
The Fifth International Workshop on

Distributed Constraint Reasoning

(DCR04)

Toronto, Canada

September 27, 2004

held in conjunction with

Tenth International Conference on Principles and Practice of Constraint Programming

(CP 2004)

Foreword

A common assumption behind many existing constraint programming techniques is that

all information about problem variables and constraints is available locally. Distributed

Constraint Reasoning (DCR) provides a framework for problem solving in which

information and control about the problem is distributed among autonomous agents. This

distributed model promises to more closely match the assumptions underlying an

increasingly diverse range of real world multiagent problems.

This DCR workshop series addresses modeling, solutions and applications of Distributed

Constraint Reasoning, including both Distributed Constraint Satisfaction and

Optimization Problems. The goal of the DCR workshop series is to bring together

researchers from the many different areas that are relevant to distributed constraint

reasoning so that commonalities and relationships can be discovered and understanding

improved. DCR is an inter-disciplinary research area involving the Constraint

Programming, Multiagent Systems and AI communities. As such, this workshop has

historically rotated its location between the three major conferences in each of these

areas: CP (2000), IJCAI (2001, 2003) and AAMAS (2002). Building upon these previous

successful workshops, we continue in 2004 with the Fifth International DCR workshop

held in conjunction with CP 2004 in Toronto, Canada.

We trust that these proceedings will provide the reader with a glimpse of the cutting edge

research currently going on in DCR. Looking into the future, we hope this workshop will

contribute to the continuing growth of this exciting research area.

Pragnesh Jay Modi (Workshop Chair)

Program Committee

Pragnesh Jay Modi, Carnegie Mellon University, (pmodi@cs.cmu.edu)

Christian Bessiere, LIRMM-CNRS, (bessiere@lirmm.fr)

Boi Faltings, Swiss Federal Institute of Technology Lausanne, (faltings@lia.di.epfl.ch)

Marius Silaghi, Florida Institute of Technology (msilaghi@cs.fit.edu)

Toby Walsh, Cork Constraint Computation Centre (tw@4c.ucc.ie)

Makoto Yokoo, Kyushu University (yokoo@is.kyushu-u.ac.jp)

Weixiong Zhang, Washington University (zhang@cs.wustl.edu)

Amnon Meisels, Ben-Gurion University (am@cs.bgu.ac.il)

Pedro Meseguer, IIIA/CSIC (pedro@iiia.csic.es)

List of Papers

� DCOP Games for Multi-agent Coordination (J. Pearce, R. Maheswaran, M. Tambe

� A Distributed, Complete Method for Multi-agent Constraint Optimization (A. Petcu,

B. Faltings)

� Preprocessing Techniques for Distributed Constraint Optimization (S. Ali, S. Koenig,

M. Tambe)

� Dynamic Distributed Backjumping (V.Ngyuyen, D. Sam-Haroud, B. Faltings)

� Incremental Constraint Propagation for Interleaved Distributed Backtracking (G.

Ringwelski)

� Synchronous, Asynchronous and Hybrid algorithms for DisCSP (I. Brito, P.

Meseguer)

� Short Paper: E-Privacy Requirements for Distributed E-Services (S. Ghernaouti-Helie,

M. Sfaxi)

� The DDAC4 Algorithm for Arc-Consistency Enforcement in Dynamic and Distributed

CSP (G. Ringwelski)

� Using Additional Information in DisCSPs Search (A. Meisels, O. Lavee)

� Multiagent Meeting Scheduling with Rescheduling (J. Modi, M. Veloso)

� On the Evaluation of DisCSP Algorithms (I. Brito, F. Herrero, and P. Meseguer)

� Message Delay and DisCSP Search Algorithms (R. Zivan, A. Meisels)

DCOP Games for Multi-agent Coordination

Jonathan P. Pearce, Rajiv T. Maheswaran and Milind Tambe

University of Southern California, Los Angeles, CA 90089, USA
{jppearce, maheswar, tambe}@usc.edu

Abstract. Many challenges in multi-agent coordination can be modeled as dis-
tributed constraint optimization problems (DCOPs) but complete algorithms do
not scale well nor respond effectively to dynamic or anytime environments. We
introduce a transformation of DCOPs into graphical games that allows us to de-
vise and analyze algorithms based on local utility and prove the monotonicity
property of a class of such algorithms. The game-theoretic framework also en-
ables us to characterize new equilibrium sets corresponding to a given degree of
agent coordination. A key result in this paper is the discovery of a novel mapping
between finite games and coding theory from which we can determinea priori
bounds on the number of equilibria in these sets, which is useful in choosing the
appropriate level of coordination given the communication cost of an algorithm.

1 Introduction

A distributed constraint optimization problem (DCOP) [9, 11] is a useful formalism in
settings where distributed agents, each with control of some variables, attempt to op-
timize a global objective function characterized as the aggregation of distributed con-
straint utility functions. DCOPs can be applied for coordination in multi-agent domains,
including sensor nets, distributed spacecraft, disaster rescue simulations, and software
personal assistant agents. For example, sensor agents may need to choose appropriate
scanning regions to optimize targets tracked over the entire network, or personal assis-
tant agents may need to schedule multiple meetings in order to maximize the value of
their users’ time. As the scale of these domains become large, current complete algo-
rithms incur immense computation costs. A large-scale network of personal assistant
agents would require global optimization over hundreds of agents and thousands of
variables, which is currently very expensive. Though heuristics that significantly speed
up convergence have been developed [8], the complexity is still prohibitive in large-
scale domains. On the other hand, if we let each agent or variable react on the basis of
its local knowledge of neighbors and constraint utilities, we create a system that scales
up very easily and is far more robust to dynamic environments.

Recognizing the importance of local search algorithms, researchers initially intro-
duced DBA[12] and DSA[1] for Distributed CSPs, which were later extended to DCOPs
with weighted constraints [13]. While detailed experimental analyses of these algo-
rithms on DCOPs is available[13], we still lack theoretical tools that allow us to un-
derstand the evolution and performance of such algorithms on arbitrary DCOPs. To
provide such tools, this paper decomposes a DCOP into an equivalent graphicalDCOP
game, which differs from graphical games with general reward functions [4, 10]. DCOP

games not only allow us to analyze existing local search algorithms, they also suggest
an evolution tok-coordinatedalgorithms, where a collection ofk agents coordinate their
actions in a single negotiation round, which leads to new notions of equilibria. For ex-
ample, a 2-coordinated algorithm would be an algorithm in which at most two agents
could coordinate their actions, and a 2-coordinated equilibrium would be a situation in
which no 2-coordinated algorithm could improve the quality of the assignment of values
to variables. A key contribution of this paper is the application of a mapping between
finite games and coding theory to determinea priori bounds on cardinality of equilib-
ria sets ofk-coordinated algorithms. Such bounds could be used to help determine an
appropriate level of coordination for agents to use to reach an assignment of variables
to values, in situations where the cost of coordination between multiple agents must be
weighed against the quality of the solution reached.

2 DCOP Games,k-Coordinated Equilibria Sets and Bounds

We begin with a formal representation of a distributed constraint optimization problem
and an exposition to our notational structure. LetV ≡ {vi}

N
i=1 denote a set of variables,

each of which can take a valuevi = xi ∈ Xi , i ∈ N ≡ {1, . . .N}. Here,Xi will be a
domain of finite cardinality∀i ∈ N . Interpreting each variable as a node in a graph,
let the symmetric matrixE characterize a set of edges between variables/nodes such
that Ei j = E ji = 1 if an edge exists betweenvi andv j andEi j = E ji = 0, otherwise
(Eii = 0 ∀i). For each pair (i, j) such thatEi j = 1, letUi j (xi , x j) = U ji (x j , xi) represent a
reward obtained whenvi = xi andv j = x j . We can interpret this as a utility generated on
the edge betweenvi andv j , contingent simultaneously on the values of both variables
and hence referred to as aconstraint. The global or team utilityU(x) is the sum of the
rewards on all the edges when the variables choose values according to the assignment
x ∈ X ≡ X1 × · · · × XN. Thus, the goal is to choose an assignment,x∗ ∈ X, of values to
variables such that

x∗ ∈ arg max
x∈X

U(x) = arg max
x∈X

∑

i, j:Ei j=1

Ui j (xi , x j)

wherexi is the i-th variable’s value under an assignment vectorx ∈ X. This con-
straintoptimizationproblem completely characterized by (X,E,U), whereU is the col-
lection of constraint utility functions, becomesdistributedin nature when control of the
variables is partitioned among a set of autonomous agents. For the rest of this paper,
we make the simplifying assumption that there areN agents, each in control of a single
variable.

We present a decomposition of the DCOP into a game as follows. Letv j be called a
neighborof vi if Ei j = 1 and letNi ≡ { j : j ∈ N ,Ei j = 1} be the indices of all neighbors
of the i-th variable. Let us definex−i ≡ [x j1 · · · x jKi

], hereby referred to as acontext, be
a tuple which captures the values assigned to theKi ≡ |Ni | neighboring variables of the
i-th variable, i.e.v jk = x jk where∪Ki

k=1 jk = Ni .
In a DCOP game, for an assignmentx, we define a utility functionuT(x) for a team

of agents,T ⊆ N to be the sum of the utilities on all constraint links for which at least

one vertex represents an agent in the team, i.e.

uT(x) =
∑

i∈T

∑

j:Ei j=1

Ui j (xi , x j) −
∑

i∈T

∑

j∈T, j>i,Ei j=1

Ui j (xi , x j).

The utility for a single agent (T = {i}) is

ui(x) ≡
∑

j∈Ni

Ui j (xi , x j)

Thus, in a DCOP game, team utilities are not the sums of individual utilities. We now
have aDCOP gamedefined by (X,E,uT) whereuT is a collection of the utility functions
for all teams.

In current local algorithms, agents change values based on anticipated payoffs of
only their own utilities. Since DCOPs are inherently cooperative, it is natural for agents
to coordinate in order to improve global solution quality. DCOP games provide a frame-
work to analyze, categorize and evaluate such multi-agent coordination. Let us define a
k-concurrent deviationfrom an assignmentx to be an assignment ˜x where exactlyk of
theN variables (agents) have values different fromx, i.e.d(x, x̃) ≡ |{i : xi , x̃i}| = k. We
now introduce the notion of ak-coordinated equilibrium, defined to be an assignmentx∗

such that if̂k ≤ k,anyk̂-concurrent deviation ˜x from x∗, i.e.d(x∗, x̃) ≤ k̂, cannot improve
the team utility for the set of agents which deviated,D(x∗, x̃) ≡ {i : x∗i , x̃i} ⊆ N . A 1-
coordinated equilibrium is identical to a Nash equilibrium as|D(x∗, x̃)| = d(x∗, x̃) = 1 is
a unilateral deviation and the team utilityuT reduces to the utilityui for a single agent.
Let XkE ⊆ X be the subset of the assignment space which captures allk-coordinated
equilibrium assignments:

XkE ≡ {x ∈ X : x̃ ∈ X,1 ≤ d(x, x̃) ≤ k⇒ uD(x,x̃)(x) ≥ uD(x,x̃)(x̃)}.

Proposition 1. If x∗ optimizes a DCOP characterized by(X,E,U), then x∗ ∈ XkE ∀ k ∈
N .

Proof. Let us assume thatx∗ optimizes the DCOP (X,E,U) and x∗ < XkE for some
k ∈ N . Then, there exists some ˜x ∈ X such thatuD(x∗,x̃)(x∗) < uD(x∗,x̃)(x̃). By adding

∑

i<D(x∗,x̃)

∑

j<D(x∗,x̃), j>i

Ui j (x
∗
i , x
∗
j) =

∑

i<D(x∗,x̃)

∑

j<D(x∗,x̃), j>i

Ui j (x̃i , x̃ j)

to both sides, we can showU(x∗) < U(x̃), which is a contradiction.�
Simply put, the proposition states that the optimal solution to the DCOP is ak-

coordinated equilibrium for allk up to the number of variables in the system. In our
DCOP framework, we are optimizing over a finite set. Thus, we are guaranteed to have
an assignment that yields a maximum. By the previous proposition, this assignment is
an element ofXkE ∀k ∈ N , includingk = 1. Thus, we are guaranteed the existence of a
pure-strategy Nash equilibrium. This claim cannot be made for any arbitrary graphical
game [4, 10]. Furthermore, from the definition above we see that fork = 1, . . . ,N − 1,
we haveX(k+1)E ⊆ XkE because ifx ∈ X(k+1)E, we have

d(x, x̃) ≤ k+ 1⇒ uD(x,x̃)(x) ≥ uD(x,x̃)(x̃)

which impliesd(x, x̃) ≤ k ⇒ uD(x,x̃)(x) ≥ uD(x,x̃)(x̃) and thus,x ∈ XkE. Thus, ask
increases, the sets ofk-coordinated equilibria can be pictured as a series of smaller and
smaller concentric circles, culminating in a single point, representing thek-coordinated
equilibrium fork = N, which is also the optimal solution to the DCOP.

In our notationX1E characterizes the set of all Nash equilibria (no unilateral devi-
ations) andXNE characterizes the set of assignments that maximize global utility (no
N-agent deviations).

We exploit the setsXkE in the design of a new class of DCOP local algorithms, and
analysis of their equilibrium points. In particular, for a given algorithmα, let Zα denote
the set of assignments at which the algorithm will remain stationary, i.e. the terminal
states. An algorithmα is k-coordinatedif Zα ⊆ XkE andZα * X(k+1)E for k < N or
Zα ⊆ XNE for k = N.

Example 1.Meeting Scheduling.Consider two agents trying to schedule a meeting at
either 7:00 AM or 1:00 PM with the constraint utility as follows:U(7,7) = 1,U(7,1) =
U(1,7) = −100,U(1,1) = 10. If the agents started at (7,7), any 1-coordinated algorithm
would not be able to reach the global optimum, while 2-coordinated algorithms would.

Section 3 illustrates that existing local DCOP algorithms are special cases of such
k-coordinated algorithms withk = 1, andk ≥ 2 may improve solution quality but at a
higher communication cost.

Choosing an appropriate level ofk-coordination given the higher communication
cost is thus a critical question, similar to the choice of neighborhood size in large-
neighborhood search in centralized constraint satisfaction. We assume thatk-coordinated
algorithms are capable of searching any neighborhood of sizek completely, although
the price for this completeness must be paid in the increasing number of messages re-
quired to ensure ak-equilibrium for increasingk.

To begin answering this question, we providea priori bounds on the number of
equilibria in setsXkE, e.g. a significant reduction in number of equilibria may justify a
jump fromk-coordination to (k+ 1) coordination.

We first consider games, where each player (agent) can choose amongq strategies
(values), i.e.|Xi | = q, ∀i ∈ N . We assume that the payoff structure is such that the
optimalk-concurrent response to any context of cardinalityN− k is unique. Otherwise,
any bound can be violated in the case where all assignments yield identical utilities
and every assignment is an optimal equilibrium point. Furthermore, we assume that
agents have the ability to communicate with all other agents to facilitate allk-concurrent
deviations (although such communication may be indirect, requiring message relay).

To find upper bounds for the number ofk-coordinated equilibria in such games, we
discovered a correspondence from games to coding theory [6, 5]. A fundamental prob-
lem in the theory of error-correcting codes is the determination of appropriate code-
words to use in a code. The code designer must balance the need for brevity, expres-
siveness, and error-correctability of the code, determined, respectively, by the length,
maximum number, and distinctiveness of the allowed codewords. A common measure
of the distinctiveness of two codewords is the Hamming distance, which is defined as
the number of places at which the codewords differ.

For our purposes, an assignment is analogous to a codeword of lengthN from an
alphabet of cardinalityq (Each variable in the DCOP maps to a place in a codeword,

and each member of the domain of the variables maps to a member of the alphabet from
which the codewords are created). An assignment ˜x which is ak-concurrent deviation
from an assignmentx, can also be interpreted as two codewords with a Hamming dis-
tance ofk, whered(x, x̃) ≡ |{i : xi , x̃i}| = k as stated earlier. Ifx1 is ak-coordinated
equilibrium and ˜x1 is a k-concurrent deviation fromx1, x̃1 cannot be ak-coordinated
equilibrium point becauseuD(x,x̃)(x) > uD(x,x̃)(x̃) since there is a unique optimal response
to the context{xi : i ∈ N \ D(x, x̃). Thus, if x2 is a differentk-coordinated equilibrium,
thenx2 cannot be reachable fromx1 via ak-concurrent deviation (and vice-versa). In the
language of coding theory,x1 andx2 must be separated by a Hamming distance greater
thank. The problem of finding the maximum possible number ofk-coordinated equilib-
ria can then be reduced to finding the maximum number of codewords in a codespace
of sizeqN such that the the minimum distance among any two codewords isd = k+ 1.

In coding theory literature, aq-ary (n,M,d) code refers to a collection of lengthn
words constructed over an alphabetA of cardinalityq whereM codewords are chosen
such that the minimum Hamming distance between any two codewords is at leastd. Let
Aq(n,d) ≡ max{M : ∃ an (n,M,d) code over alphabetA}. Three well-known bounds
for Aq(n,d) are the Hamming bound:

Aq(n,d) ≤ qn/

















b(d−1)/2c
∑

i=0

(

n
i

)

(q− 1)i
















the Singleton bound:

Aq(n,d) ≤ qn−d+1

and the Plotkin bound:

Aq(n,d) ≤
⌊ d
d − rn

⌋

Note that the Plotkin bound is only valid whenrn < d, wherer = 1−q−1, andAS
q (n,d) =

qn−d+1 [5]. For the special case of binary (q = 2) codes, we can use the relation

Aq(n,2r − 1) = Aq(n1,2r)

[6] to obtain tighter bounds for even distances using the Hamming bounds for odd
distances. Thus, the number ofk-coordinated equilibria for a givenn,q andd = k + 1
can be bounded by the tightest of the bounds mentioned above.

For non-binary codes, we note that the Hamming bound is identical ford andd+ 1
whend is odd. The Hamming bound is derived by using a sphere packing argument
that states that the number of wordsqn must be greater than the number of codewords
Aq(n,d) times the size of a sphere centered around each codeword. A sphereSA(u, r)
with centeru and radiusr is the set{v ∈ An : d(u, v) ≤ r}. It can be shown thatSA(u, r)
in An contains exactly

∑r
i=0

(

n
i

)

(q−1)i words. Ifd is odd, the tightest packing then occurs
with spheres of radius (d−1)/2 and each word can be uniquely assigned to the sphere of
a codeword closest to it. Ifd is even, it is possible for a word to be equidistant from two
codewords and it is unclear how to assign this word to a sphere. The Hamming bound

addresses this issue by simply using the bound obtained with the smaller distanced−1,
which leads to smaller spheres and hence a larger bound than necessary. In essence, this
ignores the contribution of a word that lies on the “boundary” to the volume of a sphere.
We show one can appropriately partition these boundary assignments to achieve tighter
bounds.

Proposition 2. For even d,

Aq(n,d) ≤ min



















qn −
(

n
d/2

)

(q− 1)d/2

∑b(d−1)/2c
i=0

(

n
i

)

(q− 1)i
,

qn

∑b(d−1)/2c
i=0

(

n
i

)

(q− 1)i +
(

n
d/2

)

(q− 1)d/2(1
n)



















.

Proof. It is clear that any word that has Hamming distanceb(d − 1)/2c or less from a
codeword belongs in the sphere of that codeword, because belonging to more than one
sphere under those conditions would violate the distance requirement of the code. Given
an even distance, each codeword will see

(

n
d/2

)

(q−1)d/2 words that ared/2 away from it.
It cannot claim all those words as other codewords may be seeing the same words. We
do know however that each of the words on the boundary can be seen by at mostn code-
words as a word of lengthn can be on the boundary of at mostn spheres. Furthermore,
each word on a boundary can be seen by at mostAq(n,d) codewords, i.e. the number of
codewords in the space. Thus, each codeword can safely incorporate 1/min {n,Aq(n,d)}
of each boundary word into its sphere. Aggregating over all the words on the boundary,
we can increase the volume of the sphere by

(

n
d/2

)

(q− 1)d/2/min {n,Aq(n,d)}. Using the
sphere packing argument, ifAq(n,d) ≤ n, we have

qn ≥ Aq(n,d)

[b(d−1)/2c
∑

i=0

(

n
i

)

(q− 1)i +

(

n
d/2

)

(q− 1)d/2

Aq(n,d)

]

⇒ Aq(n,d) ≤
qn −

(

n
d/2

)

(q− 1)d/2

∑b(d−1)/2c
i=0

(

n
i

)

(q− 1)i
≡ G1,

and if Aq(n,d) ≥ n, we have

qn ≥ Aq(n,d)

[b(d−1)/2c
∑

i=0

(

n
i

)

(q− 1)i +

(

n
d/2

)

(q− 1)d/2

n

]

⇒ Aq(n,d) ≤
qn

∑b(d−1)/2c
i=0

(

n
i

)

(q− 1)i +
(

n
d/2

)

(q− 1)d/2(1
n)
≡ G2.

Now, we haveAq(n,d) ≤ n⇒ Aq(n,d) ≤ G1 andAq(n,d) ≥ n⇒ Aq(n,d) ≤ G2.We can
show thatG1 � n⇔ G2 � n, ∀� ∈ {<, >,=}. Furthermore,G1 � n,G2 � n⇔ G1 �G2.
Thus, whenG1 < n,G2 < n, we have both thatG2 is invalid andG1 is the tighter bound
and whenG1 > n,G2 > n, G1 is invalid andG2 is the tighter bound. We can then express
the bound as

Aq(n,d) ≤ min{G1,G2}.�

We refer to this as themodified Hamming bound. The new bound appears to domi-
nate other bounds for sufficiently largen, for evend andq > 2. In Figure 1, we illustrate
the usefulness of our new bound.

Fig. 1.Modified Hamming Bound

3 DCOP Algorithms: Analysis and Design

The DCOP gameperspective also aids in the analysis of existing local-utility based
algorithms and design of key new algorithms. Among existing DCOP algorithms, the
first is the MGM (Maximum Gain Message) algorithm which is a modification of DBA
(Distributed Breakout Algorithm) [12] focused solely on gain message passing. DBA
cannot be directly applied because there is no global knowledge of solution quality
which is necessary to detect local minima. The second is DSA (Distributed Stochastic
Algorithm) [1], which is a homogeneous stationary randomized algorithm.

These algorithms work as follows: For synchronous running, let us define aroundas
the duration between a change in assignment for a particular algorithm. A single round
could involve multiple broadcasts ofmessages. Every time a messaging phase occurs
in a round, we will count that as onecycleand cycles will be our performance metric
for speed, as is common in DCOP literature. Letx(n) ∈ X denote the assignments at the
beginning of then-th round. We assume that every algorithm will broadcast its current
value to all its neighbors at the beginning of the round taking up one cycle. Once agents
are aware of their current contexts, they will go through a process as determined by the
specific algorithm to decide which of them will be able to modify their value. For MGM,
each agent broadcasts a gain message to all its neighbors that represents the maximum
change in its local utility if it is allowed to act under the current context. An agent is
then allowed to act if its gain message is larger than all the gain messages it receives
from all its neighbors (ties can be broken through variable ordering or other methods).
For DSA, each agent generates a random number from a uniform distribution on [0,1]
and acts if that number is less than some thresholdp (the agent will only change value
if there is a local utility gain). We note that MGM has a cost of two cycles per round
while DSA has a cost of only one cycle per round.

Given the game-theoretic perspective introduced earlier, we recognize that MGM
and DSA are in effect k-coordinated algorithms, wherek = 1. In particular, these al-
gorithms allow only unilateral actions by single agents in a given context. One method
to improve the solution quality is for agents to coordinate actions with their neigh-
bors, thus giving rise tok-coordinated algorithm classes. We define two such classes
as MGM-k and SCA-k (Stochastic Coordination Algorithm), which facilitate mono-
tonic and randomized evolution, respectively. DSA is in the SCA family of algorithms,

namely SCA-1. In thesek-coordinated algorithms, teams of up tok agents can coor-
dinate value updates in order to maximizeuT(x) whereT is the set of agents in the
team.

Instantiating this concept in SCA-2, we allow agents to make offers to neighboring
agents to perform a joint change of value, such that the sum of the utilities of the two
agents will increase. They become committed partners if the offer receiver determines
that team utility yields a greater gain than its unilateral move. To determine the roles of
offerer or receiver, each agent generates a random number from a uniform distribution
on [0,1] and becomes an offerer if that number is less than some thresholdq, and a
receiver otherwise.

Let M(n) ⊆ N denote the set of agents allowed to modify the values in then-th
round. In SCA-2,M(n) includes all members of committed teams and uncommitted
agents who update with probabilityp. In MGM-2, additional rounds of message ex-
changes ensures that ifi ∈ M(n), then i belongs to a team (possibly a team of one)
whose gain is larger than the gains of the teams of all its neighbors.

MGM, DSA, and MGM-2 are presented in full in the appendix.
Through our game-theoretic framework, we are able to prove the following mono-

tonicity property of MGM-k, where teams of up tok agents can be formed.

Proposition 3. When applying MGM, the global utilityU(x(n)) is strictly increasing
with respect to the round (n) until x(n) ∈ XNE.

Proof. We assumeM(n)
, ∅, otherwise we would be at a Nash equilibrium. When

utilizing MGM, if i ∈ M(n) andEi j = 1, then j < M(n). If the i-th variable is allowed
to modify its value in a particular round, then its gain is higher than all its neighbors
gains. Consequently, all its neighbors would have received a gain message higher than
their own and thus, would not modify their values in that round. Because there exists at
least one neighbor for every variable, the set of agents who cannot modify their values
is not empty:M(n)C

, ∅. We havex(n+1)
i , x(n)

i ∀i ∈ M(n) andx(n+1)
i = x(n)

i ∀i < M(n).
Also, ui(x

(n+1)
i ; x(n)

−i) > ui(x
(n)
i ; x(n)

−i) ∀i ∈ M(n), otherwise thei-th player’s gain message
would have been zero. Looking at the global utility, we have

U
(

x(n+1)
)

=
∑

i, j:Ei j=1

Ui j

(

x(n+1)
i , x(n+1)

j

)

=
∑

i, j:i∈M(n),

j∈M(n),Ei j=1

Ui j

(

x(n+1)
i , x(n+1)

j

)

+
∑

i, j:i∈M(n),

j<M(n),Ei j=1

Ui j

(

x(n+1)
i , x(n+1)

j

)

+
∑

i, j:i<M(n),

j∈M(n),Ei j=1

Ui j

(

x(n+1)
i , x(n+1)

j

)

+
∑

i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(

x(n+1)
i , x(n+1)

j

)

=
∑

i, j:i∈M(n),

j<M(n),Ei j=1

Ui j

(

x(n+1)
i , x(n)

j

)

+
∑

i, j:i<M(n),

j∈M(n),Ei j=1

Ui j

(

x(n)
i , x

(n+1)
j

)

+
∑

i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(

x(n)
i , x

(n)
j

)

=
∑

i∈M(n)

ui

(

x(n+1)
i ; x(n)

−i

)

+
∑

j∈M(n)

u j

(

x(n+1)
j ; x(n)

− j

)

+
∑

i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(

x(n)
i , x

(n)
j

)

>
∑

i∈M(n)

ui

(

x(n)
i ; x(n)

−i

)

+
∑

j∈M(n)

u j

(

x(n)
j ; x(n)

− j

)

+
∑

i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(

x(n)
i , x

(n)
j

)

=
∑

i, j:i∈M(n),

j<M(n),Ei j=1

Ui j

(

x(n)
i , x

(n)
j

)

+
∑

i, j:i<M(n),

j∈M(n),Ei j=1

Ui j

(

x(n)
i , x

(n)
j

)

+
∑

i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(

x(n)
i , x

(n)
j

)

= U
(

x(n)
)

.

The second equality is due to a partition of the summation indexes. The third equality
utilizes the properties that there are no neighbors inM(n) and that the values for variables
corresponding to indexes not inM(n) in the (n+ 1)-th round are identical to the values
in then-th round. The strict inequality occurs because agents inM(n) must be making
local utility gains. The remaining equalities are true by definition. Thus, MGM yields
monotonically increasing global utility until equilibrium.�

Furthermore, it is clear that an equilibrium will be reached because this algorithm
can be mapped to a discrete Hopfield model in which agents act as neurons which
”fire” by choosing a value. It has been shown that such networks always reach local
equilibrium [3].

But why is monotonicity important? In anytime domains where communication may
be halted arbitrarily and existing strategies must be executed, randomized algorithms
risk being terminated at highly undesirable assignments. Given a starting condition with
a minimum acceptable global utility, monotonic algorithms guarantee lower bounds on
performance in anytime environments.

Fig. 2.MGM and DSA for a High-Stakes Scenario

Consider the example in Figure 2 which displays a sample trajectory for both MGM
and DSA with identical starting conditions for a high-stakes scenario with 40 variables
with three values each. Here, if two neighboring agents take the same value, a penalty of
-1000 is incurred. If they take different values, they obtain a reward ranging from 10 to
100. To allow for a “safe” starting point for such a dangerous scenario, if two neighbor-
ing agents choose zero as their values, neither a reward nor a penalty is obtained. The
figure is cropped to highlight the oscillation that occurs with DSA. In domains such as
independent path planning of trajectories for UAVs or rovers, in environments where
communication channels are unstable, bad assignments could lead to crashes whose
costs preclude the use of methods without guarantees of monotonicity.

In addition, monotonicity provides insight as to why coordination might lead to
better solution quality. Ifk2 > k1, we know that for all assignmentsx wherex ∈ Xk1E, x <
Xk2E, there exists an assignment ˜x ∈ Xk2E reachable fromx such thatU(x̃) > U(x). This
can be seen simply by running MGM-k2 with initial assignmentx.

Example 2.The Traffic Light Game. Consider two variables, both of which can take
on the valuesred or green, with a constraint that takes on utilities as follows:

U(red, red) = 0,U(red,green) = U(green, red) = 1,U(green,green) = −1000.

Turning this DCOP into a game would require the agent for each variable to take the
utility of the single constraint as its local utility. If (red, red) is the initial condition,
each agent would choose to alter its value togreenif given the opportunity to move. If
both agents are allowed to alter their value in the same round, we would end up in the
adverse state (green,green). When using DSA, there is always a positive probability
for any time horizon that (green,green) will be the resulting assignment.

4 Experiments

We considered two domains. The first was a standard graph-coloring scenario, in which
a cost of one is incurred if two neighboring agents choose the same color, and no cost is
incurred otherwise. Real-world problems involving sensor networks, in which it may be
undesirable for neighboring sensors to be observing the same location, are commonly
mapped to this type of graph-coloring scenario. The second was a fully randomized
DCOP, in which every combination of values on a constraint between two neighboring
agents was assigned a random reward chosen uniformly from the set{1, . . . ,10}.

In both domains, we used ten randomly generated graphs with 40 variables with
three values each, and 120 constraints. We ran: MGM, DSA withp ∈ {.1, .3, .5, .7, .9},
MGM-2 with q ∈ {.1, .3, .5, .7, .9} and SCA-2 with all combinations of the above values
of p andq (whereq is the probability of being an offerer andp is the probability of
an uncommited agent acting). Each graph shows an evolution of global solution quality
averaged over 100 runs (with random start-states) each for ten examples with selected
values ofp andq.

