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Abstract—When cooperative robots are used for exploring an for sensor robots to relay information back to the operator
environment, a key component of their task is to relay data and to allow commands to be relayed to robots. Third, there
back to a human operator and get input from that operator g tynically no clearly defined deployment stage, thus the ad

on exploration priorities. To do this a wireless communication h network needs to be maintained for th nsor robots
network is required. This paper presents an approach to creating oc netwo eeas 1o be maintained 1o € senso

and maintaining an ad hoc communication network for relaying While the communication robots deploy to their positions.
data to and from exploring robots. The network is made up of Finally, the robots may need to constantly rearrange to adjust
mobile robots acting as communication hubs. The approach relies to sensor robot movement or failed communication robots,

on the concept of potential fields, but allows the potential fields to since typically they cannot provide coverage to the whole
change dynamically depending on the current needs of the team. environment

Specifically, aspects of the potential fields are turned on or off for . .
particular robots, based on required connectivity. The resulting A variety of approaches have been developed for this
potential fields push the robots towards appropriate locations problem. In ad hoc networks, distributed algorithms, which
to maintain the network. Several policies for determining which  can assurek - connected graphs [5], allow robust robot

aspects of the potential field to activate were evaluated, with positioning [6] and provide good coverage [7], have been

policies focused on maintaining minimum connectivity perform- lied i lativel . ts. H those efforts
ing best. In four distinct simulated environments, the dynamic applied in refalively open environments. However

potential fields approach was shown to effectively maintain largely ignore situations in WhiCh signals are imDEd_ed by
a communications network and far out-perform a standard obstacles, like walls, or in which only a small dynamically

potential field approach. o . changing part of environment needs coverage. Potential field
Keywords: Ad hoc communication networks, multi robot — are lightweight and robust way of positioning robots in a
systems, Potential Fields. clustered and complex environment [8], often not requiring any

communication to coordinate. However, potential fields are
best suited for spreading robots out across an environment, not
Robots are increasingly being used to search or expldoeusing them on dynamically changing areas. Hence, for this
interesting and risky environments to provide information fagpplication, key extensions to potential fields were required
human operators. Since, in many of those environments, thesetake advantage of their strengths while meeting problem
will be no wireless network infrastructure to connect robotsonstraints.
with operators, such a network has to be dynamically formedThe central idea of this work is to dynamically change
in some way. One promising approach is to send additiorthe applicable potential fields based in the current overall
communication robots to form the network and keep sensogeds of the team. If the potential fields can be appropriately
robots and human controllers in contact. For example, if sensarried, the robots will robustly move to locations where a
robots are sent into a burning building, it is likely that the fireonnected network can be formed. The key to the dynamic
will disable any building wireless networks and the building’potential field approach is to ensure that each communications
structure disrupt direct wireless communications from thebot is influenced by appropriate fields at appropiate times.
outside, thus additional robots, working as communicatid®pecifically, the team must configure itself so that some
hubs, may be the only way to stay in contact. Other domainemmunication robots move near to the sensor robots, while
where such a technology might be useful include mines [Ithers position themselves to relay massages to and from the
military [2], space [3] and desert exploration [4]. hub. To achieve this, each robot sends out requests for other
Dynamically deploying effective networks is difficult for arobots to connect it back to the hub or in the hub’s case, sends
variety of reasons. First, the communication robots will natut requests to be connected to the network. These requests
have a priori knowledge of where the sensor robots will gare in the form oftokens When a robot receives a token it
nor of the environment in which they must deploy. Secondjther keeps the token, adds a potential field corresponding
to coordinate their deployment they must maintain commurtd the request for support represented by the token, or passes
cation with each other or coordinate without communicatiothe token on to another robot (which faces the same choice).
Even if communication between the robots is available, iBy controlling the number of tokens each robot sends out,
use has to be minimized, both to make bandwidth availalttee number of links the team tries to form with the requester

