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Abstract— When cooperative robots are used for exploring an
environment, a key component of their task is to relay data
back to a human operator and get input from that operator
on exploration priorities. To do this a wireless communication
network is required. This paper presents an approach to creating
and maintaining an ad hoc communication network for relaying
data to and from exploring robots. The network is made up of
mobile robots acting as communication hubs. The approach relies
on the concept of potential fields, but allows the potential fields to
change dynamically depending on the current needs of the team.
Specifically, aspects of the potential fields are turned on or off for
particular robots, based on required connectivity. The resulting
potential fields push the robots towards appropriate locations
to maintain the network. Several policies for determining which
aspects of the potential field to activate were evaluated, with
policies focused on maintaining minimum connectivity perform-
ing best. In four distinct simulated environments, the dynamic
potential fields approach was shown to effectively maintain
a communications network and far out-perform a standard
potential field approach.
Keywords: Ad hoc communication networks, multi robot
systems, Potential Fields.

I. I NTRODUCTION

Robots are increasingly being used to search or explore
interesting and risky environments to provide information for
human operators. Since, in many of those environments, there
will be no wireless network infrastructure to connect robots
with operators, such a network has to be dynamically formed
in some way. One promising approach is to send additional
communication robots to form the network and keep sensor
robots and human controllers in contact. For example, if sensor
robots are sent into a burning building, it is likely that the fire
will disable any building wireless networks and the building’s
structure disrupt direct wireless communications from the
outside, thus additional robots, working as communication
hubs, may be the only way to stay in contact. Other domains
where such a technology might be useful include mines [1],
military [2], space [3] and desert exploration [4].

Dynamically deploying effective networks is difficult for a
variety of reasons. First, the communication robots will not
have a priori knowledge of where the sensor robots will go,
nor of the environment in which they must deploy. Second,
to coordinate their deployment they must maintain communi-
cation with each other or coordinate without communication.
Even if communication between the robots is available, its
use has to be minimized, both to make bandwidth available

for sensor robots to relay information back to the operator
and to allow commands to be relayed to robots. Third, there
is typically no clearly defined deployment stage, thus the ad
hoc network needs to be maintained for the sensor robots
while the communication robots deploy to their positions.
Finally, the robots may need to constantly rearrange to adjust
to sensor robot movement or failed communication robots,
since typically they cannot provide coverage to the whole
environment.

A variety of approaches have been developed for this
problem. In ad hoc networks, distributed algorithms, which
can assurek - connected graphs [5], allow robust robot
positioning [6] and provide good coverage [7], have been
applied in relatively open environments. However those efforts
largely ignore situations in which signals are impeded by
obstacles, like walls, or in which only a small dynamically
changing part of environment needs coverage. Potential field
are lightweight and robust way of positioning robots in a
clustered and complex environment [8], often not requiring any
communication to coordinate. However, potential fields are
best suited for spreading robots out across an environment, not
focusing them on dynamically changing areas. Hence, for this
application, key extensions to potential fields were required
to take advantage of their strengths while meeting problem
constraints.

The central idea of this work is to dynamically change
the applicable potential fields based in the current overall
needs of the team. If the potential fields can be appropriately
varied, the robots will robustly move to locations where a
connected network can be formed. The key to the dynamic
potential field approach is to ensure that each communications
robot is influenced by appropriate fields at appropiate times.
Specifically, the team must configure itself so that some
communication robots move near to the sensor robots, while
others position themselves to relay massages to and from the
hub. To achieve this, each robot sends out requests for other
robots to connect it back to the hub or in the hub’s case, sends
out requests to be connected to the network. These requests
are in the form oftokens. When a robot receives a token it
either keeps the token, adds a potential field corresponding
to the request for support represented by the token, or passes
the token on to another robot (which faces the same choice).
By controlling the number of tokens each robot sends out,
the number of links the team tries to form with the requester



can effectively be controlled. The policy by which a robot
decides to keep a token, and add the corresponding field, or
pass the token on, dictates the effectiveness and the nature
of the network. Various policies for accepting or passing on
tokens have been evaluated, with the most effective policies,
based on connectivity, leading to consistently well connected
networks.

