
Path Planning for Autonomous Information
Collecting Vehicles

Jun-young Kwak
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, U.S.A.

Email: junyoung.kwak@cs.cmu.edu

Paul Scerri
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, U.S.A.

Email: pscerri@cs.cmu.edu

Abstract—In many environments where autonomous air or
ground vehicles are used to collect information, there will be
a known prioritization of areas of the environment where most
valuable information will be found. Over time, priorities may
change with areas losing value or suddenly becoming important.
In this paper, we present an approach to planning paths for
vehicles collecting information in such environments, such that
they maximize the overall system information gain over time.
A key feature of this path planning problem is that there is
not a single or small set of goal points to which the vehicles
should try to reach, instead information is collected over the
entire path without a particular goal in mind. We present a
planning approach, which rapidly expands a search tree, inspired
by an RRT planner by choosing promising nodes to expand
and expanding them randomly. Genetic algorithms are used to
learn sets of configuration parameters for the planner, i.e., how
to expand which nodes. Results show that the learned planner
gets more substantially information than pre-defined paths in a
variety of domains.
Keywords: Path planning under uncertainty, Rapidly-
exploring Random Tree, Genetic algorithm, Randomized
methodology.

I. INTRODUCTION
In a variety of important domains, autonomous, unmanned

systems are either being considered or already being used as
mobile sensor platforms, capable of collecting large amounts
of information about an environment. In a large environment,
the platforms need to move around, using their sensors to sense
their immediate surroundings. Typically, information from all
parts of the environment is not of equal value, at all times.
For example, in a disaster response, EO sensing of an area
that was very recently searched with IR, is of lower value
than sensing of an area that has not been searched at all.
Moreover, information requirements and areas where most
valuable information can be sensed changes dynamically and
unpredictably. A key task for an autonomous vehicle in such an
environment is to plan paths that allow it to utilize its sensors
to maximize the value of information it collects over time.
While path planning has been a very active research area

for a long time [1] [3] [4], most planners are not well suited to
this particular problem. Two specific features of this particular
problem make it problematic. First, there is no “goal” location
for the planner to head toward, the vehicle might go in
any direction and end up in any location. Second, value is

accumulated along the path of the vehicle, meaning that paths
that back-track, cross themselves or spiral around an area
might be optimal in some situations. Typically, path planners
are designed to avoid such paths and hence are not appropriate,
e.g., RRTs [6] and Annotated and hierarchical graph-based
path planning [5]. Moreover, pre-defined, “optimal” search
patterns are not appropriate since information needs change
dynamically [8].
The algorithm proposed in this paper adapts the concept

of a Rapidly-exploring Random Tree (RRT) planner to the
constraints of this problem. Specifically, an initial node is
randomly expanded in a range of directions. The new nodes
are inserted into a priority queue based on the estimated value
of additional expansion of that node. The top node in the
priority queue is removed and again randomly expanded, with
new nodes again being inserted into the priority queue. This
process is repeated until a time limit is reached, at which
point the nodes representing the best path is returned. The key
intuition behind the algorithm is that most promising nodes
are always being expanded and that expansion can occur very
quickly, allowing many possibilities to be evaluated. Clearly,
the keys to the algorithm are the prioritization of the expanded
nodes for insertion in the queue and the effectiveness of the
expansion of the promising nodes.
Hand-tuning of these important functions might be possible

for a specific scenario and vehicle, however, in general dif-
ferent types of expansion functions are desirable. We applied
a genetic algorithm (GA) to the task of learning parameters
for these functions. Given a characterization of the type of
environment for which plans are required and a specification of
the characteristics of the vehicle traversing the paths, the GA
was able to fairly quickly find a parameterization that would
lead to good plans in many specific instances. However, the
GA was prone to falling into local minima which necessitated
the application of several techniques for improving the GA
search.
Within a given environment, different types of expansion

might be appropriate in different locations. For example, in
an environment where useful information is only found in one
particular area, expanding the path in long, straight pieces is
appropriate until the vehicle is in the area where most informa-
tion can be collected is most effective and then expanding in

short pieces, with potentially high turn rates when in the area
where information can be collected becomes most effective.
To allow for this, the planner is given multiple expansion and
prioritization functions which it uses alternatively. With this
technique the planner is able to rapidly find plans in a wide
range of situations.
The proposed algorithm, the adapted RRT planning with GA

leaning, showed the better performance than pre-defined path
planning and the RRT with a random configuration over the
various scenarios. The experimental results were investigated
using specific performance criteria including the combined
reward and planning time.