We used communication cycles as the metric for our experiments, as is common
in the DCOP literature, since it is assumed that communication is the speed bottleneck.
However, we note that, as we move from 1-coordinated to 2-coordinated algorithms, the

Fig. 3.Experimental results

computational cost each agenti must incur can increase by a factor of as much as
∑

j |X j |

as the agent can now consider the combination of its and all its neighbors’ moves.
However, in the 2-coordinated algorithms we present, each agent randomly picks a
single neighborj to coordinate with, and so its computation is increased by a factor of
only |X j |. Although each run was 256 cycles, the graphs display a cropped view to show
the important phenomena.

Figure 3A shows a comparison between MGM and DSA for several values ofp.
For graph coloring, MGM is dominated, first by DSA withp = 0.5, and then by DSA
with p = 0.9. For the randomized DCOP, MGM is completely dominated by DSA with
p = 0.9. MGM does better in the high-stakes scenario as all DSA algorithms have a
negative solution quality (not shown in the graph) for the first few cycles. This hap-
pens because at the beginning of a run, almost every agent will want to move. As the
value ofp increases, more agents act simultaneously, and thus, many pairs of neighbors
are choosing the same value, causing large penalties. Thus, these results show that the
nature of the constraint utility function makes a fundamental difference in which algo-
rithm dominates. Results from the high-stakes scenario contrast with [13] and show that
DSA is not necessarily the algorithm of choice compared with DBA across all domains.

Figure 3B shows a comparison between MGM and MGM-2, for several values ofq.
In all domains, MGM-2 eventually reaches a higher solution quality after about thirty
cycles, despite the algorithms’ initial slowness. The stair-like shape of the MGM-2
curves is due to the fact that agents are changing values only once out of every five
cycles, due to the cycles used in communication. Of the three values ofq shown in
the graphs, MGM-2 rises fastest whenq = 0.5, but eventually reaches its highest aver-
age solution quality whenq = 0.9, for each of the three domains. We note that, in the
high-stakes domain, the solution quality is positive at every cycle, due to the monotonic
property of both MGM and MGM-2. Thus, these experiments clearly verify the mono-
tonicity of MGM and MGM-2, and also show that MGM-2 reaches a higher solution
quality as expected.

Figure 3C shows a comparison between DSA and SCA-2, forp = 0.9 and several
values ofq. DSA starts out faster, but SCA-2 eventually overtakes it. The result of the
effect of q on SCA-2 appears inconclusive. Although SCA-2 withq = 0.9 does not
achieve a solution quality above zero for the first 65 cycles, it eventually achieves a
solution quality comparable to SCA with lower values ofq.

Figure 3D shows a probability mass function (PMF) of solution quality for three
sets of assignments: the set of all assignments in the DCOP (X), the set of 1-coordinated
(Nash) equilibria (X1E), and the set of 2-coordinated equilibria (X2E). Here we consid-
ered smaller scenarios with twelve variables, 36 constraints, and three values per vari-
able in order to investigate tractably explorable domains. In both domains, the solution
quality of the set of 2-coordinated equilibria (the set of equilibria to which MGM-2 and
SCA-2 must converge) is, on average, higher than the set of 1-coordinated equilibria,
potentially explaining the higher solution quality of the experimental runs. Even though
a higher level of coordination yields better solution quality, the relationship between
magnitude of improvement and the difference in solution qualities of the equilibrium
sets is not obvious. Trajectories may not be uniformly distributed over the equilibrium
sets. Investigating these effects is a ripe area for further investigation.

5 Related Work and Summary

Research in general graphical games has focused on centralized algorithms for finding
mixed-strategy Nash equilibria [4, 10]. DCOP games not only guarantee pure-strategy
Nash equilibria but also introducek-coordination and hencek-coordinated equilibria.
In [2], coordination was achieved by forming coalitions represented by amanagerwho
made the assignment decisions for all variables within the coalition. These methods
require high-volume communication to transfer utility function information and the ab-
dication of authority which is often infeasible or undesired in many distributed decision-
making environments. Furthermore, the cost of forming a coalition discourages rapid
commitment and detachment from teams. MGM-k and SCA-k allow for coordination
while maintaining the underlying distributed decision-making process and allowing dy-
namic teaming in each round.

A fundamental novelty of our approach is our analysis of distributedk-coordination
algorithms as well ask-coordinated equilibria. The key contributions of this paper in-
clude: (i) an introduction ofDCOP gamesfor analysis of DCOP algorithms, (ii) devel-
opment ofk-coordinated DCOP algorithms, (iii) identification of a mapping between
finite games and coding theory leading toa priori bounds on cardinality of equilibria
sets ofk-coordinated algorithms, (iv) improvement on the tightness of current bounds,
(v) proof of monotonicity of the MGM-k class of algorithms and (vi) an investigation
of the equilibria sets of algorithms of differing degrees of coordination.

We provided key experimental results, verifying our conclusions about monotonic-
ity and equilibria bounds. This paper is a significant extension of the authors’ previous
work in DCOP games [7], in whichk-coordinated algorithms and equilibria were intro-
duced. Our results comparing 1-coordinated and 2-coordinated algorithms illustrate the
need to develop efficientk-coordination algorithms for higherk in the future.

6 Acknowledgment

This material is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA), through the Department of the Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010.

References

1. S. Fitzpatrick and L. Meertens. Distributed coordination through anarchic optimization. In
V. Lesser, C. L. Ortiz Jr., and M. Tambe, editors,Distributed Sensor Networks: A Multiagent
Perspective, pages 257–295. Kluwer Academic Publishers, 2003.

2. K. Hirayama and J. Toyoda. Forming coalitions for breaking deadlocks. InProc. ICMAS,
pages 155–162, 1995.

3. J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79:2554–8, 1982.

4. M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. InProc. UAI,
pages 253–260, 2001.

5. S. Ling and C. Xing.Coding theory: A first course. Cambridge University Press, 2004.

6. F. J. MacWilliams and N. J. A. Sloane.The theory of error-correcting codes. North-Holland,
1977.

7. R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed algorithms for DCOP: A
graphical-game-based approach. InPDCS 2004, San Francisco, CA, September 2004.

8. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking DCOP
to the real world: efficient complete solutions for distributed multi-event scheduling. In
AAMAS 2004, New York, NY, July 2004.

9. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for
distributed constraint optimization. InProceedings of the Second International Conference
on Autonomous Agents and Multi-Agent Systems, Sydney, Australia 2003.

10. D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical games. InProc.
AAAI, pages 345–351, 2002.

11. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfac-
tion problem: formalization and algorithms.IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

12. M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed constraint
satisfaction and optimization problems. InProc. ICMAS, pages 401–408, 1996.

13. W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application of distributed
constraint satisfaction and optimization algorithms in sensor networks. InAAMAS 2003,
pages 185–192, Melbourne, Australia, July 2003.

Appendix A: Algorithms

Algorithm 1 MGM (allNeighbors, currentValue)
1: SendValueMessage(allNeighbors, currentValue)
2: currentContext= GetValueMessages(allNeighbors)
3: [gain,newValue]= BestUnilateralGain(currentContext)
4: SendGainMessage(allNeighbors,gain)
5: neighborGains= ReceiveGainMessages(allNeighbors)
6: if gain> max(neighborGains)then
7: currentValue= newValue
8: end if

Algorithm 2 DSA (allNeighbors, currentValue)
1: SendValueMessage(allNeighbors, currentValue)
2: currentContext= GetValueMessages(allNeighbors)
3: [gain,newValue]= BestUnilateralGain(currentContext)
4: if Random(0,1)< thresholdthen
5: currentValue= newValue
6: end if

Algorithm 3 MGM-2 (allNeighbors, currentValue)
1: SendValueMessage(allNeighbors, currentValue)
2: currentContext= GetValueMessages(allNeighbors); committed= no
3: if Random(0,1)< offererThresholdthen
4: committed= yes; partner= RandomNeighbor(allNeighbors)
5: SendOfferMessage(partner,allCoordinatedMoves(partner))
6: end if
7: [gain,newValue]= BestUnilateralGain(currentContext)
8: offers= ReceiveOffers(allNeighbors); offerReplySet= ∪ {offers.neighbor}
9: if committed= no then

10: bestOffer= FindBestOffer(offers)
11: if bestOffer.gain> gainthen
12: offerReplySet= offerReplySet\{ bestOffer.neighbor}
13: committed= yes; partner= bestOffer.neighbor
14: newValue= bestOffer.myNewValue; gain= bestOffer.gain
15: SendOfferReplyMessage(partner, commit, bestOffer.partnerNewValue, gain)
16: end if
17: for all neighbor∈ offerReplySetdo
18: SendOfferReplyMessage(neighbor, noCommit)
19: end for
20: end if
21: if committed= yesthen
22: reply= ReceiveOfferReplyMessage(partner)
23: if reply= commit then
24: newValue= reply.myNewValue; gain= reply.gain
25: else
26: committed= no
27: end if
28: end if
29: SendGainMessage(allNeighbors,gain)
30: neighborGains= ReceiveGainMessages(allNeighbors); changeValue=no
31: if committed=yesthen
32: if gain> max(neighborGains)then
33: SendConfirmMessage(partner, go)
34: else
35: SendConfirmMessege(partner, noGo)
36: end if
37: confirmed= ReceiveConfirmMessage(partner)
38: if confirmed=yesthen
39: changeValue=yes
40: end if
41: else
42: if gain> max(neighborGains)then
43: changeValue=yes
44: end if
45: end if
46: if changeValue=yesthen
47: currentValue= newValue
48: end if

A Distributed, Complete Method for Multi-Agent
Constraint Optimization

Adrian Petcu1 and Boi Faltings1

Ecole Politechnique Federale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

{adrian.petcu, boi.faltings}@epfl.ch
http://liawww.epfl.ch/

Abstract. We present in this paper a new complete method for distributed con-
straint optimization. This is a utility-propagation method, inspired by the sum-
product algorithm [6]. The original algorithm requires fixed message sizes, linear
memory, and is time-linear in the size of the problem. However, it is correct only
for tree-shaped constraint networks. In this paper, we show how to extend the
algorithm to arbitrary topologies using cycle cutsets, while preserving the linear
message size and memory requirements. We present some preliminaryexperi-
mental results on randomly generated problems. The algorithm is formulated for
optimization problems, but can be easily applied to satisfaction problems as well.

1 Introduction

Distributed Constraint Satisfaction (DisCSP) was first studied by Yokoo [10] and has re-
cently attracted increasing interest. In distributed constraint satisfaction, variables and
constraints are distributed so that each variable and constraint is owned by an agent.
Systematic search algorithms for solving DisCSP are generally derived from depth-first
search algorithms based on some form of backtracking [9, 11,12, 7, 3]. Recently, the
paradigm of asynchronous distributed search has been extended to constraint optimiza-
tion by integrating a bound propagation mechanism (ADOPT - [8]).

Backtracking algorithms are very popular in centralized systems because they re-
quire very little memory. In a distributed implementation,however, they may not be
the best basis since in backtrack search, control shifts rapidly between different vari-
ables. Thus, every state change in a distributed backtrack algorithm requires at least
one message. Furthermore, in the worst case even in a parallel algorithm there will be
exponentially many state changes [5], thus resulting in exponentially many messages.

This leads us to believe that other search paradigms, in particular those based on dy-
namic programming, may be more appropriate for DisCSP. For example, an algorithm
that incrementally computes the set of all partial solutions for all previous variables
according to a certain order would only use a linear number ofmessages. However,
the messages could grow exponentially in size, and the algorithm would not have any
parallelism.

Recently, the sum-product algorithm [6] has become popularfor certain constraint
satisfaction problems, for example decoding. It is an acceptable compromise as it com-
bines a dynamic-programming style exploration of a search space with a fixed message

2 Adrian Petcu, Boi Faltings

size, and can easily be implemented in a distributed fashion. However, it is correct only
for tree-shaped constraint networks. In this paper, we showhow to extend the algorithm
to arbitrary topologies using cycle cutsets, and report on initial experiments with ran-
domly generated problems. The algorithm is formulated for optimization problems, but
can be easily applied to the satisfaction problem by having relations with utility either
0 or 1.

2 Definitions & notation

Definition 1. A discretemultiagent constraint optimization problem(MCOP) is a tuple
< A,X ,D,R > such that:

– A = {A1, ..., An} is the set of agents interested in the problem/solution;
– X = {X1, ..., Xm} is the set of variables/solving agents;
– D = {d1, ..., dm} is a set of domains of the variables, each given as a finite set of

possible values.
– R = {r1, ..., rp} is a set of relations, where a relationri is a functiondi1 × .. ×

dik → <+ which is expressed by an agentAi, and denotes how much utility that
agent assigns to each possible combination of values of the involved variables.

We chose to model the problem in this way (with two separate sets of agents) having
in mind a social-choice-like problem, where a set of agents (Ai) are the ”citizens” in-
terested in choosing an outcome denoted by the assignment ofvalues to variables (Xj)
that are controlled by some public authorities.

In this paper we deal with unary and binary relations, being well-known that higher
arity relations can also be expressed in these terms with little modifications. In a MCOP,
any value combination is allowed; the goal is to find an assignmentX ∗ for the variables
Xi that maximizes the sum of utilities of all the agentsA.

A tree-structured problem is a tree network in which we can have several links
(constraints) belonging to different agents between two adjacent nodes. Furthermore,
unary constraints on each variable are also allowed.

For a nodeXk, we define:

– Ri(Xk): constraints of arityi onXk (where i is 1 or 2)
– Ngh(Xk): the neighbors ofXk

– Rk: the set of constraints belonging to agentXk

– Rk(Xj): constraints betweenXk and its neighborXj

3 Distributed constraint optimization for tree-structure d networks

For tree-structured networks (see an example in Figure 1), it is possible to devise
polynomial-time complete optimization methods (e.g. the sum-product algorithm [6])

In this problem setting there is a setX of agents (each agentXi is responsible for a
variable), and a setA of agents that are interested in the assignments that are made for
the variablesX . All the agentsAi declare their relationsRi to the agentsXi concerned

A Distributed, Complete Method for Multi-Agent Constraint Optimization 3

Fig. 1. Problem example where the underlying constraint graph is a tree.

in those relations (each relation is declared only to the 2 agentsXj andXk involved -
assuming binary constraints, or to a single agent in the caseof unary constraints). We
assume that the resulting constraint graph is a tree.

The “normal” agents -Ai participate in this process only by specifying their re-
lations; in the optimization itself, they have a passive role; only the “variable-agents”
will play an active role. Therefore, in the following, whileexplaining the optimization
process, by “agent”, or “node” we will mean one of the agentsXi.

In this protocol, agents send messages to each other; the leaf nodes initiate the
process, and then the other nodes relay the messages according to the following rule:

Definition 2. Thek-1 rule: if nodeXi has k neighbors,Xi will send out a message to
its kth neighbor only after having received the other k-1 messages,and will send out
the rest of k-1 messages after having received the message from thekth neighbor.

Each agentXi executes Algorithm 1:

– In the beginning, examine its own relations. All the other agents that are connected
through relations with the current node will be its neighbors. During the algorithm
an agent communicates only with its neighbors.

– Each agent determines whether it is a leaf in the constraint tree or not (if it has a
single neighbor, even if they share multiple constraints) If Xi is a leaf node, then
send theUTIL message to its only neighbor.

– Wait for incoming messages and respond to them.
The messages passed in this system are in fact utility vectors; a neighborXj of
nodeXi would sendXi a vector of all the optimal utilities that can be achieved for
the subtree rooted atXi that containsXj , for each ofXi’s possible values (thus,
the size of each message is|dom(Xi)|
The agents send messages to their neighbors following thek-1 rule. Upon receiving
k− 1 messages from the neighbors, since all of the respective subtrees are disjoint,
by summing them up,Xi computes how much utility each of its values gives for
the whole set ofk − 1 subtrees. This, together with the relation(s) betweenXi and
the last neighbor, enableXi to compute exactly how much utility can be achieved
by the entire subtree rooted at the last neighbor and containing Xi, for each of this
neighbor’s values. Thus,Xi can send to its last (kth) neighbor itsUTIL message.
Eventually, the last neighbor would also send its message back to Xi, and at this
point Xi would be able to pick the optimal value for itself (as the value that max-

4 Adrian Petcu, Boi Faltings

imizes the sum of the utilities of all subtrees rooted at itself, and of any unary
constraints on itself, if any).
At this point, the algorithm is finished forXi.

Proposition 1. Algorithm 1 is sound and complete.

PROOF.
Correctness: since there are no cycles in the problem, it means that all messages

that a nodeXi receives from its neighbors come from disjoint parts of the constraint
problem. They represent exact evaluations of the utility that can be obtained by the
subtrees rooted at the sender nodes, for each possible valuethat Xi can take (can be
inferred by induction from the leaves inside the tree) By summing all messages up,Xi

has accurate upper bounds on the amount of utility obtained from the whole problem,
for each of its values; it is therefore easy to pick the one that gives the maximum utility.

Liveness: again, since there are no cycles in the problem, and all the leaves initiate
the message propagation, it is guaranteed that each node will eventually receivek-1
messages (with k=the number of neighbors) and therefore it will be able to send itskth

message. Therefore, it will also receive the final message from the last neighbor, leading
to the conclusion of the algorithm for this node.2

Proposition 2. Algorithm 1 is linear in the number of variables - there are exactly
2 × (n − 1) messages propagated through the system (where n is the number of agents
in the system)

PROOF. In a tree there are exactlyn − 1 edges between then nodes of the tree (if less
thann−1, then we have a set of disconnected problems which we can treat separately, if
more, the problem is not a tree anymore). Along each edge, there are exactly 2 messages
going through (one from each of the nodes connected through the edge)2

Observations In this algorithm, the agents do not assume any knowledge of the prob-
lem structure, and do not have parent-child relationships.All they need to know is
whether they are leaf nodes or not (a leaf node has only 1 neighbor), and a way to
distinguish between neighbors (ids).

The execution of Algorithm 1 proceeds in an asynchronous fashion from the leaves,
traversing the tree and going to other leaves. This means that certain subtrees of the
problem proceed faster than others, and it’s not always the case that a ”child” node is
the first to send aUTIL message to its ”parent” (like it would happen in a centralized
setting); it can also happen the other way around (consider the example from Figure 1:
it could happen that nodesX2,X3 andX1 finish their processing faster, andX1 delivers
the UTIL message toX0; then, contrary to the centralized setting,X0 would send its
message toX4 beforeX4 manages to send its message toX0). In a sense, the ”root” of
this tree is dynamically determined, as the single node thathappens to receive messages
from all its neighbors before being able to send out any message.

A Distributed, Complete Method for Multi-Agent Constraint Optimization 5

Algorithm 1: DTREE - Distributed optimization procedure for tree-structured net-
works.

1: DTREE: distributed tree-optimization(A,X ,D,R)
2: We have a set of agentsXi ∈ X that each controls its variable, and a set of agentsAi ∈ A

that are interested in the assignments of the variablesXi

3: All agentsAi declare their relationsRi to the subset of agents concerned about those
constraints. We assume that the resulting constraint graph is a tree.
Each agentXi executes:

4:
5: Initialization(Xi, Ri)
6: Ri ← the set of relations bindingXi

7: Ngh(Xi)← the neighbors ofXi (based onRi)
8: for all Xk ∈ Ngh(Xi) do
9: sendDom(Xi) to Xk

10: receive and recordDom(Xk)
11: if |Ngh(Xi)| == 1 (i.e.Xi is a leaf node)then
12: letXk be the single element inNgh(Xi)
13: letutilsXi

(Xk)← Computeutils(Xk)
14: Sendmessage(Xk, utilsXi

(Xk))
15: msg cnt← 0
16: activate Messagehandler()
17: return
18:
19: Messagehandler(Xk,utilsXk

(Xi))
20: storeXk, utilsXk

(Xi)
21: msgcnt ++
22: if msg cnt = |Ngh(Xi)| − 1 then
23: letXj be the only neighbor that did not sendutilsXj

(Xi) yet
24: letutilsXi

(Xj)← Computeutils(Xj)
25: Sendmessage(Xj , utilsXi

(Xj))
26: else
27: if msg cnt = |Ngh(Xi)| then
28: for all Xl ∈ {Ngh(Xi) \Xj} do
29: letutilsXi

(Xl)← Computeutils(Xl)
30: Sendmessage(Xl, utilsXi

(Xl))
31:

v
∗
i ← argmaxvi

0

@

X

Xl∈Ngh(Xi)

utilsXl
(Xi = vi) +

X

ri∈R1(Xi)

ri(vi)

1

A

32: Xi ← v∗
i

33: FINISH ALGORITHM
34: return
35:
36: Compute utils(Xj)
37: for all vj ∈ Dom(Xj) do
38: for all vi ∈ Dom(Xi) do
39:

UtilXj
(vi, vj)←

X

ri∈R1(Xi)

ri(vi)+
X

ri∈Ri(Xj)

ri(vi, vj)+
X

Xl∈{Ngh(Xi)\Xj}

utilsXl
(Xi = vi)

40: v∗
i (vj)← argmaxvi

(UtilXj
(vi, vj))

41: return a vectorutilsXi
(Xj) of all

˘

UtilXj
(v∗

i (vj), vj)|vj ∈ Dom(Xj)
¯

42:
43: Sendmessage(Xj , utilsXi

(Xj))
44: send the utils vector to agentXj

45: return

6 Adrian Petcu, Boi Faltings

4 Distributed constraint optimization for general networks

The scenario is similar to the one for tree networks, except that we can now drop the
assumption that the constraint network is a tree. We will show in the following how the
previous algorithm must be modified to accommodate this change.

First, let us consider what would happen if we would directlyapply theDTREE
algorithm to a graph. The fact that the constraint network has cycles breaks theliveness
argument from Proposition 1 and leads to a deadlock in the execution of the algorithm:
messages would still circulate through all theTREEparts of the problem, hanging from
nodes involved in cycles; however, in a cycle there are no leaf nodes to initiate the mes-
sage propagation, so the nodes involved in it wait for incoming messages indefinitely.

Based on this observation, we can devise a very simple cycle detection mechanism:
whenever some nodes reach a (reasonably chosen) timeout while waiting for (some of)
their neighbors to send messages, that means that those nodes are involved in a cycle
with the neighbors that did not yet send their messages.

4.1 Cycle cutset

It has been pointed out in the literature [2, 4, 1] that breaking a problem with cycles into
cycle-free parts can greatly improve the search performance for centralized, crisp CSPs.
In the following, we will try to use this idea to find optimal solutions foroptimization
problems, in adistributedfashion.

The basic idea of such a technique would be to identify the nodes involved in cycles,
select a subset of these nodes that will act ascycle cuts, apply an algorithm similar to
DTREE to the now cycle-free parts of the problem, and in the end, puttogether the
partial results in a coherent fashion. The rest of this section explains how this can be
done.

4.2 Definitions

Node labeling In our model, the nodes of the constraint graph are labeled inone of the
following ways:

1. TREE(nodes that have at most one path from themselves to at most one CycleCut
node) - initially only leaf nodes are labeledTREE.

2. Cycle (nodes that are ”between” several CC nodes - there is more than one path
from themselves to other CC nodes) - initially all but the leaf nodes areCycle. As
a Cyclenode receivesk − 1 (wherek is the number of its neighbors) context-free
messages, it turns into aTREEnode, and sends to thekth neighbor a context-free
message.

3. CycleCut - CC(nodes that are cycle cuts) - initially no node isCC; after timeout
and negotiation, some becomeCC

Definition 3.

– disconnected subtree: a maximal set of interconnectedCyclenodes, that connect to
the rest of the problem only throughCC or TREEnodes (e.g.Xi − X11 − X13 −
Xj − Xk in Figure 2)

A Distributed, Complete Method for Multi-Agent Constraint Optimization 7

– cyclic subgraph: a maximal set ofCC nodes connected pairwise through at least
2 differentCC nodes, or through adisconnected subtree, together with theCycle
nodes from the disconnected subtrees connecting them (for example,Xi and all the
lower-right box in Figure 2; a counter-example are Subgraph3 and Subgraph2 in 3,
which are disjoint, since they are connected only throughXi)

– contextof a UTIL message: additional information attached to a UTILmessage,
specifying under which “assumptions” the respective UTIL message is valid (for
instance, a context could be (Xi = v2/4, Xk = v4/7), meaning that the respective
UTIL message is valid whenXi takes its second value out of 4 possible values, and
Xk takes its4th value out out 7 possible values). The context can be null (empty),
in which case it means that this message is always valid, without any assumptions.
Such messages come from the tree parts of the problem. Messages that circulate
inside cyclic subgraphs will have non-empty contexts.

– context union: the union of one or more contexts is the union of the sets of variables
from all the contexts, with their respective assignments. If one or more variable
appears in several contexts, thenit has to have the same assignment in all of them.

4.3 Topological considerations

In order for theCC nodes to know how to treat the incoming messages, it is important
for them to have some knowledge of the problem structure. This is important, since in
a utility-message propagation algorithm, it is possible that multiple messages coming
from the same cycle on different paths are actually duplicates, and should be discarded.
On the other hand, messages coming from independent subgraphs should always be
considered.

For a categorization of the possible neighborhoods an agentXi might have, please
refer to figure 2. Please note that a ”*” denotes the possibility of having 0 or more
structures of that kind, a ”+” denotes at least one, and a ”1” denotes exactly one. The
hashed nodes are the nodes that areCC, and the others areTREEor Cyclenodes.

The possible neighborhoods of the nodeXi can be categorized as follows:

1. TREE: this region is a tree rooted atXi. Xi’s neighbor that is the root of the subtree
will eventually send a context-freeUTIL message.

2. Subgraphself: this region is a part of the graph that contains cycles; however,
it suffices to removeXi to break all these cycles. The probes sent byXi into this
region will returnwith the same contexts, which only containXi as a CC node. The
contexts contain the same set of ids, but not in the same order(depending on the
path they took) NodeXi can differentiate between several independent subgraphs
of this type by the set ofCyclenodes contained in the context.

3. Subgraphsafe: this region may contain one or several other CC nodes and several
local cycles; however, apart from the linkXi − Xj there is no other path between
Xi and this region.

4. Subgraphunsafe: this region may contain one or more other CC nodes and several
local cycles; there are multiple paths fromXi and this region (e.g.Xi − X11 and
Xi − X12). What is important to see is that all these paths will eventually connect.
This is the general case, and the previous 2 kinds of cycles are special cases of this
one; therefore, in the following, we will discuss only aboutthis kind of cycle.

8 Adrian Petcu, Boi Faltings

Fig. 2. Categorization of the possible neighborhoods AgentXi can have, when the underlying
constraint problem is a graph.

Topology probing The CC nodes initiate a topology probing process that has as aresult
the fact that they can categorize their neighboring areas. The probing begins with theCC
nodes sending out probes to all of their neighbors. Initially the probes have acontext
composed only of the id of the emittingCC node. The receiving nodes append their
own id to the context of the probes, and then forward them to all their other neighbors.
The forwarding stops when reachingTREEnodes, or when visiting the same node a
second time. For each incoming probe, theCC nodes update the largest context that the
sending neighbor has sent so far. Upon completion of this procedure (typically after a
timeout has been reached), theCC nodes sort their neighbors into different sets (cyclic
subgraphs) according to their respective largest context;the ones belonging to the same
subgraph will necessarily have the same context. They also know their neighborhoods
up to the borders of the cyclic subgraphs they are involved in(e.g. in Figure 3, nodes
Xi or Xk will know nothing of the Subgraph 1, not even that it exists, since the only
contact point between them and any node in Subgraph 1 is the nodeXj which will not
forward the same probes both ways).

4.4 CyPro - distributed utility probing within a cyclic subg raph

In the most general configuration of a cyclic subgraph, we have a set ofCC nodes,
interconnected through an arbitrary number of disconnected trees (for example, in the
lower-right cycle from Figure 2, involvingXi, Xj , andXk asCC nodes, we have 3
disconnected trees:Xi−X12−Xj−Xk, Xi−X11−X13−Xj−Xk, andXj−X14−Xk).
A subgraph like this can be arbitrarily complex. Let us assume for now that there are no
links with the outside world (we will relax this condition insection 4.5, and present the
complete algorithm)

A Distributed, Complete Method for Multi-Agent Constraint Optimization 9

Fig. 3.Problem seen as a meta-tree, composed of cyclic subgraphs connectedthroughCC nodes

This algorithm (let us call itCyPro) will distributedly generate all the value combi-
nations for all theCCnodes involved in this cyclic subgraph, and for each combination,
compute the total optimal utility that this assignment yields, provided that the inter-
mediary disconnected trees that lie between theCC nodes optimize their values w.r. to
this particular assignment of theCC nodes. The optimization of the trees is done with
a version ofDTREEextended to support message contexts, therefore the numberof
messages is linear in the number of arcs of the trees.

During the topology probing phase, eachCC node received from all its neighbors
TOPOprobes that contained in their context each node in the cyclic subgraph, with the
additionaldomain sizeinformation for theCC nodes involved in this cyclic subgraph.
Therefore, each node can easily compute what is the total number of combinations
of values required to explore the whole search space:

∏
Xi∈CC |di|. Now, in order to

distributedly generate all combinations of values, each nodeXi would cycle through all
its values forhigher times, in each cycle sending outlower probes with the respective
value, where

higher = max{1,
∏

{Xj∈CC|j>i}

|dj |}, lower = max{1,
∏

{Xj∈CC|j<i}

|dj |}

This ensures that all combinations are generated, with the node having the highest
id cycling the slowest through its values.CC nodes send out their probes to all their
neighbors in the subgraph, and wait for replies (they do not forward any messages).

In between theCCnodes there are the disconnected trees, composed ofCyclenodes
that act according to thek-1 rule, combining incoming contexts. This ensures that for
each value combination that the surroundingCC nodes inject in the tree, the results
that come out of the tree are optimal with respect to that combination (and contain as
context the complete set ofCycle nodes from the tree, and theCC nodes with their
values). Identical results come out from any of the leaves ofthe tree, so allCC nodes
connected by that tree have a consistent view of the optimal utility the tree can achieve
in that context.

Since the subgraph is arbitrarily complex, it is possible that there is no single node
which is connected to all the trees in the subgraph, therefore it is possible that noCC
node has a global view of the total optimal utility for the current context. In order to
overcome this, a ”leader” node is used (it is irrelevant who that leader is, it may be the

10 Adrian Petcu, Boi Faltings

node with the highest id in the cycle). EachCC node sends the leader a single message
that sums up the utilities of the trees that node is involved in, and in which it has the
highest id (this ensures that no tree is reported twice). Upon receiving messages from
all theCC nodes in the subgraph, the leader can sum them up, update its lower bound
(thus, it is not needed to store all incoming messages: linear memory requirements), and
send back to the otherCC nodes the result (they can also update their lower bounds,
and remember the best local value used in the best context); then a new context is tried,
until the last one. At the last context, eachCC node picks for itself the value that is
stored as the best one (from the context that generated the highest utility), and a final
round of propagations is initiated, with context-free messages, such that also theCycle
nodes within the extended cycle can choose their values.