If a situation changes quickly or sensor robots can suddenly
go out of communication range, e.g., by going around a corner,
simply having the communication robots following the sensor
robots will not be sufficient to maintain connectivity. In such
situations, communications robots need to identify areas where
sensor robots might move and proactively act to set up network
connectivity in those areas. Experiments show that selecting
potential fields to encourage communication robots to fill
potential future gaps in the network, substantially improves
connectivity over time.

Four different scenarios have been tested and the results
show a significant performance improvement over a standard
potential field approach, with regard to connectivity and
overall efficiency of the network. Moreover, network fault-
tolerance and robustness were shown to be good, even with
high robot failure rates.

II. PROBLEM STATEMENT

Let S = {S1, . . . , Sn,H} be a set of moving robots,Si,
calledsensors, and a hub,H, and letC = {C1, . . . , Cm} be
a set of communication robots, thecomms. The basic aim is
to positionC to create a network which connects eachSi to
H and dynamically maintain connectivity.

S is assumed to be independent ofC but all the robots can
move at the same speed.Si andCi have a maximum range of
communication,dc. It is assumed that every robot can sense
where the others are if they are within their communication
range and robots can distinguish betweensensorsandcomms.
This may be done by overhearing messages broadcasted by
other robots. LetS ⊆ S andC ⊆ C be the subsets ofsensors
andcommsrespectively that a robot can sense.

Let x be the position of a generic robot at a given
time, while the hub, H is stationary. Let Pi(Sk) =
{Sk, Ci, . . . , Cq,H} be a possible communication path from
Sk ∈ S to H, thus the distance between two consecutive
elements,pi, of Pi(Sk) is at mostdc, |x(pi)−x(pi−1)| ≤ dc.
Two paths from the samesensorare different if they involve
different comms, i.e.,

Pi(Sk) 6= Pj(Sk) ⇔ @Ci|(Ci ∈ Pi(Sk)) ∧ (Ci ∈ Pj(Sk))

Among all thePi(Sk) which have at least aCi in common,
a minimal path can be defined as the one which involves
the minimum number ofcomms: minPi(Sk) = Pi(Sk) if
|Pi(Sk)| is minimum. All different paths from the samesensor
can be grouped in the local subset of different paths,P (Sk):
P (Sk) = {. . . ,Pi(Sk), . . . } where

∀Pi(Sk),Pj(Sk) | (i 6= j) ∧ (Pi(Sk),Pj(Sk) ∈ P (Sk)) ⇒
⇒ Pi(Sk) 6= Pj(Sk)

Let the local connectivityc bec = |C| and let the connectivity
Sensor- H at a given timet, be Ki(t) = |P (Si)|. Thus,
Ki(t) = 0 means there are no communication paths fromSi to
H, thusSi is not connected. The primary goal ofC is to avoid
this happening. In Figure 1,K1(t) = 1 andK2(t) = 2. Let the
global connectivity at a given time beK(t) = miniKi(t).K(t)
is 1 in Figure 1. Acommis usefulif it is on a minimal path. Let
theused commssubset be the subset:U = (

⋃
i minPi) /S, i.e.,

the usefulcomms. Define efficiency,E , as the ratio of useful
commsto total comms: E = |U|/|C|. In Figure 1,E = 3/4 ,
sinceC1 is not on a minimal path.
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Fig. 1. An example of possible network which connects twosensors, S1 and
S2 andcommsC1, . . . , C4 to the hubH. The dashed line are communication
links, the black line is a wall.

Let < K > and< E > be the average global connectivity
over time and the average efficiency over time respectively.

Finally let v be theenvironment change rate, characterized
as the maximum rate acomm has to move to prevent the
network breakdown. This gives a rough measure of the envi-
ronment difficult forC.

Thus the overall problem addressed by the work is to
maximize:

max
(

min
0≤t≤tmax

K(t)
)

A. Scenarios

While, the space of possible situations for this work is infi-
nite, for experimental purposes, a small set of fixed scenarios
was considered. Four different environments were used, see
Figure 2, namely:
(a) Wall. Thesensorsmove away from the hub, encountering

a wall, thecommsare initially spread in both sides of
the wall. (Figure 2a).v is high becausesensorsmove
constantly away from the hub.

