
Challenges in Building Very Large Teams

Paul Scerri∗, Yang Xu+, Jumpol Polvichai+, Bin Yu∗, Steven Okamoto∗, Mike
Lewis+ and Katia Sycara∗

∗Carnegie Mellon University
+University of Pittsburgh

Abstract. Coordination of large numbers of unmanned aerial vehicles is
difficult due to the limited communication bandwidth available to main-
tain cohesive activity in a dynamic, often hostile and unpredictable envi-
ronment. We have developed an integrated coordination algorithm based
on the movement of tokens around a network of actors. Possession of a
token represents exclusive access to the task or resource represented by
the token or exclusive ability to propogate the information represented
by the token. The movement of tokens is governed by a local decision
theoretic model that determines what to do with the tokens in order
to maximize expected utility. The result is effective coordination be-
tween large numbers of UAVs with very little communication. However,
the overall movement of tokens can be very complex and, since it relies
on heuristics, configuration parameters need to be tuned for a specific
scenario or preferences. To allow rapid tuning of the configuration for
a particular scenario, we have developed a neural network model of the
relationship between configuration and environment parameters and per-
formance. A human uses the model to rapidly configure a team or even
reconfigure the team online, as the environment changes.

1 Intro

Efficient, effective automated or semi-automated coordination of large numbers
of cooperative heterogeneous software agents, robots and humans has the po-
tential to revolutionize the way complex tasks are performed in a variety of
domains. From military operations, to disaster response[26, 58] to commerce[35]
to space[18], automated coordination can decrease operational costs, risk and
redundancy while increasing efficiency, flexibility and success rates. To achieve
this promise, scalable algorithms need to be found for the key problems in co-
ordination. Unfortunately, these problems, including deciding how to allocate
tasks and resources, deciding when and what to communicate and planning,
have NP-complete or worse computational complexity and thus require approx-
imate solutions.

While automated coordination is a very active research area (e.g., [56, 61,
19]), previous work has failed to produce algorithms or implementations that
meet the challenges of coordinating large numbers of heterogeneous actors in
complex environments. Most algorithms developed for key problems do not scale
to very large problems (e.g., optimal search techniques[32, 33]), though some

scale better than others (e.g., markets [18]). The rare algorithms that do scale
effectively typically either make unreasonable assumptions or are very specialized
for a specific problem (e.g., emergent behavior [45]). Algorithms that have been
shown to be scalable often rely on some degree of centralization[31], which may
not always be desirable or feasible.

The solution relies on three novel ideas. The first novel idea is to use tokens,
encapsulate both information and control, as the basis for all coordination. For
each aspect of the coordination, e.g., each task to be assigned, there is a token
representing that aspect. Control information, included with the token, allows
actors to locally decide what to do with the token. For example, a task token
contains control information allowing an actor to decide whether to perform
the task or pass it off for another actor. Movement of tokens from actor to
actor, implements the coordination. The effect of encapsulating the piece of
the overall coordination with its control information is to ensure that everything
required for a particular decision, e.g., whether a particular actor should perform
a particular task, is localized to the actor currently holding the respective token.
This reduces required communication and avoids many of the problems that arise
when required information is distributed. The key is to be able to find control
rules and control information that can be encapsulated in the token and allow
decisions about that token to be made relatively independantly of decisions about
other tokens. We have developed such algorithms for a range of key coordination
problems including task allocation[53], reactive plan instantiation[52], resource
allocation, information sharing[63] and sensor fusion.

The efficiency of the token based coordination algorithms depends on the
routing of the tokens around the network of actors. Individual actors build up
local models of what types of things their neighbors in the network are most
interested in and use these models to decide where to send a token (if at all)[64].
Previous work has shown that even relatively poor (i.e., often inaccurate) local
routing models can dramatically improve overall performance of a particular
coordination algorithm[63]. The second novel idea in this work is to exploit
the homogeneity of tokens, i.e., the fact that all aspects of coordination are
represented with tokens, to allow actors to exploit the movement of tokens for one
coordination algorithm to improve the flow of tokens for another coordination
algorithm. The inituition is that, e.g., knowing something about a task allocation
should help the resource allocation which should in turn help dissemination of
important information. For example, if actor A knows that actor B is performing
a fire fighting task in Pittsburgh, it can infer that resources physically located
in Phillidelphia will not be of interest to actor B and save the overhead of
involving actor B in algorithms for allocating those resources. Our results show
that exploiting synergies between coordination algorithms dramatically improves
overall coordination performance.

The third novel idea in this work is to develop a general purpose meta-level

reasoning layer, distributed across the team. The meta-reasoning is conceptu-
ally “above” the token flows and manipulates the movement of tokens in one of
two ways. First, the meta-reasoning layer can extract and manipulate particu-

lar tokens when behavior is not as required. For example, the meta-reasoning
layer may notice that a particular task allocation token is unable to find any
actor to perform the task it represents and bring that unfilled task assignment
to the attention of a human who can decide what to do. Tokens can be safely
extracted because everything related to that token is encapsulated within the
token. Second, the meta-reasoning layer can configure control parameters on all
tokens to manipulate the token flows to maximize current performance require-
ments. For example, when communication bandwidth is tightly constrained the
meta-reasoning can configure the tokens to move less (at a cost of quality of
performance.) We use a neural network model of the relationships between con-
trol parameters and performance to allow rapid search for parameter settings to
meet current performance requirements and online reconfiguration to adapt to
changing requirements.

In previous work, we have shown that by leveraging a logical, static network
connecting all coordinated actors, some coordination algorithms can be made
to effectively scale to very large problems[49]. The approach used the network
to relax some of the requirements to communicate and made it possible to ap-
ply theories of teamwork[9, 56] in large groups. The key was the small worlds

property of the network[59] which requires that any two agents are connected by
a small number of intermediate agents, despite having a relatively small num-
ber of direct neighbors. The token-based algorithms leverage this network when
moving around the team

The integrated token-based approach has been implemented both in ab-
stracted simulation environments and as a part of domain independant coor-
dination software called Machinetta[50]. The abstract simulation environments
show the effectiveness of the token based ideas across a very wide range of sit-
uations. In this simulation environment, the token-based algorithms have been
shown to be extremely scalable, comfortably coordinating groups of up to 5000
actors. Machinetta is a public domain software module that has been used in
several domains[50, 49, 54], including for control of unmanned aerial vehicles.
Machinetta uses the concept of a proxy[42, 23] which gives each actor a semi-
autonomous module encapsulating the coordination reasoning. The proxies work
together in a distributed way to implement the coordination. Experiments with
upto 200 Machinetta proxies running the token based algorithms have shown
that fully distributed coordination feasible.

2 Problem Description

Target Application: Coordinated Wide Area Search Munitions Our
current domain of interest is coordination of large groups of Wide Area Search
Munitions (WASMs). WASMs are a cross between an unmanned aerial vehicle
and a standard munition. The WASM has fuel for about 30 minutes of flight,
after being launched from an aircraft. The WASM cannot land, hence it will
either end up hitting a target or self destructing. The sensors on the WASM
are focused on the ground and include video with automatic target recognition,

ladar and GPS. It is not currently envisioned that WASMs will have an ability
to sense other objects in the air. WASMs will have reliable high bandwidth com-
munication with other WASMs and with manned aircraft in the environment.
These communication channels will be required to transmit data, including video
streams, to human controllers, as well as for the WASM coordination.