The algorithm is formally presented in Algorithm 2; informal description:

– If an agent has a single neighbor (even if there are multiple relations to that node),
then it labels itself asTREE, otherwise asCycle. If Xi is TREE, then send theUTIL
message to its only neighbor.
The messages passed in this system are the same utility vectors as inDTREE,
augmented with context information (showing in which context are these vectors
valid). If the message is relayed only throughTREEnodes, then it has an empty
context.

– Wait for incoming messages, and respond to them.
– Upon reaching a timeout,Xi realizes it is involved in a cycle, and initiates a nego-

tiation with its neighbors to assume the role ofCycleCut.
If the negotiation is successful,Xi becomesCC. In the following, theCCnode will
execute two phases: atopology probing phase, and autility probing phase.
Otherwise, negotiation/timeouts repeat until all cycles are broken (detected by the
fact that all nodes receiveUTIL probes/messages).
If in the endXi remains aCyclenode, then follow thek-1 rule.

– CC nodes do thetopology probing(described in section 4.3) and then theutility
probing(generate all the value combinations of theCCnodes involved in the cyclic
subgraph and computing the overall optimal utility for eachcombination)

– termination: TREEandCyclenodes terminate when the node has received context-
free messages from all its neighbors, andCycleCutnodes terminate when all the
value combinations of theirCC peers have been explored

Proposition 3. CyPro is sound and complete.

PROOF. Follows from the correctness of DTREE (Proposition 1), thefact that all pos-
sible value combinations of the cycle cut nodes are tried (a finite number), and that the
results of DTREE applied on the disconnected subtrees are combined correctly (only
once) by the subgraph leader.2

Overall, for each context, there is alinear number of messages generated:2 ×
number of arcs+2× (k−1), wherenumber of arcs is the number of links (which
is less than or equal with the number of relations) in the subgraph, andk is the number
of CC nodes.

Alternatively, it is possible to cope without any leader, ifthe CC nodes are more
”verbose”, and send their results to each other (2 × number of arcs + k × (k − 1)
messages for each context)

A Distributed, Complete Method for Multi-Agent Constraint Optimization 11

Proposition 4. CyPro has the following complexity:
O((domk + 1) × (2 × number of arcs + 2 × (k − 1)))
wheredom=domain size,k=size of the cycle cutset andarcs in cycle= the number

of arcs in this subgraph.

PROOF. Follows from the discussion above.2

Algorithm 2: CyPro: distributed utility probing in a cyclic subgraph.

1: CyPro(Subgraphk(Xi))
2: for all possible contexts inSubgraphk(Xi) do
3: send outUTIL probes with my corresponding value in that context, to all my neighbors
4: wait for incomingUTIL probes from all my neighbors inSubgraphk(Xi)
5: duplicates from the same subtree are discarded
6: if leaderthen
7: centralize the partial results from all theCC peers inSubgraphk(Xi), and send the

total back; update higher bound for my particular value.
8: else
9: send the leader the results from the subtrees that I am directly connected to, and in

which I am theCC node with the highest ID; wait for the total coming from the leader;
update higher bound for this particular value of the leader, and remember my own
value if bound was improved.

10: At the end, allCC nodes know how much utility the wholeSubgraphk(Xi) would get in
an optimal assignment for each one of the leader’s values, and which one of their values
they would pick in that context.

4.5 CyCOpt - distributed cycle-cutset optimization algorithm

We have seen in the previous section thatCyPro requires fixed message sizes, linear
memory, and its message complexity is exponential in the size of the cycle cutset.CyPro
reduces the complexity fromdomn (equivalent to a standard backtracking) todomk

(wheren=number of nodes in the problem, andk=number of cycle-cut nodes). In the
case that the constraint graph is relatively loose, it is likely thatk � n (a small number
of the nodes in the graph are actually cycle-cuts); this would amount to an exponential
complexity reduction.

The obvious application of the previous section is to consider the whole problem as
an extended cycle, and solve it in the afore mentioned way.

However, in the following, we explore the possibility of further reducing the com-
plexity of the optimization procedure by breaking the problem inseparatesubgraphs,
exploring each of them usingCyPro, and then combining the partial results using a ver-
sion of DTREEthat operates at a meta-level, on subgraphs instead of variables. This
approach would have the advantage that at a meta-level, theDTREEwould be linear in
the number of subgraphs, and the overall complexity would bethe highest complexity
of the composing subgraphs.

Some issues need to be considered however, in order to correctly assemble the par-
tial results ofCyProapplied to the subgraphs:

12 Adrian Petcu, Boi Faltings

– topology: subgraphs must be independent, connected through at most oneCCnode.
That node would play the role of a relay between subgraphs;

– synchronization: it is imperative that theCyProbe started in a subgraph only after
all but one of the externalities (links with other subgraphsthroughCC nodes) have
been solved (this is the equivalentk-1 rulefor themeta-TREE);

The first point is already a by-product of the topology-probing phase; it is certain that
eachCC node knows for sure if two subgraphs are independent or not (assuming that
there were a link between them in addition to the node itself,a TOPOprobe is sure to
have gone through that link and have returned to theCC node, which would have then
marked the two subgraphs as the same).

The second one is a little more difficult; in fact it is needed that inside a subgraph
there exist a mechanism that allows all theCC nodes involved to announce to the other
CC nodes that they have finished their externalCyPros, and now they dispose of accu-
rate and final information about the utility that the rest of themeta-TREEcan achieve
for each of their values. Note that this is completely equivalent to thek-1 rule for the
standardDTREE; the difference is that in the standardDTREE there was a local de-
cision (each node was receiving all the k-1 messages itself), whereas now we need to
implement adistributedmechanism that mimics the same functionality.

We solved this problem with a token mechanism: upon solving all of its external-
ities, a node throws a token in the subgraph; when k-1 (where kis the number ofCC
nodes involved in the subgraph) tokens are received,CyProcan be launched. Note that
CCnodes that are involved in a single subgraph (likeXj andXk in Figure 2) throw their
tokens in from the beginning, since they have no externalities (they are the equivalent
of leaf nodes inDTREE)

A good strategy is to elect as subgraph leader the lastCC node that has not yet
thrown the token in the subgraph; afterCyPro is finished in the subgraph, it would be
this node that would throw its token in one of its other subgraphs, and startCyPro in
there, and so on. This synchronization mechanism has the effect thatCyPros are starting
to cascade, exactly like theDTREEpropagation that we explained in Section 3.

In the example of Figure 3, nodeXk would immediately throw its token in Subgraph
3, Xi in Subgraph 2 andXj in Subgraph 3.Xk would not start anything in Subgraph
3 because there is a single token in there.After having finishedCyPro in Subgraph 2,
Xi would throw its token in Subgraph 3, would see that 2=3-1 tokens exist, and would
startCyPro in Subgraph 3, etc.

When the last externality of a subgraph is solved, the responsible CC node already
has complete information for the whole problem (similar to the case inDTREEwhen
the last (kth) message is received). It can immediately choose its value,and inform its
CC peers in all its subgraphs, which in turn will choose theirs,and so on.

The nodes labeled asTREE or Cycle will execute just as in Section 4.4, send-
ing/relaying messages by thek-1 rule. The difference is made by theCC nodes that
are involved in several subgraphs, which operate in the afore mentioned way.

Proposition 5. Algorithm 3 is sound and complete.

PROOF. Follows from Proposition 1, Proposition 3, and the fact that each individual
subgraph is explored only when all but one of its externalities are solved (therefore
observing thek-1 rule for the meta-tree).2

A Distributed, Complete Method for Multi-Agent Constraint Optimization 13

Algorithm 3: CyCOpt: distributed cycle-cutset optimization algorithm.
1: CyCOpt(A,X ,D,R)

Each agentXi executes:
2:
3: Initialization(Xi, Ri)
4: same as inD-TREE
5: if |Ngh(Xi)| == 1 (i.e.Xi is aTREEnode)then
6: markXi asTREE, and sendUTIL message to the single neighbor
7: else
8: markXi asCycle
9: activate Messagehandler()

10: activate Timeouthandler()
11: return
12:
13: Timeout handler()
14: if (! received any message from at least|Ngh(Xi)| − 1 neighbors)then
15: Cycle(Xi)← {Xj ∈ Ngh(Xi)|Xj did not send any message yet}
16: negotiate cyclecut with∀Xj ∈ Cycle(Xi) ; setis cycle cutset accordingly
17: if is cycle cutset then
18: do TOPOLOGY PROBING
19: do MAIN PHASE
20: else
21: reactivate Timeouthandler()
22:
23: Messagehandler()
24: if Xi is TREEor Cyclethen
25: relay messages according to thek-1 rule
26: terminate upon receipt of k context-free messages
27:
28: TOPOLOGY DEEP PROBING
29: send outTOPOprobes to neighbors inCycle(Xi) and wait for their return
30: probes are forwarded byCC/Cyclenodes, collecting in their context the set of visited nodes
31: upon completion,Xi can categorize all its neighbors in the setsTREE(Xi) (containing all

theTREEneighbors) andCyclek(Xi) (containing all the neighbors in theindependent
cycleCyclek(Xi))

32:
33: MAIN PHASE (CC nodes)
34: if |Cycles(Xi)| == 1 then
35: send my token in my only cycle
36: for all Cyclek(Xi) do
37: wait for c-1 tokens in each cycle (c=the number ofCC nodes inCyclek(Xi), then

perform CyPro in the cycle
38: when|Cycles(Xi)| − 1 cycles have been explored, send my token in the last cycle, and

then perform CyPro in there as well
39: at this point,Xi has complete information from allCyclek(Xi), and can choose its optimal

value
40: inform theCC peers from allCyclek(Xi) about the value chosen
41: perform a last optimization step in eachCyclek(Xi) with the chosen valueand context-free

UTIL probes, such that allCyclenodes can also choose their values and terminate.
42: terminate

14 Adrian Petcu, Boi Faltings

Proposition 6. Algorithm 3 has the following complexity:

O((domk + 1) × (2 × number of arcs + 2 × (k − 1)))

where dom=domain size, k=size of the cycle cutset for the largest subgraph, num-
ber of arcs = the number of arcs in the largest subgraph

PROOF. As explained above, the problem is broken up in disjoint subgraphs, which are
connected throughCC nodes. Between subgraphs, there is no explicit communication
(except for the fact that the node that connects them will depose its token at some
point in one of them, when all the rest are done). The difficultproblems lie within the
subgraphs, and the largest subgraph is the one that gives theoverall complexity. Within
a subgraph, the message complexity is given by the formula for CyPro, so the overall
complexity is given by the largest complexity of all subgraphs. When the leader has
finally finished as well, another round ofarcs in cycle × 2 messages is required, but
this is a one-time, linear number of messages.2

5 Experimental evaluation

We have done some preliminary evaluation of the algorithms on randomly generated
optimization problems (weighted graph coloring) with increasing number of variables.
We recorded the number of exchanged messages and present theresulting curve in
Figure 4. As expected, the number of messages increases withthe problem size, which
in turn influences the size of the cycle cutset. However, the direct correlation is with
the cycle cutset, and not with the problem size, leading us tobelieve that this method
is a good candidate for solving large but sparse problems, where the cycle cutset has
manageable sizes.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 5 10 15 20 25 30

M
es

sa
ge

s

Number of variables

"data.txt" using 1:3:(1.0)

Fig. 4. Number of messages exchanged while solving problems of increasing size.

A Distributed, Complete Method for Multi-Agent Constraint Optimization 15

6 Conclusions and future work

We presented in this paper a new complete method for distributed constraint optimiza-
tion. This method is a utility-propagation method that extends the sum-product algo-
rithm to work on arbitrary topologies using cycle cutsets. It requires fixed message
sizes, linear memory, and its message complexity is exponential in the size of the cycle
cutset for the largest subgraph in the problem. This method reduces the complexity from
domn (equivalent to a standard backtracking) todomk (CyPro) or evendomk′

(Cy-
COpt), wheren=number of nodes in the problem,k=total number of cycle-cut nodes,
andk′=number of cycle-cut nodes in the largest subgraph. For relatively loose prob-
lems, it is likely that the inequalityn � k � k′ holds, thus our method is likely to
produce important complexity reductions.

The algorithm is formulated for optimization problems, butcan be easily applied to
the satisfaction problem as well.

As future work we consider experimenting with different strategies of selecting the
cycle-cut nodes, developing more efficient methods for computation within cyclic sub-
graphs, and more informed topology probing techniques.

References

1. F. Becker and D. Geiger. Optimization of pearl’s method of conditioningand greedy-like
approximation algorithms for the vertex feedback set problem.AI Journal, 1996.

2. Rina Dechter.Constraint Processing. Morgan Kaufmann, 2003.
3. Y. Hamadi, C. Bessière, and J. Quinqueton. Backtracking in distributed constraint networks.

In ECAI-98, pages 219–223, 1998.
4. Arun Jagota and Rina Dechter. Simple distributed algorithms for the cycle cutset problem.

In Proceedings of the 1997 ACM symposium on Applied computing, pages Pages: 366 – 373,
San Jose, California, United States, 1997. ACM, ACM Press New York, NY, USA.

5. Simon Kasif. On the parallel complexity of some constraint satisfaction problems. InPro-
ceedings of the National Conference on Artificial Intelligence, AAAI-86, pages 349–353,
Philadelphia, PA, 1986.

6. Frank R. Kschischang, Brendan Frey, and Hans Andrea Loeliger. Factor graphs and the
sum-product algorithm.IEEE TRANSACTIONS ON INFORMATION THEORY, 2001.

7. Amnon Meisels and Roie Zivan. Asynchronous forward-checkingon DisCSPs. InPro-
ceedings of the Distributed Constraint Reasoning Workshop, IJCAI 2003, Acapulco, Mexico,
2003.

8. P. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for dis-
tributed constraint optimization, 2003.

9. Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Asynchronous search with
aggregations. InAAAI/IAAI, pages 917–922, Austin, Texas, 2000.

10. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed con-
straint satisfaction for formalizing distributed problem solving. InInternational Conference
on Distributed Computing Systems, pages 614–621, 1992.

11. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The distributed
constraint satisfaction problem - formalization and algorithms.IEEE Transactions on Knowl-
edge and Data Engineering, 10(5):673–685, 1998.

12. Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfaction:
A review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000.

Preprocessing Techniques for
Accelerating the DCOP Algorithm ADOPT

Syed Muhammad Ali?, Sven Koenig, and Milind Tambe

USC, CS Department, 941 W 37th Street, Los Angeles, CA 90089-0781, USA
{syedmuha,skoenig,tambe}@usc.edu

Abstract. Distributed Constraint Optimization (DCOP) has emerged asa key
technique for distributed reasoning, particularly given the recent progress on
complete DCOP algorithms that provide optimal solutions. Yet, their application
faces significant hurdles in many multiagent domains due to their inefficiency.
Preprocessing techniques have been successfully used to speed up algorithms
for centralized constraint satisfaction problems. This paper introduces a frame-
work of very different preprocessing techniques that are based on dynamic pro-
gramming and speed up ADOPT, an asynchronous complete and optimal DCOP
algorithm. We investigate when preprocessing is useful andwhich factors influ-
ence the resulting speedups in two DCOP domains, namely graph coloring and
distributed sensor networks. Our experimental results demonstrate that our pre-
processing techniques are fast and can speed up ADOPT by morethan one order
of magnitude.

1 Introduction

Distributed constraint optimization (DCOP) [1, 2] has emerged as a key technique for
distributed reasoning in multiagent domains, given its ability to optimize over a set of
distributed constraints. For example, DCOP is useful for meeting scheduling in large
organizations, where privacy needs make centralized constraint optimization difficult
[3]. DCOP is also useful for allocating sensor nodes to targets in sensor networks [4, 1,
5], where the limited communication and computation power of individual sensor nodes
makes centralized constraint optimization difficult. Finally, DCOP is useful for coordi-
nating teams of unmanned air vehicles [6], where the need forrapid local responses
makes centralized constraint optimization difficult.

Unfortunately, the application of DCOP algorithms faces significant hurdles in many
multiagent domains due to their inefficiency. Solving DCOPsoptimally is known to be
NP-hard, yet one often needs to find optimal DCOP solutions quickly. In this context,
researchers have recently developed ADOPT, an asynchronous complete and optimal
DCOP algorithm that significantly outperforms competing complete and optimal DCOP
algorithms that do not allow partial or complete centralization of value assignments [1].

? This research was partly supported by a subcontract from NASA’s Jet Propulsion Laboratory
(JPL) and an NSF award under contract IIS-0350584. The viewsand conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring organizations or the U.S. government.

In this paper, we introduce a framework of preprocessing techniques that make ADOPT
even more efficient. We focus on ADOPT since it provides an efficient baseline and has
been used to solve DCOPs in domains where one needs to find optimal DCOP solutions
quickly, namely sensor networks [5] and meeting schedulingfor teams of personal as-
sistant agents [3].

Preprocessing techniques have been studied before in the context of CSPs. For
example, arc-consistency, path-consistency and general k-consistency algorithms can
speed up CSP algorithms dramatically [7]. The key idea behind these preprocessing
techniques is to reduce the search space, for example, by eliminating possible values
for nodes. Recent work has applied similar preprocessing techniques to both distributed
CSPs [8, 9] and centralized COPs [10, 11]. However, preprocessing techniques have not
yet been investigated in the context of DCOPs, which is not surprising since efficient
complete and optimal DCOP algorithms have been developed only recently. In this pa-
per, we close this gap. Our preprocessing techniques, however, are motivated by heuris-
tic search algorithms rather than preprocessing techniques for CSPs and thus are very
different from preprocessing techniques for CSPs. ADOPT isan uninformed search
method and our preprocessing techniques speed it up by supplying it with heuristic val-
ues that focus its search. Our framework consists of a preprocessing phase followed
by the main phase which just runs ADOPT. The preprocessing phase solves a relaxed
version of the DCOP to calculate the heuristic values, usingeither ADOPT itself or
specialized preprocessing techniques. We show how one can systematically construct
preprocessing techniques of polynomial runtime, some of which are more computa-
tion or communication intensive than others and thus tend tocalculate more informed
heuristic values, thus trading off effort in the preprocessing phase and main phase. We
investigate when preprocessing decreases the total effortand which factors influence
the resulting speedups in two DCOP domains, namely graph coloring and distributed
sensor networks. Our experimental results are very encouraging. For example, our new
versions of ADOPT can solve a distributed sensor network problem with 40 nodes about
37 times faster than ADOPT, even with our most pessimistic way of counting cycles,
and about 92 times faster if we allow for larger messages.

2 Distributed Constraint Optimization

A DCOP consists of a set of nodes (= agents)N . D(n) denotes the set of possible values
of noden ∈ N . c(d(n), d(n′)) denotes the cost of a soft binary constraint between
nodesn ∈ N andn′ ∈ N if noden is assigned valued(n) ∈ D(n) and noden′ is
assigned valued(n′) ∈ D(n′). The objective is to assign a value to every node so that
the sum of the costs of the constraints is minimal.

Figure 1 shows an example DCOP with three nodes (A, B and C). All nodes can be
assigned either the value x or the value y. There are constraints between A and B, B and
C, and A and C. The DCOP has two cost-minimal solutions, namely(A=x, B=y, C=x)
and (A=x, B=y, C=y).

Fig. 1.Example DCOP

3 Distributed Constraint Optimization with ADOPT

ADOPT is an asynchronous complete and optimal DCOP algorithm that significantly
outperforms competing complete and optimal DCOP algorithms that do not allow par-
tial or complete centralization or value assignments [1, 12]. It was the first optimal
DCOP algorithm that used only localized asynchronous communication and polyno-
mial space for each node. Communication is local in the sensethat a node does not
send messages to every other node. Rather, ADOPT constructsa constraint tree, which
is a tree of nodes with the property that any two nodes that areinvolved in some con-
straint are in an ancestor-successor (but not necessarily parent-child) relationship in the
tree. For instance, the DCOP in Figure 1 is organized as a treewhere A is the root,
B is the child of A, and C is the child of B. In this case, the constraint tree is a chain
since every node has at most one child. ADOPT searches the constraint tree in a way
that resembles uninformed and memory-bounded versions of A*, except that it does so
in a distributed way where every node sends messages only to its parent or successors
in the constraint tree: Each node asynchronously executes aprocessing loop in which
it waits for incoming messages, processes them and sends outgoing messages. VALUE
messages are sent from a node to its children in the constraint tree, informing them of
the values of their ancestors. The children then record these values in a “current con-
text.” In response to VALUE messages, nodes send COST messages to their parents to
provide them with feedback about the costs of the best complete assignment of values
to nodes that is consistent with the current context of the node. To this end, a node adds
the exact costs of all constraints that involve nodes with known values (= its ancestors)
and a lower bound cost estimate of the smallest sum of the costsof all constraints in
the subtree rooted at the node (received from its children via COST messages) for its
current context. Thus, COST messages contain estimates of the cost of the constraints
for the best complete assignment of values to nodes that is both consistent with the cur-
rent context of the node and a lower bound on the actual cost. Nodes initially use zero
as cost estimates, and update these cost estimates when theyreceive COST messages

A=x

B=x

C=x

Cost = 6

Cost = 1

A=y

B=x

C=…

Cost = …

Cost = 3

A=x

B=x

C=x

Cost =…

(i) (ii) (iii)

Cost =…

Fig. 2.Snapshots of Possible Execution Trace of ADOPT

from their children. Nodes reset their cost estimates to zero when their current context
changes.

Figure 2 illustrates the execution of ADOPT for the DCOP fromFigure 1, with an
emphasis on aspects that illustrate the benefits of our modifications of ADOPT. The
figure shows three snapshots in the progression of a possibleexecution path of ADOPT.
Initially, the cost estimate of choosing value x and the one of choosing value y are zero
for every node, and either value can thus be chosen. In Figure2(i), nodes A, B and C
initially each choose value x. Node A now sends VALUE messages to inform its succes-
sors B and C about its choice of value x, and node B sends a VALUEmessage to inform
its successor C about its choice of value x, as indicated by the thick arrows. The current
context of node B now records that node A has chosen value x, and computes its cost
estimate for the best complete assignment of values to nodesthat is consistent with node
A having chosen value x. This cost estimate is one: If node B chooses value x (value y)
then the constraint cost between nodes A and B is one (two, respectively), and the con-
straint cost between nodes that involve node C is estimated tobe zero since node B has
not yet received a COST message from node C. Thus, node B sendsa COST message
to inform node A of an estimated cost of one. The cost estimateof choosing value x is
now one for node A while the cost estimate of choosing value y isstill zero. In Figure
2(ii), node A now chooses value y (the value with the smallestcost estimate) and sends
VALUE messages to inform its successors B and C about its choice of value y. Node B
then sends a COST message to inform node A of an estimated costof three. The cost
estimate of choosing value x is now one for node A while the cost estimate of choos-
ing value y is three. Thus, in Figure 2(iii), node A now switches back to value x and
thus backtracks in its search space, and the execution of ADOPT continues. ADOPT
is described in detail in [12], including some optimizations that are not relevant to this
paper and that we did not describe here. Our key point is that node A switched its value
from x to y and back to x based on the cost estimates of its values. While such context
switching is appropriate to avoid blocking in an asynchronous execution environment,
it causes successors to reconstruct their solution, and thus we could potentially improve
the performance of ADOPT if we we able to reduce such context switching by supply-
ing it with better cost estimates. For example, if the cost estimate of choosing value y

had been three for node A, then one would have avoided the context switch in Figure
2(ii).

Our new versions of ADOPT are motivated by the need to avoid orreduce such
unnecessary context switches. These new versions of ADOPT are identical to ADOPT
except that they initialize ADOPT with non-zero cost estimates, called heuristic val-
ues. They solve DCOPs optimally if we guarantee that the heuristic values are indeed
lower bound cost estimates, which is the case since they use preprocessing techniques
that calculate heuristic values by solving a relaxed version of the DCOP (= the DCOP
with some constraints deleted) in a preprocessing phase before they run ADOPT in the
main phase. The main question of this paper then is whether the total runtime of the
new versions of ADOPT is smaller than the one of ADOPT itself.The answer is not
obvious since it takes time to compute the heuristic values.It is known that running an
uninformed version of A* on a relaxed version of a search problem to obtain heuristic
values that are then used to focus the search of an informed version A* on the original
version of the search problem cannot result in smaller totalruntimes than just using the
uninformed version of A* on the original version of the search problem [13]. However,
the scheme may potentially work for ADOPT because ADOPT doesnot resemble A*
but memory-bounded versions of A*.

4 Preprocessing Framework

The heuristic values can be calculated by using either ADOPTon a relaxed version of
the given DCOP or specialized preprocessing techniques on the given DCOP directly.
In the following, we describe three preprocessing techniques (DP0, DP1 and DP2) that
trade-off between how long it takes to calculate the heuristic values and how informed
they are. We use the following additional notation to describe them formally:C(n) ∈ N

denotes the set of children of noden ∈ N . A(n) denotes the set of those ancestors of
noden ∈ N with which the node has constraints. Finally, the heuristicvalueh(d(n)) is
a lower bound cost estimate of the smallest sum of the costs ofthe constraints between
two nodes, at least one of which is a successor of noden ∈ N in the constraint tree if
noden is assigned valued(n) ∈ D(n).

DP0, DP1 and DP2 are dynamic programming algorithms that assign heuristic val-
ues to the nodes, starting at the leaves of the constraint tree and then proceeding from
each node to its parent. They set the heuristic values of all leaves to zero, that is, they
seth(d(n)) := 0 for all d(n) ∈ D(n) andn ∈ N with C(n) = ∅. They calculate the
remaining heuristic valuesh(d(n)) for all d(n) ∈ D(n) andn ∈ N with C(n) 6= ∅
as follows, where the minimums in the formulas guarantee that the resulting heuristic
values are lower bound cost estimates:

DP0h(d(n)) :=
∑

n′∈C(n)

∑
n′′∈A(n′) mind(n′)∈D(n′) mind(n′′)∈D(n′′) c(d(n′), d(n′′))

DP1h(d(n)) :=
∑

n′∈C(n) mind(n′)∈D(n′)(h(d(n′)) + c(d(n′), d(n)))

DP2h(d(n)) :=
∑

n′∈C(n)(mind(n′)∈D(n′)(h(d(n′)) + c(d(n′), d(n))

+
∑

n′′∈A(n′)\{n} mind(n′′)∈D(n′′) c(d(n′), d(n′′))))

Fig. 3. DP2 Example

It is straightforward to implement DP0, DP1 and DP2 in a decentralized way where
nodes send messages to their parents. Basically, the leavesin the constraint tree calcu-
late the heuristic values for each possible value of their parents and then send them in
a message to their parents. All other nodes wait until they have received such messages
from each of their children, then set the heuristic value of each of their possible values
to the sum of the heuristic values reported by their childrenfor this value, and then
proceed in the same way as the leaves. For example, Figure 3 describes the operation
of DP2 on the DCOP example from Figure 1. In Step 1 of the preprocessing phase, C
initializes the heuristic values for its values x and y to 0. In Step 2, C calculates the
heuristic values for the values x and y of B. The heuristic value for the value x of B is
calculated as follows: If C is assigned the value x then it is cost-minimal to assume that
A is assigned the value x. In this case, the cost of the constraint between A and C is 3
and the cost of the constraint between B and C is 3, resulting in an overall cost estimate
of 6. On the other hand, if C is assigned the value y then it is cost-minimal to assume
that A is assigned the value y as well. In this case, the cost ofthe constraint between A
and C is 1 and the cost of the constraint between B and C is 4, resulting in an overall
cost estimate of 5. The heuristic value for the value x of B is the minimum of the two
cost estimates and thus 5. Similarly, C calculates the heuristic value for the value y of
B. It then sends these heuristic values to B. In Step 3, B updates its heuristic values
and, in Step 4, calculates the heuristic values of the valuesx and y of A. It then sends
these heuristic values to A, and finally, in Step 5, A updates its heuristic values, which
ends the preprocessing phase. In the main phase, node A initially chooses value x and
switches to value y only when the cost estimate of choosing value x exceeds seven (=
the initial cost estimate of choosing value y) which avoids the initial context switch in
Figure 2(ii).

DP0, DP1 and DP2 can differ in both the heuristic values they calculate and in their
computation and communication overhead. Each heuristic value of DP2 is guaranteed to

be at least as large (= at least as informed) as the corresponding heuristic value of either
DP0 or DP1. The following table contains the heuristic values for our example, where
the last row contains the largest lower-bound cost estimates that satisfy our definition
of the heuristic values:

A=x A=y B=x B=y C=x C=y
DP0 1 1 2 2 0 0
DP1 3 5 3 1 0 0
DP2 5 7 5 3 0 0
optimal 6 7 5 3 0 0

We can now examine the overhead of DP0, DP1 and DP2. Unfortunately, it is non-
trivial to measure the runtime of the preprocessing techniques since nodes can operate
in parallel but are often simulated in different threads on asingle-processor machine.
We follow other researchers and measure the runtime using cycles, where every node is
allowed to process all of its messages in each cycle. However, cycles typically measure
only the communication but not the computation overhead. While this is appropriate in
those situations where the communication overhead dominates the computation over-
head, we also investigate the computation overhead to ensure that it is not excessive.

– Computation Overhead:The computation overhead is affected by how many con-
straint costs a node must access. DP1 needs to access only thecosts of the con-
straints that a node has with its parent while DP0 and DP2 alsoneed to access the
costs of the constraints that the node has with its other ancestors.

– Communication Overhead:The communication overhead is measured in cycles.
DP0 needs only one cycle because it does not propagate heuristic values up the
constraint tree while DP1 and DP2 need a number of cycles thatequals the depth
of the constraint tree (plus one). For example, Steps 1 and 2 constitute one cycle in
the DP2 example from Figure 3, Steps 3 and 4 constitute another cycle, and Step 5
constitutes the third and final cycle. Another key difference between DP0 and the
other two preprocessing techniques is that DP0 sends only one heuristic value from
a node to its parent (because the heuristic values are identical for all possible values
of the parent) while DP1 and DP2 send one heuristic value for each possible value
of the parent (because they can be different). For example, every node sends two
heuristic values to its parent in the DP2 example from Figure3. As discussed in the
section on experimental results, we penalize DP1 and DP2 fortheir larger messages
by increasing their cycle count by a factor that equals the number of heuristic values
they send per message (which simulates them only being able tosend a single value
per message).

Based on these two axes of computation and communication overhead, we identify
two key design choices. They provide the rationale for our choices of DP0, DP1 and
DP2. In the following, we always list the choice first that results in more informed
heuristic values.

– Property a (= Computation Overhead): A preprocessing technique can either
take all constraints into account (1) or only the constraints between nodes and their

parents (2), in which case the constraints form a tree. (2) corresponds to relaxing the
DCOP by deleting all constraints that are between any two nodes that are not in a
parent-child relationship in the constraint tree, which isbasically exactly what DP1
does. Instead of using DP1 on a given DCOP, one can therefore also use ADOPT
itself on the relaxed DCOP to calculate the same heuristic values, which needs
more cycles than DP1 but makes the preprocessing easier to implement and might
still result in substantial speedups. (We also experimented with other ways of delet-
ing constraints. For example, randomly deleting a given percentage of constraints
turned out not to be advantageous.)