I. INTRODUCTION



can effectively be controlled. The policy by which a roboLet the local connectivity: bec = |C| and let the connectivity
decides to keep a token, and add the corresponding field,Semsor- H at a given timet, be K;(¢t) = |P(S;)|. Thus,
pass the token on, dictates the effectiveness and the natirét) = 0 means there are no communication paths fi§yno
of the network. Various policies for accepting or passing of, thussS; is not connected. The primary goal ©fis to avoid
tokens have been evaluated, with the most effective policigsis happening. In Figure X, (¢) = 1 andC(t) = 2. Let the
based on connectivity, leading to consistently well connectgtbbal connectivity at a given time Bé(t) = min; IC;(¢). KC(t)
networks. is 1in Figure 1. Acommis usefulif it is on a minimal path. Let
If a situation changes quickly or sensor robots can suddenhe used commsubset be the subsét:= (|, minP;) /S, i.e.,
go out of communication range, e.g., by going around a corntre usefulcomms Define efficiency£, as the ratio of useful
simply having the communication robots following the sens@ommsto total comms & = |{/|/|C]. In Figure 1,£ = 3/4 ,
robots will not be sufficient to maintain connectivity. In suclsinceC? is not on a minimal path.
situations, communications robots need to identify areas where

sensor robots might move and proactively act to set up network ff‘g* N

connectivity in those areas. Experiments show that selecting S

potential fields to encourage communication robots to fill E%{j’"\

potential future gaps in the network, substantially improves @03

connectivity over time. A
Four different scenarios have been tested and the results e

show a significant performance improvement over a standard
potential field approach, with regard to connectivity an@ig- 1. Anexample of possible network which connects sgosorsS1 and
Sa andcommsCl, ..., C* to the hubH. The dashed line are communication

overall efficiency of the network. Moreover, network fault-"nksy the black line is a wall.

tolerance and robustness were shown to be good, even with

high robot failure rates. Let < K > and < £ > be the average global connectivity
over time and the average efficiency over time respectively.
Finally let v be theenvironment change rateharacterized
Let S = {S1,...,Sn, H} be a set of moving robotsy;, as the maximum rate aommhas to move to prevent the
calledsensorsand a hubH, and letC = {C',...,C™} be network breakdown. This gives a rough measure of the envi-
a set of communication robots, tltemms The basic aim is ronment difficult forC.
to positionC to create a network which connects eaghto Thus the overall problem addressed by the work is to
H and dynamically maintain connectivity. maximize:
S is assumed to be independent@fbut all the robots can max ( min IC(t))
move at the same speesk. andC? have a maximum range of ) 0SS tmax
communicationd,. It is assumed that every robot can sendd- Scenarios
where the others are if they are within their communication While, the space of possible situations for this work is infi-
range and robots can distinguish betwsensorsandcomms  hite, for experimental purposes, a small set of fixed scenarios
This may be done by overhearing messages broadcastedMap considered. Four different environments were used, see
other robots. LetS C S andC C C be the subsets afensors Figure 2, namely:

Il. PROBLEM STATEMENT

and commsrespectively that a robot can sense. (a) Wall. Thesensorsmove away from the hub, encountering

Let x be the position of a generic robot at a given a wall, thecommsare initially spread in both sides of
time, while the hub, H is stationary. LetP;(S;) = the wall. (Figure 2a)wv is high becausesensorsmove
{Sk,C*,...,C% H} be a possible communication path from  constantly away from the hub.

S € S to H, thus the distance between two consecutivép) Office Four sensorsmove from a lift to some offices.

elementsp;, of P;(Sy) is at mostd,, |z(p;) — x(pi—1)| < de.
Two paths from the samsensorare different if they involve
differentcommsi.e.,

Pi(Sk) # P;(Sk) & FCH(CF € Pi(Sk)) A (CF € P;(Sk))
Among all theP;(S;) which have at least &¢ in common,

(Figure 2b).v is low, becauseeommsare initially well
spread.