(b) Office. Four sensorsmove from a lift to some offices.
(Figure 2b).v is low, becausecommsare initially well
spread.

(c) Open space. A central hub,commsare initially spread in
a box,sensorsenter the box from two different random
locations. (Figure 2c).v is at most the same as in (b).

(d) Corridor. Two sensorsmove away from the hub, one
returns after some time. (Figure 2d).v is very high
because, both thesensorsmove away fromH and the
commsare initially in a small box aroundH.

III. POSITIONING ALGORITHM

The basic concept of a potential field is to overlap fields
representing different influences on the robot. The robot then
simply follows the gradient down the resulting field. The basic



(a) Wall (b) Office

(c) Open space
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Fig. 2. Environments: Black dots are thesensors, white dots thecomms,
dashed lines are communication links, big triangles are the hubs.

potential function,Jj , utilizes the Lennard - Jones formulation
[9], resulting for eachcomm, in:

Jj(Ŝ, Ĉ) = α
∑

Si∈Ŝ

−2
(

dcfs

rCjSi

)6

+
(

dcfs

rCjSi

)12

+

β
∑

Cq∈Ĉ

−2
(

dcfc

rCjCq

)6

+
(

dcfc

rCjCq

)12

(1)

where Ŝ ⊆ S and Ĉ ⊆ C are the subsets ofsensors
and commswhich influence a robot,rCjSi

and rCjCq are
the relative distances betweenCj and the robots in those
subsets. The communication distancedc and thefs and fc

coefficients determine the function shape. The coefficientsα
and β influence whether to move further fromsensorsor
comms. If |Ŝ| = 1, |Ĉ| = 0, Jj(Ŝ, Ĉ) would have a minimum
at a distancedcfs from Si; below that distanceJj(Ŝ, Ĉ)
would increase (repulsive part) to prevent robots from being
too near one another, while above that distance (attractive
part) it would increase to keep robots in the communication
range. Once the potential function has been evaluated, the
robot moves toward the local minimum.

In the next three section different versions of this approach
will be presented. What varies among the versions areŜ and
Ĉ, i.e., which robots effect the potential field. First the basic

potential field algorithm, in whicĥS = S and Ĉ = C, i.e.,
where the potential field is influenced by all robots in sensor
range. Second, a version where tokens are passed around
the team, with the robot represented by the token being an
influence inŜ andĈ. Third, a proactive token algorithm where
Ŝ andĈ are augmented by influences that fill future potential
network gaps.

A. Standard algorithm

In the basic algorithm, referred to asstandard, Ŝ = S and
Ĉ = C, thus every sensed robot influences the potential field
shape. This leads to the robots spreading out the environment,
since Jj(Ŝ, Ĉ) makes the relative distances among robots
almost the same.

The main problem with thestandardapproach is that, when
the environment is large, spreading out is not an acceptable
solution, since coverage can not be assured. Instead some way
needs to be found to focuscommson creating paths between
S andH.

B. Dynamic Potential Fields

The key is to have thecommsmove to the parts of the
environment wheresensorsare, not just anywhere. Since in
the standard approach the balance between attractive and
repulsive force, i.e., the potential field gradient, determines
the spreading pattern, it is reasonable that ifcommscould
cooperate they couldturn off useless repulsive forces, which
prevent them moving into critical position, and they could
move in better locations. This approach, which dynamically
changes the potential field will be calleddynamic.

The algorithm works as follows: every robot sends a mes-
sage toN randomly chosenCi ∈ C, in which they request
help maintaining the network. The information is packed in
a token, τ = {x, c, sensor/comm}. This could be accepted by
the other robots or resent. If acommaccepts a token it adds
the robot represented by that token tôS or Ĉ and is thus
influenced by that robot. If instead it chooses to pass the token
on, it is not influenced at all by the robot represented by that
token.

By a intelligent choice based on the information on the to-
ken, thisdynamic tokenpotential field approach can overcome
the problems of the standard approach.

A simple example can show the token algorithm features
and better performance over the standard approach. Let the
situation be the one in Figure 3 (left), and let thecomms
be in equilibrium, i.e., at minima in the potential field. If
the S1 moves right andS2 up, in the standard approach,C1

tries to follow both sensors breaking the network; moreover
C2 and C3 repulse each other and they can not helpC1. In
the dynamic approachC1 follows S1 and informsC2, which
moves to help it maintain the network.