II. PROBLEM STATEMENT

Figure 1. Comparison over a mixed Gaussian value map: Pre-defined path
(on left) vs RRT path with a configuration set obtained from GA learning (on
right)

In this section, we formally describe the problem addressed
in this paper. The expected value of information available at
a location x, y at time t, given a history of previous sensor
readings H is captured by the function I(x, y, t, H) → R.
While I varies dramatically from environment to environment
and even instance to instance, it will typically exhibit some ba-
sic properties. First, typically |I(x, y, t, H)−I(x, y, t+1, H)|
will be small, i.e., most of the time the value of information
at a particular location will not change dramatically in a short
period of time. For example, in a military scenario, certain
places will be inherently more important to know about, but
as a battle progresses the key locations to know information
will change. Second, typically, if a sensor reading was taken
at a location at time t, there will be little to no value to taking
a sensor reading at that location at time t + 1. The exception
to this is when a sensor reading turns out to be ambiguous.
Third, typically, |I(x, y, t, H) − I(x ± ε, y ± ε, t, H)| will
be small, i.e., nearby locations will have similar value. For
example, all points along a road may be of approximately the
same importance, with importance falling off away from the

road. Finally, for domains of interest, there will be significant
variance in the value of I over the environment, i.e., some
locations will be substantially more or less important.
Figure 1 shows an example of the type of domain of interest

in this paper. Notice that large areas are of significantly higher
or lower value than other areas. The paths of the two vehicles
indicate how a well designed path (on right) can collect
significantly more valuable information than a simple pattern
(on left).
Each vehicle, vi ∈ V , must follow a path Pi in the

environment taking sensor readings to collect information.
Those paths should maximize the information gain of the
vehicle. Information gain, IG, is computed as:

IGi(Pi) =
∫ ∞

t=0 I(Pi.x, Pi.y, Pi.t, H)dt

When multiple vehicles are in environment, the total
information gain due to all paths, P , is simply
IG(P) =

∑
Pi∈P IGi(Pi). Notice that H is the union

of the paths flown by all vehicles up to the current time. The
optimization problem is thus to find P∗ such that:

P∗ = maxP IG(P)

It is assumed that vehicles can communicate to coordinate
their paths, but that bandwidth is limited. I is assumed to be
thrown and stored as a “costmap”.

III. RAPIDLY-EXPLORING RANDOM TREE PLANNER
The original Rapidly-exploring Random Tree (RRT) al-

gorithm was introduced by Lavalle and Kuffner [6]. RRT
is a widely-used algorithm for motion planning in high-
dimensional spaces with kinodynamic constraints. In this
work, we use an alternative RRT that has a similar concept
to the original RRT algorithm, but differs in an important
way. The basic RRT algorithm is composed of two main
procedures: Select and Extend. The Select function draws its
sample (xsample) from a uniform distribution spread over the
problem space, and finds the nearest neighbor (xnear) from
the selected sample. The Extend function takes this selected
pair of nodes (xsample, xnear), and generates an action from
the node towards the sample (unew) and the resultant state
(xnew). If unew is executable, xnew is added in the existing
tree [6].
In the proposed RRT, the algorithm does not have an explicit

Select step. Importantly, by excluding this step, a nearest
neighbor calculation is not required, thus removing the most
computationally expensive part of an RRT.
Instead, at each step, the node having the maximum com-

bined reward is selected to extend without picking a random
point. With given the cost map, vehicle properties and con-
figurations specifying several aspects including the capability
of movement, a node is randomly (but reasonably) extended
considering given parameters. More specifically, configuration
properties used in RRT planning contain maximum number
of iterations, number of branches per expansion, maximum