The concept of operations for WASMs are still under development, however,
a wide range of potential missions are emerging as interesting[7, 12]. A driving
example for our work is for teams of WASMs to be launched from AC-130 air-
craft supporting special operations forces on the ground. The AC-130 is a large,
lumbering aircraft, vulnerable to attack from the ground. While it has an im-
pressive array of sensors, those sensors are focused directly on the small area of
ground where the special operations forces are operating making it vulnerable
to attack. The WASMs will be launched as the AC-130s enter the battlespace.
The WASMs will protect the flight path of the manned aircraft into the area
of operations of the special forces, destroying ground based threats as required.
Once an AC-130 enters a circling pattern around the special forces operation, the
WASMs will set up a perimeter defense, destroying targets of opportunity both
to protect the AC-130 and to support the soldiers on the ground. Even under
ideal conditions there will be only one human operator on board each AC-130
responsible for monitoring and controlling the WASMs. Hence, high levels of
autonomous operation and coordination are required of the WASMs themselves.
However, because the complexity of the battlefield environment and the severe
consequences of incorrect decisions, it is expected that human experience and
reasoning will be extremely useful in assisting the team in effectively and safely
achieving their goals.

Fig. 1. A screenshot of the WASM coordination simulation environment. A large group
of WASMS (small spheres) are flying in protection of a single aircraft (large sphere).
Various SAM sites (cylinders) are scattered around the environment. Terrain type is
indicated by the color of the ground.

Many other operations are possible for WASMs, if issues related to coordi-
nating large groups can be adequately resolved. Given their relatively low cost
compared to Surface-to-Air Missiles (SAMs), WASMs can be used simply as de-
coys, finding SAMs and drawing fire. WASMs can also be used as communication
relays for forward operations, forming an adhoc network to provide robust, high
bandwidth communications for ground forces in a battle zone. Since a WASM is
“expendible”, it can be used for reconnasiance in dangerous areas, providing real-
time video for forward operating forces. While our domain of interest is teams
of WASMs, the issues that need to be addressed have close analogies in a vari-
ety of other domains. For example, coordinating resources for disaster response
involves many of the same issues[26], as does intelligent manufacturing[44] and
business processes.

The problem of coordination we are dealing with here can be informally
described as determining who does what at which time and with which shared
resources and information. In the following, we provide a formal description of
this coordination problem.

2.1 Team Oriented Plans and Joint Activities

Each member of the team a ∈ A has a copy of the Team Oriented Plan templates,
Templates that describe the joint activities that need to be undertaken in par-
ticular situations[43]. These templates are defined offline by a domain expert.
Each template, template ∈ Templates has preconditions, templatepre under
which it should be instantiated into a joint activity, αi. The template may also
have parameters, templateparam that encode specifics of a particular instance.
The same template may be instantiated multiple times when with different pa-
rameters. The joint activity should be terminated when certain postconditions,
templatepost are met. These postconditions may be a function of templateparam.
The templates whose preconditions but not postconditions are satisfied at time
t are written JointActs(t, T emplates).

A joint activity, αi, breaks a complex activity down into tasks, Tasks(αi) =
{task1

i , . . . , taskn
i }, each intended to be performed by a single actor. Constraints,

constraints(αi), exist between the tasks including constraints on the sequenc-
ing of tasks, the simultaneous (or not) execution of tasks and whether tasks
are alternative ways of doing the same thing. The set of roles that should be
executed at time t to achieve αi, given the constraints, at time t is written
CurrTasks(αi, t) = f(Tasks(αi), Constraints(αi)). Each team member has a
capability to perform each task, which is written as capability(a, task, t). This
capability may change over time as, e.g., an agent moves around the environ-
ment. Notice that the actual value of assigning a particular actor to a particular
task depends also on which resources and information that actor has, as de-
scribed beow. A templatei does not specify which actor should perform which
task nor which resources will be used nor what what coordination must take
place[43].

For example, in a disaster response domain there may be a template for
evacuating a burning building, templateevacuate. The template will be instan-

tiated when there is a building on fire containing civilians, i.e., templatepre =
FireInBuildingX and CiviliansInBuildingX and parameterized with the spe-
cific building to be evacuated, i.e., templateparam = BuildingX . The template
breaks the evacuation job down into individual activities for checking each floor
and for broadcasting a message over the building’s emergency broadcast sys-
tem. Fire fighters will have a different inherent capability to clear floors of the
building than robots.

Associates Network The associates network arranges the whole team into
a small worlds network defined by N(t) = ∪

a∈A
n(a), where n(a) are the neigh-

bors of agent a in the network. The minimum number of agents a message
must pass through to get from one agent to another via the associates net-
work is the distance between those agents. For example, if agents a1 and a3

are not neighbors but share a neighbor distance(a1, a3) = 1. We require that
the network be a small worlds network, which imposes two constraints. First,
∀a ∈ A, |n(a)| < K, where K is a small integer, typically less than 10. Second,
∀ai, aj ∈ A, distance(ai, aj) < D where D is a small integer, typically less than
10.

2.2 The Value of Information

Events and circumstances in the environment are represented discretely as be-
liefs, b ∈ Beliefs. Individual actors will not necessarily know all current beliefs,
but typically some subset Ka ∈ Beliefs. If the environment is fully observable
then

⋃

a∈A Ka = Beliefs otherwise
⋃

a∈A Ka ⊂ Beliefs. When an actor is as-
signed to a task (see below) having knowledge of particular beliefs can improve
how well the actor can perform the task. The value of a piece of information
is dependant on the environment, the task, the actor and time and is written
value(b, a, task, time) → R. For example, when a robot with vision based sensing
is assigned to search a building for trapped civilians, knowledge of where smoke is
in the building is less important than to a robot using infrared or acoustic sensors
(listening for voices) than using vision. While in general the mapping between
tasks, agents, information and value is very complex, in practical applications it
is often straightforward to find reasonable, compact approximations.

2.3 Resources

To perform assigned tasks, actors may need resources, Resources = {r1, . . . , rn}.
In this work, resources are modeled as being freely assignable to any actor and
never being exhausted, however only one actor can have access to a resource
at any one time1. A task’s need for a resource is modeled as being indepen-
dant of which actor is performing the task. Often there is a set of resources

1 If multiple actors can access the same resources simultaneously, we represent this is
being multiple resources

that are interchangable, in so far as any one of the resources is just as effec-
tive as any of the others. Such sets are written IR = {ri, . . . , rn}. Some inter-
changable resources, taskneed = {IR1, . . . , IRm}, are necessary for execution of
the task. This means that without access to at least one resource from each
IR ∈ taskneed no actor can execute this task. Another set of interchangable
resources, taskuseful = {IR1, . . . , IRk} are useful to the execution of the task,
although the task can be executed without access to one of the interchanable
resources.

Assignment of a resource, r, to actor, a, is written assigned(r, a). The re-
sources assigned to an actor are resouces(a). Since a resource cannot be as-
signed to more than one agent, we require ∀a, b ∈ A, a 6= b, resources(a) ∩
resources(b) = ∅.

Consider a task for a fire fighter to extinguish a small fire. To perform this
task, any fire fighter must have a hose and access to one of the fire hydrants
within range of the fire. All possible hoses are modeled as a single interchangable,
necessary resource. Any fire proof suit will allow the fire fighter to get closer to
the fire, which improves their ability to fight the fire, but is not essential. All
possible fire suits are modeled as interchangable, useful resources.

2.4 Assignments and Optimization

As stated informally above, the basic aim of coordination is to decide who does
what, when with which resources. This first requires determining what templates
should be instantiated into joint activities, α1, . . . , αn. The joint activities define
the current set of tasks that need to be assigned to actors. Any templates that
are not instantiated, but should be, because their preconditions are satisfied or
should be terminated because their postconditions are satisfied, cost the team
value. Performance of any tasks for joint activities that should have been termi-
nated provide no value to the team. As described above, the joint activities that
should be executed at time t are JointActs(t, T emplates).

Tasks!(t) =
⋃

α∈JointActs(t,Templates) CurrTasks(α, t) defines the set of tasks
that give value to the team if assigned to capable team members at time t.
The set of tasks that are assigned to an actor, a, is written tasks(a). As with
resources, tasks should be assigned to only one actor, hence ∀a, b ∈ A, a 6=
b, tasks(a)∩ tasks(b) = ∅. The value an actor provides to the team is a function
of the tasks assigned to it, the resources assigned to it and the information it
knows, contrib(a, tasks(a), resources(a), Ka, t) → R. This function can be a
complex function since interactions between tasks and knowledge can be very
intricate, but in practice simple linear functions are often used to approximate
it. In the case that the task t /∈ Tasks!(t) the agent team can recieve no value
for the execution of the task. The overall coordination problem can be described
as:

∫

∞

t=0

∑

a∈A

contrib(a, tasks(a), resources(a), Ka, t) − communicationCost (1)

Typically, communication between actors is not free or is limited in some way
(e.g., total volume). Optimization of Equation 1 should be performed taking into
account these communications limitations.