– Property b (= Communication Overhead):A preprocessing technique can either
take the heuristic values of a node into account (1) or ignorethem (2) when calcu-
lating the heuristic values of the parent. (1) needs a numberof cycles that equals
the depth of the constraint tree (plus one) to propagate the heuristic values up the
constraint tree, while (2) can be computed in only one cycle.

The following table categorizes DP0, DP1 and DP2 according to these two proper-
ties:

Property aProperty b
DP0 (1) (2)
DP1 (2) (1)
DP2 (1) (1)

The following table shows the runtimes of DP0, DP1, and DP2 per cycle as a func-
tion of the two properties, wherev = maxn∈N |D(n)| is the largest cardinality of the
set of possible values of any node,k = maxn∈N |A(n)| is the largest cardinality of the
set of those ancestors with which any node has constraints,c denotes the runtime of the
preprocessing technique measured in cycles, andm denotes the size of its messages:

Preprocessing Cost per Cycle
low (c=1, m=1)high (c=tree depth, m=v)

Graph Structure tree O(v2) DP1 O(v2)
full graphDP0 O(kv2) DP2 O(kv2)

There arev2 constraint costs for each constraint. Each preprocessing technique
might have to process allv2 constraint costs for each of the at mostk ancestors of a
node with which it has constraints. If the constraints form atree (upper row of the ta-
ble), then the number of ancestors is one (k=1). When the constraints do not form a tree
(lower row of the table), each node must examine its input andthusv2 constraint costs
for each of itsk ancestors, and thus thekv2 cost is mandatory for both DP0 and DP2.
The cost for DP2 needs further explanation since given a noden, it iterates over all the k
ancestors of all the children of n, and would thus appear to require an additional cost of
iterating over all such children. However, in a decentralized implementation, each child
node only computes the heuristic values relevant to itself and sends the values to the
parent node n, which sums the inputs from the children. Thus,each child incurs the cost
of kv2 per cycle. This explains the table. Since the runtimes of DP0, DP1, and DP2 are
polynomial per cycle and their number of cycles is polynomial as well, their runtimes

Fig. 4.Sensor Network Topologies: Chain (top) and H Configuration (bottom)

are polynomial. This means that their runtimes are small in the worst case compared to
the runtime of the main phase since solving DCOPs is NP-hard.

5 Experimental Results

It is not immediately obvious whether the runtime of the preprocessing techniques is
sufficiently overcome by the speedups achieved in the main phase and, if so, which
preprocessing technique results in the smallest total runtime, that is, sum of the runtimes
of the preprocessing phase and main phase. We conducted experiments in two different
DCOP domains to answer these questions:

– Graph Coloring: Our first domain is a three-coloring problem with a link density
(= number of constraints over the number of nodes) of two. Thevalues of the nodes
correspond to the colors, and all constraint costs are drawnwith uniform probability
from the integers between 1 and 100.

– Distributed Sensor Network (DSN):Our second domain is a distributed sensor
network problem where 24 sensors, arranged in either a chainor an H configuration,
have to track a given number of targets that are randomly positioned between four
sensors each [14]. Figure 4 shows examples of the two sensor configurations, where
circles with Xs represent sensors and circles without Xs represent targets. Each
sensor can track at most one target, which needs to be in its immediate vicinity.
Each target is either tracked by exactly three sensors or oneincurs a cost that is
drawn with uniform probability from the integers between 0 and 100. The mapping
from this DSN domain to a DCOP is described in detail in [14, 12]. Basically, one
creates the nodes TA1, TB1, TC1, and TD1 if the sensors A, B, C,and D are
able to track target 1. Thus, there is one node for each combination of a sensor
and one of its possible targets. The possible values of thesethree nodes are all
combinations of three sensors that are able to track the target (ABC, ABD, ACD,
BCD), the value IGNORE that represents that no sensor will track the target, and
the value ABSENT that represents that the target disappeared and thus no longer
needs to get tracked. There are equality constraints between any two nodes with
the same target. For example, there is an equility constraint between TA1 and TB1

Fig. 5. Cycles in Graph Coloring (left) and DSN (right)

that requires sensors A and B to agree on the set of sensors that track target 1.
Similarly, there are mutual exclusion constraints betweenany two nodes with the
same sensor. For example, there is a mutual exclusion constraint that enforces that
sensor A cannot track targets 1 and 2 at the same time. The costs are zero if the
constraints are satisfied and very high if the constraints are not satisfied, making
them hard constraints. If a node is assigned the value IGNORE, then it incurs a cost
for ignoring that target.

The following table gives details on the number of nodes and the number of their
possible values for the two DCOP domains. We varied the sizesof the domains by
varying the number of their nodes. We report averages over 15problem instances for
each domain and size:

Domain Number of NodesNumber of Values per Node
Graph Coloring 8, 10, 11, 12 3
DSN 28, 32, 36, 40 6

5.1 Discussion of Cycle Count

In the following, we refer to ADOPT0, ADOPT1 and ADOPT2 as thecombination of
DP0, DP1 and DP2, respectively, in the preprocessing phase and ADOPT in the main
phase. Figure 5 shows the total number of cycles of ADOPT and the three new versions
of ADOPT as a function of the number of nodes (= agents). Remember that, whenever
we report cycles, we penalize ADOPT1 and ADOPT2 for their larger messages in the
preprocessing phase by increasing their cycle count in the preprocessing phase by a fac-
tor that equals the number of heuristic values they send per message, namely 3 in graph
coloring and 6 in DSN. ADOPT2 outperforms all other versionsof ADOPT in graph
coloring and its speedups increase with the size of the domain. For example, ADOPT2
speeds up ADOPT by a factor of 9.8 in graph coloring with 12 nodes. ADOPT0 does not

Fig. 6. Preprocessing Cycles in Graph Coloring (left) and DSN (right)

speed up ADOPT in DSN and ADOPT1 and ADOPT2 speed it up by the same amount.
The bars for ADOPT and ADOPT0 in DSN with 40 nodes have been shortened in the
figure since their number of cycles is 10,694, and ADOPT2 speeds up ADOPT by a
factor of 37.6 in this case. It turns out that ADOPT2 even speeds up ADOPT by a fac-
tor for 92.5 if we do not penalize it for its larger messages. To summarize, ADOPT2
has the smallest number of total cycles in graph coloring. Both ADOPT1 and ADOPT2
have the smallest number of total cycles in DSN, which means that ADOPT1 should
be preferred over ADOPT2 in this domain since the computation overhead of DP1 is
smaller than the one of DP2. On the other hand, ADOPT0 is not the method of choice
in either domain despite the small computation and communication overhead of DP0
over DP1 and DP2.

Remember that one can use both DP1 on a given DCOP or ADOPT on a relaxed
version of the DCOP to calculate the same heuristic values inthe preprocessing phase.
Thus, the overhead in the main phase will be identical in bothcases and one should
choose the preprocessing technique that results in the smallest number of cycles in the
preprocessing phase. Figure 6 shows that the number of cycles of DP1 in the prepro-
cessing phase is smaller than the one of ADOPT by a factor of 52.5 in graph coloring
with 12 nodes and by a factor of 5.1 in DSN with 40 nodes. Its number of cycles in the
preprocessing phase would even be smaller than the one of ADOPT by a factor of 157.4
in graph coloring with 12 nodes and by a factor of 30.5 in DSN with 40 nodes if we did
not penalize DP1 for its larger messages by increasing its cycle count. To summarize,
there is an advantage to using specialized preprocessing techniques in the preprocessing
phase rather than the more general ADOPT itself.

5.2 Discussion of Accuracy

To understand better why the speedups depend on the preprocessing technique, remem-
ber that the heuristic values computed by the preprocessingtechniques are used to seed
the cost estimates of ADOPT in the main phase. ADOPT can raisethese cost estimates

Fig. 7. Accuracy in Graph Coloring (left) and DSN (right)

during its operation. We therefore computed the average ratio of the cost estimates
computed by the preprocessing techniques and the cost estimates after the termination
of ADOPT. We refer to this ratio as the accuracy. The larger the accuracy, the more
informed the heuristic values are. An accuracy of 0 percent means that the heuristic val-
ues are no more informed than the initial cost estimates of ADOPT itself. In this case,
the preprocessing technique does not speed up ADOPT. On the other hand, an accuracy
of 100 percent means that the heuristic values computed by the preprocessing technique
were so good that ADOPT was not able to raise them. Figure 7 shows the accuracies of
DP0, DP1 and DP2. The accuracy of DP0 is 45.1 percent, the accuracy of DP1 is 53.4
percent, and the accuracy of DP2 is 81.6 percent in graph coloring with 12 nodes. On
the other hand, the accuracy of DP0 is zero percent (and hencethe bar does not appear
in the figure) in DSN with 40 nodes since the heuristic values calculated by DP0 are all
zero. This is so since every constraint has at least one constraint cost that is zero. Thus,
ADOPT and ADOPT0 are equally fast in this case. The accuracies of DP1 and DP2
are larger than zero percent but, for a similar reason, identical at 80.0 percent. Thus,
ADOPT1 and ADOPT2 are equally fast in this case. Figure 7 shows that the number of
cycles from Figure 5 are closely correlated with the accuracies of the heuristic values.
The more accurate the heuristic values, the more they speed up ADOPT.

To examine this relationship further in DSN with 36 nodes, wefirst ran ADOPT
without preprocessing and obtained the cost estimates after its termination. We then ran
ADOPT again but now simulated a preprocessing phase that produces heuristic values
that are equal to the product of the corresponding cost estimates after the termination of
ADOPT and the same constant factor (smaller than one), whichrepresents the desired
accuracy of the heuristic values. Figure 10 (left) shows that the total number of cycles
is closely correlated with the factors. Similar to the previous experiment, the larger the
factors and thus the more accurate the heuristic values, themore they speed up ADOPT.

Fig. 8. Repeated Contexts in Graph Coloring (left) and DSN (right)

5.3 Discussion of Repeated and Unique Contexts

There are two reasons why the informedness of the heuristic values can have a large
effect on the resulting speedups. We explore both reasons, illustrating that the speedups
are a combination of both reasons:

– The first reason why the informedness of the heuristic valuescan have a large effect
on the resulting speedups is that ADOPT, as a memory-boundedDCOP algorithm,
has to regenerate partial solutions (in the form of current contexts) when it back-
tracks to a previously explored part of the search space. More informed heuristic
values reduce the amount of backtracking of ADOPT and thus the number of re-
generated (= repeated) current contexts, resulting in a smaller number of cycles
in the main phase. To verify our hypothesis, we measured the average number of
regenerated current contexts at each node. Figure 8 shows that the number of re-
generated current contexts is indeed closely correlated with the number of cycles
from Figure 5 and the accuracies from Figure 7. The more accurate the heuristic
values, the fewer current contexts are repeated in the main phase, and the more the
heuristic values speed up ADOPT. The bars for ADOPT and ADOPT0 in DSN with
40 nodes have been shortened in the figure since their number of repeated current
contexts is 22,610, and ADOPT2 speeds up ADOPT by a factor of 37.6 in this case.

– The second reason why the informedness of the heuristic values can have a large ef-
fect on the resulting speedups is that more informed heuristic values reduce the part
of the search space explored by ADOPT and thus the number of unique (= differ-
ent) current contexts, resulting in a smaller number of cycles in the main phase. To
verify our hypothesis, we measured the average number of unique current contexts
at each node. Figure 9 shows that the number of unique currentcontexts, surpris-
ingly, changes very little in graph coloring and can even increase with the accuracy
of the heuristic values. The number of unique current contexts decreases with the
accuracy of the heuristic values in DSN. The more accurate the heuristic values in
this case, the fewer unique current contexts are generated in the main phase, and

Fig. 9. Unique Contexts in Graph Coloring (left) and DSN (right)

Fig. 10. Impact of Accuracy (left) and Constraint Topology (right) on Cycles in DSN

the more the heuristic values speed up ADOPT. This difference contributes to the
speedups tending to be higher in DSN than graph coloring.

5.4 Discussion of Constraint Tree Topologies

We also tested the impact of the topology of the constraint tree on the number of cycles
in DSN with 36 nodes. Our initial hypothesis was that the speedups would be substan-
tially larger for chains than for trees. Figure 10 (right) shows, however, that the speedup
of ADOPT2 over ADOPT is about the same in either case.

6 Conclusions

In this paper, we developed a framework of preprocessing techniques that speed up
ADOPT, an asynchronous complete and optimal DCOP algorithm. Our preprocessing

techniques use dynamic programming to calculate informed lower bound cost estimates
for ADOPT. Our empirical results in two DCOP domains, namelygraph coloring and
distributed sensor networks, demonstrated that our preprocessing techniques are fast
and can speed up ADOPT by more than one order of magnitude, at arelatively low
preprocessing cost. We showed that the key reason for the speedup is the informedness
of the heuristic values, which in turn determines how many partial solutions ADOPT
generates and how many of these it revisits. The results alsodemonstrated that the
preprocessing techniques are significantly more efficient than using ADOPT itself in
the preprocessing phase. As outlined in [1], it is essentialto use lower bound cost es-
timates in DCOP algorithms. Since our preprocessing techniques focus on computing
such lower bound cost estimates, the ideas behind them mightalso apply to DCOP algo-
rithms other than ADOPT. It is future work to explore their applicability to other DCOP
algorithms as well as to develop even more sophisticated preprocessing techniques.

References

1. Modi, P., Shen, W., Tambe, M., Yokoo, M.: An asynchronous complete method for dis-
tributed constraint optimization. In: AAMAS. (2003) 161–168

2. Mailler, R., Lesser, V.: Solving distributed constraintoptimization problems using coopera-
tive mediation. In: AAMAS. (2004) 438–445

3. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to
the real world: Efficient complete solutions for distributed event scheduling. In: AAMAS.
(2004) 310–317

4. Lesser, V., Ortiz, C., Tambe, M., eds.: Distributed sensor networks: A multiagent perspective.
Kluwer (2003)

5. Scerri, P., Modi, J., Tambe, M., Shen, W.: Are multiagent algorithms relevant for real hard-
ware? A case study of distributed constraint algorithms. In: ACM Symposium on Applied
Computing. (2003) 38–44

6. Schurr, N., Okamoto, S., Maheswaran, R., Scerri, P., Tambe, M.: Evolution of a teamwork
model. In Sun, R., ed.: Cognition and Multi-Agent Interaction: From Cognitive Modeling to
Social Simulation. Cambridge University Press (2004) (to appear)

7. Dechter, R., Meiri, I.: Experimental evaluation of preprocessing techniques in constraint
satisfaction problems. In: IJCAI. (1989) 271–277

8. Jung, H., Tambe, M.: Performance models for large scale multiagent systems using POMDP
building blocks. In: AAMAS. (2003) 297–304

9. Silaghi, M., Sam-Haroud, D., Faltings, B.: Consistency maintenance for ABT. In: CP. (2001)
271–285

10. Bistarelli, S., Gennari, R., Rossi, F.: Constraint propagation for soft constraints: generaliza-
tion and termination conditions. In: CP. (2000) 83–97

11. Schiex, T.: Arc consistency for soft constraints. In: CP. (2000) 411–424
12. Modi, P., Shen, W., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint

optimization with quality guarantees. Artificial Intelligence (2004) (to appear)
13. Hansson, O., Mayer, A., Valtorta, M.: A new result on the complexity of heuristic estimates

for the A* algorithm. Artificial Intelligence55 (1992) 129–143
14. Modi, P., Jung, H., Tambe, M., Shen, W., Kulkarni, S.: A dynamic distributed constraint

satisfaction approach to resource allocation. In: CP. (2001) 685–700

Dynamic Distributed BackJumping

Viet Nguyen
�
, Djamila Sam-Haroud

�
, and Boi Faltings

�

�
Laboratory of Autonomous Systems�
Laboratory of Artificial Intelligence

Swiss Federal Institute of Technology�
viet.nguyen,jamila.sam,boi.faltings � @epfl.ch

Abstract. We consider Distributed Constraint Satisfaction Problems (DisCSP)
when control of variables and constraints is distributed among a set of agents.
This paper presents a distributed version of the centralized BackJumping algo-
rithm, called theDynamic Distributed BackJumping- DDBJ algorithm. The ad-
vantage is twofold:DDBJ inherits the strength of synchronous algorithms that
enables it to easily combine with a powerful dynamic ordering of variables and
values, and still it maintains some level of autonomy for theagents. Experimental
results show thatDDBJ outperforms theDiDB and AFC algorithms by a fac-
tor of one to twoorders of magnitude on hard instances of randomly generated
DisCSPs.

Keywords: Search, Constraint Satisfaction, Distributed Systems, Multi-Agent Systems.

1 Introduction

Constraint Satisfaction has been used as a powerful paradigmfor general problem solv-
ing. It consists of finding values for problem variables in some particular domains sub-
ject to constraints that specify possible consistent combinations. Solving a CSP is to
find a set of variable assignments that satisfies all the constraints.

A distributed CSP (DisCSP) is a CSP when variables and constraints are distributed
among a network of automated agents. Each agent may hold one or more variables
which are connected by local constraints, and also connectedby inter-constraints to
variables of other agents. Many application problems in Multi-Agent Systems (MAS)
can be formulated and solved using a DisCSP framework ([1]), such as distributed re-
source allocation problems, distributed scheduling problems or multi-agent truth main-
tenance tasks.

In solving DisCSPs, agents exchange messages about the variable assignments and
conflicts of constraints. Several distributed search algorithms have been proposed for
solving DisCSPs. They can be divided into two main groups: asynchronous and syn-
chronous algorithms. The former are algorithms in which the process of assigning vari-
able values and exchanging messages is performed asynchronously between the agents,
whereas in the latter group, agents assign values to variables in a synchronous, sequen-
tial way. Each group has different strengths and drawbacks. We discuss some of them
in the next section.

2 Related Work

One of the pioneer algorithms is theAsynchronous BackTracking- ABT algorithm
([2], [3]). It is a distributed, asynchronous version of a generic backtracking algorithm.
Agents communicate by two types of messages:OK? messages to distribute the current
value, andNogood messages to declare new constraints. The simplicity and computa-
tional concurrency are its strengths.ABTneeds polynomial space for storing nogoods
to be complete ([2]). The algorithm requires the assumptionthat messages are received
in the order in which they were sent for completeness, otherwiseall nogoods have to
be stored and it would suffer from exponential space complexity. One way to work
around is to attach a sequence number for each message, so theorder of messages can
be determined at the receiving end.

A later version ofABT which makes use of dynamic ordering of agents, called
theAsynchronous Weak-Commitment Search- AWC, is given in [3]. This algorithm is
shown to be faster thanABT, but the main drawback is that it requires exponential space
for completeness.

The Distributed Dynamic Backtracking- DiDB algorithm is another distributed,
asynchronous algorithm which is inspired by its centralizedversionDynamic Back-
tracking ([4]), presented in [5], [6]. Briefly, the algorithm transforms the constraint
network into a directed acyclic graph and performs dynamic jumps over the set of con-
flicting agents. Again, this algorithm requires the assumption that messages are received
in the order in which they were sent and polynomial space for nogood stores. However,
the main weakness is the problem of message duplication. Due toasynchrony, an agent
may keep asking values of its parents, and the parents keep sending reply messages.
This process propagates down the whole graph, creates many duplicated messages. Ex-
perimental results show that the number of messages increases dramatically and soon
consumes all resources. Some duplication prevention mechanism can be added, but
great attention must be paid for not loosing solutions (A simple way which consists in
sending a given message only once does not work!).

Another distributed asynchronous algorithm is given latelyin [7], theAsynchronous
Aggregation Search- AAS. This algorithm works in a similar way asABT, except that
consistent values of the partial solution are also includedin OK messages. This mech-
anism helps in reducing number of backtracks. For problems with large variable do-
mains, including consistent values produces long messages. Thus,AASis more practical
for problems with small variable domains.

A recently proposed algorithm, called theAsynchronous Forward Checking- AFC
([8]), belongs to the group of distributed synchronous algorithms. It is a generic back-
tracking algorithm combined with a look ahead heuristic by means of asynchronous
forward checking messages. Agents assign their values for variables sequentially by
having one current partial assignment shared among all agents. When a dead end is de-
tected, the algorithm backtracks sequentially following the reverse ordering. A strength
of this algorithm is in its algorithmic simplicity and good computational efficiency, in-
herited from centralized algorithms. It has been shown to provide better performance,
in terms of number of messages and constraint checks, than asynchronous algorithms
ABTandDiDB ([8]). The main drawback ofAFC is that it does not exploit concurrency:
at any time, there is only either oneAFC or oneBT message that is exchanged between

the agents, results in long running time (running cycles) compared to asynchronous
algorithms.

3 Preliminaries

Constraint Satisfaction

Classically, Constraint Satisfaction Problems (CSP) havebeen defined for problems in
centralized architectures. A finite CSP is defined by a triple���������	��
 , where

– �
����� � ���������	����� is the set of� variables.
– ������� � ��������� � � � is the set of� finite, discrete domains of variables� � ���������	� � ,

respectively.
– �!�"��# � ��������� #%$&� is the set of' constraints on the variables. These constraints give

the allowed values that the variables can simultaneously take.var(#)() is the set of
variables that are constrained by#%(.

A solution to a CSP is an assignment of values taken from the domains to all vari-
ables such that all the constraints are satisfied. Constraint satisfaction is NP-complete
in general, and it is typically solved by a tree-search procedure with backtracking.

Distributed Constraint Satisfaction

A distributed CSP (DisCSP) is a CSP in which the variables and constraints are dis-
tributed among a network of automated agents. Formally, a finite DisCSP is defined by
a 5-tuple�*�!�����	�+� ,-� ./
 , where� , � and � are the same as in centralized CSP, and

– ,0����1 � ���������21%34� is the set of5 agents
– .76&�98:, is a function that maps variables to agents

Solving a DisCSP is to find an assignment of values to variablesby the collective and
coordinated action of automated agents. Asolutionto a DisCSP is a compound assign-
ment of values to all variables such that all constraints aresatisfied.

In DisCSP, agents communicate with each other by sending messages. We make the
following assumptions for the communication model similar to those proposed in [3]:

1. An agent can send messages to other agents iff the agent knowsthe addresses of
the agents.

2. The delay in delivering a message is finite but random; there is no message lost.

The second assumption has been partially relaxed from the original one in [3] that also
assumes that messages are received in the order in which they were sent. Some algo-
rithms (ABT, DiDB) require this assumption to be complete. Furthermore, for simplicity
and without loss of generality, we assume that:

1. . is a one-to-one function; it means that each agent holds onlyone variable; and
there are no intra-agent constraints.

2. � are binary constraints so thatvar(# () = 2, and every constraint is known by both
agents involved in the constraint.

By these assumptions, the constraint network is simplified toa constraint graph where
agents represent graph nodes and constraints represent graph edges.

4 The Algorithm DDBJ

The Dynamic Distributed BackJumping- DDBJ, is a complete, distributed, semi-
asynchronous version of a graph-based backjumping algorithm which was previously
introduced in centralized CSP ([9]). The algorithm combines the concurrency of an
asynchronous dynamic backjumping algorithm and the computational efficiency of the
synchronousAFC algorithm ([8]), coupled with the heuristics of dynamic value and
variable ordering.

The Distributed BackJumping procedure

Agents perform value assignments in two phases:

– Advancing forwardphase: which occurs when a new assignment tuple is added to
the current partial solution.

– Backjumping (backward)phase: which occurs when an agent encounters a conflict.
The process is “jumped back” to the culprit agent.

An agent is either in aforwardphase or abackwardphase. Algorithmically, theforward
phase is performed sequentially: the assigning agent sendsan OK to the next agent
andFC messages to unassigned connected agents (similarly toAFC algorithm). If an
agent detects a conflict when receiving someOK/FCmessage, it performs thebackward
phase asynchronously to backjump to the culprit agent, and also sendsNG messages
to unassigned agents. At any time, there can be several culprit agents detected and
thus several backjumps are performed simultaneously. The culprit agents will change
their values, hence the current partial solution (CPS), andperform theforward phase,
without synchronizing with other agents nor waiting for otheragents to switch phases.
Consequently, at any time, agents are performing theforward and backwardphases
simultaneously in parallel without any synchronous control.

An example of algorithm execution is illustrated in Fig.1. At time t1, agentA3
sends oneOK message toA4 (solid lines) andFC messages to connected agents (dotted
lines). At a later timet2, A11 finds a conflict and backjumps toA3 by aBT message
(dashed lines) and sendsNG messages to others (not shown). At the same time,A3’s
assignment has already propagated down toA6 andA7, and get backjumped atA6 to
A4 and backtracked atA7 to A5. However, the asynchronous executions atA6 andA7
and the consequent ones will soon be overwritten by the new assignment atA3. These
execution flows are carried out simultaneously.

In AFC, backtracking is performed sequentially (or synchronously) from the detect-
ing agent to the culprit. At any time, there is only either oneOK or oneBTmessage being
sent. InDDBJ, any agent who receives anOK or FC message can initiate a backjump.
Thus, there can be severalOK andBT messages exchanged simultaneously, generat-
ing multiple asynchronous execution threads. However, thereis only oneOK message
which may potentially lead to a solution (the most updated oneor equivalently the one
on the highest level of the search tree). The otherOK messages will continue to propa-
gate and create the assignment chains down the search tree, until only when theNG or
newer messages arrive. Usually, it takes some cycles to stop these obsolete processes,

asynchronous
execution
threadsA5

A7 A11

A1

A2

A3

A4

A6

FC msg

BT msg

OK msg

time t1

time t2

Fig. 1. An example of theDDBJ execution

depending on the size of the network, the connectivity density, the message delivering
delay, etc.

The DDBJ algorithm is executed on every agent. Each maintains current
value assignments of other agents in an1����������	�
��� ([2]). We also adopt the
1
��������������� � ������������������� from [5] to represent whether the CPS it holds is consistent.
To determine whichOK message is the most updated one and to discard obsolete mes-
sages, we introduce for each agent a time flag called��������������� 5 which is incremented
by 1 when the agent changes its value. When sendingOK/FC messages, an agent in-
cludes its� �!�"��������� 5 with its assignment. The receiving agent checks the attached
��������������� 5 s and updates its context only if the message is valid. In the example above,
by the ��������������� 5#� , A4’s new assignment (due toA6’s backjump) will overwrite ex-
ecutions fromA5 (due toA7’s backtrack); however the newA3’s assignment (due to
A11’s backjump) will eventually overwrite all executions below it.

The Dynamic Value and Variable Ordering Heuristics

TheDDBJ algorithm uses dynamic value and variable ordering heuristics. Each agent
keeps a potential conflict counter list of its domain values,and a potential conflict
counter list of other agents. An agent chooses the value which has the lowest counter
value to assigns its variable, and sends theOK message (which contains the partial so-
lution) to the agent which has the highest counter value (andFC messages to other
linked agents). If there is a tie, the agent can use the chronological order. At start, all
the counter values are equally zeros.

When a dead end is detected by an agent, the dead end discovering (DED) agent
performs updating its priority lists in two steps. In the first step, it decreases the counter
of the culprit agent (the agent whose value causes the dead end), then it sends the
BT message to the culprit agent. The culprit agent, upon receiving theBT message,
increases the counter of the sender (the DED agent) and increases the counter of its

1 52 43 6 7

A1 A1
A2 A2

A1
A2

A1
A2

A5 domain (7)

A3 A3

A4 A4 A4

A1 conflicts
A2 conflicts
A3 conflicts

A4 conflicts

PC
PC

BT

A3

Fig. 2. An example of the heuristics: AgentA5 comes to a dead end, sends aBT message to
culprit agentA4, sends “potential conflict” -PC messages toA1, A2

value that causes the backtrack, then it follows the backjumping procedure. In second
step, the DED agent determines its “potential conflicting agents” (PC agents). A PC
agent is thefirst agent whose value conflicts with a value in the domain of the
DED agent. The DED agent increases the counters of the PC agents, sends a “potential
conflict” - PCmessage to the PC agents. The PC agents, after receiving thePCmessage,
increase the counters of their values (that cause the dead end), increase the counter of
the DED agent. The idea here is to give more priority to the agents at higher top level of
the search tree to change their values. The heuristics of dynamic ordering of value and
variable would intuitively help to avoid thrashing on values selected by the very first
agents and improve the ordering of agents.

An example is shown in Fig.2 to illustrate how the heuristics work. AgentA5 has 7
values in its domain. The value of agentA1 conflicts with the values (value id) 1, 2, 4, 5
of agentA5, thus these values are removed from the available values of agentA5. The
value of agentA2 conflicts with the values 2, 3, 4, 6. The value of agentA3 conflicts
with the values 1, 3, 4. The value of agentA4 conflicts with the values 4, 6, 7 where
the value 7 is the last available value in the domain of agentA5. ThusA4 is the culprit
agent with respect to agentA5. Following the first step, agentA5 increases the counter
of agentA4, sends aBT to agentA4. AgentA4, upon receiving theBT, increases the
counter of agentA5 and increases the counter of its corresponding value.

In the second step, agentA5 determines thatA1 andA2 are the PC agents, as they
are first agents who remove the values 1, 2, 3, 4, 5, 6 from its domain. AgentA3 is not a
PC agent, since its value conflicts with the values 1, 3, 4 ofA5 that have been removed
by conflicting with the value of agents A1, A2. Thus, agentA5 increases the counters
of A1 andA2, sendsPC messages toA1 andA2. AgentA1 andA2, when receive the
PC message, increase the counter ofA5 and increase the counter of their corresponding
value.

Detailed Algorithm Description

TheDDBJalgorithm uses 8 types of messages as follows:

1. SUCCESS: a terminationmessage which is broadcasted to all agents, by the last
assigned agent, when a solution has been found.

2. FAILURE: a terminationmessage which is broadcasted to all agents, by the first
agent, when it has determined the problem has no solution.

3. ERROR: a terminationmessage which is broadcasted to all agents when the algo-
rithm encounters error (e.g. exceeded limit of time/resources).

4. OK: a message which contains the current partial solution (CPS)composed of a
list of ������� �
� ��� �&����� ��� �
 tuples and their associate�����"� � ��� � 5 ’s. This message is
sent to the next agent according to the sending agent’s decision of ordering.

5. FC: a message which contains a copy ofOK message. This message is sent by the
assigning agent to the linked agents that have not been assigned, according to its
1
���������	�
��� .

6. NG: a message which contains a nogood partial solution. It is sent to the linked
agents that have not been assigned, according to its1
��������� �
��� .

7. BT: a message which contains a nogood partial solution. It is sent back to the culprit
agent (the last agent in the nogood partial solution).

8. PC: a message which contains a nogood partial solution. It is sent to potential con-
flicting agents determined by the agent when a conflict occurs.

The DDBJ algorithm is executed simultaneously on all agents in parallel. An ap-
propriate function is called depending on the type of the received message. At start, an
emptyOK message is sent to the first agent for initialization.