Algorithm 1 RRTPlan(): Generate a RRT plan with given init
configuration, costmap, environment, vehicle information, and
etc...
Require: startPoint, initStatus, configuration, costmap,

startT ime
Ensure: path
1: config ⇐ setConfiguration(configuration)
2: env ⇐ setEnvironment()
3: vehicle ⇐ setVehicle()
4: queue ⇐ initQueue()
5: startNode ⇐ newNode(startPoint, initStatus)
6: putNodeToQueue(startNode, queue)
7: for i = 0 to config.noExpansions do
8: for i = 0 to

config.branchesPerExpansion do
9: node ⇐ getBestNode(queue)
10: expNode ⇐ expandRRTTree(node, cms, config,

env, vehicle)
11: putNodeToQueue(expNode, queue)
12: end for
13: end for
14: path ⇐ initPath()
15: node ⇐ getBestNode(queue)
16: path.score ⇐ −node.totCost
17: while node &= NULL do
18: path ⇐ appendWaypoint(node, timeStep)
19: node ⇐ node.prev
20: end while
21: return path

angle between two branches horizontally and vertically, and
maximum and minimum distance that branch can be as ratio
of map width.
Each iteration of the algorithm, as specified in Algorithm 1,

begins with the vehicle in a particular state. At the first step,
it initializes a queue, environment and configurations (lines 1-
4). The initial tree (i.e. queue) only consists of the initial state
of the vehicle. A new state is expanded stochastically from
the best node in the tree, but biased by the parameters in the
configuration (lines 7-13). This continues for a given number
of iteration, after which the best node is retrieved, and defines
the path to be followed (lines 14-20). The configuration used
in this algorithm is obtained by learning technique based on
genetic algorithm (GA). We will discuss the detailed procedure
to get this parameter in the next section.
Each iteration of the algorithm calls expandRRTTree shown

in Algorithm 2 to actually expand RRT tree from a given node.
In main routine, the node is selected based on the quality value,
the total cost of reaching the selected node from the root of
the tree. Once the best node is picked, the algorithm expands
randomly from the selected one. For each extension added to
the tree, several states are computed via the parameters in the
configuration. The resulting states are added after a verifying
process (lines 10-11), which checks feasibility of them.
In Algorithm 2, the node is expanded by the parameters

Algorithm 2 expandRRTTree(): Expand RRT Tree from a
given node with costmaps
Require: start, cms, config, env, vehicle
Ensure: expand
1: rand ⇐ getRandomValue(0, 1) // Get a random value
between 0 and 1

2: θ ⇐ start.theta + (config.maxTheta× rand)
3: ψ ⇐ start.psi + (config.maxPsi× rand)
4: (θ,ψ) ⇐ setAngle(0, 360) // Set angles between 0 and
360.0

5: randInt ⇐ getRandomIntValue(config.rrtBranch)
6: if start.prev = NULL then
7: expand ⇐ start + randInt − config.rrtBranch

2
8: else
9: dist ⇐ env.mapSize×(rand×(config.maxLength+

config.minLength) + config.minLength)
10: (expand.x, expand.y, expand.z) ⇐ start +

dist × (cos(degreeToRad(θ)), sin(degreeToRad(θ)),
cos(degreeToRad(ψ)))

11: end if
12: start ⇐ incExpansions(1)
13: expand.prev ⇐ start
14: expand.depth ⇐ start.depth + 1
15: expand.totCost ⇐ calcTotalCost(expand, start, cms,

config)
16: verifyNode(expand)
17: return expand

in the configuration such as θ,ψ, mimimum and maximum
length. First, we set the parameter values randomly from
a range of permissible values (lines 1-5). Next the planner
actually expands from the staring node using the selected
parameter values (lines 6-11). After getting the expansion
node, lines 12-14 set the hierarchy between two nodes, and
change the related values including depth and total cost.
Total cost for the newly expanded node is calculated by the
following equations:

Costtotal = Costnear + Costcostmaps

+ Penaltydirection change + Penaltyheight change

+ Penaltydistance

Penaltydirection change =
smoothFactor(scaleFactor×∆V el) − penalizeFactor

Penaltyheight change = heightFactor × ∆Height

Penaltydistance = e
(∆Distance−prefP athLength)

scaleF actor

Costnear is a penalty for being near any previous nodes
on this path. The concept behind this cost is that if the
distance between the current node and previous ones is close
to that of the path distance then the path cannot be turning
on itself too much. Costcostmaps is for adding all cost of
any terrain covered. Also, we calculate a bonus or penalty for
straight and jagged movement and an inherent cost for going
either up or down to penalize excess changes in direction,

Penaltydirection change and Penaltyheight change. For the
last step, we also consider the expanded distance metric to
avoid nodes having too long distance and promote a length
otherwise, Penaltydistance. The numbers used in these equa-
tions were experimentally determined.

IV. LEARNING APPROACH

Algorithm 3 GALearning(): GA Learning to get a configura-
tion set
Require: popSize, maxGens, sizeOfQueue, threshold
Ensure: queue
1: env ⇐ generateEnvironmentConf()
2: vehicle ⇐ generateVehicleConf()
3: queue ⇐ generateInitQueue(sizeOfQueue)
4: initPlanner(env, vehicle)
5: cms ⇐ initCostmap()
6: pop ⇐ generatePopulation(popSize)
7: evaluateFitness(pop, cms)
8: if preEvaluate(pop) < fitnessThreshold then
9: Stop this process and generate population, again.
10: end if
11: while diff > threshold and curIteration < maxGens
do

12: cms ⇐ addMoreCostmaps() // if we need
13: candidate ⇐ selectTwoIndsByRWS(pop)
14: ops ⇐ createOffsprings(candidate, mode)
15: diff ⇐ updatePopulation(pop, ops) // Replace the

worst individual with a generated offspring
16: updateQueue(queue)
17: curIteration ⇐ curIteration + 1
18: end while
19: return queue

The RRT algorithm presented in the previous section relies
on the configuration parameters for best performance. In this
Section, we introduce a learning algorithm based on a genetic
algorithm (GA) that is adaptive heuristic search algorithm
premised on the evolutionary ideas of natural selection and
genetic. [9]. The overall idea is specified in Algorithm 3. First,
the algorithm initializes the environment, costmap and vehicle
properties and generates initial population having random
configuration values with a given population size (lines 1-
6). In each generation, the fitness of every individual in
the population is evaluated by the simulation in the path
planner, and multiple individuals are selected from the current
population based on their fitness by Roulette Wheel Selection
(RWS) method [10]. The selected individuals are modified by
crossover and random mutation - to form a new population.
Specifically, for implementing crossover, we generate a new
configuration based on parents’ configurations with calculated
weight factors, which are obtained by their fitness. The new
individual is then used to replace the worst ranked individual
in population. In this algorithm, the algorithm terminates
when either a maximum number of generations has been
produced, or a satisfactory fitness level has been reached for

the population. After finishing iterations, the obtained best
solutions are returned (lines 11-18).
While there are many different types of selection, we choose

the most common type - roulette wheel selection [10]. This
method is a genetic operator used in genetic algorithms for
selecting potentially useful solutions for recombination. In
roulette wheel selection, as in all selection methods, the fitness
function assigns fitness to possible solutions. This fitness
level is used to associate a probability of selection with each
individual’s configuration. If fi is the fitness of individual i in
the population, its probability of being selected is p i = fi

ΣfN
,

where N is the number of individuals in the population.
Two individuals are then chosen randomly based on these
probabilities to produce offspring.
However, GA has a tendency to converge towards local

optima or even arbitrary points rather than the global optimum
of the problem. To escape the local minimum, Diversity
Maintenance Module (DMM) is used in this algorithm.
Specifically, “Shrinking Window Mutation (SWM)” [11] and
“Simulated Annealing (SA)” [12] procedures are used in the
updatePopulation routine. For SWM, the perturbation window
shrinks as the optimization progresses. In SA, acceptance
probability is calculated as:

P (fitness, fitnessneighbor, T) =
1 − e−‖(fitnessneighbor−fitness)‖×(scaleFactor×k+ 1

kmax)