3 Algorithms

To implement coordination in a large team we encapsulate anything that needs
to be shared in a token. Specifically, tokens represent any belief that needs to
be shared, any assignable task or any shared resource. Tokens cannot be copied
or duplicated, but can be passed from actor to actor along links in the network
connecting them. A token, ∆, contains two types of information content and
control. The content component describes the belief, task or resource represented
by the token. The control component captures the information that is required
to allow each agent decide whether to keep or pass on the token to maximise
the expected value to the team. The precise nature of the control component
depends on the type of token, e.g., role or resource, and is discussed in more
detail below. However, common to all is the path the token has followed through
the team, denoted ∆.path. In the remainder of this section, we describe how key
coordination algorithms are implemented via the use of tokens. Notice, below
when an actor decides to move a token to another actor it calls Pass. In the
next section, we describe how the Pass function sends the token from a to the
a ∈ n(a) that is most likely to benefit from reciept of the token, e.g., most likley
to be able to use the resource represented by a resource token.

Information Sharing Members of a large team will commonly locally sense
information that is useful to the execution of another agents tasks. The value
of this information to a team member executing a task was formally defined in
Section 2.2. However, it is not necessarily the case that the agent locally sensing
the information will know which of its teammates needs information or even
that a teammate needs it at all. We have developed a token-based algorithm
for proactive sharing of such information that efficiently gets the information to
any agent that needs it. The algorithm is described in detail in [63]. The control
information for an information token is simply the number of hops through the
team that the information token will be allowed to make before it is assumed
that any team mate that needs the information actually has it. Algorithm 1
provides the pseudo code for local processing of an information token.

Algorithm 1: Information Token Algorithm
(1)

if token.TTL > 0
(2) token.TTL−−

(3) Pass(token)

Where token.TTL is the number of remaining hops the token can take. Effi-
cient values for token.TTL are determined emperically and tend to be approxi-
mately log(|A|).

Template Instantiation and Joint Activity Deconfliction To instantiate
a plan template, templatei, into a joint activity, αi, requires that some team
member know that the preconditions, templatepre, for the plan are satisfied.
Since preconditions for a particular template may be sensed locally by different
team members, belief sharing via information tokens is required to ensure that
at least one actor knows all the preconditions. However, if multiple actors get to
know the same preconditions, it may happen that the template is instantiated
multiple times and the team’s effort is wasted on multiple executions of the same
plan. Our approach to this problem is described in detail in [29], in this chapter
we just provide a brief overview. The approach to avoiding plan duplicates uses
two ideas. First, an actor can choose not to instantiate a template (at least for
some time), despite knowing the preconditions hold and not knowing of another
instantiation. For example, in some cases an actor might wait a random amount
of time to see if it hears about another instance before instantiating a plan.
Second, once it does instantiate the template into a joint activity it informs each
of its neighbours in the associates network. Any actor accepting a role in the
joint activity must also inform its neighbors about the joint activity. It turns
out that despite only a relatively small percentage of the team knowing about
a particular joint activity instance, there is very high probability of at least one
team member knowing about both copies of any duplicated team activity. A
team member detecting a duplicate plan instantiation is obliged to inform the
actors that instantiated the duplicate plans (this information is kept with the
information token informing of the initiation of the joint activity) who can then
initiate a straightforward deconfliction process.

Task Allocation Once joint activities are instantiated from templates, the
individual tasks that make up the joint activity must be assigned to individual
actors. Our algorithm for task allocation is extensively described and evaluated
in [53]. A task token is created for each task, t ∈ Tasks(α). The holder of the
task token has the exclusive right to execute the task and must either do so or
pass the token to a teammate. First, the actor must decide whether it is in the
best interests of the team for it to perform the task represented by the token
(Alg 2, line 6). A task tokens control information is the minimum capability
(capability(a, task, t)) an actor must have in order to perform the task, task. This
threshold is the control component of the token. The token is passed around the
team until it is held by an actor with capability above threshold for the task and
without other tasks that would prevent it from performing the task. Computing
thresholds that maximize expected utility is a key part of this algorithm and
is described in [53]. The threshold is calculated once (Alg 2, line 5), when the
task arises due to team plan instantiation. A token’s threshold therefore reflects
the state of the world when it was created. As the world changes, actors will be

able to respond by changing the threshold for newly-created tokens. This allows
the team flexibility in dealing with dynamics by always seeking to maximize
expected utility based on the most current information available.

Once the threshold is satisfied, the actor must check whether it can perform
the task give other responsibilities (Alg. 2, line 9). If it cannot, it must choose
a task(s) to reject and pass the respective tokens to a neighbor in the network
(Alg. 2, lines 10 and 12). The actor keeps the tasks that maximize the use of its
capabilities (performed in the MaxCap function, Alg. 2, line 10), and so acts in
a locally optimal manner. Extensions to this algorithm allow efficient handling
of constraints between tasks.

Algorithm 2: Task Token
(1) V ← ∅, PV ← ∅

(2) while true
(3) token← getMsg()
(4) if token.threshold = NULL

(5) token.threshold← CalcThreshold(token)
(6) if token.threshold < Cap(token.value)
(7) V ← V ∪ token.value

(9) if
∑

v∈V
Resources(v) ≥ agent.resources

(10) out← V− MaxCap(V)
(11) foreach v ∈ out

(12) PassOn(new token(v))
(13) V ← V − out

(15) else
(16) PassOn(token) /* threshold < Cap */

3.1 Resource Allocation

Efficient teams must be able to assign resources to actors that can make best
use of those resources. As described above tasks have both necessary and useful
resources. Since there is no global view of which actor is doing which task,
the process of allocating resources to tasks is fully distributed. Each shareable,
discrete resource is represented by an individual token. As with task tokens,
control information on the token is in the form of a threshold. An actor can
hold the resource token, and thus have exclusive access to the resource, if it
computes its need for the token as being above the threshold. However, unlike
task tokens, thresholds for resource tokens are dynamic. When an actor has
a resource it slowly increases the threshold (up to some maximum value) and
continues checking whether its need for the resource is above that threshold.
When the token moves around the team, the threshold is slowly descreases until
it is accepted by some agent. The combination of moving the threshold up and

down ensures that whichever actor needs the resource most at a particular point
in time gets that resource.

Algorithm 3: ProcessResourceToken
(1) while true
(2) token← getMsg()
(3) if token.threshold < Req(token.resource)
(4) // Keep the token
(5) MonitorResourceToken(token)
(6) else
(7) Pass(token)

Algorithm 4: MonitorResourceToken
(1)

haveToken← true while haveToken

(2) sleep()token.threshold ← token.threshold + inc if
token.threshold > Req(token.resource)

(3) Pass(token)
(4) haveToken← true

Sensor Fusion Individual sensors of individual actors may not be sufficient to
determine the state of some part of the environment. For example, a single UAV
may not have a sufficiently high fidelity sensor suite to independantly determine
that an enemy tank is concealed in a forest. However, multiple sensor readings
by multiple actors can result in the team having sufficiently high confidence in
a determination of the state to take an action. However, in a cooperative mobile

team an actor will not always have accurate knowledge about where other actors
are and hence will not know which team mates might have readings to confirm
or refute its own. We encapsulate each sensor reading in an information token
and forward the token across the team. Each actor individually performs sensor
fusion on the information that it has and creates a new information token with
the fused belief when it is able to combine multiple low confidence readings
into a single high confidence reading. The key to this algorithm is that despite
each token visiting a relatively small number of team members there is high
probability that some team member will get to see multiple sensor readings for
the same event, if they exist. As with information tokens, the control information
for sensor-reading tokens (i.e., information tokens) is the number of additional
hops a token should make before assuming it cannot be fused at the current time
(i.e., TTL).