The choice of what tokens to send and, moreover, what to
do with them, is made by defining apolicy. Three different
policies have been defined, namely C policy (connectivity),
TC policy (threshold connectivity) and RC policy (resend
connectivity). In following each policy will be described.
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Fig. 3. Standard vs. Token algorithm behavior in an example.S1 and S2

are moving in opposite directions causing the network break in the former
but not in the latter.

Each comm follows the algorithm shown in Algorithm 1,
which is executed by each robot at each time step. For every
time step, all thecommsform a tokenτ = {x, |C|, comm}
(Algorithm 1 line 1), then they keep sending and receiving
tokensimax times and they group them inT . imax is fixed
by the policy, if imax = 1 they simply delete the tokens they
do not use. The determination of which tokens are important
is made using a policy (Algorithm 1 line 12 - 16), which
forms Ŝ, Ĉ. If imax > 1, the tokenτ to be resent. Finally, the
robot computes the potential function and moves accordingly
(Algorithm 1 line 18 - 19).

Algorithm 1 Token Algorithm

1: τ = {x, |C|, comm}
2: imax ← POLICY

3: for i = 0 to imax do
4: for k = 0 to N do
5: SEND(τ ) → RANDOM(Cr ∈ C)
6: end for
7: T = {∅}
8: repeat
9: TA =GETTOKEN ← (Cr ∈ C ∨ Sr ∈ S)

10: T = T ∪ TA

11: until (No more messages)
12: if imax > 1 then
13: (Ŝ, Ĉ, τ ) ← POLICY(T )
14: else
15: (Ŝ, Ĉ) ← POLICY(T )
16: end if
17: end for
18: J = J (Ŝ, Ĉ)
19: x ← x + (∇xJ ) dx

1) C policy: Robots with a low local connectivity are in
the most critical positions of the network, thus they need more
help. For that reason, C policy is based on local connectivity
encouragingcommsto keep the tokens of low connected robots
and move toward them. It works as follows: letNR be the
number of received tokens, thecommsorts the receivedNR

tokens so that the first has the lowestc and the last the highest
(Algorithm 2 - line 3), then it determines the subsetsŜ and

Ĉ using M ≤ NR robots, which the firstM tokens refer to
(Algorithm 2 - lines 5 - 11). Then it deletes the remaining
tokens since for C policyimax = 1.

Algorithm 2 C policy
1: imax = 1
2: NR ← |T |
3: SORT(T ): c(T1) ≤ c(TNR

)
4: Ŝ = {∅}, Ĉ = {∅}
5: for j = 1 to M ≤ NR do
6: if comm(Tj) = 0 then
7: Ŝ = {Ŝ, S(Tj)}
8: else
9: Ĉ = {Ĉ, C(Tj)}

10: end if
11: end for

2) TC policy: The policy is the same as C policy, but
includes a criterion for determining whether acommis useful
or not. Since each robot can not know if it is on a minimal
path, this criterion is based on the number of received token,
NR. If this is very high it means that thecommis very useful,
since a lot of robots request its help; if there was only a robot
connected to it, it would receive at leastN tokens. On the other
hand, if few tokens are received, thecomm is in an useless
position.

Therefore, when a comm receives fewer tokens than a
specified threshold, it computes a different potential function
where the repulsive part is neglected. This is done to allow
thatcommto move closer to othercommsto reach, eventually,
critical location in the network.