Furthermore, to improve the overall performance, we also
consider the preCalculate module. Because GA procedure
randomly generates the initial population, we cannot guarantee
the quality of the configuration set. Thus, we stochastically
retrieve the small set of population, about 10% of the original
size, and pre-test via GA algorithms. If the result set cannot
return the satisfactory solution set, the algorithm discard the
population set and re-iterate the procedure.
More specifically, the preCalculatemodule randomly selects

the small set among the existing population. As a main routine
specified in Algorithm 3, in each generation, the fitness of
every individual in the selected set is evaluated, multiple
individuals are stochastically selected, and modified to form a
new population. The algorithm is terminated when a maximum
number of generations has been reached, and very small
number is used for a maximum number of generations. The
solution set is retrieved by this procedure and the average
fitness value is used for evaluating the original population set.

V. RESULTS
A. Overview of Results
In this section, we demonstrate the performance of the

proposed algorithm, the RRT path planning with GA learning
technique. We performed experiments over various scenarios
and investigate the results using specific performance criteria
including the combined reward and planning time.
For the simulation, the challenge is to find the reasonable

parameter values such as threshold values, population size
and a max generation number in GA, an initial window size

Figure 2. Overview of reward comparison

for Shrinking Window Mutation and a max trial number for
Simulated Annealing. As we mention briefly in the previous
section, we experimentally selected those values. Details are
shown in Table I.

Table I
PART OF EXPERIMENTAL PARAMETERS

Parameter Value Note
of UAVs 1-4

iteration # in RRT 1,000
population size 100
max generations 10,000 & 200,000
of configurations 1-5
iteration # in GA 100

α -200.0 Threshold for preCal
window size 3 Initial window size in SWM

Kmax 20 Max trial # in SA
ε 10−3 Stop condition in GA

As depicted in Figure 2, we compared average reward values
for three different algorithms - Pre-defined path planning, RRT
with a random configuration and RRT with GA. For a pre-
defined case, we simply extend the path from the current
position with the fixed distance and angle to mainly generate
a spiral path. To perform experiments, 4 UAVs and 5 config-
urations are used, and at each step, the best configuration was
dynamically selected among a configuration set obtained from
GA. Figure 2 shows that the proposed algorithm showed much
better results than other ways in terms of the average reward.
Specifically, when we use RRT with GA to generate the path,
the performance of the suggested algorithm was improved by
75.79% over the pre-defined case and by 53.68% over the
RRT with a random configuration. Details are discussed in
the following.

B. The RRT algorithm with a genetic algorithm
a) Reward comparison over various costmaps: In this

part, we mainly focus on examining the RRT performance

over various scenarios in terms of the reward. To compare the
RRT performance to the pre-defined path, we did experiments
over seven different cases with various costmaps. Each case in
Figure 3 and 4 represents the dynamic situations having dif-
ferent costmaps. Detailed information for each case is shown
in Table II and III. As shown in Table II and III, we generated
a combined costmap in a simulator using several simple static,
random and mixed Gaussian costmaps to perform experiments.

Table II
CHANGING COSTMAPS IN GA: GETTING A CONFIGURATION SET

Case# in fig.3 Costmaps in GA
GA Case1 1 simple static costmap
GA Case2 1 simple static costmap + 3 random gaussian
GA Case3 1 static + 5 random gaussian
GA Case4 1 static + 5 random gaussian + 3 mixed gaussian
GA Case5 1 static + 5 random gaussain + 5 mixed gaussian
GA Case6 1 static + 7 random gaussian + 5 mixed gaussian
GA Case7 1 static + 10 random gaussian + 5 mixed gaussian
Testing 1 static + 5 random gaussian + 3 mixed gaussian

environment + other vehicle’s costmaps

Table III
CHANGING COSTMAPS IN RRT: TESTING OVER DIFFERENT COSTMAPS

Case# in fig.4 Costmaps in RRT planner
Testing Case1 1 simple static costmap + other vehicle’s costmaps
Testing Case2 1 static + 3 random gaussian + other vehicle’s costmaps
Testing Case3 1 static + 5 random gaussian + other vehicle’s costmaps
Testing Case4 1 static + 5 random gaussian + 3 mixed gaussian