4 Synergies Between Algorithms

Efficient token-based coordination depends on how well tokens are routed, i.e.,
how efficiently they pass from actor to actor to where the are most needed. Since
routing decisions are made locally, actors must build local models of the state
of the team to make appropriate routing decisions. Notice that whether to pass
a token on is a function of the control information on the token, but where to
route a token, if that is the decision, is a function of the local model of state. In
this section, we describe an algorithm to maintain the localized decision model
by utilizing previously received tokens.

We assume that there is a known relationship between tokens, called rel-

evance. We define the relevance relationship between tokens ∆i and ∆j as
Rel(∆i, ∆j). Rel(∆i, ∆j) > 1 indicates that an agent interested in ∆i will also
be interested in ∆j , while Rel(∆i, ∆j) < 1 indicates that an agent interested in
∆i is unlikely to be interested in ∆j . If Rel(∆i, ∆j) = 1 then nothing can be
inferred. When an agent receives two tokens for which Rel(∆i, ∆j) > 1 they are
more likely to be usable in concert to obtain a reward for the team. For exam-
ple, when an actor gets a task token ∆t and resource token ∆r representing a
necessary resource for the task, Rel(∆t, ∆r) > 1 and passing them to the same
acquaintance is more likely to gain reward for the team than passing them to
different acquaintances.

4.1 Updating Decision Model according to Previous Tokens

Each actor maintains a matrix P [∆, a] → R that estimates that for each possible
token, the probability that each of its associates would be the best to pass that
token to. For example, P [∆k, a] = 0.2 indicates that the actor estimates that
the probability associate a is the best of its associates to pass token ∆k to is 0.2.
Notice that in the implementation we do not actually store the entire matrix
but calculate it as needed, but in the following we assume so for clarity.

The update function of agent α’s Pα based on an incoming token ∆j , written
as δP (Pα[∆i, b], ∆j) leverages Bayes’ Rule as following:

∀b ∈ n(α), ∀∆i, d = first(n(a), ∆j .path)

δP (Pa[∆j , b], ∆i) =











Pa[∆j , b] × Rel(∆i, ∆j) if ∆i 6= ∆j , b = d

Pα[∆j , b] if ∆i 6= ∆j , b 6= d

ε if ∆i = ∆j , b ∈ ∆j .path ∩ n(α)

(2)

first extracts from the recorded path of the token the acquataince of the ac-
tor that earliest had the token. P is then normalized to ensure

∑

b∈N(α) Pα[∆j , b] =
1. The first case in Eqn. 2 is the most important. The probability that d is the
best agent to receive ∆i is updated according to Rel(∆i, ∆j). The second case in
the equation changes the probability of sending that token to agents other than
the sender in a way that ensures the subsequent normalization has the desired

effect. Finally, the third case encodes the idea that an actor should typically not
pass a token back from where it came. Details about how Rel is computed to
ensure appropriate behavior can be found in [64].

5 Human-in-the-Loop

The token-based process described above works effectively at controlling large
teams. However, for real-world teams it is essential to have a human-in-the-
loop, controlling the behavior of the team. The need for such control stems
from two key reasons. First, the heuristics used to coordinate the team will not
always work effectively and sometimes human “common sense” will be required
to ensure appropriate behavior. Second, the human may have preferences for
tradeoffs given the current situation, e.g., a willingness to trade off the quality
of task allocation provided bandwidth is reduced. These two rationales for human
control imply an ability for control at both a high and low level and over a wide
range of aspects of behavior. Fortunately, the homogeneity of the token-based
algorithms allows an effective and general control layer to be built on top of
the control flows providing powerful control for a human user (or users.) The
effect is to allow meta-reasoning over the token-based coordination. The specific
approach we have developed has two components, one for high level control and
another for more detailed control.

5.1 High-Level Control

The high level control component allows the user to tradeoff high level perfor-
mance measures such as the message bandwidth versus performance task allo-
cation versus resource allocation. To do this we need a model of the interaction
between the environment algorithm configuration and performance. However,
the relationship turns out to be very complex, denying straightforward means of
modeling it. Moreover, non-determining leads to a relatively high standard de-
viation in performance. To represent the highly non-linear relationship between
the environment, configuration and performance of the team, we used multilayer
feed-forward neural networks, capable of representing any arbitrary function[38].
With inspirations from the idea of dynamic rearrangement [13], we use the con-
cept, called Dynamic Neural Networks [39][40], which allows all internal nodes
in the network to act stochastically and independently even though all external
input data remain unchanged.

We trained the multilayer feed-forward neural network using genetic algo-
rithms because of the high standard deviation of the function being modelled.
Moreover, in genetic algorithms, the unit of adaptation is not an individual
agent, but a population of agents, which is excellent for dealing with very huge
and noisy training data set. The fitness function was the average of square error
between target output and actual output as follows:

∑

d∈D

∑

p∈P

(Od
p,t − Od

p,a)2/sizeof(D).

Where D is the set of training data (d ∈ D), P is the set of system per-
formance measures (p ∈ P), Od

p,t is the target output of the p th performance

parameter of the data entry d, and Od
p,a is the actual output of the p th perfor-

mance parameter of the data entry d. The genetic algorithm training function
attempts to minimize this function. The learning process converged to 20 per-
cent error quickly and slowly converged to 15 percent error after that. Future
work will look at making more accurate models.

Fig. 2. The team control interface for online and offline control. Input parameters are
shown on the left side, performance measures are shown on the right side. Check boxes
for performance measures are used to specify the constraints for finding configurations.

Team Control Interface A user interface, shown in Figure 2 was developed for
working with the dynamic neural network model. There are two key interaction
modes: input-to-output where the model shows the expected performance of a
particular setup; and output-to-input where the model shows the optimal config-
uration to achieve a specified performance profile. In input-to-output mode the
interface simply provide inputs to the neural network and displays the output,
but the output-to-input mode is more complex.

Output-to-Input Mode Using the team neural network in “reverse”, the interface
allows a user to change output parameters and receive a configuration that best
meets some specific performance constraints both in input and output. The user

specifies which performance features to constrain and what values they should
have. In order to find input parameters that meet output requirements, the
interface performs a search over the changeable configuration parameters to find
a configuration that gives the required performance tradeoffs. Notice that this
usage of the neural network allows various coordination algorithms to be traded
off against each other automatically. For example, if the user requests a descrease
in bandwidth usage, the neural network can determine which algorithms to limit
that bandwidth usage of to have the least impact on overall performance.

The user interface can be connected to an executing team allowing the user
to monitor system performance and to change configuration during execution.
Special data collection tokens sample the team to determine current performance
measures and the state of the environment. When the user specifies a new per-
formance tradeoffs or the environment changes, the neural network determines
the best configuration for meeting the users needs and sends information tokens
to all actors to get the new configuration initiated.

5.2 Addressing Specific Problems

Technically, because tokens completely encapsulate pieces of the overall coor-
dination, it is feasible to examine individual tokens to determine whether that
particular aspect of the coordination is working correctly. If not, or if the user
has some particular preference for how that particular detaileds aspect should
work, then the individual token can be extracted and modified (or its task taken
over by a human.) Because of the independance of tokens, it is possible to ex-
tract any single token without effecting the behavior of the others. However, it
is infeasible to have a human monitor all tokens and determine which are not
performing to their satisfaction. Our approach is to instead have a model of ex-
pected token behavior and bring tokens to the attention of a human when the
tokens behavior deviates from this model. Conceptually, this process corresponds
to identifying details of coordination that may be problematic and bringing them
to the attention of a human.