(c) Open spaceA central hubcommsare initially spread in
a box, sensorsenter the box from two different random
locations. (Figure 2c)v is at most the same as in (b).

(d) Corridor. Two sensorsmove away from the hub, one

a minimal path can be defined as the one which involves returns after some time. (Figure 2d). is very high

the minimum number oftomms minP;(S;) = P;(Sk) Iif
|P;(Sk)| is minimum. All different paths from the sansensor
can be grouped in the local subset of different path&Sy):
P(Sk) = {...,Pi(Sk), ...} where

VPi(Sk), Pi(Sk) | (i # j) A (Pi(Sk), Pj(Sk) € P(Sk)) =
= Pi(Sk) # P;j(Sk)

because, both theensorsmove away fromH and the
commesare initially in a small box around{.

[Il. POSITIONING ALGORITHM

The basic concept of a potential field is to overlap fields
representing different influences on the robot. The robot then
simply follows the gradient down the resulting field. The basic



potential field algorithm, in which§ = § andC = C, i.e.,

° range. Second, a version where tokens are passed around

|oV where the potential field is influenced by all robots in sensor
o o

the team, with the robot represented by the token being an
influence inS andC. Third, a proactive token algorithm where

o S andC are augmented by influences that fill future potential
o network gaps.

o A. Standard algorithm

(X )
__In the basic algorithm, referred to atandard S =3 and
C = C, thus every sensed robot influences the potential field
shape. This leads to the robots spreading out the environment,
since J;(S,C) makes the relative distances among robots
almost the same.
The main problem with thetandardapproach is that, when

(a) Wall (b) Office

R | the environment is large, spreading out is not an acceptable
o oo | solution, since coverage can not be assured. Instead some way
N 040 | needs to be found to focuwmmson creating paths between
% b k7w S and H.
i -

o T — & ° | B. Dynamic Potential Fields

o ] The key is to have theommsmove to the parts of the
environment wheresensorsare, not just anywhere. Since in

the standard approach the balance between attractive and
repulsive force, i.e., the potential field gradient, determines
the spreading pattern, it is reasonable thatofnmscould
cooperate they coulturn off useless repulsive forces, which
Fig. 2. Environments: Black dots are tisensors white dots thecomms  prevent them moving into critical position, and they could
dashed lines are communication links, big triangles are the hubs. move in better locations. This approach, which dynamically
changes the potential field will be callelynamic
. . The algorithm works as follows: every robot sends a mes-
potential functlon.7], utilizes the Lennard - Jones formulatlonSage toN randomly choserC € C, in which they request
[9]. resulting for eactcomm in: help maintaining the network. The information is packed in
6 12 atoken T = {z, ¢, sensor/comth This could be accepted by
jj-(ﬁ) 6) = a Z -9 ( defs ) + ( defs ) 4 the other robots or resent. If@mmaccepts a token it adds
rois, rcis; the robot represented by that token $oor C' and is thus
d.f 6 dof influenced by that robot. If instead it chooses to pass the token
i) Z -2 < = ) + ( = ) (1) on, itis not influenced at all by the robot represented by that
I'cica I'cica token.

By a intelligent choice based on the information on the to-
where S C S and C C C are the subsets o$ensors ken, thisdynamic tokempotential field approach can overcome
and commswhich influence a robotrss;s, and reica are  the problems of the standard approach.
the relative distances betweet¥ and the robots in those A simple example can show the token algorithm features
subsets. The communication distanéeand the f; and f. and better performance over the standard approach. Let the
coefficients determine the function shape. The coefficientssituation be the one in Figure 3 (left), and let tbemms
and g influence whether to move further froensorsor be in equilibrium, i.e., at minima in the potential field.
comms|f |S| = 1,|C| = 0, J;(S, C) would have a minimum the S, moves right andS, up, in the standard approaotﬁ’1
at a distanced.fs from S;; below that dlstance7](S C) tries to follow both sensors breaking the network; moreover
would increase (repulsive part) to prevent robots from bein@® and C? repulse each other and they can not héth In
too near one another, while above that distance (attractivee dynamic approact’ follows S* and informsC?, which
part) it would increase to keep robots in the communicatianoves to help it maintain the network.
range. Once the potential function has been evaluated, th&he choice of what tokens to send and, moreover, what to
robot moves toward the local minimum. do with them, is made by defining policy. Three different

In the next three section different versions of this approagivlicies have been defined, namely C policy (connectivity),
will be presented. What varies among the versionsSend TC policy (threshold connectivity) and RC policy (resend
C, i.e., which robots effect the potential field. First the basiconnectivity). In following each policy will be described.

