spatial
or informational association between agents, but the communications network
as a whole is assumed to have a small world property [8]. Denote by N, the set
of neighbors with which agent a can communicate. Let x be the cost of a single
communication, and denote by M; the cumulative number of communications
made before time ¢.

The performance of the team will be adversely affected whenever its mem-
bers’ estimates of the state of environment differ from the actual state of the
environment. The information difference of a single agent is A%(X, P, (X (¢),t))
(e.g., Kullback-Leibler divergence, or a similar measure). The bigger A%(e), the
higher the value of the divergence. However, depending on their current activi-
ties, individual agents’ performance will not be equally effected by divergence.
In general, they will only need to know precisely some values, while others can
be coarsely understood or not known at all. Specifically, the cost of A%(e) diver-
gence to an agent a at a particular time is: ¢(a, A%(e)) — R. For example, if a
ground robot were traveling quickly across rugged terrain, the cost of divergence
for a state variable representing the position of a nearby obstacle might be quite
high, since it could potentially endanger the robot. The same variable might
have a low cost of divergence for an aerial robot, as it would pose no threat and
would not affect the decisions that the robot needed to make.

As agents receive sensor readings, they are integrated into P,(X(t),t) via
some filter ¢, P.(X(t),t) = ¢(P,(X(t),t),s). The only assumption made about
the filter is that it is always better to have more sensor readings. Using the cost
of information divergence and filter equations, the value of that sensor reading
to a is

v(s, a) = c(a, A*(X, Py(X(t),1))) — c(a, A*(X, Po(X(t),1)))

i.e., the change in cost. We assume v(s,a) > 0. In a situation where a team
of robots were estimating the location of a landmark, this value would be high
for a high precision readings that could significantly improve robots’ estimates.
In contrast, if the robots already knew the position of the landmark to a high
degree of accuracy, a noisy sensor reading would change very little, and so it
would map to a small value. The value of s to the whole team is

V(s) = Z v(s,a) .
acA

The objective is to pass sensor readings around the team such that the total cost
to the team is minimized after communication costs are considered:

min Y ~ c(a, AY(X, Po(X (1)) + 5 - M, . (1)
acA

Although omitted in the above expression for clarity, this minimization cov-
ers the space of potential paths through the network of every sensor reading



generated over the time interval. Note that agents cannot directly measure
AY(X, P, (X(t),t)). Instead, agents estimate v(s,a) directly, using their filters
and domain-specific knowledge of x. For example, aerial robots receiving ground
obstacle information would realistically be able to determine that such informa-
tion was of little value to them, regardless of the accuracy of their filter. Denote
this estimation function as 9(s, a).

3 Algorithm

An agent cannot directly observe the value gained by its neighbors for a given
token. However, it can get observations of the value gained by previous tokens
of the same type that previously visited its neighbors. There also exists some
transition function that determines how the value at the neighbors decreases as
they receive tokens from various sources. An agent a is then faced with choosing
an action from the set of possible actions ¥, defined as
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where Ay is the action of forwarding the token to neighbor b, and S is the action
of stopping the token.

This token-based algorithm will be effective if tokens are delivered to team
members who gain information from the sensor reading on the token. Thus,
a policy for propagating a token around the team has two components: (1)
determining whether to further propagate the token and, if so, (2) to whom to
send the token.

The problem of estimating future value from only passively observed token
traffic is hard. For divergence-based value functions, the state transition function
upon receiving a token is often non-linear. In addition, there is the problem of
repeating visits. If an agent a receives a token from an agent b that has a history
of high-value, it is likely that sending a token of the same type to b will also
result in high value. However, a token that has already been sent to b will not
gain much additional value, as it will likely be revisiting nodes. Thus, we also
need to estimate the likelihood that agents in b’s neighborhood have already
received a token, and either converge to a tree-like structure or rapidly update
value estimates to compensate.