In practice, autonomously identifying coordination problems that might be
brought to the attention of a human expert is imprecise. Rather than reliably
finding poor coordination, the meta-reasoning must find potentially poor coor-
dination and let the humans determine the actually poor coordination. (Else-
where we describe the techniques that are used to ensure that this does not
lead to the humans being overloaded[51].) Notice that while we allow humans
to attempt to rectify problems with agent coordination, it is currently an open
question whether humans can actually make better coordination decisions than
the agents. For example, when a task token travels to many actor repeatedly,
it may be that no actor has the required capability for the task or that the
task is overloaded. A human might cancel the task or find an alternative way of
acheiving the same goal.

6 Implementation

To evaluate the token-based approach we have developed both an abstracted sim-
ulator and a fully distributed implementation called Machinetta. The abstract
simulator, called TeamSim represents tasks, information and resources as simple
objects and uses simple queues for messages. It allows very rapid prototyping of
algorithms and extensive testing to be performed.

Machinetta is an approach to building generic coordination software based
on the concept of a proxy[22, 43]. Each team member is given its own proxy
which encapsulates generic coordination reasoning. Plan templates are specified
in XML and given to all the proxies. The proxy interacts with its team member
via an abstracted interface that depends on the type of actor, e.g., for a robot it
might be a simple socket while for a human it may be a sophisticated GUI. The
proxies coordination together, using the token-based algorithms described above
to implement the coordination. Machinetta proxies have been demonstrated to
perform efficient, effective coordination with up to 500 distributed team mem-
bers. They have been tested in several distinct domains and will be used as a
part of a U.S. Airforce flight test in September 2005.

7 Results

In this section we present results of the individual token algorithms, the syn-
ergistic use of the algorithms and the human in the loop control. For results
utilizing Machinetta refer to [50, 52, 49, 54]. Note that these results have for the
most part been previously published elsewhere but are collected here to present
a cohesive picture of the approach.

7.1 Task Allocation

To test the token based task allocation, we developed a simple simulator where
actors are randomly given capabilities, independant of information or resources,
for each of 5 types of task, with some percentage of actors being given zero
capability for a type of task. For each time step that the agent has the task, the
team receives ongoing reward based on the agent’s capability. Message passing
is simulated as perfect (lossless) communication that takes one time step. As
the simulation progresses, new tasks arise spontaneously and the corresponding
tokens are distributed randomly. The new tasks appear at the same rate that old
tasks disappear, thus keeping the total number of tasks constant. This allows a
single, fixed threshold for all tasks to be used throughout the experiment. Each
data point represents the average from 20 runs.

Figure 3 shows the performance of the algorithm against two competing
approaches. The first is DSA, which is shown to outperform other approximate
distributed constraint optimization algorithms for problems like task assignment
[32, 16]; we choose optimal parameters for DSA [65]. As a baseline we also com-
pare against a centralized algorithm that uses a “greedy” assignment[5]. Results

are shown using two different thresholds for the task tokens, T=0.0 and T=0.5.
Figure 3(a) shows the relative performance of each algorithm as the number
of agents is increased. The experiment used 2000 tasks over 1000 time steps.
The y-axis shows the total reward, while the x-axis shows the number of agents.
Not surprisingly, the centralized algorithm performs best but not dramatically
better than the token based approach. The token based approach performs sig-
nificantly better with a threshold of 0.5 than with no threshold. The real key
to the comparison, however, is the amount of communication used, as shown in
Figure 3(b). Notice that the y-axis is a logarithmic scale; thus the token based
approach uses approximately four orders of magnitude fewer messages than the
greedy algorithm and six orders of magnitude fewer messages than DSA. The
token-based approach performs better than DSA despite using far less commu-
nication and only marginally worse than a centralized approach, despite using
only a tiny fraction of the number of messages.

7.2 Information Sharing Results

To evaluate the information sharing algorithms, we arranged agents into a net-
work and randomly picked one agent as the source of a piece of information i and
another as a sink (i.e., for the sink agent U(i) is very large). The sink agent sent
out 30 information tokens (with TTL = 150) with information with a high Rel
to i. Then the source agent sent out i and we measured how long it takes to get
to the sink agent. In Figure 4(b) we show a frequency distribution of the time
taken for a network with 8000 agents. While a big percentage of messages arrive
efficiently to the sink, a small percentage get “lost” on the network, illustrat-
ing the problem with a probabilistic approach. However, despite some messages
taking a long time to arrive, they all eventually did and faster than if moved
at random. We also looked in detail at exactly how many messages must be
propogated around the network to make the routing efficient (Figure 5). Again
using 8000 agents we varied the number of messages the sink agent would send
before the source agent sent i onto the network. Notice that only a few messages
are required to dramatically affect the average message delivery time.

7.3 Sensor Fusion Results

To evaluate the sensor fusion approach we use a random network of 100 nodes.
Nodes are randomly chosen as the source of relevant sensor readings. Informa-
tion tokens propogate the sensor readings through the network and we measure
the probability of getting a successful fusion given a fixed TTL (“hops” on x-
axis of graph). Figure 6 shows two cases, one where all three sensor readings
must be known to a single actor for fusion to be successful (labeled 3/3) and
one where three of five readings must be known to a single actor for successful
fusion (labeled 3/5). Notice that a relatively small TTL is required to have high
probability of successful fusion.

(a)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of agents

T
o

ta
l r

ew
ar

d

Greedy
DSA
LA-DCOP, T=0.5
LA-DCOP, T=0.0

(b)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of agents

N
u

m
b

er
 o

f
m

es
sa

g
es

Greedy

DSA

LA-DCOP, T=0.5

LA-DCOP, T=0.0

Fig. 3. (a) comparing the reward versus the number of agents. (b) the number of
messages sent versus the number of agents

Fig. 4. Distribution of number of steps required

4 8 12 16 20 24 28 32
100

200

300

400

500

600

700

Number of Messages

S
te

p
s

Fig. 5. Association between number of relative messages and delivery time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 3 4 5 6

pr
ob

ab
ili

ty

hops

for 3/3 case
3/5 case

Fig. 6. The probability of a successful fusion (y-axis) by at least one actor given a
specific TTL (x-axis) when three of five or three of three readings must be known by
a single actor to perform fusion.

7.4 Token-Based Algorithms Working Together

To evaluate the synergies between algorithms, due to the use of the P model,
we configured TeamSim to simulate a group of 400 distributed UAVs searching
a hostile area. Simulating automatic target detection rates 200 pieces of infor-
mation, e.g., SAM sites, were randomly “sensed” by UAVs and passed around
the team. Fifty plan templates, each with four independent preconditions were
used on each of 100 trials. Each plan template had four tasks to be performed.
Thresholds for the tasks tokens were set such that UAVs needed to be near the
target or reconnasaince site to accept the task. Shared resources were airspace
that the UAVs needed to fly through to complete their tasks. One resource to-
ken was created for each “voxel” of airspace. When all four tasks in a plan were
completed, the team recieved a reward of 10. A maximum reward of 500 units
(10 units x 50 plans) was possible.

Five variations of the integrated algorithm were compared. The most inte-
grated algorithm used all types of plan tokens to update P . The least integrated
algorithm moved tokens randomly to associates when it was decided to move
a token. Three intermediate variations of the algorithm used only one type of
token, resource, role or information, tokens to update the local routing model,
P . Figure 7 shows the reward received by the team on the y-axis and the time on
the x-axis. The Figure shows that the team recieved more reward, faster when
using the integrated algorithm. Moreover, Figure 8 shows that less messages (on
the y-axis) were required to get a fixed amout of reward (on the x-axis) for the
integrated approach. Both Figures show that using any type of tokens to build
a routing model is better than using no routing model at all. Finally, Figure 9
shows that the algorithm scales well with increased team size. In this case, the
y-axis shows the average number of messages per agent required to achieve a cer-
tain amount of reward. Notice, there is some indication that the average number
of messages goes down as the team gets bigger, but more work is required to
determine under what conditions this holds and what the key reasons for it are.