+ other vehicle’s costmaps
Testing Case5 1 static + 5 random gaussain + 5 mixed gaussian

+ other vehicle’s costmaps
Testing Case6 1 static + 7 random gaussian + 5 mixed gaussian

+ other vehicle’s costmaps
Testing Case7 1 static + 10 random gaussian + 5 mixed gaussian

+ other vehicle’s costmaps
GA Env1 1 simple static costmap
GA Env2 1 static + 5 random gaussian
GA Env3 1 static + 5 random gaussian + 3 mixed gaussian

Specifically, for getting the result in Figure 3, we used seven
different cases, specified in Table II, to get a configuration set
via the GA. Each case’s costmap is applied to GA learning to
get five best configurations. After getting the configurations we
tested those seven sets over the same testing environment, also
specified in Table II. The percentage of gain was calculated as
% of gain = rewardRRT−rewardpre

rewardpre
× 100. As shown in Figure

3, the gain of RRT plan with GA over the pre-defined path
was at least about 30% for any cases, and the gain was over
75% for the best case.
For Figure 4, we evaluated two different approaches. One

approach is learning a configuration set from one group of
costmaps, GA Env3 in Table III. Another approach is learning
a configuration set from three different groups of costmaps,
GA Env1 through 3. Because we select five configurations
to make a set, we get one configuration from GA Env1, two
configurations from GA Env2, and two more configurations
from GA Env3. Once we get a configuration set, we test those
parameters in RRT over various testing cases shown in Table
III.

Figure 3. RRT: % of gain over pre-defined path⇒ Change costmaps in GA.

Figure 4. RRT: % of gain over pre-defined path ⇒ Change costmaps in
testing environment.

As shown in Figure 3 and 4, the performance of case 4
was dramatically improved (about 75%). This is because case
4 has a very similar testing environment to a situation that a
configuration set is obtained by GA. Thus, as we can expect
easily, when we apply the best configuration set to generate a
plan in the RRT planner, it generate much better results than
a pre-defined case.
Also, for Figure 4, when we obtain a configuration set from

three different groups of costmap, % of gain in Figure 4 has
a smaller variance for the performance than the case that a
configuration set is obtained from one group of costmap. This
means if we get configurations from various environment and
apply them dynamically, we can get fairly good preformance
for any general cases.

b) Reward comparisons with different configurations: In
this part, we perform the experiments to show the performance
of the suggested algorithm from more criteria: the static vs.
dynamic method, different number of vehicles, different types
of costmaps, and different number of configurations in a set.

Figure 5. Static vs Dynamic (Reward)

The static method chooses the best configuration in the
set at the initial time based on their fitness, whereas the
dynamic method considers all configurations in the set to
generate the path at each step, and chooses the best one
dynamically. As shown in Figure 5, dynamic method showed
26.08% better performance than static case in terms of reward.
This is because dynamic method evaluates all possible paths
with configurations in the set, and selects the best case at
each step. The interesting fact here is because we are using
5 configurations for the experiments, it takes approximately
five times longer to generate a path when we use a dynamic
method. This might look worse for the overall performance,
but when we actually tested a dynamic case in a simulator, it
was not a critical point because the planner practically does not
have to generate the path frequently and planning still takes
only about 3.5 seconds.
Figure 6 represents the average reward with different num-

ber of vehicles. We used one through four UAVs to perform the
experiments, and compare the results. UAVs start at random
positions. As shown in Figure 6, the reward difference is not
large, and is caused by the RRT path planner considering
other vehicles’ costmaps to generate the path. Usually if we
use more vehicles to collect information, we can get more
information from other vehicles. The lower performance of
case 3 might be caused by not enough experiment number
and fundamental properties of randomized methods.
We also tested over two different cases specified in Figure

7. Case 1 initially sets three random Gaussian costmaps, and
case 2 uses three different types of costmaps, and dynamically
add more costmaps as the iteration number increases to get a