(c) Open space (d) Corridor




c using M < Ng robots, which the first\/ tokens refer to
(Algorithm 2 - lines 5 - 11). Then it deletes the remaining

Standard

[ ] S2 . . .
o tokens since for C policy.x = 1.
H \ZZ_ NT - @cl e - .
o I . e St Algorithm 2 C policy
P L o = 1
G -8 - -e—> ) max
et s ey 2 Ng — |T]|
e e 3: SORT(T): ¢(T1) < (Tny,)
H **va"vl”” ~
Initial situation ¢ ¢ Sl 4 S - {0} C {@}
5. for j =1to M < Ny do
Token Algorithm
6: if comn{Z}) =0 then
Fig. 3. Standard vs. Token algorithm behavior in an examfleand Sz 7 S = {S7 S(Tj)}

are moving in opposite directions causing the network break in the formeéz

else
but not in the latt = N
ut not in the latter. o C _ {C,C(T])}
Each commfollows the algorithm shown in Algorithm 1, 10: end if

which is executed by each robot at each time step. For every end for
time step, all thecommsform a tokenr = {z,|C|,comnj}
(Algorithm 1 line 1), then they keep sending and receiving 2) TC policy: The policy is the same as C policy, but
tokensin.x times and they group them ifi. inax is fixed includes a criterion for determining whethecammis useful

by the policy, ifimax = 1 they simply delete the tokens theyor not. Since each robot can not know if it is on a minimal
do not use. The determination of which tokens are importagth, this criterion is based on the number of received token,
is made using a policy (Algorithm 1 line 12 - 16), whichy. If this is very high it means that theommis very useful,
forms S, C. If imax > 1, the tokenr to be resent. Finally, the since a lot of robots request its help; if there was only a robot
robot computes the potential function and moves accordin@gnnected to it, it would receive at ledsttokens. On the other
(Algorithm 1 line 18 - 19). hand, if few tokens are received, ttemmis in an useless
position.

Algorithm 1 Token Algorithm

1 7= {x,|C|,comn}
2: Imax < POLICY
3: for i =0 t0 iyax dO

Therefore, when a comm receives fewer tokens than a
specified threshold, it computes a different potential function
where the repulsive part is neglected. This is done to allow
thatcommto move closer to othesommso reach, eventually,
critical location in the network.

4. for k=0to N do

5: SEND(T) — RANDOM(C™ € C) The threshold can be different faensorsand comms in

6: end for the sense that the repulsive part of thiesubset is neglected
7. T={0 if the number of received tokenSx, is less tharls, whereas

8 repeat the one of theC subset is neglected if the number of tokens
9:

T4 =GETTOKEN « (C" € CV 8" € S) is less tharilx. Thus the potential function is
10: T=TUTxy

11: gnFiI (No more messages) ‘7j(§, C,Ng) =« Z
12 if dpax > 1 then 5e8
13: (S, C, 1) — PoLicY(T) '

defs \°
2( / ) i
Tcis;

1
14: else (tokens> T) ( defs ) +
15: (S, O) «— PoLicY(T) rcis;
16:  end if defe defe \*°
17: end for R b Z —2 (rcycq) + (tokens> T¢) <7‘010q> @)
18 J =J(S,0)
19: ¢ —z + (Vo J) dz