The threshold can be different forsensorsand comms, in
the sense that the repulsive part of theŜ subset is neglected
if the number of received tokensNR is less thanTS , whereas
the one of theĈ subset is neglected if the number of tokens
is less thanTC . Thus the potential function is

J̃j(Ŝ, Ĉ, NR) = α
∑

Si∈Ŝ

−2
(

dcfs

rCjSi

)6

+

(tokens≥ TS)
(

dcfs

rCjSi

)12

+

β
∑

Cq∈Ĉ

−2
(

dcfc

rCjCq

)6

+ (tokens≥ TC)
(

dcfc

rCjCq

)12

(2)

Algorithm 3 TC policy
1: C policy(from line 1 to line 11)
2: CHANGE J to J̃ (S̃, C̃, NR)

3) RC policy: The policy is the same of C policy, but
imax > 1, thus, aftercommdeterminedŜ and Ĉ it resends
some of the tokens it did not use. It keeps on sending and
receiving tokens, untili = imax, when i = imax, it computes
the potential field using the last determined̂S and Ĉ. This



allows to better determinêS and Ĉ, since it spreads the
information of where the low local connectivity areas are.
In fact, in low local connectivity areascomms could be
not sufficient to satisfy all the help requests, while in high
local connectivity ones,commsare less useful. By passing
the unused tokens through the network, this can be avoided
making less usefulcommsmove where it is needed.

The choice of which tokens have to be resent is made
by the connectivity value. In particular, eachcomm forms a
new token, which carries not only its information, but alsoQ
tokens, fromM + 1 to M + Q (Algorithm 4 line 13 - 15).

Algorithm 4 RC policy
1: imax = number> 1
2: NR ← |T |
3: SORT(T ): c(T1) ≤ c(TNR

)
4: Ŝ = {∅}, Ĉ = {∅}
5: for j = 1 to M ≤ NR do
6: if comm(Tj) = 0 then
7: Ŝ = {Ŝ, S(Tj)}
8: else
9: Ĉ = {Ĉ, C(Tj)}

10: end if
11: end for
12: τ = {x, |C|, comm}
13: for j = M + 1 to Q ≤ NR −M do
14: τ = {τ, x(Tj), c(Tj), comm/sensor(Tj)}
15: end for

C. Proactive Positioning

In some cases, the above approach can be insufficient to
maintain the connectivity, becausesensorsmight rapidly go
out of range, e.g., when they turn around a corner. In a rapidly
changing environment, or when it is important to assure the
highest possible local connectivity for thesensors, comms
shouldproactivelychoose where to move in order to preempt
network breaks.

For that reason, acommshould follow only one robot at
a time, thus from asensorback to the hub there would be a
communication chain formed bycomms. A relative grade, r, is
defined as follows:∀Si,H ∈ S : r = 0, ∀Ci ∈ C : r = k +1
if Ci follows a robot withr = k. Thus eachcommdecides
to keep a token, and only one, on the basis of lowerr. This
means that everycommis trying to be useful for the network,
since it follows acommwhich is somehow linked to some
sensor. Moreover, if there is more than one token with a low
value ofr it follows the one with the lowerc, thus it moves in
the most critical positions. This can be called proactive since
eachsensoris followed by acommwhich has it as a only aim.
Thus, this can have better performances in rapidly changing
scenario.

The algorithm works as follows. First each robot sends a
token τ = {x, c, r} to NS or NC sensedcomms, whereNC

is if the robot is acomm, NS otherwise (Algorithm 5 line 1
- 4). Then, after it received tokens by the other, it chooses

which of the received tokens has to be kept and formŜ and
Ĉ (Algorithm 5 line 10 - 15). It deletes the remaining tokens,
it computes the potential function and it moves (Algorithm 5
line 16 - 17).

Algorithm 5 Proactive algorithm

1: τ = {x, c, r}
2: for k = 0 to NC do
3: SEND(τ ) → RANDOM(Cr ∈ C)
4: end for
5: T = {∅}
6: repeat
7: TA =GETTOKEN ← (Cr ∈ C ∨ Sr ∈ S)
8: T = {T, TA}
9: until (No more messages)

10: SORT(T ): first, lower r, then, lowerc
11: if comm(T1) = 0 then
12: Ŝ = {S(T1)}, Ĉ = {∅}
13: else
14: Ŝ = {∅}, Ĉ = {C(T1)}
15: end if
16: J = J (Ŝ, Ĉ)
17: x ← x + (∇xJ ) dx

IV. RESULTS

In this section the results for the selected environments will
be presented. First, experiments were performed in theWall
environment to test the basic functionalities of the algorithms.
Second, theOfficeenvironment is used to test coordination and
fault-tolerance. Third, theOpen Spaceenvironment is used to
test both behavior with unknown initial conditions and high
failure rates. Finally, theCorridor environment, which is fast
changing, is used to test the Proactive algorithm. The baseline
will be the standard approach.