Upon receiving anOK message, functionreceiveOK() is executed. It first checks
if the message is valid (line 1); otherwise, it is older than, or equally timely to, the
stored�����"� � ��� � 5 s 3 and discarded. Next,�����"��������� 5 s get updated (line 2). It then
checks whether the message’s partial solution (MPS) contains the previously deter-
mined nogood(meaning current1����������	�
��� � ���������
��������� = 	 � � ��� and the MPS con-
tains 1
���������	�
���). If it is the case, the agent simply does nothing and returns(line
3,4). Otherwise, it updates its context by the MPS (line 6). If the update succeeds,
meaning its consistent domain of values is not empty, the agent assigns the value (line
8). Otherwise, it backtracks to the last assigned agent (line 10).

FunctionreceiveFC() is called when anFC message is received. The agent checks
and discards obsolete message (line 1), otherwise updates its ��������������� 5 s (line 2). It
then checks whether the message does not contain the previously determined nogood.
If it is the case, it resets the consistency state to�
� � � (line 3,4). Whenever the consis-
tency state is�
� � � (line 5), the agent updates its context (line 6). If the update does
not succeed, it does the following: sendingNG messages to linked agents that are not
assigned, sendingPC messages to the determined PCAs, updating its memory of PCAs
and backjumping to the culprit agent.

When receiving anNG message, the functionreceiveNG() checks to see if
1
��������������� contains the MPS. If it is the case, it removes last one or moretuples
in its 1
��������������� to be the same as the received nogood, restores the values accord-
ingly (which are associate with those tuples) (line 2) and resets the consistency state
(line 3). Otherwise, if the message is newer than its1
���������	�
��� , the agent updates
its context (line 5,6,7). If the update does not succeed, it functions similarly to func-
tion receiveFC(). In both cases, if the agent is an assigned agent, it has to reset itself
unassigned (line 11,12).

3 the latter happens when the agent has already received anNGmessage which contains the same
time flag

procedure receiveOK()
1: if ����� is newer than�����
	���
����
� then
2: update����������������� s
3: if previously determined nogoodthen
4: return
5: set �����
	 �!
"�#�
�%$ &�'�	��(�#���!�
	�� = �*),+-�
6: updateDomain(MPS)
7: if successthen
8: assignVal()
9: else

10: backJump(�-),�
./��'�+ �)
end
procedure receiveFC()
1: if ����� is newer than�����
	���
����
� then
2: update����������������� s
3: if not previously determined nogoodthen
4: set �����
	 �!
"�#�
�%$ &�'�	��(�#���!�
	�� = �*),+-�
5: if �����
	���
"���
�0$ &�'�	1�(�*�����2	�� then
6: updateDomain(MPS)
7: if not successthen
8: update PCA
9: sendNG to unassigned agents;PC to agents in PCA

10: backJump(&�+-3 �-)����)
end
procedure receiveNG()
1: if �����
	���
"���
� orderly contains�4��� then
2: restoreDom()
3: set �����
	 �!
"�#�
�%$ &�'�	��(�#���!�
	�� = 56��37�
�
4: else if �4�(� is newer than�����2	��!
8���
� then
5: set �����
	 �!
"�#�
�%$ &�'�	��(�#���!�
	�� = 56��37�
�
6: update����������������� s
7: updateDomain(MPS- 39�:���)
8: if not successthen
9: update PCA

10: sendNG to unassigned agents;PC to agents in PCA
11: backJump(&�+-3 �-)����)
12: if �2�2375 is assignedthen
13: reset to unassigned

end

FunctionreceivePC() simply updates the agent’s memory of PCAs and value pri-
ority. FunctionreceiveBT(), when aBT message is received, first updates the memory
of PCAs and value priority (line 1,2). It then finds the next available value, by calling
functionassignVal(). Note that it has to check if the message is still valid (meaning that
its variable is assigned and the message is not too old), (line 3,4,5), since severalBT
messages can be sent simultaneously to the agent, and some have already arrived and
been processed.

procedure receivePC()
1: update value priority / PCA

end
procedure receiveBT()
1: update value priority / PCA
2: if �
��3 5 is assignedthen
3: if my �����2	��!
8���
� is NOT newer����� then
4: assignVal()

end
procedureassignVal()
1: findNextVal()
2: if found a consistent valuethen
3: Increase� ��� �,���*��� �
4: if �
��3 5 is last agentthen
5: broadcastSUCCESS to all agents
6: else
7: sendOK to next agent;FC to connected agents
8: else
9: backJump(�-),�
./��'�+ �)

end
procedurebackJump(�����
	�� � 	������)
1: if �
��3 5 is first agentthen
2: broadcastFAILURE to all agents
3: else
4: set �����
	 �!
"�#�
�%$ &�'�	��(�#���!�
	�� = 56��37�
�
5: reset to unassigned
6: sendBT to agent�����
	�� � 	������
7: update PCA

end

Function assignVal() tries to find a next consistent value (line 1), forwards
the CPS to the next agent (line 7), otherwise it backtracks (line 9). Function
backJump(�����
	�� � 	������) performs the backjumping by resetting the agent context and
sendingBT message to agent1
��������� �	����� . FunctionupdateDomain(MPS) simply up-
dates its value domain,1
���������	�
��� with the input MPS. As soon as it finds the domain
empty, the function returns the detected nogood.

5 Soundness, Completeness and Termination

The argument for soundness is close to the one given in [8]. The fact that agents only
forward consistent assignments inOK messages at only one place in functionassign-
Val(), line 7, implies that the receiving agents receive only consistent assignments. A
solution is reported by the last agent only in functionassignVal() at line 5. At this point,
all the agents have assigned their variables, and the assignments are consistent. Thus
the algorithm is sound.

For completeness, we need to show thatDDBJ is able to produce all solutions and
terminate. The algorithm only backtracks, by sendingBT messages, in functionback-
Jump(), which implements the graph-based backjumping. It has been shown in [10] that
graph-based backjumping only makessafe jumps. In other words, the algorithm back-
jumps to the culprit variable, and this jump does not lead to missing any solution. Sim-
ilarly in DDBJ, multiplesafe jumpsmay be performed at the same time simultaneously
which are caused by different culprits detected by differentagents. The re-assignments
of the culprit agents then happen simultaneously. However, the one with the highest
level in the search hierarchy tree will eventually replace all others. Thus the algorithm
performs an exhaustive search and is able to produce all solutions. Hence, it is complete.

In each backtrack step, there is at least one value of a variable that is removed (line 5
in backJump()). The domains of variables are finite implies finite number ofbacktracks,
orBTmessages, untilFAILUREmessages are broadcasted (line 2 inbackJump()). Sim-
ilarly, eachOK message (only sent inassignVal(), line 7) increases the number of as-
signed variables by 1, until the last variable whereSUCCESSmessages are broadcasted.
Therefore, the algorithm terminates,

In DDBJ, agents do not have to store nogoods. An agent has to keep only the cur-
rent 1����������	�
��� and the associated� �!�"��������� 5 ’s, which have at most� elements. In
addition, an agent also needs to maintain two priority listsof its value domain and other
agents. Thus, the algorithm’s spatial complexity is linear.

6 Experimental Results

This section gives an experimental evaluation of our algorithm DDBJ in comparison
with two other well known algorithms, the distributed asynchronous algorithm -DiDB
([6]) and the distributed synchronous algorithm -AFC ([8]). The DDBJ is tested in 2
versions: one version is without the dynamic ordering heuristics, calledDBJ, to measure
the performance of the semi-asynchronous backjumping procedure itself, and the other
version is the fullDDBJ algorithm.

The algorithms are tested on distributed binary CSPs which are randomly generated
using the problem generatorJavaCSP([11]). The problems are generated based on 4
setting parameters:

– � - The number of variables (or number of agents),
– � - The number of values in the domain of each variable (domain size),
– � - The constraint density (which reflects the number of constraints), and
– � - The constraint tightness (which refers to the number of value pairs which are

disallowed by the constraint).

These settings are commonly used in experimental evaluation of CSP algorithms ([12],
[13], [8]). The problem generator has the ability to generate only feasible problem in-
stances (having solutions). Thus, it is advantage to generate only feasible problem in-
stances for problems in transition phase which are most hardest to solve and so it is
easy to highlight differences in algorithm performance ([3]). Note that the problem in-
stances are generated with the setting parameters applied globally, not by interleaving
of independent subproblems.

We recall the distinction between Distributed Systems and Distributed Computing
([3]). The latter is belong to the research field of High Performance Computing, where
the problem is to divide/distribute, in a efficient way, somecomputation load onto sev-
eral connected (or distributed) computing machines. The efficiency is then defined as
�	5#� � � � 5 ���

where
�

is the number of distributed machines ([14]).
In this work, we are concerning the former case, Distributed Systems, where the

problems in question have their distributed characteristics in nature: they are spread over
a number of distributed agents. As in [3], [6], [8], [5], we use the following measures
as the criteria for evaluation:

– Number of cycles(or running time): to estimate the algorithm concurrency / asyn-
chrony, as used in [2].

– Number of messages: to estimate the overhead of the algorithm affecting on the
distributed environment, where the cost of sending messagesis usually considered
being more expensive than local computation of agents ([8]).

– Number of constraint checks: to evaluate computational efforts done locally by the
agents.

– Number of value assignments: to represent the cost of value changes committed
that may be high in some applications.

The first two measures are the most important factors in measuring the efficiency
of distributed algorithms. The number of cycles indicates the running time of an algo-
rithm. More importantly, it shows how much parallelism is exploited in asynchronous
algorithms compared to synchronous ones. The notion of “concurrent checks” is dis-
cussed in [15]. In this work, we make an assumption that the constraints are simple
so that an agent is able to process incomming messages, perform necessary constraint
checks and send out messages in one clock cycle ([2]). Thus, the ratio “N.Constraint
checks/N.Cycles” gives a good estimate of the average numberof concurrent constraint
checks. As argued in [16], synchronous distributed algorithms usually have better ef-
ficiency than asynchronous ones (in terms of overheads, redundant efforts, etc.), but
asynchronous algorithms can exploit concurrency, thus resulting in better running time
(or less number of running cycles). The latter issue is not discussed in [8] when the
authors compareAFCwith asynchronous algorithmsABTandDiDB.

The messages are set up to be delivered to destinationnot necessarily in the order in
which they were sent, except for the algorithmDiDB where it requires the messages are
delivered in order. The number of messages is an important measure for DisCSP algo-
rithms, since in distributed environment, sending messages to other distributed agents
is considered expensive ([3]).

To simulate a distributed environment and asynchronous execution, we use a dis-
crete event simulator. We have a global discrete clock counting in cycles to simulate
a realtime clock. At each cycle, all agents read the incommingmessages, process the
computation and send out messages to other agents. If there is not any incomming mes-
sage, an agent simply sits idly. We recall the assumption that an agent is able to process
incomming messages, perform necessary constraint checks and send out messages in
one clock cycle. The algorithm is executed simultaneously in parallel on all agents. All
agents terminate when an termination message is broadcastedand the algorithm fin-
ishes. The algorithm’s running time is counted as the numberof global clock cycles.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

N. Cycles

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
10

2

10
3

10
4

10
5

10
6

10
7

N. Cons Checks

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

10
7

N. Messages

tightness

AFC
DiDB
DBJ
DDBJ

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

10
7

N. Assignments

tightness

AFC
DiDB
DBJ
DDBJ

Fig. 3. Results (inlog10scale) for N.vars v=15, domain d=15, density c=0.5. At transition phase
when tightness��� � $ ��� � $ � , DiDB solved � ��� �
	 ��� , AFC, DBJ andDDBJ solved � ����� of
100 generated instances

Furthermore, to simulate the real distributed environmentas close as possible, we set
up the link channels between agents such that the delivery time is randomly generated
between 1 and the total number of agents, which best reflects theeffect of the size
of the constraint network. Because the concurrency of computation of asynchronous
algorithms is difficult to see from other measurements (number of constraint checks,
number of messages), this setting helps to differentiate asynchronous and synchronous
(or sequential) execution schema. The same argument for fairness comparison is also
pointed out in [15].

Because of limited space, the results of 2 test sets are presented. The first test set
includes problems with the number of variables� ��
�� , the variable domain� ��
�� ,
the constraint density probability� ��� ��� and the constraint tightness varying from� ��

to � � � in � ��
 steps. The results inlog10scale are shown in Figure 3. Each plot point
is the average of results taken from 100 randomly generated instances. An algorithm is
stopped when the number of running cycle reaches a limit of
�� ������� ������� cycles or the
number of messages sentin one cycleexceeds
���� ������� .

In term of running time, theDBJ is about 2-4 times faster than theAFCat transition
phase. The difference indicates the concurrency effect of the asynchronous backward
phase ofDBJ. TheDiDB, because of its fully asynchronous nature, is better than the
DBJ and AFC. However, when combined with the dynamic ordering heuristics, the
DDBJ is the best algorithm among the four for most cases.

On number of messages, theDDBJ is better than the other three algorithms by a
factor of one order approximately. The only drawback is that the messageOK of DDBJ
(andAFC, DBJ) is longer than that ofDiDB. However, since the number of elements
in a message is at most equal to the number of variable� and each element contains
agent id, value id and its associate�����"��� ����� 5 , that all can be represented by 3 integer
numbers, the size of a message is not more than� � integer numbers.

In term of computational performance,DDBJ outperforms both algorithmsDiDB
andAFC by a factor of � to
���� on hard instances, where theDBJ comes next. This
can be explained by the fact that by combining good value/variable ordering heuristics
and exploiting concurrency, it also helps to increase the algorithm’s computational effi-
ciency and reduces the number of messages. Note that the synchronous algorithmAFC
always performs better than the fully asynchronous algorithmDiDB, that it agrees with
the result obtained in [8].

In more details, at transition phase where problems are hardest to solve (constraint
tightness is between� ��� and � ���), DiDB is only able to solve� ���������	� of the gen-
erated problem instances: we stop the algorithm when the number of messages sent in
one cycle exceeds the limit of
���� ������� messages, since most of the time and memory
resources are consumed by processing duplicated messages.This message duplication
problem arises significantly when the messages are deliveredwith some random delay.
The other three algorithms are able to solve all the problemswithin the limits of running
cycles and messages.

In the second test set, we evaluate the algorithms by 4 feasible, high dimension
problems, with the number of variables equals 20, 30, 30 and 40, respectively. The
constraint tightness is set to a value close to� � � so that the problems are in the transi-
tion phase. The limit of number of cycles is now set to
���� ������� ������� . We excludeDiDB
because of its limited capacity of solving high dimension problems: the number of mes-
sages explodes exponentially so that after a few hundred running cycles, the number of
messages soon exceeds the limit of available resource. The results inlog10 scale are
shown in Figure 4. The percentages show the numbers of problems solved by the algo-
rithms. Each subgraph shows the median value of the results of50 generated instances.
The reason of taking the median value instead of the mean value is that in the transition
phase, the variance of the results is too high, thus the median value indicates better the
result average.

It is clear that the semi-asynchronous algorithmDBJ always performs better than
AFC by a factor of 2 or more. It shows the effect of the asynchronousbackjumping
phase on the algorithm efficiency. TheDDBJ outperforms both the others by a factor
of one to two orders for all measures. On the number of problemssolved, theDDBJ is
able to solve all the problem instances for the 4 cases within the time limit, where the
other two algorithms can not. This measure again confirms thehigh efficiency of the
heuristics used inDDBJ. For the last two problems where the numbers of variables are

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8
v20 − d15 − c0.5 − t0.45

100%

100%
98%

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8
v30 − d10 − c0.2 − t0.55

100%

90%
84%

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8

10^9
v30 − d10 − c0.3 − t0.4

100%

78%
54%

DDBJ DBJ AFC
10^4

10^5

10^6

10^7

10^8

10^9
v40 − d15 − c0.3 − t0.3

100%

52%
40%

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Cycles
C.Checks
Mesg
V.Asgn

Fig. 4. Results (inlog10scale) of feasible, high dimension problems. The percentages represent
the number of problems solved within a time limit.
a) N.vars v=20, domain d=15, density c=0.5, tightness t=0.45
b) N.vars v=30, domain d=10, density c=0.2, tightness t=0.55
c) N.vars v=30, domain d=10, density c=0.3, tightness t=0.4
d) N.vars v=40, domain d=15, density c=0.2, tightness t=0.4

30 and 40,AFC is able to solve only��� � and ���	� of the instances. The performance
measures ofAFC are at least one order behind those ofDDBJ. These factors will be
larger if we increase the running time limit forAFC to solve more instances.

One can also notice that as the number of variables increases,the performance dif-
ference between theDDBJ and the other algorithms increases. When� =15, DDBJ is
faster by a factor of about one order, when� =30,40,DDBJ outperforms the others by
a factor of about two orders of magnitude on number of runningcycles and number of
messages.

7 Conclusion

A new complete, distributed, semi-asynchronous algorithm, DDBJ, is presented. The
algorithm adopts a sequentially assigning procedure, an asynchronous forward check-
ing scheme in itsadvancing phaseand an asynchronous graph-based safe-backjumping

scheme in itsbackjumping phase. The sequentiality of variable assignment enables
DDBJ to integrate the powerful heuristics of dynamic value and variable ordering and
still easily to control the algorithm completeness. Experimental results show that the
DDBJ algorithm outperforms theDiDB and theAFC algorithms by a factor ofone to
two orders of magnitude on hard instances of randomly generatedDisCSPs, both on
concurrent running time, number of messages and on other measures of number of con-
straint checks, number of variable assignments.

Acknowledgments

We would like to thank Prof. Amnon Meisels for his visiting presentation on theAFC
algorithm. We also thank Arnold Maestre, Dr. Christian Bessi`ere for their helpful ex-
plication of theDiDB algorithm. Many thanks to Dr. Bart Craenen for his problem
generatorJavaCSP. This work was performed at the Artificial Intelligence Laboratory
of the Swiss Federal Institute of Technology in Lausanne and was sponsored by project
COCONUT under contract number IST-2000-26063.

References

1. Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A Review. In:
Proceedings of Autonomous Agents and Multi-Agent Systems. (2000)

2. Yokoo, M., Durfee, E., Ishida, T.: Distributed constraint satisfaction for formalizing dis-
tributed problem solving. In: Proceedings DCS. (1992)

3. Yokoo, M.: Distributed Constraint Satisfaction. Springer-Verlag (2001)
4. Ginsberg, M.: Dynamic Backtracking. Journal of Artificial Intelligence Research1 (1993)

25–46
5. Hamadi, Y.: Interleaved backtracking in distributed constraint networks. International Jour-

nal on Artificial Intelligence Tools11 (2002) 167–188
6. Bessière, C., Maestre, A., Meseguer, P.: Distributed Dynamic Backtracking. In: Proceedings

of the IJCAI’01 workshop on Distributed Constraint Reasoning. (2001)
7. Silaghi, M., Sam-Haroud, D., Faltings, B.: Asynchronous Search with Aggregations. In:

Proceedings AAAI’00. (2000)
8. Meisels, A., Zivan, R.: Asynchronous Forward-checking on DisCSPs. In: Proceedings of

the Workshop on Distributed Constraints (DCR-03), Acapulco, August 2003. (2003)
9. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning and

cutset decomposition. Artificial Intelligence41(3) (1990) 273–312
10. Dechter, R., Frost, D.: Backtracking algorithms for constraint satisfaction problems - a tuto-

rial survey. Technical report, University of California, Irvine (1998)
11. Craenen, B.: JavaCsp package. http://www.xs4all.nl/˜bcraenen/JavaCsp/ (2003)
12. Prosser, P.: Binary constraint satisfaction problems:some are harder than others. In: Pro-

ceedings of the 11th European Conference on Artificial Intelligence - ECAI’94. (1994)
13. Bessiere, C.: Random Uniform CSP Generators.

http://www.xs4all.nl/˜bessiere/generator.html (1996)
14. Dowd, K., Severance, C.: High Performance Computing. Secondedn. O’Reilly & Associates

(1998)
15. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed

constraints processing algorithms. In: Proceedings of theWorkshop on Distributed Con-
straint Reasoning, in AAMAS-2002. (2002)

16. Barbosa, V.C.: An Introduction to Distributed Algorithms.The MIT Press (1996)

Incremental Constraint Propagation for

Interleaved Distributed Backtracking ?

Georg Ringwelski

Cork Constraint Computation Center, University College Cork, Ireland
g.ringwelski@4c.ucc.ie

Abstract. This paper describes a way to integrate established propaga-
tion techniques known from monolithic algorithms in the asynchronous
distributed tree-based algorithm IDIBT without extending its protocol.
It furthermore provides some preliminary experimental results of the in-
tegrated algorithms. These results show that propagation can often, es-
pecially in very hard problems, reduce the number of required messages
to solve the problem. The trade-off for this, i.e. the number of required
(concurrent) constraint checks, naturally increases when more propaga-
tion is applied. However, this computational effort can be reduced when
propagation is performed incrementally as in the algorithms introduced
in this paper.

1 Introduction

Constraint propagation is known to massively improve the performance of search
in monolithic Constraint Satisfaction Problems (CSP). With propagation the
search space can be significantly pruned such that solutions are found quicker.
In the past two decades several propagation algorithms to enhance tree-based
search have been investigated. The most popular are Forward-Checking and
Look-Ahead which improve the performance of complete depth-first search for
almost all problems although they produce some computational overhead.

Consequently, an integration of Propagation in distributed search algorithms
was a topic of various research efforts in recent years. It could be very success-
fully applied in synchronized distributed search algorithms [7] (the propagation
may still be asynchronous). Synchronized distributed algorithms with propa-
gation currently seem to be among the fastest algorithms to solve Distributed
CSP. It seems that the pruning of the search space makes up the drawback of
synchronization, namely that no use is made of parallel computational power.
In completely asynchronous search it is unclear whether propagation will have
a positive effect at all. The crucial point is that in asynchronous algorithms the
processes have to reason on the basis of beliefs which can be wrong. If the re-
sults of such error-based reasoning are propagated, this may handicap the global

? This work has received support from the Embark Initiative of the Irish Research
Council of Science Engineering and Technology under Grant PD2002/21 and from
Science Foundation Ireland under Grant 00/PI.1/C075

approximation to a solution. I know of only one family of algorithms that per-
forms propagation during asynchronous distributed search is DMAC-ABT [9, 5].
These algorithms are said to maintain any kind of consistency (not necessarily
AC) during the complete and asynchronous distributed search with the algo-
rithm AAS [10]. Using bounds-consistency DMAC-ABT is said to use in average
10 times fewer messages than AAS on random problems.

In this paper I investigate to which extend constraint propagation can im-
prove the performance of the asynchronous distributed search algorithm Inter-
leaved Distributed Backtracking [4]. I integrate Forward-Checking and Partial-
Look-Ahead in the complete algorithm IDIBT and analyze the performance of
the resulting algorithms.

The paper is organized as follows: In the next Section I provide some basic
definitions from CSP, Distributed CSP, Distributed Systems and give a short
Introduction to Forward-Checking and Look-Ahead; In Section 3 I outline the
simplified version of the IDIBT algorithm that I will use as a basis for the
new algorithms IDIBT FC and IDIBT LA which are described in Sections 4
and 5; In Section 6 I prove the correctness of the new algorithms and provide
some preliminary experimental results; Section 7 concludes and describes some
directions for future work.

2 Preliminaries

(Distributed) Constraint Satisfaction Problems A Constraint Satisfaction
Problem (CSP) is given by a triple (C,X, D) where C is a set of constraints,
X = {x1, ..., xn} is a set of variables and D = {D1, ..., Dn} are their respective
domains. In a binary CSP each constraint Cij ∈ C is associated to a binary
relation sem(Cij) ⊆ Di × Dj in the Cartesian Product of the domains of the
constraint’s two variables xi and xj . A Distributed CSP (DisCSP) is given by
a tuple (C,X, D,A) such that (C,X, D) is a CSP which is distributed among a
set of uniform agents A.

Constraint Solving and Constraint Propagation With Constraint Solving
we refer to the process of finding a solution to a CSP or DisCSP or proving that
no solution exists. A solution to P = (C,X, D) is a variable assignment which
maps to every variable xi ∈ X a value di ∈ Di, such that ∀Cij ∈ C : (di, dj) ∈
sem(Cij) ∧ ∀Cji ∈ C : (dj , di) ∈ sem(Cji) holds. Given a total order ≺ on X
the complete labeling tree associated to P and ≺:= {(xi, xj)|i < j}, is given by

– the direct descendants of the root are (x1, d) for each d ∈ D1

– The direct descendants of node (xj , d) are the nodes (xj+1, e) where e ∈
Dj+1.

In a complete labeling tree, each path from the root to any leaf represents one
distinct assignment of all variables to values from their respective domain. Such a
tree can be pruned without restricting the set of solutions. Whenever no solution

is represented by the assignments in a subtree, this subtree can be safely pruned.
Forward-Checking considers the constraints between any node (xi, di) and all
nodes (xj , dj) in the subtree with root (xi, di). Whenever a constraint Cij exists
such that (di, dj) /∈ sem(Cij), then the node (xj , dj) and all its descendants
can be pruned. Informally speaking this means that with the choice of a value
for a variable all values from future variables that are inconsistent with that
choice are not considered during search. Look-Ahead prunes even more from
the search tree. It uses the notion of Arc-consistency (AC), which is defined as
follows. A constraint Cij (i.e. an arc in the constraint graph associated to a CSP
[3]) is said to be arc-consistent if and only if for each value di ∈ Di at least
one value dj ∈ Dj exists such that (di, dj) ∈ sem(Cij). A binary CSP (resp. its
associated graph) is said to be arc-consistent if and only if all its constraints are
arc-consistent. Partial-Look-Ahead enforces AC after Forward-Checking for all
future variables of the search, i.e. AC of all constraints between variables that
are not yet labeled. Full-Look-Ahead or MAC (Maintaining Arc-consistency)
enforces arc-consistency after Forward-Checking for the whole CSP. Look-Ahead
may exclude further values from the domain of un-instantiated variables and thus
prune the respective subtrees in the complete labeling tree. For a more detailed
description of these techniques please refer to [1].

Distributed Systems Distributed Systems (DS) are given by a set of agents
which are executed in concurrent processes and communicate by messages. Each
agent can send any other a message provided it knows its address. In this paper,
I use the following communication primitives for DS:

send(R,msg) sends the message msg to the each agent in R. The message can
be any string;

behavior receive(msg) provides an agent-behavior, i.e. a procedure which is
called as soon as a certain message msg arrives. msg can be or can contain
variables which will be unified with the received values. Thus msg is usually
a pattern which an incoming message must match in order to trigger the
behavior. The pattern is usually a structured term which identifies the kind
of message received, and its arguments are variables which are unified with
the actual information contained in the message;

Furthermore, I assume that every message eventually arrives, and that between
every directed pair of agents the order in which messages are sent is the same
as that in which they are received. Whenever an agent refers to itself it will use
the synonym self. A more detailed introduction to distributed computing can
be found in [2].

3 Background: The IDIBT Algorithm

Interleaved Distributed Backtracking (IDIBT) is defined in [4]. It solves DisCSPs,
where each variable imposes one agent and the same assumptions concerning the

message passing are made that I described in the previous Section. That paper
introduces a protocol for finding a global static variable ordering and a protocol
for search. The first is not of interest in this paper. I assume any static order
≺ of variables to be given. From this order, IDIBT infers for each agent xi the
sets of children Γ+ = {xj |xi ≺ xj ∧ ∃Cij ∈ C} and parents Γ− = {xj |xj ≺
xi ∧ ∃Cij ∈ C} .

The search algorithm is given by a protocol for multiple uniform worker
agents and one controller agent which starts the algorithm and is to detect
termination. Each agent executes NC parallel search contexts to speed up the
algorithm. For simplicity I omit this technique and assume NC=1 throughout
this paper without restricting generality. Upon initialization, each worker xi

chooses any value di from its domain and sends an infoVal(xi, di) message to
each agent in Γ+. Then search is performed by two behaviors: One processes
infoVal messages and one processes btSet messages, they are presented in
Algorithms 1 and 2 and outlined in the following text. The behaviors use the
following local data structures and procedures:

Γ− and Γ+ as described above
myDomain the allowed values for self
constraints the constraints over self
myVal the current value of self
myCpt the current instantiation number of self. This is used as a time-stamp

of the assignment to myVal

value[p] the currently known value of agent p for each p ∈ Γ−

cpt[p] the time-stamp associated to value[p]

procedure getValue(type) returns a value which is consistent with Γ− and
increments myCpt. If no such value exists it does not increment the counter.
If type equals info, then it returns the first value from myDomain starting
at myVal in a circular manner. If type = bt, it returns the first value that is
larger than myVal.

procedure contextConsistency(rcpt):boolean returns true, iff the context
represented in rcpt is consistent with myCpt and cpt, i.e. if the timestamps
for all elements in rcpt and the local knowledge are equal. Otherwise it
returns false.

procedure nearest(A):agent returns the nearest agent from A, which is in
IDIBT the smallest which is greater than self with respect to the chosen
order of agents.

When an agent receives the information of a new assignment x = d of one
of its parents with an infoVal(x, d) message, it updates its local view to x by
adapting value[x] and incrementing cpt[x]. Then it tries to find a value which
is compatible with the new knowledge. If it finds one and if it is different1 from
the previous one it sends respective infoVal messages to all children. If it cannot
find a consistent value in its domain, it initiates backtracking and sends a btSet

1 This is not described in [4], but implemented in Youssef Hamadi’s version of the
algorithm

Algorithm 1: IDIBT behavior to process assignments of remote agents

behavior receive(infoVal(x, d)) begin
value[x] := d;
cpt[x] := cpt[x] +1 ;
oldVal := myVal;
myVal := getValue(info);
if myVal 6= nil AND myVal 6= oldVal then

sendMsg(Γ+,infoVal(self,myVal));

else
sendMsg(nearest(Γ−),btSet(Γ−,cpt[Γ−]);

end

message to its nearest parent. This message contains the set of all parents and
the currently known context cpt of self.

Algorithm 2: IDIBT behavior to process backtracking messages

behavior receive(btSet(set, rcpt)) begin
if contextConsistency(rcpt) then

myVal := getValue(bt);
if myVal 6= nil then

sendMsg(Γ+,infoVal(self,myVal));

else
if Γ− ∪ set = ∅ then

broadcast(noSolution);

else
sendMsg(nearest(Γ−∪set),btSet(Γ−∪set,cpt[Γ−∪rcpt]);

end

When an agent receives a btSet message, it checks whether the context in
that the message was created matches the currently known local context. If not,
the backtracking was initiated on different beliefs and is thus obsolete. If the
context matches, self tries to find another consistent value from its domain
which was not used before. If such a value exists, it is communicated to the
children. If no consistent value in myDomain remains, further backtracking be-
comes necessary. However, if there are no parents, i.e. self is the root node of
the labeling tree we can deduce that the DisCSP is insoluble. This is broadcast
to all other agents to make them terminate. If self has no values left, but has
parent agents, it tries to make them backtrack and change their values. This is
done by sending a btSet message to the nearest parent or the nearest node in
the set of parents of the children that initiated the backtracking.