Algorithm 3 TC policy

1) C policy: Robots with a low local connectivity are in 1: C policy(from line 1 to line 11)
the most critical positions of the network, thus they need mor@: CHANGE J to J (S, C, Nr)
help. For that reason, C policy is based on local connectivity
encouragingommgo keep the tokens of low connected robots 3) RC policy: The policy is the same of C policy, but
and move toward them. It works as follows: I8tz be the i, > 1, thus, aftercommdeterminedS and C' it resends
number of received tokens, ttemmmsorts the receivedvy  some of the tokens it did not use. It keeps on sending and
tokens so that the first has the lowesind the last the highestreceiving tokens, untit = iyax, Wheni = i,y it computes
(Algorithm 2 - line 3), then it determines the subsétand  the potential field using the last determinédand C. This




allows to better determiné and C, since it spreads the which of the received tokens has to be kept and féfrand
information of where the low local connectivity areas are’ (Algorithm 5 line 10 - 15). It deletes the remaining tokens,
In fact, in low local connectivity areagommscould be it computes the potential function and it moves (Algorithm 5
not sufficient to satisfy all the help requests, while in highne 16 - 17).

local connectivity onescommsare less useful. By passing
the unused tokens through the network, this can be avoid8lgorithm 5 Proactive algorithm

making less usefutommsmove where it is needed.

1:

The choice of which tokens have to be resent is made

by the connectivity value. In particular, eacbmmforms a
new token, which carries not only its information, but a{3o
tokens, fromM + 1 to M + @ (Algorithm 4 line 13 - 15).

T={z,¢,r}
for k =0 to N¢ do -
SEND(7) — RANDOM(C" € C)

. end for
T = {@}

Algorithm 4 RC policy
1: imax = NUMber> 1

T4 =GETTOKEN «— (C" e CV §" € 5)

T= {T7 TA}

3
4
5
6: repeat
7
8:
9: until (No more messages)

2: Nr — |T|

3: SORT(T): ¢(T1) < e(Tny) 10: SORT(T): first, lowerr, then, lowerc
45 = {0},C = {0} 11: if comn{Ty) = 0 then

5. for j =1to M < Ny do 122 §={S(Ty)}, C = {0}

6: if comn{Z}) = 0 then 13: else ~

7: S = {S,5(Ty)} 14 S={0}, C={C(Th)}

8. else R 15 endif

o: C = {C,C(1))} 16: 7 =J(S,0)

10: end if 17 ¢ —x + (Vi J) do

11: end for

12: 7 = {z,|C|,comn}

13: for j=M+1t0Q < Nr— M do IV. RESULTS

14 G? {7, 2(T}), c(T;), comm/sensaf’;) } In this section the results for the selected environments will
15: end for

be presented. First, experiments were performed inViiaé
environment to test the basic functionalities of the algorithms.
. o Second, th®fficeenvironment is used to test coordination and
C. Proactive Positioning . . :
) ~ fault-tolerance. Third, th®©pen Spacenvironment is used to
In some cases, the above approach can be insufficientidet hoth behavior with unknown initial conditions and high
maintain the connectivity, becausensorsmight rapidly go fajlure rates. Finally, the€€orridor environment, which is fast

out of range, e.g., when they turn around a corner. In a rapidifanging, is used to test the Proactive algorithm. The baseline
changing environment, or when it is important to assure th@| pe the standard approach.

highest possible local connectivity for theensors comms

shouldproactivelychoose where to move in order to preemp‘f‘- Wall

network breaks. This apparently simple wall scenario tests the basic func-
For that reason, @ommshould follow only one robot at tionality of the algorithms. If theecommsdo not move north

a time, thus from asensorback to the hub there would be aof the wall, connectivity will be lost. Thus, spreading out is

communication chain formed lpommsaA relative grader, is an inadequate strategy.

defined as followsyS;, H € S :r=0,vC' € C :r =k+1 The initial and a final state are shown in Figure 4, notice

if C* follows a robot withr = k. Thus eachcommdecides the sensorsblack dots, move from west to east.