Figure 6. Different # of vehicles

Figure 7. Different types of costmap to get a configuration set in the GA

configuration set via the GA. Case 2 starts with a simple static
costmap and adds more random and mixed Gaussian and maps
as the iteration number goes on. We also used 4 UAVs, 5
configurations, and applied a dynamic method to evaluate the
path. As shown in Figure 7, case 2 showed the better result
by 18.71% than case 1 because configurations in case 2 are
trained with more complicated environment, and thus more
applicable and flexible to a general environment.
For the last part, we also performed experiments with

different number of configurations and measured the average
reward. Because we used a dynamic method, if the planner has
more configurations, it is highly likely to get higher reward.
As depicted in Figure 8, the overall performance with five
configurations was improved by 26.08%.

Figure 8. Different # of configurations in a set

C. GA Learning
In this part, we demonstrate the performance of GA learning

in terms of fitness value and time. As shown in Figure 9,
we performed the experiments over eight different scenarios.
Details about each scenario are specified in Table IV. In Table
IV, preCal is the module for an optimization. We select a
small set of population and apply GA with that and pre-
evaluate it with the specific threshold value. DMM stands for
Diversity Maintenance Module, and this module is used to
escape the local optima - SWM: Shrinking Window Mutation,
SA: Simulated Annealing.

Table IV
EXPERIMENTS SETUP

Experiment# Description
Experiment1 Without any GA
Experiment2 Basic GA without update population
Experiment3 GA without preCal & DMM
Experiment4 GA without preCal & with DMM-SWM
Experiment5 GA without preCal & with DMM-SA
Experiment6 GA with preCal & without DMM
Experiment7 GA with preCal & DMM-SWM
Experiment8 GA with preCal & DMM-SA

Figure 9. Fitness & time

We tested with two different maximum numbers of gen-

erations - 10,000 and 200,000 - over eight cases. For both
numbers, experiment 8 showed the best result. This implies
SA is better than SWM and the preCal module also helps
to improve the average fitness. For the elapsed time, when
maximum number of generations is 200,000 and SA without
preCal is used, the algorithm showed the worst performance
in terms of time. However, if we use preCal together, we can
significantly reduce the elapsed time to get a configuration set.

VI. RELATED WORK

Much path planning work assumes that the environment is
completely known before the robot begins its traverse [6]. The
optimal algorithms in this search a state space (e.g., visibility
graph, grid cells) using the distance transform [4] or heuristics
[13] to find the lowest cost path from the robot’s start state
to the goal state. Cost can be defined to be distance travelled,
energy expended, time exposed to danger, etc.
The stochastic or random approach was first introduced by

Barraquand and Latombe [14], and later used by Overmars
[15], and more recently by Kavraki [16]. The main idea behind
these algorithms is to build a graph in the configuration space.
The graph is obtained incrementally as follows: a local planner
is used to try to reach the goal. Should the motion stop at
a local minimum, a new node (or landmark) is created by
generating a random motion starting from that local minimum.
The method iterates these two steps until the goal configuration
has been reached from one of these intermediary positions
by a gradient descent motion. These algorithms work with a
discretized representation of the configuration space.
Previous work in path planning has taken several approaches

to planning with uncertainty. One of the most common ap-
proaches is to ensure proper operation in the worst case
scenario. For example, if uncertainty is considered only in
actuation, but not in sensing or modeling, Hait and Sim’eon
[17] consider the range of possible rover poses and test for
impact with the terrain. Related work by Esposito in the
domain of plan validation [18] samples several possible values
of the uncertain parameter from a given distribution and
repeats planning for each value.
Another tactic for dealing with uncertainty is presented by

Gonzalez and Stentz [19]. This work considers only actuation
uncertainty, which is modeled as a zero-mean symmetric Gaus-
sian. However, they are able to compute resolution-optimal
paths for a point robot using the grid-based A* planner [13].

VII. CONCLUSIONS
This paper presented a novel path-planning algorithm for

vehicles performing sensor readings in an environment where
value of information from all parts of the environment is not
equal. The approach built on ideas from RRT planners, but
prioritized nodes from which to expand on the basis of their
likelihood of leading to the best path. Key parameters of the
planner were successfully learned via a genetic algorithm. The
resulting planner was shown to be successful at finding paths
that collected almost double the useful information as pre-
defined paths.