4 The IDIBT FC Algorithm

IDIBT already uses a form of Forward-Checking by choosing only values for
myVal which are consistent with Γ−. This is indeed Forward-Checking, because
Γ− includes all agents that have constraints with self and are located closer
to the root of the labeling tree. The procedure getValue in IDIBT checks ev-
ery new value against all constraints with parent variables. However, the do-
main of the variable is not changed in IDIBT and the computation of consistent
values must be performed from scratch with every received infoVal message.
IDIBT FC does the constraint checking incrementally and prunes the variable
domain such that the procedure getValue can return any value from the current
variable domain while still implementing Forward-Checking. With this we can
omit the constraint checks performed by getValue in IDIBT. The IDIBT FC
behavior to process infoVal messages extends the IDIBT algorithm by pruning
and relaxing myDomain incrementally with every received new knowledge about
remote assignments. IDIBT FC uses Algorithm 2 to process btSet messages
just as IDIBT, but differs in the behavior to process infoVal messages. The
IDIBT FC version of the latter behavior is presented in Algorithm 3. When an

Algorithm 3: IDIBT FC behavior to process assignments of remote agents

behavior receive(infoVal(x, d)) begin
1 if value[x] 6= nil then

relax(x,value[x],cpt[x]);

value[x] := d;
cpt[x] := cpt[x] +1 ;

2 propagate(x,d,cpt[x]);
oldVal := myVal;
myVal := getValue(info);
if myVal 6= nil AND myVal 6= oldVal then

sendMsg(Γ+,infoVal(self,myVal));

else
sendMsg(nearest(Γ−),btSet(Γ−,cpt[Γ−]);

end

IDIBT FC agent receives an assignment of a remote agent, it relaxes its domain
by “de-propagating” the formerly known assignment (line 1) of that variable.
After updating its local knowledge it prunes its domain with Forward-Checking
the new assignment (line 2). The manipulation of myDomain is performed by the
procedures relax and propagte which are presented in Algorithms 4 and 5.
They use the the following additional data structures:

initDomain the initial domain of self
counter[d] the number of removals of value d ∈initDomain. It counts, how

often the value d had to be pruned due to Forward-Checking

removed[(var, val, ccnt)] the set of all values that are pruned due to the assign-
ment of the remote variable var to val when cnt[var] equals ccnt.

Furthermore the procedure getValue(type) is changed, such that in the case of
type = bt it returns the value from initDomain which is greater than curVal.
With this adaptation it is invariant against the changes of myDomain and thus
behaves exactly as in in IDIBT. In the case of type = info the procedure get-
Value does not perform any constraint checks, but just delivers the next value
from myDomain. Thus, it differs from the respective procedure in IDIBT which
checks consistency with Γ− for each value to be returned.

Algorithm 4: Procedure to relax former assignment

procedure relax(var, val, ccnt) begin
foreach d ∈ removed[(var, val, ccnt)] do

counter[d] := counter[d] -1;
if counter[d] = 0 then

myDomain := myDomain ∪{d};

end

The procedure relax (Alg. 4) decrements the counter for all values which
were pruned due to the obsolete assignment (var, val, ccnt). If one of these
counter-values thus becomes zero, no justification remains to exclude the re-
spective value from myDomain and it is consequently re-inserted in myDomain.

Algorithm 5: Procedure to propagate new assignment

procedure propagate(var, val, ccnt) begin
D := getInconsitentValuesFC(var, val);
foreach d ∈ D do

myDomain := myDomain \{d} ;
counter[d] := counter[d] +1;

removed[(var, val, ccnt)] := D;

end

The procedure propagate (Alg. 5) computes all values from initDomain

which are inconsistent with the assignment (var, val, ccnt). This is done with
the procedure getInconsistentValuesFC which is presented in Algorithm 6.
All of these values d, non-regarding whether d ∈ myDomain, are removed from
myDomain and the pruning is counted by incrementing counter[d]. Finally the
pruned values are stored in removed[(var, val, ccnt)].

The procedure getInconsistenValuesFC(var, val) (Alg. 6) checks for each
value d ∈ initDomain whether it is consistent with the constraint c over self

and var. If no such constraint exists d is consistent, otherwise d is consistent if

Algorithm 6: Procedure to compute inconsistent values for IDIBT FC

procedure getInconsistenValuesFC(var, val):set begin
res := ∅;
foreach d ∈initDomain do

if (c(self, var) ∈ constraints ∧ (d, val) /∈ sem(c)) ∨ (c(var, self) ∈
constraints ∧ (val, d) /∈ sem(c)) then

res := res ∪{d};

return res;

end

(d, val) ∈ sem(c) or (val, d) ∈ sem(c). If d is not consistent it is added to the set
of values which can be pruned, i.e. the set which is returned by the procedure.

5 The IDIBT LA Algorithm

The IDIBT LA algorithm works very similar to the IDIBT FC algorithm. The
difference is that the procedure getInconsistentValuesFC is replaced by get-
InconsistentValuesLA, which is capable of detecting more values which can
be safely removed from myDomain. It computes all values that are inconsistent
in the sense of Arc-consistency with the current assignment of parent variables.
It thus prunes all non-arc-consistent values from unlabeled variables making it
a Partial-Look-Ahead search algorithm. A Full-Look-Ahead respectively a MAC
algorithm would require a view to the assignments of children as well and is thus
not applicable to IDIBT without extending the protocol. For the extra propa-
gation in Look-Ahead we have, however, to pay a high price (with my current
implementation): We have to store the entire CSP in each agent. This is certainly
not a practical approach to a distributed Look-Ahead algorithm and I am trying
to find decentralized ways to compute the set of those inconsistent values in a
distributed algorithm in my ongoing research (cf. [8]). For the current topic of
my research, namely the investigation of the speedup we can expect from prop-
agation in distributed search, it is sufficient to use the Look-Ahead algorithm
described below.

The procedure getInconsistentValuesLA(var, val) (Alg. 7) uses an addi-
tional data structure csp which stores the entire CSP as it was when self was
created. First csp is copied to ccsp and the domain of var is assigned to {val}.
Then Arc-consistency is enforced for ccsp. If this leads to the detection of an
inconsistency initDomain is returned to make Algorithm 3 backtrack because
no values are left that getValue could choose. If the resulting CSP is consistent,
the pruned values of self are returned allowing Alg. 3 to selet one of remaining
values and post it to the children of self.

The IDIBT LA algorithm is only used for the experimental evaluation of
the integration of propagation in IDIBT. I do not consider it in the theoretical
evaluations because of its practical irrelevance.

Algorithm 7: Procedure to compute inconsistent values for IDIBT LA

procedure getInconsistenValuesLA(var, val):set begin
ccsp := csp.clone();
ccsp.assign(var, val);
ccsp.enforce-AC();
if inconsistent(ccsp) then

return initDomain

return initDomain \ ccsp.getDomain(self);

end

6 Evaluation

6.1 Correctness of IDIBT FC

Assuming that IDIBT is sound and complete I can show that IDIBT FC is also.
For this I show that no solutions are pruned by the propagation (completeness),
that it does not allow for more solutions (soundness) and that it terminates.

Theorem 1. The IDIBT FC algorithm is correct.

Proof. Completeness and Soundness.
The algorithm IDIBT is sound and complete, thus it is sufficient to show that
the procedure getValue in IDIBT FC will return just the same values that it
returns in IDIBT. Algorithm 5 incrementally prunes all values from myDomain

that are not consistent with any value known from the view to parent agents
stored in value. The procedure getValue(info) will only return values from
the thus reduced myDomain. Whenever an assignment of a remote agent is known
to be obsolete, all its consequences are removed from the current knowledge by
Algorithm 4. This includes that all values for which no justification remains
to exclude them are re-inserted in myDomain. All values that are not returned
by getValue(info) are thus inconsistent with the current knowledge on par-
ent values and would thus not be returned by getValue(info) in IDIBT. The
procedure getValue(bt) operates on initDomain and behaves thus just as in
IDIBT. Consequently, getValue in IDIBT FC will return just the same values
as it does in IDIBT.
Termination.
Since all variable domains are finite, the sets removed[(var, val, ccnt)] and
initDomain are finite and thus the loops in Algorithms 4,5 and 6 will termi-
nate. These algorithms send no messages such that no deadlocks may occur.
Since IDIBT terminates and the additionally executed algorithms (4, 5 and 6)
all terminate, IDIBT FC will also always terminate.

6.2 Empirical Evaluation

I have implemented the IDIBT, IDIBT FC and IDIBT LA algorithms in a multi-
threaded Java program. Each agent constitutes one concurrent thread and the

agents communicate by dropping messages to other agents’ message-channels.
A random delay between 10 and 300 msec is applied for each message delivery.
Another source of randomness results from the scheduling of the concurrent
threads by the Operating System. This scheduling can be assumed to be fair,
but not follow any regular patterns. The common memory of the threads is not
used except the references to the channels. To evaluate the efficiency I used the
following measures:

– The number of (sequential) messages sent until one solution is found or the
algorithm detected that no solution exists. Sequential messages represent the
largest number of messages the were executed consecutively. The number of
messages exposes the required communication effort;

– The number of concurrent constraint checks [6] which exposes the computa-
tional effort of the agents.

I ran two sets of tests to evaluate the performance of the algorithms with Java
1.4.2 on a Linux desktop computer one 1.8GHz Pentium processor and 512MB
memory.

rbc-t Random binary CSPs (v, x, d, t) with v variables, domains size x (for each
variable), density = d and varying tightness t. The sample size was 20 and
the figures show median values.

n-queens The n-queens problem. For each n I used a sample size of 20 and the
figures show median values.

The experimental results for (20, 8, 0.2, t) instances of rbc-t are shown in Figures
1 and 3. All the problems with tightness smaller than 0.53 had solutions, some
of the problems with tightness 0.53 to 0.6 had solutions while almost none of
the problems with tightness larger than 0.63 had solutions. The results for the
bf n-queens are shown in Figures 2 and 4. All instances of this problem have
comparably many solutions. Please note that all figures have logarithmic scales!

It can be seen in Figures 1 and 2 that the median number of concurrent
constraint checks can almost always be reduced by using incremental constraint
propagation in IDIBT FC compared to IDIBT. When IDIBT LA is applied,
more constraint checks become necessary to enforce the stronger form of local
consistency. However, in the tight problems inconsistencies can be detected faster
such that the difference of ccc between IDIBT MAC and the other algorithms
becomes smaller.

The median number of messages can be reduced when more propagation
is used as can be seen in Figures 3 and 4. The first figure represents the ab-
solute number of messages while the latter represents the largest number of
sequential messages. When Look-Ahead is applied IDIBT is almost always sig-
nificantly faster then with Forward-Checking. Especially insoluble problems can
be “solved” much faster with more propagation, because inconsistencies are de-
tected earlier. The number of required messages does not always match be-
tween IDIBT and IDIBT FC, although the same propagation (namely Forward-
Checking) is performed. This seems to be an effect of the small sample size I

 10

 100

 1000

 10000

 100000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

c
o
n

c
u

rr
e

n
t
c
o

n
s
tr

a
in

t
c
h

e
c
k
s
 (

lo
g

 s
c
a

le
!)

tightness

concurrent constraint checks rbc-t

ccc IDIBT
ccc IDIBT-FC
ccc IDIBT-LA

Fig. 1. Required concurrent constraint checks to solve random binary CSP
(20, 8, 0.2, tightness).

 10

 100

 1000

 10000

 100000

 1e+06

 4 6 8 10 12 14 16

c
o
n
c
u
rr

e
n
t
c
o
n

s
tr

a
in

t
c
h
e
c
k
s
 (

lo
g
 s

c
a
le

!)

n

concurrent constraint checks n-queens

ccc IDBT
ccc IDIBT-FC
ccc IDIBT-LA

Fig. 2. Required concurrent constraint checks to solve n-queens problem.

used in this set of experiments. The standard deviation of these numbers is very
large in all experiments.

 10

 100

 1000

 10000

 100000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
s
s
a

g
e

s
 (

lo
g

 s
c
a

le
!)

tightness

messages rbc-t

messages IDIBT
messages IDIBT-FC
messages IDIBT-LA

Fig. 3. Absolute number of messages required to solve random binary CSP
(20, 8, 0.2, tighness).

7 Conclusion

The number of messages required to solve a DisCSP with the IDIBT algorithm
can in most cases be reduced when constraint propagation is applied. The more
values are pruned during propagation, the less messages become necessary. The
trade-off for this reduction of communication is that more constraint checks
become necessary inside the agents. A trade-off between constraint checks and
search is well known from monolithic CSP. For most CSPs the integration of
some, usually not the most restrictive, propagation into some, usually not the
most clever, search algorithm yields the fastest runtime results. In DisCSP, this
trade-off has to be re-investigated with respect to the number of required mes-
sages. This common metric for the evaluation of distributed algorithms may lead
to completely different ideal combinations of search and inference.

Incrementality is an important prerequisite for efficient constraint process-
ing. When solving NP-complete problems, it is often highly desirable to main-
tain previously processed results and not to recompute everything from scratch.
Although constraint propagation is not NP-complete, it still is performed incre-
mentally in most state-of-the-art professional constraint solvers. The algorithms
presented in this reduce the required number of constraint checks and thus the

 10

 100

 1000

 10000

 4 6 8 10 12 14 16

s
e

q
u

e
n

ti
a

l
m

e
s
s
a

g
e

s
 (

lo
g

 s
c
a

le
!)

n

sequential messages n-queens

messages IDBT
messages IDIBT-FC
messages IDIBT-LA

Fig. 4. Required sequential messages to solve n-queens problem.

local computational effort of the agents by using incremental constraint propa-
gation.

In future work we will investigate more precisely the trade-off between com-
putation and communication. Another topic to be looked at is the robustness
of the algorithm against message delays. For this we will check the standard
deviation of our metrics after running the tests on larger samples. Furthermore
we will investigate extensions of the algorithms presented here, which may use
additional messages for propagation purposes. This will be done by integrating
distributed propagation into a distributed search.

References

1. K.R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

2. George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems, 3rd
edition. Addison Wesley, 2001.

3. Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

4. Youssef Hamadi. Interleaved backtracking in distributed constraint networks. In-
ternational Journal on Artificial Intelligence Tools, 11(2):167–188, 2002.

5. M.C.Silaghi, D.Sam-Haroud, and B.Faltings. Maintaining hierarchical distributed
consistencies. In CP2000 DCS Workshop, 2000.

6. A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of
distributed constraint processing algorithms. In Proc. 4th Workshop on Distributed
Constraint Reasoning, Bologna, Italy, 2002.

7. Igor Razgon and Amnon Meisels. Distributed forward checking with dynamic
ordering. In Proc. IJCAI01-Workshop on Distributed Constraint Reasoning, 2001.

8. Georg Ringwelski. The ddac4 algorithm for arc-consistency enforcement in dy-
namic and distributed csp. In Proc. 5th workshop on Distributed Constraint Rea-
soning, Toronto, 2004.

9. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Consistency maintainance for abt.
In Toby Walsh, editor, Principles and Practice of Constraint Programming - CP
2001, pages 271–285. Springer LNCS 2239, 2001.

10. Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Asynchronous search
with aggregations. In Proc. AAAI/IAAI 2000, pages 917–922, 2000.

Synchronous, Asynchronous and Hybrid Algorithms for
DisCSPs?

Ismel Brito and Pedro Meseguer

Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.fismel|pedrog@iiia.csic.es
Abstract. There is some debate about the kind of algorithms that are most suit-
able to solve DisCSP. Synchronous algorithms exchange updated information
with a low degree of parallelism. Asynchronous algorithms use less updated in-
formation with a higher parallelism. Hybrid algorithms combine both features.
Lately, there is some evidence that synchronous algorithmscould be more effi-
cient than asynchronous ones for one problem class. In this paper, we present
some improvements on existing synchronous and asynchronous algorithms, as
well as a new hybrid algorithm. We provide an empirical investigation of these
algorithms onn-queens and binary random DisCSPs.

1 Introduction

In the last years, the AI community has shown an increasing interest in distributed
problem solving. Regarding distributed constraint reasoning, several synchronous and
asynchronous backtracking procedures have been proposed to solve a constraint net-
work distributed among several agents [15, 16,6, 13, 1, 14, 4].

Broadly speaking, a synchronous algorithm is based on the notion of privilege, a
token that is passed among agents. Only one agent is active atany time, the one having
the privilege, while the rest of agents are waiting1. When the process in the active agent
terminates, it passes the privilege to another agent, whichnow becomes the active one.
These algorithms have a low degree of parallelism, but theiragents receive updated
information. In an asynchronous algorithm every agent is active at any time. They have
a high degree of parallelism, but the information that any agent knows about other
agents is less updated than in synchronous procedures.

There is some debate around the efficiency of these two type ofalgorithms. The
general opinion was that asynchronous algorithms were moreefficient than the syn-
chronous ones, because of their higher concurrency2. In the last decade, attention was? This research is supported by the REPLI project TIC-2002-04470-C03-03.

1 Except for special topological arrangements of the constraint graph. See [3] for a synchronous
algorithm where several agents are active concurrently.

2 However, a careful reading of [17] shows that ”synchronous backtracking might be as efficient
as asynchronous backtracking due to the communication overhead” (footnote 15).

mainly devoted to the study and development of asynchronousprocedures, which rep-
resented a new approach with respect to synchronous ones, directly derived from cen-
tralized algorithms.

Recently, Zivan and Meisels reported that the performance of a distributed and
synchronous version of Conflict-Based Backjumping (CBJ) surpasses Asynchronous
Backtracking (ABT) for the random problem classhn = 10;m = 10; p1 = 0:7i.

In this paper we continue this line of research, and we study the performance of three
different procedures, one synchronous, one asynchronous and one hybrid, for solving
sparse, medium and dense DisCSPs. The synchronous algorithm isSCBJ, a distributed
version of the Conflict-Based Backjumping (CBJ) [12] algorithm. The asynchronous
algorithm is the standardABT enhanced with some heuristics. The hybrid algorithm
is ABT-Hyb, a novelABT-like algorithm, where some synchronization is introducedto
avoid redundant messages. In addition, we present a detailed approach for processing
messages by packets instead of processing messages one by one, inABT andABT-Hyb.
We also provide an experimental evaluation for new low-costheuristics for variable and
value reordering.

The rest of the paper is organized as follows. In Section 2 we recall some basic def-
initions of DisCSP. In Section 3 we recall two existing algorithms for DisCSP solving:
the synchronousSCBJ, and the asynchronousABT. In Section 4 we presentABT-Hyb,
a new hybrid algorithm that combines asynchronous and synchronous elements, prov-
ing its soundness and completeness. In Section 5 we describethe experimental setting
(including some implementation details) and discuss the experimental results. Finally,
Section 6 contains several conclusions and directions of further work.

2 Distributed CSP

A constraint network is defined by a triple(X ;D; C), whereX = fx1; : : : ; xng is a set
of n variables,D = fD(x1); : : : ; D(xn)g is the set of their respective finite domains,
andC is a set of constraints declaring those value combinations which are acceptable
for variables. The CSP involves finding values for the problem variables satisfying all
constraints. We restrict our attention to constraints relating two variables, namelybinary
constraints. A constraint among the variablesxi andxj will be denoted bycij .

A distributed CSP (DisCSP) is a CSP where the variables, domains and constraints
of the underlying network are distributed among automated agents. Formally, a finite
variable-based distributed constraint network is defined by a 5-tuple(X ;D; C;A; �),
whereX , D andC are as before.A = f1; : : : ; pg is a set ofp agents, and� : X ! A
is a function that maps each variable to its agent. Each variable belongs to one agent.
The distribution of variables dividesC in two disjoint subsets,Cintra = fcijj�(xi) =�(xj)g, andCinter = fcijj�(xi) 6= �(xj)g, called intra-agent and inter-agent con-
straint sets, respectively. An intra-agent constraintcij is known by the agent owner
of xi andxj, and it is unknown by the other agents. Usually, it is considered that an
inter-agent constraintcij is known by the agents�(xi) and�(xj) [6, 17].

A solution of a distributed CSP is an assignment of values to variables satisfying
every constraint (although distributed CSP literature focuses mainly on solving inter-
agent constraints). Distributed CSPs are solved by the collective and coordinated action

of agentsA. Agents communicate by exchanging messages. It is assumed that the delay
in delivering a message is finite but random. For a given pair of agents, messages are
delivered in the order they were sent.

For simplicity purposes, and to emphasize on distribution aspects, along the rest
of the paper we assume that each agent owns exactly one variable. We identify the
agent number with its variable index (8xi 2 X ; �(xi) = i). For this assumption, in the
following we do not differentiate between a variable and itsowner agent.

3 Existing Algorithms for DisCSP

3.1 Synchronous Search: SCBJ

Synchronous procedures can be directly derived from constraint algorithms in central-
ized search when extended to distributed environments. Generally, only one agent is
active at any time in a a synchronous algorithm. Because of this, the active agent has
always updated information, in the form of either a partial solution (from the part of the
problem already assigned) or a backtracking.

The synchronous backtracking (SBT) algorithm for DisCSP was presented in [17].
Synchronous Conflict-Based Backjumping (SCBJ) [21] is a distributed version of the
centralized Conflict-Based Backjumping (CBJ) algorithm [11]. WhileSBTperforms
chronological backtrackking,SCBJdoes not. Each agent keeps theconflict set(CS),
formed by the assigned variables which are inconsistent with some value of the agent
variable. Letself be a generic agent. When a wipe-out occurs, it allows toself to back-
track directly to the closest conflict variable inCSself , sayxi and sendsCSself �fxig
to be added toCSi. Like SBT, SCBJexchangesInfo andBack messages, which are
processed as follows (self is the receiver):

– Info(partial-solution). self receives the partial solution, assigns its variable consis-
tently, selects the next variable and sends the new partial solution to it in a Info
message. If it has no consistent value,self sends aBack message to the closest
variable inCSself .

– Back(conflict-set). self has to change its value, becausesenderhas no value con-
sistent with the partial solution. The current value ofself is discarded, and the new
conflict-set ofself is the union of its old conflict-set and the one received. After
this,self behaves as after receiving aInfo message.

After receiving any of these messages,self becomes the active agent.self passes
the privilege to other agent sending to it anInfo or a Backmessage. The search ends
unsuccessfully when any agent encounters an empty domain and its CSis empty. Oth-
erwise, a solution will be found when the last agent is reached and there is a consistent
value for it.

3.2 Asynchronous Search: ABT

In asynchronous search, all agents are active at any time, having a high degree of par-
allelism. Asynchronous Backtracking (ABT) [15, 17–19] was a pioneer asynchronous

algorithm to solve DisCSP.ABT requires a total agent ordering. Agenti has higher pri-
ority than j if i appears beforej in the ordering. Each agent keeps its own agent view
and nogood store. Considering a generic agentself, the agent view ofself is the set
of values that it believes to be assigned to its higher priority agents. The nogood store
keeps nogoods as justifications of inconsistent values.

Whenself makes an assignment, it sendsInfo messages, to its lower priority agents,
informing about its current assignment. Whenself receives aBack message, the in-
cluded nogood is accepted if it is consistent withself’s agent view, otherwise it is dis-
carded as obsolete. An accepted nogood is added toself’s nogood store to justify the
deletion of the value it targets. In standardABT, whenself cannot take any value con-
sistent with its agent view, because of the original constraints or because of the received
nogoods, new nogoods are generated as inconsistent subsetsof the agent view, and are
sent, asBackmessages, to the closest agent involved, causing backtracking.

In our ABT implementation, we keep a single nogood per removed value. When
there is no value consistent with the agent view, a new nogoodis generated by resolving
all nogoods, as described in [1]. This nogood is sent in aBackmessage.

If self receives a nogood mentioning another agent not connected with it, self re-
quires to add a link from that agent toself. self sends an assignment to that agent and
after received, a link from the other agent toself will exist. The search terminates when
achieving quiescence in the network, meaning that a solution has been found because all
agents are agree with their current assignment, or when the empty nogood is generated,
meaning that the problem is unsolvable.

4 Hybrid Search: ABT-Hyb

In ABT, manyBackmessages are obsolete when they arrive to the receiver.ABT could
save much work if these messages were not sent. Although the sender agent cannot de-
tect those messages that will become obsolete when reachingthe receiver, it is possible
to avoid sending those which are redundant.

Let self be a generic agent. Whenself sends aBack message, it performs a new
assignment and informs of it to lower priority agents, without waiting to receive any
message showing the effect of theBackmessage in higher agents. This can be a source
of inefficiency in the following situation. Ifk sends aBackmessage toj causing a wipe-
out inj, thenj sends aBackmessage to some previous agenti. If j takes the same value
as before and sends anInfo message tok beforei changes its value,k will find again
the same inconsistency so it will send the same nogood toj in aBackmessage. Agentj
will discard this message as obsolete, sending again its value in anInfo. The process is
repeated generating useless messages, until some higher variable changes its value and
the correspondingInfo arrives toj andk.

Based on this intuition, we presentABT-Hyb, a hybrid algorithm that combines
asynchronous and synchronous elements.ABT-Hybbehaves likeABT when no back-
tracking is performed: agents take their values asynchronously and inform lower prior-
ity agents. However, when an agent has to backtrack, it does it synchronously as follows.
If self has no value consistent with its agent view and its nogood store, it sends aBack
message and enters in awaiting state. In this state,self has no assigned value, and it

does not send out any message. Any receivedInfo message is accepted, updatingself’s
agent view accordingly. Any receivedBackmessage is rejected as obsolete, sinceself
has no value assigned.self leaves the waiting state when receiving one the following
messages,

1. anInfo message that allowsself to has a value consistent with its agent view or,
2. an Info message from the receiver of the lastBack message (the one causing to

enter the waiting state) or,
3. aStopmessage informing that the problem has not solution.

When self receives one of these messages, it leaves the waiting state.At this point,
ABT-Hybswitches toABT.

Like in ABT, the problem is unsolvable if during the search an empty nogood is
derived. Otherwise, a solution is found when no messages aretravelling through the
network (i.e.quiescence is reached in the network). No matter the synchronous back-
tracking,ABT-Hybinherits the good theoretical properties ofABT, namely soundness,
completeness and termination. To proof these properties, we start with some lemmas.

Lemma 1. In ABT-Hyb, no agent will stay forever in a waiting state.

Proof. In ABT-Hyb, an agent enters the waiting state after sending aBackmessage to
a higher priority agent. The first agent (x1) in the ordering will not enter in the waiting
state because noBackmessage departs from it. Suppose that no agent inx1; x2; : : : ; xk�1
is waiting forever, and suppose thatxk enters the waiting state after sending aBackmes-
sage toxj (1 � j � k � 1). We will show thatxk will not be forever in the waiting
state.

Whenxj receives theBackmessage, there are two possible states:

1. xj is waiting. Since no agent inx1; x2; : : : ; xk�1 is waiting forever,xj will leave
the waiting state at some point. Ifxj has a value consistent with its new agent view,
it will send it toxk in an Info message. Ifxj has no value consistent with its new
agent view, it will backtrack and enter again in a waiting state. This can be done
a finite number of times (because there is a finite number of values per variable)
before finding a consistent value or discovering that the problem has no solution
generating aStopmessage. In both cases,xk will leave the waiting state.

2. xj is not waiting. TheBackmessage could be:
(a) Obsolete in the value ofxj. In this case, there is anInfo message travelling

from xj to xk that has not arrived toxk. After receiving such a message,xk
will leave the waiting state.

(b) Obsolete not in the value ofxj. In this case,xj resends toxk its value by an
Info message. After receiving such a message,xk will leave the waiting state.

(c) Not obsolete. The value ofxj is forbidden by the nogood in theBackmessage,
and a new value is tried. Ifxj finds another value consistent with its agent view,
it takes it and send anInfo message toxk, which will leave the waiting state.
Otherwise,xj has to backtrack to a previous agent in the ordering, and enters
the waiting state. Since no agent inx1; x2; : : : ; xk�1 is waiting forever,xj will
leave the waiting state at some point, and as explained in thepoint 1 above, it
will cause thatxk will leave the waiting state as well.

Therefore, we conclude thatxk will not stay forever in the waiting state. 2
Lemma 2. In ABT-Hyb, if an agent is in a waiting state, the network is not quiescent.

Proof. An agent is in a waiting state after sending aBackmessage. Because Lemma 1,
this agent will leave the waiting state in finite time. This isdone after receiving anInfo
or Stopmessage. Therefore, if there is an agent in a waiting state, the network cannot
be quiescent at least until one of those messages has been produced. 2
Lemma 3. A nogood, discarded as obsolete because the receiver is in a waiting state,
will be resent to the receiver until the sender realizes thatit has been solved, or the
empty nogood has been derived.

Proof. If an agentk sends a nogood to an agentj that is in a waiting state, this nogood
is discarded and agentk enters the waiting state. From Lemma 1, no agent can stay
forever in a waiting state, so agentk will leave that state in finite time. This is done
after receiving either,

1. An Info message fromj. If this message does not solve the nogood, it will be
generated and resend toj. If it solves it, this nogood is not generated, exactly in the
same way asABT does.

2. An Info message allowing a consistent value fork. In this case, the nogood is
solved, so it is not resent again.

3. A Stopmessage. The process terminates without solution.

Therefore, we conclude that the nogood is sent again until itis solved (either by anInfo
message fromj or from another agent) or the empty nogood is generated. 2
Proposition 1. ABT-Hyb is sound.

Proof. From Lemma 2,ABT-Hybreaches quiescence only when no agent is in a waiting
state. From this fact,ABT-Hybsoundness derives directly fromABT soundness: when
the network is quiescent all agents satisfy their constraints, so the current assignments
of agents form a solution. If this would not be the case, at least one agent would detect
a violated constraint and it would send a message, breaking the quiescence assumption.2
Proposition 2. ABT-Hyb is complete and terminates.

Proof. From Lemma 3, the synchronicity of backtracking inABT-Hybdoes not cause
to ignore any nogood. Then,ABT-Hybexplores the search space as good asABT does.
From this fact,ABT-Hybcompleteness comes directly fromABT completeness. New
nogoods are generated by logical inference from the initialconstraints, so the empty
nogood cannot be derived if there is a solution. Total agent ordering causes that back-
tracking discards one value in the highest variable reachedby theBackmessage. Since
the number of values is finite, the process will find a solutionif it exists, or it will derive
the empty nogood otherwise.

To see thatABT-Hybterminates, we have to prove that no agent falls into an infi-
nite loop. This comes from the fact that agents cannot stay forever in the waiting state
(Lemma 1), and thatABT agents cannot be in an endless loop. 2

Alternatively to synchronous backtracking, we can avoid resending redundantBack
messages assuming exponential-space algorithms. Let assume thatself stores every
nogood sent, while it is not obsolete. If a wipe-out occurs inself, if the new generated
nogood is equal to one of the stored nogoods, it is not sent. This allowsself not sending
identical nogoods until some higher agent changes its valueand the correspondingInfo
arrives toself. But it requires exponential space, since the number of nogoods generated
could be exponential in the number of agents with higher priority thanself. A similar
idea is also found in [16] for the asynchronous weak-commitment algorithm (AWC).

5 Experimental Results

We have testedSCBJ, ABT andABT-Hybalgorithms on the distributedn-queens prob-
lem and on random binary problems. Algorithmic performanceis evaluated considering
computation and communication costs. In synchronous algorithms, the computation ef-
fort is measured by the total number of constraint checks (cc), and the global commu-
nication effort is evaluated by the total number of messagesexchanged among agents
(msg).