7.5 Meta-Reasoning

We have evaluated both the low and high level aspects of the human-in-the-loop
control of the large teams.

High Level Control Using TeamSim we were able to verify that the user
was able to reconfigure a team online and get required changes in performance
tradeoffs. The interface is connected directly with TeamSim, so that users can set
team configurations and monitor team performance measures online. The user
configures the team at the start of the mission. When performance changes are
requested the offline features of the team performance model areneural network
is used to find suitable reconfigurations. The team control interface and recon-
figuration assistance were evaluated over 10 scenarios. Scenarios were selected to
provide situations that would require users to reconfigure their team in order to
meet performance targets. For example, in a mission involving a very large team

0

50

100

150

200

250

300

350

400

450

500

0
 100
 200
 300
 400

Rounds

N
u

m
b

er
 o

f
re

w
a

rd
s

g
o

tt
en

(T
h

e
m

o
re

 t
h

e
b

et
te

r)

Ranom Algorithm
 Plan Initiation
 Role Allocation

Resource Sharing
 Integrated Coordination

Fig. 7. Team can get more rewards in the coordination of token-based algorithm

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

150
 200
 250
 300
 350
 400
 450

Number of rewards gotten

N
u

m
er

 o
f

M
es

sa
g

es

(T
h

e
le

ss
 t

h
e

b
et

te
r)

Random
 Plan Initiation
 Role Allocation

Resource Planning
 Integrated Coodination

Fig. 8. Team can cost less messages in the coordination of token-based algorithm

0

20

40

60

80

100

120

200
 400
 600
 800

Team Size

A
v
er

a
g
e

M
es

sa
g
es

 O
v
er

lo
a
d

(T
h

e
le

ss
 t

h
e

b
et

te
r)

Random Algorithm

Integrated Token Based Algorithm

0

20

40

60

80

100

120

140

160

200
 400
 600
 800

Team Size

A
v
er

a
g
e

M
es

sa
g
es

 O
v
er

lo
a
d

Random Algorithm

Integrated Token Based Algorithm

T
o

g
a
i
n

t
e
a
m

r
e
w
a
r
d

o
f

2
0
0
 T
o

g
a
i
n

t
e
a
m

r
e
w
a
r
d

o
f

4
0
0

Fig. 9. Efficiency for coordinating different size of teams

of 300 agents the user might be requested at some point in the mission to reduce
the number of messages per agent or increase the number of plans instantiated.
Performance measures are recorded throughout the execution. The data pre-
sented here represents 4 hours of runtime with a user in the loop. At step 1, the
initial team configuration is set. At step 2, the user is asked to increase level of
rewards obtained by the team disregarding other performance measures. Using
the output-to-input feature of the team performance model the user finds a new
coordination configuration that increases reward performance and reconfigures
the team. At step 3 network communication bandwidth is reduced limiting the
time-to-live for information tokens to 2 hops requiring another team reconfig-
uration to lessen the degradation in performance. At step 4, the user is again
asked to reconfigure to improve reward performance. Results for six of the perfor-
mance measures are shown in Figure 10. The bold lines show average values for
the configured system while the lighter lines indicate the values predicted by the
output-to-input model. The jagged lines show the moment to moment variation
in the actual performance measures. Despite the high variability of team perfor-
mance measures the model qualitatively predicts the effects of reconfiguration
on average performance values across all six measures.

Low Level Control To remove the need for many hours of human input, the
interfaces for manipulating individual tokens were augmented with code that
made decisions as if they were made by the human. These “human” decisions
were made between five seconds and two minutes after control was transferred to
the human. The experiments involved a team of 80 WASMs operating in a large
environment. The primary task of the team was to protect a manned aircraft by
finding and destroying surface-to-air missile sites spread around the environment.
Half the team spread out across the environment searching for targets while the

Fig. 10. Six performance measures recorded from TeamSim are ploted during the mis-
sion with 3 times of reconfiguration. Thick lines show the average values of actual
performance measures of each configuration setting. Thin lines are the predicted val-
ues by the user interface.

other half stayed near the manned aircraft destroying surface-to-air sites as they
were found near the aircraft. Plans were simple, requiring a single WASM to hit
each found target. If a target was not hit within three minutes of being found, this
was considered abnormal plan execution and meta-reasoning would be invoked.
Meta-reasoning was also invoked when a WASM was not allocated to hit any
target for five minutes. These times are low, but reasonable since the simulation
ran at approximately four times real-time. Finally, meta-reasoning was invoked
when no WASM was available to hit a found target. Two human commanders
were available to make meta-reasoning decisions (although, as discussed above
there were not “real” human commanders).

Fig. 11. The number of meta-reasoning decisions to be made as the number of targets
in the environment increases.

Six different scenarios were used, each differing the number of surface-to-
air missile sites. Each configuration was run ten times, thus the results below
represent around 30 hours of simulation time (120 hours of real-time). As the
number of missile sites increases, the team will have more to do with the same
number of WASMs, thus we expected more meta-reasoning decisions.

Figure 11 shows that the total number of meta-reasoning decisions does in-
crease with the number of targets. Over the course of a simulation, there are
around 100 meta-reasoning decisions or about one per agent. However, as Fig-
ure 12 shows, only about 20% of these get transferred to a human. The large
number of decisions that are made autonomously is primarily because humans
are not available to make those decisions. This suggests work may need to be
done to prioritize decisions for a user, to prevent high priority decisions being
left to an agent, while the user is busy with low priority decisions. However, an
appropriate solution is not obvious, since new decisions arrive asynchronously
and it will likely not be appropriate to continually change the list of decisions the
human is working on. Finally, notice in Figure 13 that a large percentage of the
meta-decisions are to potentially cancel long running plans. The large number of

such decisions illustrates a need to carefully tune the meta-reasoning heuristics
in order to avoid overloading the system with superfluous decisions. However,
in this specific case, the problem of deciding whether to cancel a long running
plan was the most appropriate for the human, hence the large percentage of such
decisions for the human is reasonable.

Fig. 12. The percentage of decisions transferred to humans versus the percentage made
autonomously.

Fig. 13. Ratios of different types of meta-reasoning decisions presented to the user.

8 Related Work

Coordination of distributed entities is an extensively studied problem[9, 8, 24,
28, 55]. A key design decision is how the control is distributed among the group

members. Solutions range from completely centralized[14], to hierarchical[11,
20] to completely decentralized[60]. While there is not yet definitive, empiri-
cal evidence of the strengths and weaknesses of each type of architecture, it is
generally considered that centralized coordination can lead to behavior that is
closer to optimal, but more distributed coordination is more robust to failures
of communications and individual nodes[3]. Creating distributed groups of co-
operative autonomous agents and robots that must cooperate in dynamic and
hostile environments is a huge challenge that has attracted much attention from
the research community[25, 27]. Using a wide range of ideas, researchers have
had moderate success in building and understanding flexible and robust teams
that can effectively act towards their joint goals[6, 10, 22, 47].

Tidhar [57] used the term “team-oriented programming” to describe a con-
ceptual framework for specifying team behaviors based on mutual beliefs and
joint plans, coupled with organizational structures. His framework also addressed
the issue of team selection [57] — team selection matches the “skills” required for
executing a team plan against agents that have those skills. Jennings’s GRATE*
[22] uses a teamwork module, implementing a model of cooperation based on
the joint intentions framework. Each agent has its own cooperation level module
that negotiates involvement in a joint task and maintains information about its
own and other agents’ involvement in joint goals. The Electric Elves project was
the first human-agent collaboration architecture to include both proxies and hu-
mans in a complex environment[6]. COLLAGEN [46] uses a proxy architecture
for collaboration between a single agent and user. While these teams have been
successful, they have consisted of at most 20 team members and will not easily
scale to larger teams.

8.1 Small Worlds Networks

Research on social networks began in physics[59, 2]. Gaston [17] investigate the
team formation on type of social network structures can dramatically affect team
abilities to complete cooperative tasks. In particular, using a scale-free network
structure for agent team will facilitate team formation by balancing between
the number of skill-constrained paths available in the agent organization with
the effects of potential blocking. Pujol [41] compared the merits of small world
network and scale free network in the application of emergent coordination.