Given these issues, it is impractical to try and create an exact value or tran-
sition model based on the actual movement of tokens. We instead create a local
heuristic framework for solving this decision problem based on the following in-
sights: (1) the average value that an agent gains from tokens of a particular type
is distributed in a roughly Gaussian way, and the mean of this value can be
reasonably approximated, (2) we can represent a near-optimal solution to this
problem as a probability distribution over the discrete action space, (3) many
tokens move through the network, so at least a few will travel over each link,
and (4) while agent-token value will change over time, it will change slowly with
respect to the token movement through the network.



We have tokens of various types I" = {T1,T5,...,T|r}. Each type of token
contains data related to the corresponding state variable, i.e. T} contains data
about z1, To about x5, and so forth. A token 7 of type T' € I' is defined as a
tuple containing three elements: 7 =< s,b, E >, where s is the sensor reading
about z;, b is the previous agent visited, and E £ E:{b is the expected value of
sending a token of type T from agent a to its neighbor b. This is computed every
time a token is to be forwarded from an agent b to an agent a. We describe the
details of this process below.

Each agent a maintains a decision matrix D, of dimension |I'| x (|N,|+ 1)
from which it samples its routing actions. Each column of the matrix represents
the possible actions that agent a has for a token. Columns 1 to |N,| are the
actions of routing to the neighbors of a, while column |N,| + 1 is the action
of stopping the token. Each row in the matrix represents a type of token from
set I'. Element D,[T, ] is the probability of executing an action 1) € ¥ when
given a token of type T' € I'. Thus, each row of D, is a well-formed probability
distribution, satisfying

Do[T,4p) >0 Vi VT
> Dy[T, ¢ =1 VT .
¥

Each agent also maintains a value matrix V, of dimension |I'| x (|N,| 4+ 1) that
contains its value estimates for each potential routing action. Once again, each
column of the matrix is an action, and each row denotes a type of token. Element
Va[T, ¢] is the estimated value gained by the team if action ¢ € ¥ is performed
on a token of type T' € I

When an agent a receives a token of type T € I', it samples an action from
the distribution in the respective row of D, . If that action is to send to a neighbor
b, then the agent computes the expected value estimate

Ef, =i(s,a)+ Y (Da[T, A Vo[T, A = &) (2)

ce€Na\{b}

Intuitively, this is simply the expected value of sending a packet from agent
b to agent a, using an expectation estimate that incorporates a split-horizon.
This value is then stored in the token, and the selected action of forwarding is
performed. If the stopping action is selected, the token is simply deleted. While
this estimate does not include an explicit discount factor, the probabilities used
in the expectation are later constrained to be strictly less than one. In practice,
they effectively act as implicit discount factors.

3.1 Heuristic Updates of D, and V,

As tokens are received by an agent a € A, D, and V, are updated based on
the incoming value estimates. We define two heuristic functions that govern this



behavior. First, a value update function A is applied to incorporate the estimate
contained in a received token 7 into the value matrix V:

Vo — AV, 7.E) . (3)

Then, a decision update function 7 uses the updated value matrix to refine the
decision matrix D,:

D, — 7(Dga,Va) . (4)

Value estimation (A). Each agent maintains an estimate of the value of each type
of token, based on a simple adaptive learning rule. This estimate is calculated
using a learning rule of the form

V[T, Ay) & (1—a) - V,[T, Ay) + o 7.E (5)

where « is the value learning factor, and 7.F is the expected value estimate in the
received token 7. This will compute a weighted average of the new measurement
and the current estimate. The larger the value of o, the more sensitive the value
estimation to noise. If « is too small then value estimation will not respond fast
enough to the system dynamics.