A. Wall

This apparently simple wall scenario tests the basic func-
tionality of the algorithms. If thecommsdo not move north
of the wall, connectivity will be lost. Thus, spreading out is
an inadequate strategy.

The initial and a final state are shown in Figure 4, notice
the sensors, black dots, move from west to east.

In Figures 5 and 6 the obtained average results for200
simulations are presented. The parameters for the experiments
were: for the scenario:|S| = 6, dc = 10, v = 0.016, for the
potential function:fs = 1/2, fc = 1/2, α = 100 |C|/|S|,
β = 1; for the policies:N = 2, (M, Q) = ([NR/2], 0) for
C and TC policies,N = 2, (M,Q) = (1, 1) for RC policy,
TS = 4, TC = 3, imax = 3. In the graphs B means Baseline,
C the C policy and so on. Bars are the value of average global
connectivity of average efficiency. Black bars on the top of the
bars are the standard deviations. Lines in the bars are the final
value ofK.

Both < K > and< E > are significantly higher using the
token algorithm than in the baseline. Moreover, note that in



(a) Initial State (b) Final State

Fig. 4. Simple wall simulations: black dots aresensors, white dots the
comms, dashed lines communication links, the triangle the hub. The box ticks
distance is5.

the |C| = 8, case the baseline can not assure a final global
connectivity greater than one, while the other algorithms can.
TC policy performs best here, which was expected since it
makescommsmove in the north side of the wall neglecting
the repulsive force ofcommsalready there. This was less
decisive for 14commsbecause with an increasing number
of commsresending is more important since it allows a better
understanding of critical locations.
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Fig. 5. < K > for different |C|: B means Baseline, C C policy and so on.
Black bars on the top of the bars are the average standard deviations, whereas
black lines in the bars are the final value ofK.

B. Office

The Office scenario spreads thesensorsout more, requiring
more coordination between thecomms. The initial and a final
state are shown in Figure 7, notice thatsensorsstart in the
upper part of the environment and finish at different locations.

Using this scenario, network reliability and fault-tolerance
were tested: to do this, after60% of time had elapsed,3
randomly chosencommswere disabled.

In Figures 8 and 9 the results for200 simulation runs are
presented. The parameters for the scenario were:|S| = 5,
dc = 12, v = 0.005, for the potential function:fs = 1/2,
fc = 1/2, α = 100 |C|/|S|, β = 1, for the policies:N =
2, (M, Q) = ([NR/2], 0) for C and TC policies,N = 2,
(M, Q) = (1, 1) for RC policy, TS = 2, TC = 1, imax = 3.
|C| = 15 is the no-failure case, while|C| = 12* means3
commswere disable after60% of the time.

RC policy performs best in both no-failure and failure cases.
This is due to tokens needing to be accepted by robots outside
their immediate communication range, necessitating resends.
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Fig. 6. < E > for different |C|: B means Baseline, C C policy and so on.
Black bars on the top of the bars are the average standard deviations.

(a) Initial State (b) Final State

Fig. 7. Office simulations: black dots aresensors, white dots thecomms,
dashed lines communication links, the triangle the hub. The box ticks distance
is 5.
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Fig. 8. < K >: B means Baseline, C C policy and so on. Black bars on
the top of the bars are the average standard deviations, whereas black lines in
the bars are the final value ofK. |C| = 15 is the no-failure case, while|C|
= 12* means3 commswere disable after60% of the time.
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Fig. 9. < E >: B means Baseline, C C policy and so on. Black bars on the
top of the bars are the average standard deviations.|C| = 15 is the no-failure
case, while|C| = 12* means3 commswere disable after60% of the time.

C. Open space

In theOpen Spaceenvironment the algorithms performance
to random initial positioning ofsensorswas tested. The
scenario consists of randomly spreadcommsand two group
of sensorswhich can enter in the environment from randomly
chosen locations and they move to the center where the hub
is. (See Figure 10). In this environment,commswere disabled
at a rate,kR.

