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1. INTRODUCTION
The rapidly improving availability of small, unmanned

aerial vehicles (UAVs) and their ever reducing cost is leading
to considerable interest in multi-UAV applications. How-
ever, while UAVs have become smaller and cheaper, there
is a lack of sensors that are light, small and power efficient
enough to be used on a small UAV yet are capable of taking
useful measurements of objects often several hundred me-
tres below them. Static or video cameras are one option,
however image processing normally requires human input
or at least computationally intensive offboard processing, re-
stricting their applicability to very small UAV teams. In this
paper, we look at how teams of UAVs can use very small Rel-
ative Signal Strength Indicator (RSSI) sensors whose only
capability is to detect the approximate strength of a Radio
Frequency (RF) signal, to search for and accurately locate
such sources. RSSI sensors give at most an approximate
range to an RF emitter and will be misleading when signals
overlap. Applications of such UAV teams range from finding
lost hikers or skiers carrying small RF beacons to military
reconnaissance operations. Moreover, the core techniques
have a wider applicability to a range of robotic teams that
rely on highly uncertain sensors, e.g., search and rescue in
disaster environments.

Many of the key technogies required to build a UAV team
for multi-UAV applications have been developed and are
reasonably mature and effective[1, 2]. However, for large
UAV teams with very noisy sensors, key problems remain,
specifically, much previous work is formally grounded but
impractical[3]. Often the coordination and planning algo-
rithms and the representations of the environment are not
appropriate for more than two or three UAVs and targets.
For example, some solutions require a UAV to know the
planned paths of all other UAVs in order to plan its own
path[6], but this is infeasible (both in terms of communica-
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tion and computation) when the number of UAVs is large.
Other approaches only solve part of the problem, e.g., es-
timating locations from sensor readings[10] or planning co-
operative paths[9], but do not combine these elements in an
integrated solution, although there are some exceptions[4].
Signal processing techniques for creating probability distri-
butions from noisy signals have been extensively studied,
but rarely have distributed filters versions been created and
those that have been do not scale to larger teams[7].

Our approach to this problem has three key elements. The
first key element is a distributed filter to localize RF emit-
ters in the environment. Each UAV has a Binary Bayesian
Grid Filter[5] where a value of a cell in the grid represents
the probability that there is an emitter in the correspond-
ing location on the ground. Due to limitations on available
communication bandwidth, it is infeasible for UAVs to share
their entire distribution, instead they share a small subset
of their sensor readings with others in the team. Hence, de-
parting from previous approaches that elicited a model of
what team mates know in order to choose what to send[7],
we started from the assumption that if some information
leads to large local information gain, it will probbably do so
for much of the team. We investigated two information gain
based heuristics for choosing which readings to share with
team mates. The first heuristic is to send sensor readings
that have the greatest impact on the UAV’s local probabil-
ity distribution. The second heuristic is to create a parallel
probability distribution based purely on readings received
from team mates and send sensor readings that have the
biggest impact on that distribution. Intuitively, the first
heuristic sends readings that were most important for the
local UAV, while the second sends sensor readings that are
most important to the team, given a local model of what
the team knows. Experiments show that the first heuristic
results in better team behavior than sending random mes-
sages, but the second heuristic performs worse than random.

The second element of the approach is to tightly couple
estimates of the current locations of the emitters to the UAV
path planning process. Specifically, a probability distribu-
tion over emitter locations is translated into a map of the
information entropy in the environment. UAVs plan paths
through areas of maximum entropy, hence maximizing ex-
pected information gain. The UAVs plan only a relatively
short distance ahead in each planning cycle. This approach
allows the UAVs to be reactive to new information, which is
critical when sensors are highly uncertain and the domain is
dynamic. For example, if a UAV traverses an area, but the
sensor readings do not provide an accurate picture of that



area, the entropy will remain high and the UAV will consider
retraversing the area. Notice that the entropy map coupled
with the path planner looking to maximize information gain
provides an integrated way for trading off between going to
the locations where there will be most information gain and
locations that can be quickly reached.