Routing (). We define a heuristic for updating the decision matrix D, that
follows the intuition: If routing action v is n-times more useful than action
', then action 1 should be n-times more likely to occur than action 1)'. Here,
“usefulness” is represented by the value estimate. This intuition is embodied in
the simple update rule

wyy, = Vo[T,¢] +1— glelg VoI, @] (6)
DT & (-6 g € (7)
o >owl |7

PpEY

where wg is the weight of action v for a token of type T'. Here, the minimum value
is subtracted and an offset of one is added to project the estimated value V,,[T', ]
into the range [1, +00). This conveniently allows the weight to be normalized to
obtain probabilities in the row of D, corresponding to 7. A small constant factor
€ is used to ensure that every route is selected with some non-zero probability,
thus preventing situations where agents never receive tokens from a particular
neighbor.

Combining the two update rules, we formulate the token handling procedure
that each agent performs when receiving or generating a token. The resulting
algorithm is summarized in Algorithm 1.



Algorithm 1 Handle token.

2 7« getToken()
Y~ Do[r.T]
if (¢ # S) then
Calculate Ef:T using Equation 2
end if
Vo = A(Va, 7.E)
Dy = 7(Da, Va)
if (¢ # S) then
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4 Experimental Results

In this section, we describe an empirical evaluation of our approach, which we
refer to below as a proportional routing policy. A simulator was constructed to
evaluate this policy in a scenario of 500 agents performing 1-D target tracking.
This simple setup was sufficiently complex to test the basic dynamics of a large
team without introducing irrelevant effects that could obfuscate the performance
of the policy. The agents were connected by a small worlds communication net-
work, with an average of about 7 communications links to other agents. 1% of
the agents were equipped with simulated sensors that generated Gaussian esti-
mates of the target position every 5 time steps, emulating a discrete sampling
rate. Every agent maintained a local Kalman filter using a static motion model
with high process noise. As there was only one state variable, we used only one
type of token, i.e. |I'| = 1. The target was initialized at a random Gaussian
position, and proceeded to follow a constant velocity trajectory for the duration
of the simulation. Each trial was run for 10* time steps. Results were averaged
over 10 trials for each condition.

Agent a’s need for an accurate estimate was represented by a weight C,. The
distribution of information need over the team was bimodal, with a small pro-
portion of the agents having high need, N'(10°,10°), and the remainder having
low need, [N(0,1)|. The objective was to minimize the weighted KL-divergence
of the team at the end of the simulation, defined as the following sum:

WD =Y Cy- A%(X, Py(X(t),1))
acA t=104

Note that this is the first term in the original cost function in Equation 1,
applied using KL-divergence as the divergence metric. The value approximation
function used by the agents was the covariance of the agent’s filter multiplied by
the information need constant. By separating this from the communications cost,



it was possible to analyze the tradeoffs agents made between communications
and value under the test conditions.

Two policies were tested, the proportional routing policy, and a random
routing policy. The random policy simply routed each token uniformly randomly
for a constant number of transmissions, then terminated it.

In the first experiment, the weighted divergence of the policies was studied as
the percentage of high-C, and sensor-equipped agents was simultaneously varied.
For fair comparison, each trial of the proportional policy was matched with a trial
of the random policy which was adjusted such that policies had the same average
number of token communications. The resulting weighted divergence in Figure 1
shows that the proportional policy outperforms the random policy in situations
where both few agents are high-C, and few are producing the relevant sensor
readings. Specifically, this was the case when the high-C, and sensor-equipped
percentages were below 5%.
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Fig. 1: A comparison of the random and proportional routing policies over changing
interest levels.

As a baseline, the random policy was tested to determine the effects of aver-
age token transmissions on weighted divergence. Figure 2 shows that the random
policy’s weighted divergence drops rapidly as the average number of communi-
cations increases at small numbers of transmissions, but flattens asymptotically
after about 10 transmissions. This suggests that there may not be much benefit
to tokens having extremely long lifetimes, as they will not improve the weighted
divergence any further.