to keep a token, and only one, on the basis of lowerhis In Figures 5 and 6 the obtained average results 2fur

means that evergommis trying to be useful for the network, simulations are presented. The parameters for the experiments

since it follows acommwhich is somehow linked to somewere: for the scenarid:S| = 6, d. = 10, v = 0.016, for the

sensor Moreover, if there is more than one token with a lowpotential function:f, = 1/2, f. = 1/2, a = 100|C|/|S],

value ofr it follows the one with the lowee, thus it moves in § = 1; for the policies:N = 2, (M, Q) = ([Nr/2],0) for

the most critical positions. This can be called proactive sin€z and TC policiesN = 2, (M,Q) = (1,1) for RC policy,

eachsensoris followed by acommwhich has it as a only aim. Ts = 4, T¢ = 3, imax = 3. In the graphs B means Baseline,

Thus, this can have better performances in rapidly changi@gthe C policy and so on. Bars are the value of average global

scenario. connectivity of average efficiency. Black bars on the top of the
The algorithm works as follows. First each robot sendstmars are the standard deviations. Lines in the bars are the final

tokent = {z,¢,r} to Ng or No sensedccomms where N value of K.

is if the robot is acomm Ng otherwise (Algorithm 5 line 1  Both < £ > and < £ > are significantly higher using the

- 4). Then, after it received tokens by the other, it choos#sken algorithm than in the baseline. Moreover, note that in
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the |C| = 8, case the baseline can not assure a final global ‘
connectivity greater than one, while the other algorithms can. B Cl R B

TC policy performs best here, which was expected since it

makescommsmove in the north side of the wall neglectingrig 6. < ¢ - for different|C|: B means Baseline, C C policy and so on.
the repulsive force otcommsalready there. This was lessBlack bars on the top of the bars are the average standard deviations.
decisive for 14commsbecause with an increasing number

of commsresending is more important since it allows a better

understanding of critical locations.
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(a) Initial State

Fig. 5. < K > for different|C|: B means Baseline, C C policy and so on..;

e ‘Fig. 7. Office simulations: black dots asensors white dots thecomms
Black bars on the top of the bars are the average standard deviations, Whe&%%ﬁed lines communication links, the triangle the hub. The box ticks distance
black lines in the bars are the final value /6f

(b) Final State

is 5.
B. Office

The Office scenario spreads thensorout more, requiring
more coordination between tle®mms The initial and a final
state are shown in Figure 7, notice ttssnsorsstart in the
upper part of the environment and finish at different locations.

Using this scenario, network reliability and fault-tolerance
were tested: to do this, afte&d0% of time had elapsed3
randomly chosemommswere disabled.

In Figures 8 and 9 the results f@n0 simulation runs are
presented. The parameters for the scenario wgfe:= 5, ~
d. = 12, v = 0.005, for the potential function;fs = 1/2, - =
fe =1/2, a = 100|C|/|S|, B = 1, for the policies:N =
2, (M,Q) = ([Ngr/2],0) for C and TC policies,N = 2, 0
(M,Q) = (1,1) for RC policy, Ts = 2, Tc = 1, imax = 3.
|C| = 15 is the no-failure case, whilg”| = 12* means3

o

Average Global Connectivity
= N © »
= (3 N (5] w (5] S [,

=
o

B C TC RC B C TC RC
IC| =15 ICl = 12¢

Fig. 8. < K >: B means Baseline, C C policy and so on. Black bars on

commswere disable afte60% of the time. a on -
RC poli . best in both fail d fail the top of the bars are the average standard deviations, whereas black lines in
policy perrorms best in both no-fallure and tallureé Cas€pe pars are the final value . |C| = 15 is the no-failure case, while”|

This is due to tokens needing to be accepted by robots outside* means3 commswere disable afte60% of the time.
their immediate communication range, necessitating resends.