For the asynchronous algorithmsABT and ABT-Hyb, computation effort is mea-
sured by the number of “concurrent constraint checks” (ccc), which was defined in [8],
following Lamport’s logic clocks [10]. Each agent has a counter for its own number of
constraint checks. The number of concurrent constraint checks is computed by attach-
ing to every message the current counter of the constraint checks of the sending agent.
When an agent receives a message, it updates its counter to the higher value between
its own counter and the counter attached to the received message. When the algorithm
terminates, the highest value among all the agent counters is taken as the number of con-
current constraint checks. Informally, this number approximates the longest sequence
of constraint checks not performed concurrently. As for synchronous search, we evalu-
ate the global communication effort as the total number of messages exchanged among
agents (msg).

5.1 Implementation Details

Nogood management.To assure polynomial space inABT and ABT-Hyb, we keep
one nogood per forbidden value. However, if several nogoodsare available for each
value, it may be advisable to choose the most appropriate resolvent in order to speed
up search. With this aim, we implement the following heuristic. If a value is forbidden
for some stored nogood, and a new nogood forbidding the same value arrives, we store
the nogood with the highest possible lowest variable involved. Notice that, even those
nogoods which are obsolete on the value of the receiving variable can be used to select
the most suitable nogood with respect to the heuristic.

Saving messages.In asynchronous algorithms, some tricks can be used to decrease the
number of messages exchanged. We implement the following:

1. Value inAddL. When a new link with agentk is requested byself, instead of send-
ing the AddL message and assuming this assignment until a confirmation isre-
ceived,ABT include in theAddLmessage the value ofxk recorded in the received
nogood. After reception of theAddL message, agentk informsself of its current
value only if it is different from the value contained in theAddL message. In this
way, some messages may be saved.

2. Avoid resending same values. ABT can keep track of the last value taken byself.
When selecting a new value, if it happens that the new value isthe same as the
last value,self does not resend it to�+(self), because this information is already
known. Again, this may save some messages.

Processing Messages by Packets. ABT agents can process messages one by one, react-
ing as soon as a message is received. However, this strategy of single-message process
may cause some useless work. For instance, consider the reception of anInfo message
reporting a change of an agent value, immediately followed by anotherInfo from the
same agent. Processing the first message causes some work that becomes useless as
soon as the second message arrives. More complex examples can be devised, causing
to waste substantial effort.

To prevent useless work, instead of reacting after each received message, the algo-
rithm reads all messages that are in the input buffer and stores them in internal data
structures. Then, the algorithm processes all read messages as a whole, ignoring those
messages that become obsolete by the presence of another message. We call this strat-
egyprocessing messages by packets, where a packet is the set of messages that are read
from the input buffer until it becomes empty. Somehow, this idea was mentioned in
[17] and [21]. In the latter, a comparison betweensingle-message processandprocess-
ing messages by packetsis presented. However, in none of them a formal protocol for
processing messages by packetsis completely developed.

When an agent processes messages by packets, it reads all messages from its input
buffer, and processes them as a whole. The agent looks for anyconsistent value after
its agent view and its nogood store are updated with these incoming messages. To do
that, we propose a protocol which requires three lists to store the incoming messages,
the Info-List, Back-List and theAddL-List. In each list is stored the messages of the
corresponding type, following the reception order. Each list of messages is processed
as follows.

1. Info-List. First, theInfo-List is processed. For each sender agent, allInfo mes-
sages but the last are ignored. The remainingInfo messages updateself agent view,
removing nogoods if needed.

2. Back-List. Second, theBack-List is processed. ObsoleteBack messages are ig-
nored.self stores nogoods of no obsolete messages, and it sendsAddL messages
to unrelated agents appearing in those nogoods. For those messages containing the
correct current value ofself, the sender is recorded inRemainderSet.

3. AddL-List. Third, theAddL-List is processed updating�+(self) without sending
theInfo message.

lex SCBJ ABT ABT-Hybn cc msg ccc msg ccc msg
10 1,612 170 2,223 740 1,699 502
15 31,761 2,231 56,412 13,978 32,373 6,881
20 6,518,652306,33711,084,0122,198,304 6,086,376 995,902
25 1,771,192 70,336 3,868,136 693,832 1,660,448 271,092

rand SCBJ ABT ABT-Hybn cc msg ccc msg ccc msg
10 965 91 1,742 332 916 238
15 4,120 247 7,697 1,185 4,007 786
20 19,532 921 20,661 4,772 15,720 2,748
25 21,372 746 31,849 6,553 27,055 3,863

min SCBJ ABT ABT-Hybn cc msg ccc msg ccc msg
10 2,800 204 3,716 896 2,988 555
15 35,339 2,210 49,442 11,055 32,303 5,906
20 215,816 10,765 320,278 63,378 165,338 28,686
25 19,949,074791,08938,450,7866,716,50517,614,3302,795,319

Table 1.Results for distributedn-queens with lex, random and min-conflict value ordering.

4. Consistent value. Fourth,self tries to find a value consistency with the agent view.
If a wipe-out happens in this process, the correspondingBackmessage is sent, and
a consistent value is searched.

5. Info sent. Fifth,Info messages containingself current value are sent to all agents in�+(self) and to all agents inRemainderSet. The three lists become empty.

As described in Section 3.2, the search ends when quiescenceis reached (i.e. all agents
are happy with their current assignment) or an empty nogood is derived.

5.2 Distributedn-queens Problem

The distributedn-queens problem is the classicaln-queens problem (locaten queens
in an n � n chessboard such that no pair of queens are attacking each other) where
each queen is hold by an independent agent. We have evaluatedthe algorithms for
four dimensionsn = 10; 15; 20; 25. In Table 1 we show the results in terms of con-
straint checks/concurrent constraint checks and total number of messages exchanged,
averaged over 100 executions with different random seeds (ties are broken randomly).
Lexicographic (static) variable ordering has been used forSCBJ, ABT, andABT-Hyb.
Three value ordering heuristics have been testedlex (lexicographic),rand (random) and
min (min-conflicts) [9] on all the algorithms. Given that an exact min computation re-
quires extra messages, we have made an approximation, whichconsists of computing
the heuristic assuming initial domains. With this approximation, theminvalue ordering
heuristic can be computed in a preprocessing step.

We observe that the random value ordering provides the best performance for every
algorithm and every dimension tested. Because of that, in the following we concentrate
our analysis on the results of random value ordering.

Considering the relative performance of asynchronous algorithms,ABT-Hybis al-
ways better thanABT, in both number of concurrent constraint checks and total number
of messages. It is relevant to scrutinize the improvement ofABT-HyboverABT with re-
spect to the type of messages. In Table 2, we provide the totalnumber of messages per
message type forSCBJ, ABT andABT-Hybwith random value ordering. InABT-Hyb
the number of obsoleteBackmessages decreases in one order of magnitude with respect
the same type of messages inABT, causingABT-Hybto improve overABT. However,
this improvement goes beyond the savings in obsoleteBackmessages, becauseInfo and
Backmessages decrement to a larger extent. This is due to the following collective ef-
fect. When anABT agent sends aBackmessage, it tries to get a new consistent value
without knowing the effect that backtracking causes in higher priority agents. If it finds
such a consistent value, it informs to lower priority agentsusing Info messages. If it
happens that this value is not consistent with new values that backtracking causes in
higher priority agents, theseInfo messages would be useless, and newBackmessages
would be generated.ABT-Hyb tries to avoid this situation. When anABT-Hybagent
sends aBackmessage, it waits until it receives notice of the effect of backtracking in
higher priority agents. When it leaves the waiting state, ittries to get a new consistent
value. At this point, it knows some effect of the backtracking on higher priority agents,
so the new value will be consistent with it. In this way, the new value has more chance
to be consistent with all higher priority agents, and theInfo messages carrying it will be
more likely to make useful work.

Considering the performance of synchronous vs. asynchronous algorithms, we com-
pareSCBJagainstABT-Hybwith random value ordering. In terms of computation ef-
fort (constraint checks)SCBJperforms better thanABT-Hyb for n = 25 and worse
for n = 20, with very similar results forn = 10; 15. In terms of communication cost,
SCBJuses less messages thanABT-Hybfor the four dimensions tested. This comparison
should be qualified, noting that the lenght ofInfo messages differ from synchronous to
asynchronous algorithms. InSCBJ, anInfo message contains the partial solution which
could be of sizen, while in ABT-Hyban Info message contains a single assignment of
size 1. Assuming that the communication cost depends more crucially on the number
of messages than on their length, we conclude thatSCBJis more efficient in communi-
cation terms thanABT-Hyb. Considering both aspects, computation effort and commu-
nication cost,SCBJseems to be the algorithm of choice for then-queens problem.

5.3 Random Problems

Uniform binary random CSPs are characterized byhn; d; p1; p2i wheren is the number
of variables,d the number of values per variable,p1 the networkconnectivitydefined
as the ratio of existing constraints, andp2 the constrainttightnessdefined as the ratio of
forbidden value pairs. We have tested random instances of 16agents and 8 values per
agent, considering three connectivity classes, sparse (p1=0.2), medium (p1=0.5) and
dense (p1=0.8).

rand SCBJ ABT ABT-Hybn Info Back Info BackObsol Info BackObsol
10 55 36 251 81 24 195 43 2
15 146 101 901 284 91 649 137 10
20 539 382 3,6121,160 408 2,293 455 38
25 452 294 5,0271,526 520 3,240 623 50

Table 2.Number of messages exchanged bySCBJ, ABT andABT-Hybper message type, for the
distributedn-queens problem with random value ordering.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
he

ck
s

p2

Solving <n = 16, m = 8, p1 = 0.20>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s

p2

Solving <n = 16, m = 8, p1 = 0.20>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
he

ck
s

p2

Solving <n = 16, m = 8, p1 = 0.50>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

5000

10000

15000

20000

25000

30000

35000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s

p2

Solving <n = 16, m = 8, p1 = 0.50>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

20000

40000

60000

80000

100000

120000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
he

ck
s

p2

Solving <n = 16, m = 8, p1 = 0.80>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

0

10000

20000

30000

40000

50000

60000

70000

80000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
es

sa
ge

s

p2

Solving <n = 16, m = 8, p1 = 0.80>

SCBJ
SCBJ-amd1
SCBJ-amd2

ABT
ABT-Hyb

Fig. 1. Constraint checks and number of messages forSCBJ, SCBJ-amd1, SCBJ-amd2, ABT and
ABT-Hybon binary random problems.

In a synchronous algorithm, it is simple to implement some heuristic for dynamic
variable ordering. Considering the heuristic of minimum domain, an exact computation

rand SCBJ SCBJ-amd1 ABT ABT-Hybp2 Info Back Info Back Info BackObsolLink Info BackObsolLink0:20 2,6471,254 100 63 3,587 1,310 320 26 3,141 949 53 240:50 6,9133,556 477 321 24,725 7,025 2,336 40 17,6503,335 321 370:80 9,7615,265 1,052 758 58,28316,4326,497 19 37,0465,956 755 18

Table 3.Number of messages exchanged bySCBJ, SCBJ-amd1, ABT andABT-Hybper message
type, for random binary problems with random value ordering.

requires extra messages. To avoid this, we have implementedthe following approxima-
tions,

– AMD1. Each agent computes the interval[mini;maxi] of the minimum and max-
imum number of inconsistent values in the domain of every unassigned variablexi with the partial solution. This interval is included in theInfo message. Then,
the next variable to be assigned is chosen as follows: (i) if there isxi such thatmini � minfd;maxjg; 8xj unassigned, selectsxi (whered is the domain size);
(ii) otherwise, selects the variable with maximummaxj .

– AMD2. This approach only computes the current domains of theunassigned vari-
ables afterBackmessages. Whenself sends aBackmessage toxj, instead of send-
ing it directly toxj it goes chronologically. Each intermediate variable recognizes
that it is not its destination, and it includes the current size of its domain in the
message. This messages ends inxj and after assigning it, the minimum domain
heuristic without considering the effect ofxj ’s assignment can be applied on the
subset of intermediate variables. It causes some extra messages, but its benefits
pay-off.

In Figure 1, we report results averaged over 100 executions for SCBJ, SCBJ-amd1,
SCBJ-amd2, ABT andABT-Hyb, with random value ordering.

Considering synchronous algorithms, approximating minimum domains heuristic is
always beneficial both in computation effort and in communication cost. Consistently
in the three classes tested, the approximationamd1provides better results thanamd2,
both in terms of checks and messages. When usingamd1, the baseline of constraint
checks is not zero, due to the heuristic computation done as apreprocessing step.

Considering asynchronous algorithms, we observe again that ABT-Hyb is always
better thanABT for the three problem classes, in both computation effort and commu-
nication cost. We believe that this is due to the effect already described for the dis-
tributedn-queens problem. This is confirmed after analyzing the number of messages
per message type of Table 3.

Comparing the performance of synchronous vs.ABT-Hyb, we observe the follow-
ing. In terms of computation effort (constraint checks),SCBJ is always worse than
ABT-Hyb, andSCBJis often the worst algorithm (except in theh16; 8; 0:8i class, where
it is the second worst). This behaviour changes dramatically when adding the minimum
domain heuristic approximations:SCBJ-amd1andSCBJ-amd2are the best and second
best algorithms in the three classes tested, and they are always better thanABT-Hyb.

min SCBJ SCBJ-amd1 SCBJ-amd2 ABT ABT-Hybp1 cc msg cc msg cc msg ccc msg ccc msg0:20 7,100 3,277 907 153 1,811 687 3,771 4,006 3,448 3,5350:50 44,024 9,367 5,637 783 11,6772,669 30,71926,84022,22719,1410:80 102,15315,11116,2061,84340,4497,142101,49270,03358,42843,459

Table 4. Results near of the pick of difficulty on binary random classes hn = 16; m = 8i with
min-conflict value ordering.

Regarding communication costs, synchronous algorithms are always better than
asynchronous ones: consistently in the three classes tested, SCBJ-amd1, SCBJ-amd2
andSCBJare the three best algorithms (in this order). Again, the addition of minimum
domain approximations is very beneficial. As mentioned in Section 5.2,Info messages
are of different sizes in synchronous and asynchronous algorithms. Under the same as-
sumptions (communication costs depends more on the number of messages exchanged
than on their length), we conclude that for solving random binary problems,SCBJ-amd1
is the algorithm of choice.

We have also tested the three problem classes using the min-conflict value ordering.
Results appear in Table 4 for the peak of maximum difficulty. We observe a minor but
consistent improvement of all the algorithms with respect to the random value ordering.
In this case, the relative ranking of algorithms obtained with random value ordering
remains,SCBJ-amd1being the algorithm with the best performance.

We have also testedABT andABT-Hybwith random message delays. This issue was
raised first in [5], and subsequently in [21]. Preliminary results show thatABTdecreases
performance and alsoABT-Hybdoes, but to a lesser extent. This last algorithmexhibits a
more robust behavior in presence of random delays. It is worth noting that synchronous
algorithms do not increase the number of checks or messages in presence of delays.

6 Conclusions

We have presented three algorithms, one synchronousSCBJ, one asynchronousABT
and one hybridABT-Hyb, the two first being already known. We have proposedABT-
Hyb, a new algorithm that combines asynchronous and synchronous elements.ABT-Hyb
can be seen as anABT-like algorithm where backtracking is synchronized: an agent that
initiates backtracking cannot take a new value before having some notice of the effect
of its backtracking. This causes a kind of “contention effect” in backtracking agents.
Their decisions tend to be better founded than the corresponding decisions taken by
ABT agents, and therefore they are more likely to succeed.ABT-Hybinherits the good
theoretical properties ofABT: it is sound, complete and terminates.

We have implementedABT andABT-Hybwith a strategy for processing messages
by packets, together with some simple ideas to improve performance. OnSCBJwe
have proposed two approximations for the minimum domain heuristic. Empirically we
have observed thatABT-Hybclearly improves overABT, in both computation effort and
communication costs. ComparingSCBJwith ABT-Hyb, we observe thatSCBJalways
requires less messages thanABT-Hyb, for both problems tested. Considering compu-
tation effort,SCBJrequires a similar effort asABT-Hybin distributedn-queens, while

SCBJrequires more effort thanABT-Hybfor binary random problems. However, when
enhanced with minimum domain approximation for dynamic variable ordering,SCBJ-
amd1is the best algorithm in terms computation effort and in number of messages ex-
changed. Grouping these evidences together, we conclude that synchonous algorithms
enhanced with some minimum domain approximation are globally more efficient than
asynchronous ones. This does not mean that synchronous algorithms should always be
preferred to asynchronous ones, since they offer differentfunctionalities (synchronous
algorithms are less robust to network failures, privacy issues are not considered, etc.).
But for applications where efficiency is the main concern, synchronous algorithms
seems to be quite good candidates to solve DisCSP.

References

1. Bessière C., Maestre A. and Meseguer P. Distributed Dynamic Backtracking.IJCAI-01 Work-
shop on Distributed Constraint Reasoning, 9-16, Seattle, USA, 2001.

2. Bitner J. and Reingold E. Backtrack programming techniques.Communications of the ACM,
18:11, 651–656, 1975.

3. Collin Z., Dechter R., Shmuel K. On the Feasibility of Distributed Constraint Satisfaction.
In Proc. of the 12th International Joint Conference on Artificial Intelligence, IJCAI-91, 318–
324, 1991.

4. Dechter R. and Pearl J. Network-Based Heuristics for Constraint-Satisfaction Problems.Ar-
tificial Intelligence, 34, 1–38, (1988).

5. Fernandez C., Bejar R., Krishnamachari Gomes, K. Communication and Computation in
Distributed CSP Algorithms.In Proc. Principles and Practice of Constraint Satisfaction
Programming (CP-2002), 664–679, Ithaca NY, USA, July, 2002.

6. Hamadi Y., Bessière C., Quinqueton J. Backtracking in Distributed Constraint Networks.In
Proc. of the 13th ECAI, 219–223, Brighton, UK, 1998.

7. Hirayama K. and Yokoo M. The Effect of Nogood Learning in Distributed Constraint Satis-
faction.In Proceedings ICDCS’00, 169–177. 2000

8. Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing Performance of Distributed Con-
straint Processing Algorithms.AAMAS-02 Workshop on Distributed Constraint Reasoning,
86–93, Bologna, Italy, 2002.

9. Minton S. and Johnston M. and Philips A. and Laird P. Minimizing Conflicts: A Heuristic
Repair Method for Constraint Satisfaction and Scheduling Problems.Artificial Intelligence,
58, 161–205, 1992.

10. Lamport L. Time, Clock, and the Ordering of Evens in a Distributed System.Communica-
tions of the ACM, 21(7), 558–565, 1978.

11. Prosser, P. Hybrid Algorithm for the Constraint Satisfaction Problem.Computational Intel-
ligence, 9, 268–299, 1993.

12. Prosser, P. Domain Filtering can Degrade Intelligent Backtracking Search.Proc. IJCAI, 262–
267, 1993.

13. Silaghi M.C., Sam-Haroud D., Faltings B. Asynchronous Search with Aggregations.In Proc.
of the 17th AAAI, 917–922, 2000.

14. Silaghi M.C., Sam-Haroud D., Faltings B.Hybridizing ABT and AWC into a polynomial
space, complete protocol with reordering. Tech. Report EPFL, 2001.

15. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. Distributed Constraint Satisfaction for For-
malizing Distributed Problem Solving.In Proc. of the 12th International Conference on Dis-
tributed Computing System, 614–621, 1992.

16. Yokoo M. Asynchronous Weak-commitment Search for Solving Distributed Constraints Sat-
isfaction Problems.In Proceeding of the First International Conference on Principles and
Practice of Constraint Programming (CP-1995)88–102, 1995.

17. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. The Distributed Constraint Satisfaction
Problem: Formalization and Algorithms.IEEE Trans. Knowledge and Data Engineering10,
673–685, 1998.

18. Yokoo M., Ishida T. Search Algorithms for Agents. InMultiagent Systems, G. Weiss editor,
Springer, 1999.

19. Yokoo M.Distributed Constraint Satisfaction, Springer, 2001.
20. Yokoo M. , Suzuki, Hirayama K. Secure Distributed Constraint Satisfaction: Reaching

Agreement without Revealing Private Information.In Proc. of the 8th CP, 387–401, 2002.
21. Zivan, R. and Meisels, A.Synchronous and Asynchronous Search on DisCSPs.In Proc. of

EUMAS-2003, Oxford, UK, 2003

 1

E-PRIVACY REQUIREMENTS FOR
DISTRIBUTED E-SERVICES

Solange GHERNAOUTI-HÉLIE, Mohamed Ali SFAXI
Ecole des HEC, Université de Lausanne

CH – 1015 Lausanne
{sgh, mohamedali.sfaxi}@hec.unil.ch

Privacy is a real concern for e-services users. In digital environments (digital
information, dematerialization of actors, computers and networks operating mode),
technologies don’t preserve, in native mode, user’s privacy. Cyber crime, Eavesdropping,
theft of strategic information, commercial proposition, etc. could give economic
advantage to unfair competitors. The privacy concept in the cyberspace looks like a
luxury. Nowadays, cyber-criminal, hacker or cracker, what ever we call them, represent
a real threat to the society, causing malicious harm to ICT resources, to individuals,
organizations and states. Police investigations in information and communication
environments are more and more necessary and frequent. Cyber crime, as the increased
justice and police investigations needs affect effective e-privacy solutions.
Our paper presents the actual privacy concern over the Internet, describes in details our
enterprises privacy study, and analyzes the benefits and the limits of P3P approach.
Finally, recommendations are proposed to preserve privacy and satisfy security
objectives for e-services.

To see how enterprises deal with e-privacy concern, we analyze, through a study, several
privacy criteria in enterprise privacy policies. The sample is composed of 200 websites
(including amazon.com, nfl.com, nba.com...) taken at random. The main criteria are
about the use of personal data, security issues , cookies manipulation, etc... We propose a
graphic representation to visualize main criteria that enterprises must bet on and how
they can improve their privacy policy. The result shows that the majority of enterprises
don't say anything about the notification of their users when the privacy policy changes,
how they deal with users' IP addresses, the presence of third parties and the fact of
sharing or selling personal data to other entities.
We can easily notice that the needs to privacy and security are not yet well identified and
satisfied for individuals and organizations. To contribute to satisfy these needs, the
World Wide Web Consortium (W3C) tries, with the Platform for Privacy Preferences
(P3P) approach, to ensure privacy. The Platform for Privacy Preferences (P3P) is
indented to be a simple, automated way for Internet users to have more control over the
use of personal information on visited website. In fact, P3P imposes that privacy policies
covering a page are easy to find so that users can find the policy from the site they are
visiting and the policies of other websites that are contributing to that page. In addition,

 2

the privacy policies, using P3P, are easy to understand and do not consist of pages of
legalese. However, P3P has its limits for guaranteeing privacy over the Internet. As, the
W3C is a specification setting organization; it does not have the ability to make a public
policy guarantee that its specifications be followed over the Internet. This specification
needs to be used in concert with effective legislation, strategic policy and other privacy
enhancing tools.

From the study done, many recommendations can be extracted. Some recommendations
are related to the form of the privacy policy published on the WEB by enterprises , the
others affect directly the contents of these policies. The enterprise must present the
privacy policy document in a readable and ergonomic form. The policy document must
be clear (with a medium police size and paragraph separators) and easy to understand by
all users (not a complex model full of technical terms). The published policy must give
at least an answer to the users' needs of understanding privacy concern. Simple and clear
answers must obligatorily be given to crucial privacy questions. In addition, the use of
encryption can solve many issues. In fact, Encryption is a cheap way to obtain integrity,
authentication and confidentiality. Small and Medium size enterprises can use these
technique to reach security objectives.

To conclude, legal framework and security solutions must be developed to satisfy e-
privacy needs taking into account the respect of fundamental human rights. In the
meantime enterprises have to implement available e-security and e-privacy solutions.
Most of them are accessible and enough effective to satisfy current needs of enterprises
and organizations.

Keywords:

E-privacy, e-security architecture, e-business, white collar crime, police and justice
investigations, e-economy, information society.

The DDAC4 Algorithm for Arc-Consistency

Enforcement in Dynamic and Distributed CSP ?

Georg Ringwelski

Cork Constraint Computation Center, University College Cork, Ireland
g.ringwelski@4c.ucc.ie

Abstract. This paper presents the new DDAC4 algorithm for dynamic
arc consistency enforcement in Distributed Constraint Satisfaction Prob-
lems. The algorithm is an adaptation of the well known AC-4 algorithm
to system settings where constraints can be added and deleted in concur-
rent processes. It is the first algorithm for arc-consistency enforcement
in this system setting. Arc-consistency is achieved whenever the overall
system reaches quiescence after a constraint is added or deleted.

1 Introduction

Constraint propagation has become one of the most successful methods for con-
straint processing. If applied as a preprocessing step or during search this tech-
nique can significantly reduce the required effort of tree-based search methods
to solve Constraint Satisfaction Problems (CSP). However, its applicability is
currently often restricted to monolithic and/or static problems. In todays soft-
ware systems, for example in the field of global computing, these preconditions
can usually not be met. Applications that use the Internet as a platform of con-
straint satisfaction are often required to be able to adapt dynamically to newly
emerging knowledge in a distributed and completely asynchronous manner. It
is often not possible and very rarely desirable to gather information centrally
for constraint processing. Consequently there is a strongly increasing need for
methods to perform dynamic and distributed constraint processing.

In this paper I describe the new DDAC4 algorithm which implements the
successful constraint propagation technique of arc-consistency enforcement for
a distributed and dynamic setting. To the best of my knowledge it is the first
algorithm that provides this functionality.

2 Preliminaries

2.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is given by a triple (C,X, D) where C

is a set of constraints, X = {x1, ..., xn} is a set of variables and D = {D1, ..., Dn}

? This work has received support from the Embark Initiative of the Irish Research
Council of Science Engineering and Technology under Grant PD2002/21 and from
Science Foundation Ireland under Grant 00/PI.1/C075

are their respective domains. In a binary CSP each constraint Cij ∈ C is asso-
ciated to a binary relation sem(Cij) ⊆ Di × Dj in the Cartesian Product of
the domains of the constraint’s two variables xi and xj . In this paper I denote
a constraint c over variables x and y with an associated relation s by the term
c(x, y, s). A constraint Cij (i.e. an arc in the constraint graph associated to a
CSP [4]) is said to be arc-consistent if and only if for each value di ∈ Di at least
one value dj ∈ Dj exists such that (di, dj) ∈ sem(Cij). A binary CSP (resp. its
associated graph) is said to be arc-consistent if and only if all its constraints are
arc-consistent. A detailed introduction to CSP can be found in [4].

2.2 Multi-Agent-Systems

Multi-Agent-Systems (MAS) are given by a set of agents which are executed in
concurrent processes and communicate by messages. Each agent can send any
other a message provided it knows its address. In this paper, I use the following
communication primitives for MAS:

send(r,msg) sends a message msg to the agent r. The message can be any
string;

broadcast(msg) sends msg to each known agent;
behavior receive(s,msg) provides an agent-behavior, i.e. a procedure which is

called as soon as a certain message msg from a sender s arrives. Both, s and
msg can be or can contain variables which will be unified with the received
values. Thus msg is usually a pattern which an incoming message must
match in order to trigger the behavior. The pattern is usually a structured
term which identifies the kind of message received, and its arguments are
variables which are unified with the actual information contained in the
message;

blockingReceive(s,msg) waits for a message msg from the agent s. It halts
the execution of its thread until a message which fits the pattern is received.
Please note that while a thread is halted, other threads (i.e. behaviors) of
the same agent may be active, and receive and process messages.

Furthermore, I assume that every message evetnually arrives, and that between
every directed pair of agents the order in which messages are sent is the same
as that in which they are received. Whenever an agent refers to itself it will use
the synonym self. A more detailed introduction to distributed computing can
be found in [2].

3 Background

Finding solutions for arc-consistent CSPs can be much easier than finding solu-
tions to equivalent (wrt. the set of solutions) CSPs which are not arc-consistent.
Thus the enforcement of arc-consistency both as a preprocessing step and during
search has a long tradition in CSP research.

3.1 AC-4

One method for the enforcement of arc-consistency is the algorithm AC-4 [6].
The input of that algorithm is any binary CSP which AC-4 transforms into an
equivalent arc-consistent binary CSP. The idea of the algorithm is that in an
arc-consistent CSP, each value x in each variable domain must have at least one
value y in the domain of another variable such that (x, y) is an element of the
relation associated to any constraint. The value y is called the support of x. To
be more precise: the set of all supports of a value di ∈ Di are elements of the set
support(di) = {dj |∃Cij ∈ C, dj ∈ Dj : (di, dj) ∈ sem(Cij)}. AC-4 uses a data
structure counter which associates the number of values which use di as support
to each value di, i.e. counter(di) = |{dj ∈ Dj |di ∈ support(dj)}|. Whenever
the counter of a value di is zero, it does not support any other value via any
constraint and can thus be removed from its domain Di without reducing the
set of solutions to the CSP.

AC-4 computes the counter for each value in a CSP and deletes any value if
its counter is zero. To do this, the algorithm consists of two stages: first the data
structures support and counter are set up for each value and then the values are
iteratively pruned until no more zero counters exist. A more detailed description
of the algorithm can be found in [6, 4].

3.2 DisAC-4

The distributed version of AC-4 [7] is implemented in a set of “worker”-agents
and a central “controller”-agent. All agents communicate by messages and the
same assumptions concerning the protocol I described in section 2.2 are made.
The controller is used to detect termination of the algorithm and to stop all
workers if one has detected that no solutions exist. The algorithm terminates
as soon as all workers have reached quiescence, i.e. there are no messages to be
processed and all computations are finished. The actual arc-consistency enforce-
ment is performed by the workers. The main difference to the centralized AC-4
is that the knowledge stored in the data structures support and counter is parti-
tioned among the agents. Each worker w is related to a set of variables Xw ⊆ X

which are located in its process. The worker w stores the sets counter(x) and
support(x) for each x ∈ Xw.

DisAC-4 works in two similar stages as AC-4. It differs from AC-4 by keeping
track of all values that can be pruned in two lists list and toSendList. After the
first stage the toSendList is broadcast to other workers and the list is processed
in the loop that implements the second stage of the algorithm similar to AC-4.
Whenever the list is empty, the toSendList is broadcast to other workers. Upon
the receipt of such a toSendList the workers add all its elements to their local
list to check against their local knowledge. For a more detailed description of
the algorithm, please refer to [7].

3.3 DnAC-4

Like AC-4 and DisAC-4, the dynamic DnAC-4 algorithm [1] uses the data struc-
tures counter and support to find values that must be pruned to achieve arc-
consistency. These structures are incrementally updated whenever a constraint
is added.

In order to be able to relax constraints an additional structure justif which
stores justifications for value prunings is incrementally processed. It associates
to each variable xj a removed variable-value pair (xi, di) such that the constraint
between xi and xj caused the removal of di. With this storage of justifications
it may be possible that justifications build circular dependencies and will not
be “well-founded” as described in [1]. When a constraint is deleted values that
have potentially been pruned due to that constraint are re-inserted in their
domain. Then the new values are checked against the other constraints and may
be excluded again if another constraints prohibits them.