Task Allocation Numerous task allocation algorithms have been proposed,
although most do not consider costs (find only satisfying allocations) or scale
very poorly with team size, or both. Symbolic matching techniques[57, 36] ignore
costs completely which can have disastrous effects on team performance. Com-
binatorial auctions[21] are one approach that seek to minimize costs, but are
impractical for very large teams due to the exponential number of possible bids
and bottlenecks formed by centralized auctioneers. Forward-looking, decision-
theoretic models[33] can exploit task decomposition to optimally allocate and
reallocate tasks, but also do not scale to very large teams due to the exponential
size of the search space.

Complete distributed constraint optimization algorithms[32, 31] can find op-
timal solutions but require impractically long running times and unacceptably
high amounts of communication. Some incomplete distributed constraint opti-
mization algorithms[65] can be scaled to large teams, but these may also suffer
from a high amount of communication, and has been outperformed by our ap-
proach in previous evaluations[34].

Swarm-based approaches[48,1, 4] provide a distributed, highly scalable way
to perform task allocation and reallocation. Interestingly enough, these algo-
rithms also rely on threshold-based computations. However, swarm algorithms
rely directly on locally sensed stimuli to adjust thresholds and make decisions,
while under our approach actors may use arbitrary information obtained locally
or from other actors. This additional level of flexibility can be leveraged for
better performance through synergistic interactions with the other algorithms
presented here.

Human Control The approach of using sensitivity analysis of multilayer neural
networks to provide inverse relationship from output to input have been applied
in several areas. Especially, Ming Lu et al. [30] demonstrated a simple algorithm
for using a sensitivity analysis of neural networks and X. Zeng et al. [62] provide
theoretical results.

Peter Eggenberger et al. [13] investigated and introduced the idea of dynamic
rearrangement of biological nervous systems. Their approach allows neural net-
works to have an additional mechanism to dynamically change their synaptic
weight modulations and neuronal states during execution. [15] presented an-
other idea of dynamic network that dynamically modifying network structure.
The algorithms start with zero or small number of hidden nodes and later the
network change its structure by the number of hidden nodes to find the struc-
ture that fit well with the target system. A. Parlos et al. [37] proposed a hybrid
feedforward/feedback neural network for using to identify nonlinear dynamic
systems. Dynamic backpropagation learning is demonstrated as the dynamic
learning algorithm.

9 Conclusions and Future Work

In this chapter, we have presented a novel approach to coordination based on
the idea of tokens. We have showed how such algorithms can be very effective for
scalable coordination, particularly when they are combined into an integrated
algorithm. The homogeneity of the token-based approach allowed us to build
a general meta-reasoning layer over the top of the flows of tokens. This meta-
reasoning layer gives a user powerful tools for ensuring that the team fulfills their
requirements. Future work will examine how to inject fault tolerance into these
algorithms and how the precise details of the associates network affect behavior.

Acknowledgements

This research has been supported by AFSOR grant F49620-01-1-0542 and AFRL/MNK
grant F08630-03-1-0005.

References

1. William Agassounon and Alcherio Martinoli. Efficiency and robustness of
threshold-based distributed allocation algorithms in multiagent systems. In Pro-
ceedings of AAMAS’02, 2002.

2. Albert-Laszla Barabasi and Eric Bonabeau. Scale free networks. Scientific Amer-
ican, pages 60–69, May 2003.

3. Johanna Bryson. Hierarchy and sequence vs. full parallelism in action selection.
In Intelligent Virtual Agents 2, pages 113–125, 1999.

4. M. Campos, E. Bonabeau, G. Therauluz, and J.-L. Deneubourg. Dynamic schedul-
ing and division of labor in social insects. Adaptive Behavior, 2001.

5. C. Castelpietra, L. Iocchi, D. Nardi, M. Piaggio, A. Scalzo, and A. Sgorbissa. Co-
ordination among heterogenous robotic soccer players. In Proceedings of IROS’02,
2002.

6. Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh,
David V. Pynadath, Thomas A. Russ, and Milind Tambe. Electric Elves: Agent
technology for supporting human organizations. AI Magazine, 23(2):11–24, 2002.

7. Richard Clark. Uninhabited Combat Air Vehicles: Airpower by the people, for the
people but not with the people. Air University Press, 2000.

8. D. Cockburn and N. Jennings. Foundations of Distributed Artificial Intelligence,
chapter ARCHON: A Distributed Artificial Intelligence System For Industrial Ap-
plications, pages 319–344. Wiley, 1996.

9. Philip R. Cohen and Hector J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.

10. K. Decker and J. Li. Coordinated hospital patient scheduling. In Proceedings
of the 1998 International Conference on Multi-Agent Systems (ICMAS’98), pages
104–111, Paris, July 1998.

11. Vincent Decugis and Jacques Ferber. Action selection in an autonomous agent
with a hierarchical distributed reactive planning architecture. In Proceedings of
the Second International Conference on Autonomous Agents, 1998.

12. Defense Science Board. Defense science board study on unmanned aerial vehicles
and uninhabited combat aerial vehicles. Technical report, Office of the Under
Secretary of Defense for Acquisition, Technology and Logistics, 2004.

13. P. Eggenberger, A. Ishiguro, S. Tokura, T. Kondo, and Y. Uchikawa. Toward
seamless transfer from simulated to real worlds: A dynamically-rearranging neu-
ral network approach. In Proceeding of 1999 the Eighth European Workshop in
Learning Robot (EWLR-8), pages 44–60, 1999.

14. T. Estlin, T. Mann, A. Gray, G. Rapideau, R. Castano, S. Chein, and E. Mjol-
sness. An integrated system for multi-rover scientific exploration. In Proceedings
of AAAI’99, 1999.

15. S. E. Fahlman and C. Lebiere. The Cascade-Correlation Learning Architecture.
In Touretzky (ed.), editor, Advances in Neural Information Processing Systems 2.
Morgan-Kaufmann.

16. Stephen Fitzpatrick and Lambert Meertens. Stochastic Algorithms: Foundations
and Applications, Proceedings SAGA 2001, volume LNCS 2264, chapter An Ex-
perimental Assessment of a Stochastic, Anytime, Decentralized, Soft Colourer for
Sparse Graphs, pages 49–64. Springer-Verlag, 2001.

17. M. Gaston and M. desJardins. The communicative multiagent team decision prob-
lem: analyzing teamwork theories and models. In Proceedings of the 18th Interna-
tional Florida Artificial Intelligence Research Society Conference, 2005.

18. Dani Goldberg, Vincent Cicirello, M Bernardine Dias, Reid Simmons, Stephen
Smith, and Anthony (Tony) Stentz. Market-based multi-robot planning in a dis-
tributed layered architecture. In Multi-Robot Systems: From Swarms to Intelligent
Automata: Proceedings from the 2003 International Workshop on Multi-Robot Sys-
tems, volume 2, pages 27–38. Kluwer Academic Publishers, 2003.

19. Barbara Grosz and Sarit Kraus. Collaborative plans for complex group actions.
Artificial Intelligence, 86:269–358, 1996”.

20. Bryan Horling, Roger Mailler, Mark Sims, and Victor Lesser. Using and maintain-
ing organization in a large-scale distributed sensor network. In In Proceedings of
the Workshop on Autonomy, Delegation, and Control (AAMAS03), 2003.

21. L. Hunsberger and B. Grosz. A combinatorial auction for collaborative planning,
2000.

22. N. Jennings. The archon systems and its applications. Project Report, 1995.

23. N. Jennings, E. Mamdani, I Laresgoiti, J. Perez, and J. Corera. GRATE: A general
framework for cooperative problem solving. Intelligent Systems Engineering, 1(2),
1992.