The third key element of the approach is a very lightweight,
computationally inexpensive method for cooperative path
planning. The important application feature underlying the
approach is that due to the high uncertainty and dynami-
cism in the environment, some overlap of paths is acceptable
(or even desirable), provided that the UAVs mainly spread
out and search areas of maximum entropy. Our approach
is for each UAV to share its planned path with some other
members of the team. When planning, each UAV estimates
the change in entropy that would be induced by those paths
being flown by others and plans on the resulting entropy
map. If the most current path of a particular UAV is not
known the most recent location is used to roughly estimate
where that UAV might be searching.

1.1 Implementation
The overall, integrated process aims to balance the desire

to have a principled, formally grounded approach, yet be
lightweight and robust enough to be practical for a team of
UAVs. The hardware independent components (planners,
filters, etc.) are isolated from the hardware specific com-
ponents (sensor drivers, autopilot) to allow the approach to
be quickly integrated with different UAVs or moved from
simulation to physical UAVs. The hardware independent
components are encapsulated in a proxy which will either
be on the physcial UAV or on a UAV ground station, de-
pending on the vehicle. In the experiments below, exactly
the same proxy code is used in simulation as will be used
in tests with physical UAVs. Figure 1 shows the main com-
ponents and information flows from the perspective of one
UAV-proxy.

Figure 1: Block diagram of architecture.

2. EXPERIMENTS
In this section, we present empirical simulation results of

the approach described above. The approach is implemented

with the Machinetta proxy[8] framework integrated with the
Sanjaya UAV simulation environemnt. The signal model is
derived from real data from an RSSI sensor flown on a real
UAV. The code is used is exactly the same code as being
used in an ongoing flight test, with the exception of the
code between the proxy and the autopilot. The simulated
environment is 50km by 50km and the results below rep-
resent several hundred hours of simulated flying time, with
each data point an average of five runs. Unless otherwise
stated there were four RF emitters in the environment. The
simulator and proxies are spread out over up to 15 desk-
top computers and communication is via multi-cast UDP
resulting in around 3% message loss. These experiments
are conducted in simulation due to the practical difficulty
of conducting experiments with large numbers of physical
UAVs. With an industrial partner this approach was val-
idated with four physical UAVs in a series of tests in late
2006 and early 2007.

Information Sharing Experiments.
In the first experiment, we looked at the three different

information sharing heuristics. Figure 2 shows the average
KL-divergence from the ground truth over time. Ground
truth is modeled as tight 1

r2 probability around the real
emitter location. The figure shows that all the information
sharing algorithms were effective at determining the loca-
tion of the emitters, but that H LOCAL KL was substan-
tially better than the other heuristics. Interestingly, sending
random sensor readings, H RAND, around the team was
clearly better than H TEAM KL, sending readings accord-
ing to a model of the team. Figure 3 gives one possible rea-
son for this, i.e., that H TEAM KL sent very few readings
around. H LOCAL KL gives a low number of messages
along with its good KL-divergence, showing it to be clearly
the best heuristic.

Figure 2: The KL-divergence over time for three
different information sharing algorithms.

Number of UAVs and Number of Emitters.
The second experiment varied both the number of emit-

ters and number of UAVs in the environment. Figure 4
shows that more UAVs led to a faster decrease in the KL-
divergence, showing that the additional UAVs were useful.
Interestingly, more UAVs actually made reducing the KL-
divergence faster. We hypothesize that this was because the
UAVs were able to take use the additional signals in the



Figure 3: The number of messages sent between
UAVs for three different information sharing algo-
rithms.

environment to quickly identify RF emitter locations.

Figure 4: The impact on KL-divergence of changing
the number of UAVs and the number of RF emitters.

Intermittent Signals.
The final experiment varied how often the RF emitters

were giving off a signal that could be detected, see Figure
5. The four emitters had periods ranging from 5 seconds
to 30 minutes, then the percentage of that period that they
were on for was varied from 25% to 100%. Curiously, the
KL-divergence appears better when the emitter is off more.
However, this is only due to a quirky interaction between
the KL-divergence measurement and the very noisy sensors.
Specifically, the noisy sensors do not allow the UAVs to very
precisely locate the emitters, so believing that they were not
there at all could actually lower the KL-divergence. Figure 6
shows an oscillation in the number of messages sent between
UAVs as emitters turn on and off.
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