(a) Initial State (b) Final State

Fig. 10. Open air simulations: black dots aresensors, white dots thecomms,
communication links are not shown, the triangle is the hub. The box ticks
distance is20.

In Figures 11 and 12 the obtained results for400 runs are
presented. The parameters were: for the scenario:|S| = 11,
|C| = 20 dc = 50, v = 0.007, for the potential function:
fs = 1/2, fc = 1/2, α = 100 |C|/|S|, β = 1, for the policies:
N = 2, (M,Q) = ([NR/2], 0) for C policy, (M,Q) = (1, 1)
for RC policy, imax = 10.

RC policy performs best since, it is crucial to informcomms
out of the immediate communication range of thesensors. In
particular RC policy withN = 2 is the best because it allows
differentcommsfollow to different robots, whileN = 10 tends
to make them follow the same robot.

D. Corridor environment and Proactive algorithm

The Corridor scenario was used to test the performance of
the proactive approach in comparison to the basic algorithms.
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Fig. 11. < K >: B means Baseline, C C policy, RC1 RC policy with
N = 2, RC2 RC policy withN = 10. Black bars on the top of the bars are
the average standard deviations. The dashed black line is the initialK.
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Fig. 12. < E >: B means Baseline, C C policy, RC1 RC policy with
N = 2, RC2 RC policy withN = 10. Black bars on the top of the bars are
the average standard deviations. The dashed black line is the initialE .

To ensure this environment is fast changing,v = 0.022. The
scenario initial and a final states are depicted in Figure 13.

In Figures 14 and 15 the obtained results for400 simulation
runs are presented. The parameters were: for the scenario:
|S| = 3, |C| = 12 dc = 20, v = 0.022, for the potential
function: fs = 1/2, fc = 1/2, α = 100 |C|/|S|, β = 1, for
the policies:N = 2, (M, Q) = ([NR/2], 0) for C policy,
(M, Q) = (1, 1) for RC policy, imax = 3, for Proactive
algorithm: NS = 5, NC = 10. In the graphs, connectivity
and efficiency behavior during time for different algorithms is
depicted. The lines thickness represents the standard deviation.

The RC policy withN = 10 and Proactive algorithm lead
to best results. The former since it can inform morecomms
by resending tokens;N = 10 is better thanN = 2 because
the environment is fast changing and there are fewsensors
to follow, thus it is important that the information ofsensors
location reaches morecomms. The Proactive algorithm has
a smoother behavior with no deep local minima, this was
expected since it makescommstry to be useful every time.
Finally Proactive involves less communications than RC policy
with N = 10, because tokens do not have to be resent.



(a) Initial State (b) Final State

Fig. 13. Corridor simulations: black dots aresensors, white dots thecomms,
communication links are not shown, the triangle is the hub. The box ticks
distance is10.
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Fig. 14. K vs. time for different algorithms and policies. The lines thickness
represents the standard deviation.

V. RELATED WORK

Standard potential fields have been investigated both for
coverage analysis in simple and very complex environments
[8]. When they have been applied to build an ad hoc network
for communication purposes, this has been done or in simple
environments without walls [10], or with the cooperation of
sensors [11], or with a priori knowledge of the environ-
ment [12]. Ad hoc networks and robot positioning to obtain
connected andk - connected graphs have been studied in
simple environments without walls [5], [6], [7], and they have
currently several applications also in aerospace research [3],
[13].

VI. CONCLUSIONS ANDFUTURE WORK

This paper presented a novel approach to maintaining an ad
hoc communications network for sensor robots exploring an
unknown environment. The key to the approach is dynamically
and cooperatively changing potential fields that govern robots
movement. Different policies for determining how to create
the potential field were used and the specifics of the environ-
ment determined which policy performed best. However, in
all cases, dynamic potential fields out-performed a standard
potential field approach.

While these results are promising, significantly more work
needs to be done before this approach is ready for real-world
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Fig. 15. E vs. time for different algorithms and policies. The lines thickness
represents the standard deviation.

deployment. In the immediate future, we will be extending
the approach to larger environments with more complex signal
propagation characteristics, e.g., signals may be attenuated or
multi-path effects observed. In the medium term, the approach
will be implemented on a set of physical robots to better
understand the real-world issues that must be addressed.
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