4
©
o

07 ES
- = 5 = o) & I
06 = ™= =
- -
S 24 = ) :
2 05F = £
2 £ =
S 8
=
Woo4t g
s s
= 03r <
< E oL
021
1k
0.1
0 0 i i
B C TC RC B C TC RC B C RCIRCZ B C RCIRC2Z B C RCIRC2 B C RCIRC2
Ic|=15 |IC| = 12* Killrate =0.00  Killrate=0.25 Killrate =0.50  Kill rate = 0.75
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top of the bars are the average standard deviatiohs: 15 is the no-failure N = 2, RC2 RC policy withN = 10. Black bars on the top of the bars are
case, while|C| = 12* means3 commswere disable afte60% of the time  the average standard deviations. The dashed black line is the Kitial

C. Open space I

In the Open Spacenvironment the algorithms performance o7l
to random initial positioning ofsensorswas tested. The
scenario consists of randomly spreesimmsand two group
of sensorawhich can enter in the environment from randomly
chosen locations and they move to the center where the hub
is. (See Figure 10). In this environmengmmswere disabled

o
2
il

Average Efficiency
o
>

at a rate kg. o
° .. Lil
o .l o 0'578 7C 7RCl’RC2 B 7C 7RClRCZ B C RCI1RC2 B C RCI1RC2
- ° Killrate =0.00  Killrate=0.25 Killrate =0.50  Kill rate = 0.75
o s s 3 o L %0 (o} |
OV o on % °§ Fig. 12. < £ >: B means Baseline, C C policy, RC1 RC policy with
° o v N =2, RC2 RC policy withN = 10. Black bars on the top of the bars are
B9 o, ° the average standard deviations. The dashed black line is the #itial
o o
(a) Initial State (b) Final State To ensure this environment is fast changing= 0.022. The

scenario initial and a final states are depicted in Figure 13.
Fig. 10. Open air simulations: black dots @aensorswhite dots thecomms In Figures 14 and 15 the obtained results400 simulation
communication links are not shown, the triangle is the hub. The box tickeins are presented. The parameters were: for the scenario:
distance is20. |S| = 3, |C|] = 12 d. = 20, v = 0.022, for the potential
) i function: f, = 1/2, f. = 1/2, a = 100|C|/|S|, 8 = 1, for
In Figures 11 and 12 the obtained results 400 runs are iphe policies: N = 2, (M,Q) = ([Ng/2],0) for C policy,
presented. The parameters were: for the scengsio= 11, (M,Q) = (1,1) for RC policy, imax = 3, for Proactive
[Cl = 20 d. = 50, v = 0.007, for the potential function: aigorithm: N = 5, No = 10. In the graphs, connectivity
fs =1/2, fe =1/2,a =100|C|/[S], 8 =1, for the policies: an efficiency behavior during time for different algorithms is
N =2, (M,Q) = ([Nr/2],0) for C policy, (M,Q) = (1,1)  depicted. The lines thickness represents the standard deviation.
for RC policy, imax = 10. The RC policy withN = 10 and Proactive algorithm lead
RC policy performs best since, it is crucial to infom@mms 4 pest results. The former since it can inform meemms
out of the immediate communication range of gensorsin by resending tokensV = 10 is better thanV = 2 because
particular RC policy withV = 2 is the best because it allowsthe environment is fast changing and there are &msors
differentcommsollow to different robots, whileV = 10 tends {5 follow, thus it is important that the information s&nsors
to make them follow the same robot. location reaches moreomms The Proactive algorithm has
a smoother behavior with no deep local minima, this was
expected since it makesommestry to be useful every time.
The Corridor scenario was used to test the performance &fnally Proactive involves less communications than RC policy
the proactive approach in comparison to the basic algorithmgth V = 10, because tokens do not have to be resent.

D. Corridor environment and Proactive algorithm
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deployment. In the immediate future, we will be extending
the approach to larger environments with more complex signal
propagation characteristics, e.g., signals may be attenuated or
multi-path effects observed. In the medium term, the approach
will be implemented on a set of physical robots to better
understand the real-world issues that must be addressed.
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