In the near future, this planner will be applied to several
physical vehicles as well as simulations of a range of different
vehicle types. This usage will press the performance of the
planner and, particularly, the learning algorithms. In real-world
domains, additional constraints such as particular points the
vehicle must go to or the need to refuel at specific locations
will mean that the random expansion will need to be more
carefully controlled. In addition, the proposed method will be
tuned for automated learning of appropriate prioritization.

REFERENCES
[1] J. Carsten, A. Rankin, D. Ferguson and A. Stentz, “Global Path Planning

On-board the Mars Exploration Rovers,” in Proc. of the IEEE Aerospace
Conference, 2007.

[2] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz and S. Thrun, “Anytime
Dynamic A*: an Anytime, Replanning Algorithm,” in Proc. of the Int.
Conf. on Automated Planning and Scheduling, 2005.

[3] K. Iagnemma, H. Shibly, A. Rzepniewski, and S. Dubowsky, “Planning
and control algorithms for enhanced rough-terrain rover mobility,” in
International Symposium on Artificial Intelligence, Robotics, and Automa-
tion in Space, 2001.

[4] Jarvis, R. A., “Collision-Free Trajectory Planning Using the Distance
Transforms,” Mechanical Engineering Trans. of the Institution of Engi-
neers, Australia, Vol. ME10, No. 3, September, 1985.

[5] Cipriano Galindo, Juan-Antonio Fernandez-Madrigal, and Javier Gonza-
lez, “Improving Efficiency in Mobile Robot Task Planning Through World
Abstraction,” in IEEE TRANSACTIONS ON ROBOTICS, Vol. 20, No. 4,
August, 2004

[6] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378.400,
May 2001.

[7] Faverjon, B. Tournassoud, P., “A Local Based Approach for Path Planning
of Manipulators with a High Number of Degrees of Freedom,” in
Proceedings of the 1987 IEEE International Conference on Robotics and
Automation, 1152-1159, 1987.

[8] Russell, S. J., Norvig, P, Artificial Intelligence: A Modern Approach,
Prentice Hall, pp. 97-104, 2003.

[9] Falkenauer, Emanuel, Genetic Algorithms and Grouping Problems, Chich-
ester, England: John Wiley & Sons Ltd., 1997.

[10] Goldberg D., Genetic Algorithms, Addison Wesley, 1988.
[11] K. Rasheed and H. Hirsh, “Using Case-Based Learning to Improve

Genetic-Algorithm-Based Design Optimization,” in Proceedings of the
1997 International Conference on Genetic Algorithm, 1997.

[12] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, Vol 220, Number 4598, pages 671-680,
1983.

[13] Nilsson, N. J., Principles of Artificial Intelligence, Tioga Publishing
Company, 1980.

[14] Barraquand, J. Latombe, J, “A Monte Carlo Algorithm for Path Planning
with Many Degrees of Freedom,” in Proceedings of the 1990 IEEE
International Conference on Robotics and Automation, 1712-1717, 1990.

[15] Overmars, M, “A Random Approach to Motion Planning,” Technical
Report RUU-CS-92-32, Department of Computer Science, Utrecht Uni-
versity, 1992.

[16] Kavraki, L., Svestka, P., Latombe, J., Overmars, M, “Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces,”
IEEE Transactions on Robotics and Automation, 14(4), 566-580, 1996.

[17] A. Hait and T. Sim’eon, “Motion planning on rough terrain for an
articulated vehicle in presence of uncertainties,” IEEE/RSJ International
Symposium on Intelligent Robots and Systems, pp. 1126.1133, 1996.

[18] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validating hy-
brid robotic control systems,” International Workshop on the Algorithmic
Foundations of Robotics, July 2004.

[19] J. P. Gonzalez and A. T. Stentz, “Planning with uncertainty in position:
An optimal and efficient planner,” in Proceedings of the IEEE Inter-
national Conference on Intelligent Robots and Systems (IROS’05), pp.
2435-2442, August 2005.