Next, an experiment was done to evaluate the effects of the communications
cost on the proportional policy. By varying the cost, the behavior of the policy
can be adjusted to prioritize decreasing communications over increasing value.
In Figure 3, communications cost proportionally impacts the average number of
communications, while the relationship with weighted divergence is less evident.
It is possible that the reduction of transmissions more directly impacts longer,
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Fig. 2: The effects of increasing token lifetime while using the random policy.

suboptimal routes before shorter, high-C,, ones, mitigating the effects of the cost
increase. This is consistent with the previous observation that token lifetimes
above some threshold provided diminishing returns in weighted divergence.

Closer examination of an individual trial, shown in Figure 4, provides insight
into the behavior of the algorithm. Weighted divergence steadily increased dur-
ing periods when high-C, agents did not receive sensor readings, then dropped
sharply when readings were delivered. The spacing and magnitude of these ramps
suggest that the proportional routing policy reduces weighted divergence by be-
ing more consistent in its delivery of sensor readings to high-C, agents.

These experiments show that the proportional policy is relatively more ef-
fective than the random policy when low percentages of the team are producing
and consuming sensor readings. This is a region where many current methods
are inefficient, hence, this situation exemplifies the type of problem for which
this algorithm was designed. The policy is also capable of dynamically adjust-
ing the number of communications as cost increases, while maintaining effective
routing. Finally, we see diminishing returns in value as token lifetimes are in-
creasing, suggesting that reasonably short lifetimes are sufficient to maintain low
weighted divergence over the team.

5 Related Work

Much previous work focuses on sending beliefs after filtering has occurred, which
requires precautions to be taken to avoid “double-counting”, in which multiple
filter updates include information derived from the same sensor reading. One
frequent solution to this problem is imposing an acyclic structure over the net-
work [9] [10], which introduces scalability and dynamics issues. In contrast, this
work assumes updates are generated for individual sensor readings. By treating
each reading atomically, hashing mechanisms can trivially handle the problem
of receiving the same information multiple times by storing a history of token
hashes and ignoring revisiting tokens, while still allowing information to be for-
warded anonymously, which is useful in a large team [5]. These token histories
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need only be temporary, as individual tokens have relatively short lifetimes. Note
that individual readings could be replaced by any other atomic method of infor-
mation sharing, such as exchanging particles between team members’ particle
filters [4].

Token-based methods have been shown to be effective in large-scale team
coordination tasks, including the task of information sharing [11]. Using only
information pushed forward in tokens, Xu demonstrates that adaptive prob-
abilistic routing can improve team performance [12]. However, these previous
approaches to information sharing do not explore token termination conditions,
and require tokens or agents to store path histories over their lifetime. Other
related methods include a dynamic optimization-based strategy for computing
token lifetimes under assumptions of random routing with peer- to-peer commu-
nication [7], and an adaptive routing method that uses learning rules similar to
Equation 5 to self-optimize routing over dynamic networks.

6 Conclusions

This chapter presented a novel approach to sharing information in large teams
using tokens. In contrast to previous work, it was assumed that members of the
team had vastly different needs for the information generated by other agents
in the team. In our experiments, this need was concentrated among a small
percentage of the team. Under these situations, this approach adjusts local rout-
ing and stopping probabilities to improve information sharing performance over
the team. Empirical results demonstrate this efficiency in a simple simulated
tracking problem despite the sparse information agents had with which to make
routing decisions.

The experiments also show a number of interesting properties of this ap-
proach and the problem of information sharing in teams with asymmetric need.
One surprise was the unexpectedly high performance of a random routing pol-
icy in reducing divergence, even in highly asymmetric situations. Analytically, it
may be possible to bound the optimality of random routing in this problem, and
use it as a baseline for comparing other techniques. In contrast, this approach
seemed to lose efficiency when faced with large numbers of interested agents.
However, hybrid approaches might be possible within this token framework that
can use the proportional routing heuristic when routing information destined for
a small subset of agents in a team, then switch to a different heuristic when rout-
ing more commonly desired information, all using the same estimation methods.
If this framework can be extended to work across a wider range, it will provide a
lightweight, dynamic approach to sharing information in teams with asymmetric
information needs.
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