24. David Kinny. The distributed multi-agent reasoning system architecture and lan-
guage specification. Technical report, Australian Artificial intelligence institute,
Melbourne, Australia, 1993.

25. Hiraoki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, ,
and Hitoshi Matsubara. RoboCup: A challenge problem for AI. AI Magazine,
18(1):73–85, Spring 1997.

26. Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi
Takahashi, Atsushi Shinjoh, and Susumu Shimada. Robocup rescue: Searh and
rescue in large-scale disasters as a domain for autonomous agents research. In
Proc. 1999 IEEE Intl. Conf. on Systems, Man and Cybernetics, volume VI, pages
739–743, Tokyo, October 1999.

27. John Laird, Randolph Jones, and Paul Nielsen. Coordinated behavior of com-
puter generated forces in TacAir-Soar. In Proceedings of the fourth conference on
computer generated forces and behavioral representation, pages 325–332, Orlando,
Florida, 1994.

28. V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A. Raja, R. Vincent, T. Wagner,
P. Xuan, and S. Zhang. The UMASS intelligent home project. In Proceedings
of the Third Annual Conference on Autonomous Agents, pages 291–298, Seattle,
USA, 1999.

29. E. Liao, P. Scerri, and K. Sycara. A framework for very large teams. In AAMAS’04
Workshop on Coalitions and Teams, 2004.

30. Ming Lu, S. M. AbouRizk, and U. H. Hermann. Sensitivity analysis of neural
networks in spool fabrication productivity studies. Journal of Computing in Civil
Engineering, 15(4):299–308, 2001.

31. R. Mailler and V. Lesser. Solving distributed constraint optimization problems
using cooperative mediation. In AAMAS’04, 2004.

32. Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. An asyn-
chronous complete method for distributed constraint optimization. In Proceedings
of Autonomous Agents and Multi-Agent Systems, 2003.

33. R. Nair, M. Tambe, and S. Marsella. Role allocation and reallocation in multiagent
teams: Towards a practical analysis. In Proceedings of the second International
Joint conference on agents and multiagent systems (AAMAS), 2003.

34. Steven Okamoto. Dcop in la: Relaxed. Master’s thesis, University of Southern
California, 2003.

35. Committee on Visionary Manufacturing Challenges. Visionary manufacturing chal-
lenges for 2020. National Research Council.

36. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
service capabilities. In Proceedings of the First International Semantic Web Con-
ference, 2002.

37. Chong K. T. Parlos, A. G. and A. F. Atiya. Application of the Recurrent Multilayer
Perceptron in Modeling Complex Process Dynamics . In IEEE Transactions on
Neural Networks, pages 255–266, 1994.

38. Leonid I. Perlovsky. Neural Networks and Intellect: Using Model-Based Concepts.
Oxford University Press, 2001.

39. J. Polvichai and P. Khosla. An evolutionary behavior programming system with
dynamic networks for mobile robots in dynamic environments. In Proceedings
of 2002 IEEE/RSJ International Conference on Intelligent Robots and System,
volume 1, pages 978–983, 2002.

40. J. Polvichai and P. Khosla. Applying dynamic networks and staged evolution
for soccer robots. In Proceedings of 2003 IEEE/RSJ International Conference on
Intelligent Robots and System, volume 3, pages 3016–3021, 2003.

41. J. Pujol and R. Sanguesa. Emergence of coordination in scale-free networks. In
Web Intelligence and Agent Systems 131-138, 2003.

42. David V. Pynadath and Milind Tambe. An automated teamwork infrastructure
for heterogeneous software agents and humans. Journal of Autonomous Agents
and Multi-Agent Systems, Special Issue on Infrastructure and Requirements for
Building Research Grade Multi-Agent Systems, page to appear, 2002.

43. D.V. Pynadath, M. Tambe, N. Chauvat, and L. Cavedon. Toward team-oriented
programming. In Intelligent Agents VI: Agent Theories, Architectures, and Lan-
guages, pages 233–247, 1999.

44. Paul Ranky. An Introduction to Flexible Automation, Manufacturing and Assembly
Cells and Systems in CIM (Computer Integrated Manufacturing), Methods, Tools
and Case Studies. CIMware, 1997.

45. C. Reynolds. Authoring autonomous characters. Invited Talk, Distinguished Lec-
ture Series, Georgia Institute of Technology, Fall 1995.

46. C. Rich and C. Sidner. COLLAGEN: When agents collaborate with people. In
Proceedings of the International Conference on Autonomous Agents (Agents’97)”,
1997.

47. P. Rybski, S. Stoeter, M. Erickson, M. Gini, D. Hougen, and N. Papanikolopoulos.
A team of robotic agents for surveillance. In Proceedings of the fourth international
conference on autonomous agents, pages 9–16, 2000.

48. Pedro Sander, Denis Peleshchuk, and Barabara Grosz. A scalable, distributed
algorithm for efficient task allocation. In Proceedings of AAMAS’02, 2002.

49. P. Scerri, E. Liao, Yang. Xu, M. Lewis, G. Lai, and K. Sycara. Theory and Al-
gorithms for Cooperative Systems, chapter Coordinating very large groups of wide
area search munitions. World Scientific Publishing, 2004.

50. P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom, N. Schurr, M Si, and
M. Tambe. A prototype infrastructure for distributed robot-agent-person teams. In
The Second International Joint Conference on Autonomous Agents and Multiagent
Systems, 2003.

51. P. Scerri, K. Sycara, and M Tambe. Adjustable autonomy in the context of coor-
dination. In AIAA 3rd ”Unmanned Unlimited” Technical Conference, Workshop
and Exhibit, 2004. Invited Paper.

52. P. Scerri, Yang. Xu, E. Liao, J. Lai, and K. Sycara. Scaling teamwork to very large
teams. In Proceedings of AAMAS’04, 2004.

53. Paul Scerri, Alessandro Farinelli, Steven Okamoto, and Milind Tambe. Allocating
tasks in extreme teams. In AAMAS’05, 2005.

54. N. Schurr, J. Marecki, J.P. Lewis, M. Tambe, and P.Scerri. The DEFACTO system:
Training tool for incident commanders. In IAAI’05, 2005.

55. Munindar Singh. Developing formal specifications to coordinate hetrogeneous
agents. In Proceedings of third international conference on multiagent systems,
pages 261–268, 1998.

56. Milind Tambe. Agent architectures for flexible, practical teamwork. National
Conference on AI (AAAI97), pages 22–28, 1997.

57. G. Tidhar, A.S. Rao, and E.A. Sonenberg. Guided team selection. In Proceedings
of the Second International Conference on Multi-Agent Systems, 1996.

58. T. Wagner, J. Phelps, V. Guralnik, and Ryan VanRiper. COORDINATORS: Co-
ordination managers for first responders. In AAMAS’04, 2004.

59. Duncan Watts and Steven Strogatz. Collective dynamics of small world networks.
Nature, 393:440–442, 1998.

60. Tony White and Bernard Pagurek. Towards multi swarm problem solving in net-
works. In Proceedings of the International conference on multi-agent systems, pages
333–340, Paris, July 1998.

61. Michael Wooldridge and Nicholas Jennings. Distributed Software agents and ap-
plications, chapter Towards a theory of cooperative problem solving, pages 40–53.
Springer-Verlag, 1994.

62. D.S.Yeung Xiaoqin Zeng. Sensitivity analysis of multilayer perceptron to input and
weight perturbations. IEEE Transactions on Neural Networks, 12(6):1358–1366,
2001.

63. Y. Xu, M. Lewis, K. Sycara, and P. Scerri. Information sharing in very large
teams. In In AAMAS’04 Workshop on Challenges in Coordination of Large Scale
MultiAgent Systems, 2004.

64. Y. Xu, P. Scerri, B. Yu, S. Okamoto, M. Lewis, and K. Sycara. An integrated
token-based algorithm for scalable coordination. In AAMAS’05, 2005.

65. W. Zhang and L. Wittenburg. Distributed breakout revisited. In Proceedings of
AAAI’02, 2002.