4 The distributed algorithm DDAC4

Like DisAC-4, the DDAC4 algorithm uses one controller and several worker
agents. The controller starts and terminates the workers. However, the algorithm
is not terminated as quiescence is reached, but only if this is explicitly requested.
Whenever quiescence is reached in DDAC4, arc-consistency will be present in
the currently existing distributed CSP. In contrast to the DisAC-4 algorithm,
I assume for DDAC4 in this paper that every worker represents exactly one
variable. The worker agent and the variable are considered to be the same and
refer to itself with self. This one-to-one topology is no restriction to generality as
the algorithm can easily be adapted to the general case by extending the internal
data structures counter and support (see below) with another dimension for
the respective local variable. A more significant difference to DisAC-4 and AC-
4 is that DDAC4 is not implemented in two stages: the initialization phase is
omitted. As in DnAC-4 the necessary computations of this phase are performed
whenever a new constraint is added.

The main difference to DnAC-4 is that the justifications for pruned values
are handled differently. Most importantly, the justifications are not variables, but
constraints and multiple justifications for the removal of every pruned value can
be stored. Consequently, DDAC4 does not have to consider the “well-founded-
ness” as described in [1]. Furthermore, this allows the relaxation of constraints
in one phase and omit the need for a subsequent propagation phase to ensure
arc-consistency as for instance DnAC-4 uses it.

All worker agents run the same code using different locally stored data. Each
worker uses the following private data structures, procedure and behaviors:

domain the set of all allowed values of self;
initDomain[x] , the domain of variable x as it was when the respective agent

was created;

list a set of triples (var, val, j). As in DisAC-4 this set contains values val of
variables var that can be pruned. The justification for this is the constraint
j, which may be directly or indirectly responsible for this pruning;

toSendList a similar set to list which aggregates relevant information to be
sent to adjacent workers;

knownAsDeleted a set which contains all constraints that self knows to be
deleted;

constraints the set of all constraints over self;
neighbors the set of all adjacent agents;
support[x][y] the set of values from the domain of self that support variable-

value pairs (x,y) of other agents as known from DisAC-4;
counter[x][y] the number of values of variable y that use the value x of self

as support;
removeList a list of triples (var, val, j) where counter[val][var] was reduced

because of the propagation of j.
procedure sendList() sends the toSendList to all neighbors and assigns it

to the empty list afterwards;
behavior receive(sender, addConstraint(c)) invokes local procedure

addConstraint(c) and sends initialDomain[self] to sender;
behavior receive(sender, deleteConstraint(c)) invokes local procedure

deleteConstraint(c)
behavior receive(sender, relax(c)) invokes local procedure relax(c)

Each worker provides methods to add and to delete constraints. The con-
straint addition method and its propagation are presented in Algorithms 1 and
2 and the deletion method, including the problem relaxation, is shown in Algo-
rithm 3.

I start with the description of Algorithm 1. First, the algorithm makes sure
that the new constraint was not deleted before and that there is no other con-
straint between the two respective variables. The first prohibits the re-addition
of constraints after deleting it, such that a new constraint has to be created in
such a situation. The second prohibits several constraints between the same pair
of variables. Multiple constraints between same variables are also not supported
in Dis-AC4 and other DisCSP algorithms. However, the DDAC4 algorithm can
be easily extended to support multiple constraints between same variable pairs
by adding a further dimension to store the constraint in the support and counter
arrays. Then, the new constraint c is integrated properly in the system by adding
it to the set constraints of self and the agent A which holds the other variable.
Furthermore, the address of A respectively self is added to the set of neighbors
of self respectively A. The manipulation of agent A is performed by sending
it a newConstraint message. After that the self waits for the reply containing
the initial (and thus invariant) domain of A. Then the algorithm checks for all
combinations of values of c’s variables if they are consistent. If they are consis-
tent it updates the counter and support arrays. If the counter of a local value
v is zero after checking all values of the remote variable, v can be pruned as
it does not support any other value. Thus it is removed from the variable do-
main and a respective triple is added to list, toSendList and removedList.

Finally the toSendList is sent to the neighbors. This is an improvement to the
corresponding method in the DisAC-4 algorithm. In DisAC-4 the toSendList

is broadcast in the system, i.e. sent to all agents. With this slight change the
required number of messages coul;d be reduced significantly. This efficiency im-
provement does not change the outcome of the algorithm, since all propagation
has to begin with the neighboring variables anyway.

Algorithm 1: Worker method for constraint addition.

procedure addConstraint(c(x,y,sem)) begin
if this = x then

other := y;

else
other := x;

1 if other ∈ neighbors ∪ knownAsDeleted then
return;

2 constraints := constraints ∪ c;
neighbors := neighbors ∪ other;
send(other,newConstraint(c));
blockingReceive(other,domain(otherDomain));
initDomain[other] := otherDomain;

3 foreach d ∈ initDomain[this] do
foreach d’ ∈ otherDomain do

if (this = x AND (d,d’) ∈ sem) OR (this = y AND (d’,d) ∈ sem)
then

counter[d][other] := counter[d][other]+1 ;
support[other][d′] := support[other][d′] ∪ {d}

if counter[d][other] = 0 then
list := list ∪ {(this,d,c)};
toSendList := toSendList ∪ {(this,d,c)};

4 removedList := removedList ++ {(this,d,c)};
5 domain := domain \{d};

6 sendList();

end

Algorithm 2 implements constraint propagation throughout the CSP. When
a worker receives a propagate message, it performs similar steps as for the
integration of a new constraint. The respective behavior is represented in Al-
gorithm 2. First it adds all the triples received from another agent to its local
list. Then, for each element (var, val, j) of the list, it performs the following
propagation steps: it retrieves from the support array all values v of the local
variable that support the value val for variable var; if j is not known to be
deleted, the worker decrements the counter for v and stores a respective triple
in removedList. If the counter reaches zero and v is in the current domain, then

v can be pruned as it was described in the previous paragraph. Finally, the newly
updated toSendList is sent to all neighbors.

Algorithm 2: The propagation behavior of DDAC4 workers.

behaviour receive(sender,propagate(l)) begin
list := list ∪ l ;
while list 6= ∅ do

remove any (var, val, j) from list;
foreach v ∈ support[var][val] do

1 if j /∈ knownAsDeleted then
counter[v][var] := counter[v][var] -1;

2 removedList = (var, v, j) ++ removedList;
if counter[v][var] = 0 AND v ∈ domain then

list := list ∪ {(this, v, j)};
toSendList := toSendList ∪ {(this, v, j)};

3 domain := domain \{v};

4 sendList();

end

The constraint deletion method each worker provides and the necessary be-
haviors to relax the CSP, i.e. to de-propagate the deleted constraint, are pre-
sented in Algorithm 3. Upon a call to the deleteConstraint method, the deleted
constraint is removed from the local set of constraints and its other variable is re-
moved from the set of neighbors. The same is done asynchronously in the remote
agent that hosts the constraint’s other variable by sending it a delConstraint

message. After that, the support and counter arrays are adapted inversely to
the way they were changed when the constraint was added. Finally a relax

message is broadcast to all agents (including self) to make them relax their
variables for the deleted constraint. The method relax is invoked upon receipt
of a relax message with a reference to the deleted constraint. This method adds
the newly deleted constraint to the set knownAsDeleted. Then it checks for all
values in the removedList to find out whether they were removed because of
the deleted constraint. Is so, the respective triple is removed from that list and
the counter is incremented. If the counter reaches one, there are no justifications
left to exclude the value and it is added to the domain.

4.1 Difficulties and Pitfalls

Concurrent Propagation and Relaxation In a dynamic and distributed sys-
tem, constraints can be added and deleted concurrently in separate processes.
These concurrent events may yield consequences for common variable domains
which can lead to non-determined results and even non-terminating runs. Con-
sider for example three variables x, y and z which all have the domain {1, 2, 3}

Algorithm 3: Worker method and behavior for constraint deletion.

procedure deleteConstraint(c(x,y,s)) begin
if c /∈ constraints then

return ;

constraints := constraints \{ c};
if this = x then

other := y;

else
other :=x ;

neighbors := neighbors \{other};
send(other,deleteConstraint(c));
foreach d ∈ initDomain[this] do

foreach d′ ∈ initDomain[other] do
counter[d][other] := counter[d][other] −1;
support [other][d′] := support[other][d′]\{d};

1 broadcast(relax(c));

end

procedure relax(c) begin
if c ∈ knowAsDeleted then

return ;

2 knownAsDeleted := knownAsDeleted ∪{c};
foreach (var, val, j) ∈ removedList do

if j = c then
counter[val][var] := counter[val][var] +1;
removedList := removedList – (var, val, j);

3 if counter[val][var] = 1 then
domain := domain ∪{val};

end

and a constraint c1(x, y, {(1, 2)}) which has been posted. If in this situation the
concurrent events addConstraint(c2(x, z, {(2, 2)})) and deleteConstraint(c1) oc-
cur, the outcome of the constraint processing is non-determined: the value 3 may
or may not be in the domain of x, depending on the order of the processing of
the events. The problem is that due to the addition of c2 the value is pruned
while due to the deletion of c1 it is added at the same time. Clearly, the correct
(arc-consistent) result should exclude 3 from x, but this may not be the result
of the concurrent algorithm.

DDAC4 prevents non-determined results by storing justifications for every
pruned value and by allowing values to be “pruned multiply”. In the data struc-
ture removedValues the algorithm keeps track of each value that must be pruned
and stores the respective constraint which justifies this pruning. Please note that
this list may contain several entries regarding the same value. removedValues
contains all justifications for each excluded value of the initial variable domain.
Thus, there can be several justifications for each pruned value. Unlike AC-4

or DisAC-4 the counter values can consequently be below zero. Whenever the
counter passes zero the domain is manipulated: when it changes from one to
zero, a value is pruned (as in AC-4) and when it changes from zero to one, a
value is added. As soon as there is at least one justification to remove a value,
it is actually removed from the variable’s domain. However, when a value is
to be added due to a relaxation, this is only performed if there are no more
justifications for its pruning (Alg.3, line 3).

Message-Waves take Shortcuts Another problem occurring in the dynamic
and distributed setting arises from message delays in the concurrent execution.
Assume an application which adds and deletes a constraint within a short time:
the processing of the constraint addition may not be globally completed before
the same constraint is deleted. With “not globally completed” I mean that the
wave of the respective propagate messages has not yet reached every relevant
variable. Consequently, there may be propagate and relax messages regarding
the same constraint to be processed in parallel. From the general assumption that
messages always arrive in the same order they were sent, it cannot be deduced
that a wave of relax messages cannot “overtake” an earlier initiated wave of
propagate messages. This follows from message delays or the used protocols.
For example in DDAC4 the relax messages are broadcast, while the propagate

messages are handed over from agent to agent along the lines of the constraint
graph. If the wave of relax messages takes a “shortcut”, it may overtake the
wave of propagate messages. Thus a variable domain may be relaxed before it
was actually pruned. The pruning will then be performed afterwords yielding
incorrect results as the constraint is actually obsolete.

I solve this problem by storing the set of all deleted constraints in the set
knownAsDeleted in each agent. Whenever an agent discovers that a constraint
was deleted, it stores this information. After that, each agent will not prune any
more values due to this constraint (Alg.2, line 1). Furthermore, the propagation
will be stopped as no triples will be added to the toSendList in this algorithm.
The use of knownAsDeleted is not ideal programming style as the set will con-
stantly be extended and never reduced in continuous program executions. Thus,
the complexity of Alg.2 (which checks every constraint against this set) is in
the order of a potentially infinite number of deleted constraints. However, in the
implementation of a concrete application this problem may be solved by deleting
references from this set as soon as it can be assumed (with a sufficient likelihood)
that no further propagation regarding the deleted constraint is to be performed.

5 Evaluation

5.1 Correctness

First I show that DDAC4 propagation is correct and achieves arc-consistency.
Arc-consistency can be expected to be achieved as soon as the entire network
has reached quiescence, i.e. the algorithm has terminated. This is the case when
the following conditions are satisfied:

– no workers are executing any procedures or behaviors
– no worker has stored messages to be processed
– no messages were sent and not received

Any global state that satisfies all three conditions is called globally stable. For
such states it can be shown that adding constraints will retain arc-consistency.

Lemma 1. If no constraint deletion occurs, then constraint addition with DDAC4

will result in an arc-consistent globally stable state if all other constraints were

also added with DDAC4.

Proof. Since the algorithm of the workers is based on the correct AC-4 algorithm
[6] it is sufficient to show that: (i) for each added constraint all variable-value
pairs that it prohibits are detected; (ii) this inconsistency is reported to all
agents that can deduce further inconsistencies and (iii) the algorithm reaches
quiescence.

(i) Since all values of both involved workers are checked against any new con-
straint (Alg. 1 lines 2–5) the two workers to which the constraint was added
will detect all inconsistent values.

(ii) Each inconsistent variable-value pair (i, v) is sent to all neighboring (Alg.1
line 6 and Alg. 2 line 4) workers. These include all workers that host a variable
which is adjacent to self in the constraints graph and thus have common
constraints with the sender (Alg.1 line 2). No other worker can detect further
inconsistencies from (i, v) since it will not host a constraint over i. Each
worker will process the inconsistencies (Alg.2) and detect all possible new
inconsistencies because it checks all values from its initial domain (Alg.1
line 3) against all its constraints (Alg.2 lines 1–3). Since the system will
not reach quiescence before all workers have finished processing their local
list and no more inconsistencies are being communicated, there will be no
inconsistencies (i, v) in the CSP that were not checked against all constraints
over i.

(iii) Since there is only a finite number of values in each domain and there
is no constraint deletion, there can only be a finite number of necessary
value deletions and therefore the loop in Alg. 2 will always terminate. There
are no deadlocks in the algorithm since all messages, except of domain, are
asynchronous. The domain messages will not lead to a deadlock since it is
triggered uniquely by the asynchronous message newConstraint.�

Now I will show that the constraint deletion algorithm will always reach
arc-consistency. This also requires that quiescence is reached in the network.

Lemma 2. Given a globally stable arc-consistent state of a CSP, the constraint

deletion with DDAC4 will result in an arc-consistent globally stable state iff no

constraint addition occurs.

Proof. The constraint deletion removes the constraint properly from the CSP as
can be seen in the procedure deleteConstraint(c) (Alg.3), it resets all changes

that were performed by addConstraint(c) (Alg.2) before. Every constraint
deletion will cause a broadcast of relax messages (Alg.3 line 1). In the method
relax(c) self will consider for every removed value whether it can be put back
in its domain. It puts only those values back that were directly or indirectly
removed by c and no other constraint. Thus it keeps all values excluded that
are not arc-consistent in the CSP without c. The constraint deletion protocol
reaches quiescence, since in each worker only finitely many values can have been
pruned such that removedList is finite and the loop in the procedure relax
terminates.�

Now it can also be deduced that the concurrent execution of addition and
deletion and thus DDAC4 is correct.

Theorem 1. Any CSP which is processed exclusively by DDAC4 is arc-consistent

in any globally stable state.

Proof. Regarding Lemmas 1 and 2, it remains to be shown that the concurrent
addition and deletion of constraints is correct. For this I show that: (i) the
constraint addition is independent of the progress of execution of any constraint
deletion; (ii) constraint deletion will not miss any values to be added to the
domain and (iii) constraint deletion and addition of identical constraints are
always synchronized.

(i) Constraint addition and propagation exclusively use the initial variable do-
mains for their inference, and are thus independent of the sets domain and
removedValues which may or may not have been manipulated by the con-
currently running constraint deletion algorithm.

(ii) According to Lemma 2, the constraint deletion algorithm will always put all
values that have lost all justifications to be excluded back in the domain . But
for every pruned value it knows all justifications from the set removedValues.

(iii) Due to the use of knownAsDeleted it will never be the case in any worker
that propagation is performed after relaxation for the same constraint. It is
not possible to add the same constraint twice (Alg.1 line 1). �

5.2 Complexity

For the following complexity analysis I leave out the required effort of the ter-
mination detection, as this is not part of the DDAC4 algorithm. As I mentioned
before the complexity depends on the size of the set knownAsDeleted which
should (and can) be kept low in typical applications. In the following I assume
it contains k elements. Furthermore I refer to the number of valid constraints as
c, to the number of variables as n and to the size of the largest domain of any
variable as d. I specify the time, space and message complexity of DDAC4 al-
gorithms. For the specification of the time complexity of distributed algorithms
one must assume the worst case in which no computations are performed in
parallel. Thus I specify the time complexity of the procedures addConstraint
and deleteConstraint in the overall system. The required space of each worker

is considered separately. In distributed settings, the global space complexity is
usually not of interest. The number of required messages is generally considered
one of the most important features of distributed algorithms.

Theorem 2. The time complexity of the procedure addConstraint is O(n2 ∗
d2 ∗ k).

Proof. Lines 1-2 Algorithm 1 in use O(k) + O(c) steps, lines 3-5 take O(d2) and
line 6 takes O(c). This is performed in two workers yielding 2(O(k) + O(c) +
O(d2)+O(c)) = O(k)+O(c)+O(d2). Algorithm 2 is executed in the worst case
for every deleted value (there are n ∗ d values) by every worker and thus n2 ∗ d

times. Algorithm 2 itself has the following complexity: “foreach v ∈ support”
takes at most O(d) steps, line 1 takes O(k) steps, and line 4 O(c). Overall Alg.2 is
thus O(d)∗O(k)+O(c). Putting things together and knowing that O(c) ⊆ O(n2)
holds in binary CSP the complexity of addConstraint is O(k)+O(c)+O(d2)+
n2 ∗ d ∗ (O(d) ∗ O(k) + O(c)) = O(n2 ∗ d2 ∗ k).

Theorem 3. The time complexity of the procedure deleteConstraint is O(n ∗
k) + O(n2 ∗ d ∗ c).

Proof. The procedure deleteConstraint takes O(c) + O(d2) + O(n) steps for
checking if the constraint exists, updating support and counter and broadcast-
ing a message to all workers. This is done twice. The procedure relax is executed
once in every worker. It takes O(k) steps to check whether the constraint is known
as deleted. Then it traverses removedList, which may contain for every value of
every variable and every constraint an element. It’s traversal may thus cost up to
O(n ∗ d ∗ c) steps. Putting things together the complexity of deleteConstraint
is 2(O(c) + O(d2) + O(n)) + n ∗ (O(k) + O(n ∗ d ∗ c)) = O(n ∗ k) + O(n2 ∗ d ∗ c)

Theorem 4. The space complexity of each worker is O(k) + O(n ∗ d ∗ c).

Proof. I define the function size which assigns to each data structure x ∈ X in
the DDAC4 workers its worst case size: size = {(domain, O(d)), (initDomain,
O(d)), (list, O(n ∗ d)), (toSendList, O(n ∗ d)), (knowAsDeleted, O(k)),
(constraints, O(c)), (neighbors, O(n)), (support, O(d ∗n)), (counter, O(d ∗
n)), (removedList, O(n ∗ d ∗ c))}. The space complexity of each worker is thus
Σ

x∈X
size(x) = O(k) + O(n ∗ d ∗ c)

Theorem 5. The DDAC4 algorithm requires O(n3 ∗ d) messages for constraint

propagation.

Proof. The procedure sendList sends O(n) messages each time it is invoked.
For every new constraint it is invoked twice by the procedure addConstraint
and once in each execution of Algorithm 2. Alg. 2 is executed at most n2 ∗ d

times as I have shown in the proof of Theorem 2. Thus propagation requires
overall O(n) ∗ (2 + n2 ∗ d) = O(n3) ∗ d messages.

Theorem 6. The DDAC4 algorithm requires O(n) messages for constraint re-

laxation. This complexity is optimal.

Proof. As can be seen in Algorithm 3, the procedure deleteConstraint broad-
casts a message to all n workers. This is executed twice and there is one
delConstraint message. Thus constraint deletion requires 1 + 2 ∗O(n) = O(n)
messages. This is optimal, since every constraint may yield consequences in ev-
ery variable and thus every worker. Consequently each worker must be notified
for constraint relaxation.

5.3 Empirical Evaluation

I have implemented the DisAC-4 and DDAC4 algorithms in a multi-threaded
Java program. Each agent contsitutes one concurrent thread and the agents com-
municate by dropping messages to other agents’ message-channels. The common
memory is not used except the references to the channels. For evaluation I mea-
sured the runtime, which is the overall CPU time when the concurrent program
is executed on one processor, the total number of messages and the number
of(concurrent) constraint checks. I ran four tests to evaluate the performance
of DDAC4 with Java 1.4.2 on a Linux desktop computer one 1.8GHz Pentium
processor and 512MB memory:

rbc-x Random binary CSPs with 30 variables, domains size 15 (for each vari-
able), density = 0.5 and varying tightness x between 0.2 and 0.8. The sam-
ple size was 30. For these problems I measured the average effort to enforce
arc-consistency by DisAC-4 and DDAC4. In the latter, all constraints were
iteratively added.

rq30-x The 30-queens problem where x queens are placed on (consistent) po-
sitions. I compared the performance of DisAC-4 and DDAC4 to achieve
arc-consistency.

inc30q-x This test evaluates the incrementality of constraint addition. In the
30-queens problem, I check the effort of DDAC4 to put the x-th queen (con-
sistently) in the x-th coloumn, while all queens in more left hand colomns
remain set. Setting a queen is performed by adding a new binary constraint
over x and a new variable such that only one value is allowed for x.

dyn30q-x This evaluates the efficiency of constraint deletion. One queen is set
on an empty chessboard in colomn x and removed again. This is done in two
ways: first, the system waits for global quiescence after adding the constraint
and second the constraint is deleted immediately after it was sent such that
the propagation will most likely not be perfomed completely.

The results of rbc-x and rq30-x are shown in Figure 1. These diagrams compare
the effort to enforce arc-consistency. In all our experiments both the number
of sent messages and the runtime of DDAC4 is better than that of DisAC-
4. The number of (concurrent) constraint checks was also monitored and, as
expected, it was equal for both algorithms in all tests. The results of the inc30q-
x test are shown in the left diagram in Figure 2. It can be seen that due to the
incremental constraint addition, the propagation effort decreases as the search
space is pruned. The cost to add new constraints gets as low as the cost to check

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 100

 1000

 10000

 100000

m
e

s
s
a

g
e

s

ru
n

ti
m

e
 (

lo
g

 s
c
a

le
!)

tightness

rbc-x

messages DDAC4
messages DisAC-4

runtime DDAC4
runtime DisAC-4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30
 1000

 10000

 100000

m
e

s
s
a

g
e

s

ru
n

ti
m

e
 (

lo
g

 s
c
a

le
!)

x

30q-x

messages DDAC4
messages DisAC-4

runtime DDAC4
runtime DisAC-4

Fig. 1. Effort to enforce arc-consistency.

its consistency once. The results of dyn30q-x are shown in the right diagram of
Figure 2. It can be seen that the effort to delete is always much smaller with a
constant factor than the effort to add a constraint. In the comparison of the test
perfomed with and without waiting for quiescence after the constraint addition
it can be seen that the runtime without waiting is smaller than the sum of
both tasks performed separately. Partially, this speedup is gained by leaving out
the effort for termination detection in between both steps. However, there can
also be less propagation performed if the constraint is deleted immediately after
adding it. This results from the fact that the relax-messages can reach agents
faster than their repsective propagate messages as described in Section 4.1 and
thus make the propagation obsolete. This could also be seen by the number
of constraint checks in this experiement. In the n-queens example, this gain of
efficiency can only be reflected in runtime or constraint checks, as the number of
messages will always be the same since the constraint graph is fully connected.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5 10 15 20 25 30
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

m
e

s
s
a

g
e

s

ru
n

ti
m

e

queen

inc30q-x

messages DDAC4
runtime DDAC4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 5 10 15 20 25 30
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

ru
n

ti
m

e

queen

dyn30q-x

runtime to add x
runtime to delete x

runtime to add and delete x

Fig. 2. Effort of incremental constraint addition (left) and effort to add and delete a
constraint (right).

6 Future Work

The AC-4 algorithm is not the most efficient algorithm for arc-consistency en-
forcement, neither in a centralized [10], a distributed [5] nor dynamic [3] setting.

Thus I plan to use the experience gained in the development of the DDAC4 algo-
rithm to find more efficient AC algorithms for distributed and dynamic problems.
The distributed DisAC-9 [5] algorithm which is proven to be optimal with re-
spect to the number of required messages will be the starting point for my future
research. I expect that the DisAC-9 and DnAC-6 [3] algorithms can be integrated
in a similar way to the integration of their AC-4 counterparts I presented in this
paper.

With a dynamic AC algorithm constraint programmers are not only able
to add (and propagate) and delete (and de-propagate) binary, but also unary
constraints such as variable instantiations. With this investigate look-ahead algo-
rithms for distributed problems which are based on IDIBT [8]. The implemen-
tation of look-ahead in asynchronous systems is highly complex as no central
structures exist to trail the history of the search [9]. The distributed search can-
not restore a former global state upon backtracking, but may still have to relax
potentially every variable domain in the CSP. My approach will be to use dis-
tributed and incremental constraint addition and deletion. If the addition and
deletion of instantiations can be (de-)propagated in an efficient way, a distributed
look-ahead algorithm can be expected to significantly improve the efficiency of
today’s asynchronous search algorithms. This expectation follows from the effi-
ciency improvement in monolithic systems, from other distributed search with
propagation [9] and prelimenary experiements [8].

References

1. Christian Bessiére. Arc-consistency in dynamic constraint satisfaction problems.
In Proc. AAAI’91, pages 221–226, 1991.

2. George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems, 3rd
edition. Addison Wesley, 2001.

3. Romuald Debruyne. Arc-consistency in dynamic csps is no more prohibitive. In
8th conference on Tools in Artificial Intelligence (TAI96), pages 299–306, 1996.

4. Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
5. Youssef Hamadi. Optimal distributed arc-consistency. In Principles and Practice

of Constraint Programming, pages 219–233, 1999.
6. R. Mohr and T. Henderson. Arc and path consistency revisited. Artificial Intelli-

gence, 28:225–233, 1986.
7. T. Nguyen and Yves Deville. A distributed arc-consistency algorithm. Science of

Computer Programming, 30(1-2):227–250, 1998.
8. Georg Ringwelski. Incremental constraint propagation for interleaved distributed

backtracking. In Proc. 5th workshop on Distributed Constraint Reasoning, Toronto,
2004.

9. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Consistency maintainance for abt.
In Toby Walsh, editor, Principles and Practice of Constraint Programming - CP
2001, pages 271–285. Springer LNCS 2239, 2001.

10. Richard J. Wallace. Why ac-3 is almost always better than ac-4. In Proc. IJCAI-93,
pages 239–245, 1993.

Using additional information in DisCSPs search?

Amnon Meisels and Oz Lavee
{am,laveeo}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev

Beer-Sheva, 84-105, Israel

Abstract. A method of volunteering information during asynchronous search on
DisCSPs is presented. The meeting scheduling problem (MSP) is formulated as
a distributed search problem. In order to implement asynchronous backtracking
(ABT) for the MSP, a multi-variable version of ABT is described. Agents partic-
ipate in multiple meetings, where each meeting is represented by a variable that
needs to be assigned a time-slot. Assignments are constrained by arrival-time
constraints, since meetings take place in different locations. All constraints are
local to their agents.
Additional information is in the form of Nogoods. During search for a consis-
tent schedule for all meetings, agents can generate and send additional Nogoods
to those sent by the ABT algorithm. When additional Nogoods are sent, the ef-
ficiency of asynchronous backtracking is enhanced. This effect grows with the
number of additional volunteered Nogoods.

1 Introduction

An important goal of search algorithms for the distributed constraint satisfaction prob-
lem is to support agents’ privacy. During cooperative search for a globaly consistent so-
lution, agents exchange messages about their assignments and about conflicts with other
agents’ assignments. This creates a natural trade-off between information disclosure
and the efficiency (and correctness) of the distributed search process. The first to investi-
gate measures of privacy for DisCSPs were Meseguer et. al. [Brito and Meseguer2003].
In a series of two papers they presented algorithms for maintaining two types of privacy
during the run of the asynchronous backtracking (ABT) algorithm
[Meseguer and Jimenez2000,Brito and Meseguer2003].

A different approach for investigating the privacy of distributed search was pre-
sented first by [Wallace and Freuder2002]. This concrete family of problems was used
to compare the amount of needed computations for finding a solution, when different
quantities of information were exchanged among the searching agents [Wallace2003].

The present paper uses the family of meetings scheduling problems (MSPs) to
achieve three goals. First, to define a general family ofMeetings scheduling search
problemsthat will serve as framework for the study of privacy. For the family of MSPs
the agents need to solve a hard search problem. The second goal is to enhance the

? Partially supported by the Lynn and William Frankel Center for Computer Science

asynchronous backtracking algorithm [Yokoo and Hirayama2000], for multiple vari-
ables per agent. This is needed in order for each agent to schedule its multiple meetings
and then cooperate with other agents to search for compatible schedules for all meet-
ings. The third and main goal of the present study is to define a consistent method for
enhancing the information content of messages of the search algorithm (ABT) that will
enable a more efficient computation.

This paper examines the effect of volunteering additional information, in the form of
additional Nogood messages, on the efficiency of search. The trade-off between infor-
mation and efficiency is investigated in the context of the meetings scheduling problem
[Wallace and Freuder2002].

The meeting scheduling problem(MSP), is the problem of coordinating a meet-
ing among several agents each one with its own calendar and has appeared first in
[Garrido and Sycara1995,Sen and Durfee1995]. A very restricted form of the MSP was
investigated with respect to privacy by [Wallace and Freuder2002]. The tradeoff be-
tween the privacy of agents’ meetings and the efficiency of the search process is studied
by the use of a simple instance of the meeting scheduling problem. The instances used
in [Wallace and Freuder2002] have only one meeting to coordinate, which all agents
have to attend. Agents must be able to get from their private meetings to the sched-
uled meeting according to the traveling time constraints. Each agent has its own private
calendar that defines its constraints regarding the time and location of the meetings.

The MSP has two main characteristics that make it into a DisCSP. It is logically
distributed among all agents and since calendars are privately owned, it must use a
distributed search process in order to find a solution that is consistent with all agents.
The meetings of every agent are constrained with each other and the solution is globaly
consistent if every agent is able to reach all meetings in which it participates.

The aspect of privacy is very natural to the MSP. Agents do not want to reveal infor-
mation regarding their calendar. In the studies of [Wallace and Freuder2002,Wallace2003],
privacy is in fact measured by the fraction of calendars of agents that becomes known
to other agents during the search process.

Another simplified form of the MSP was used by Bessiere et. al. [Bessiereet al.2001]
for testing the Asynchronous Backtracking algorithm. The problem used in [Bessiereet al.2001]
has three groups. Each group has to schedule a meeting for all its members, with
the constraint that two groups cannot meet at the same time and location. Perceived
as a centralized constraints satisfaction problem (CSP), each meeting can be repre-
sented by a variable and the values to be assigned are the weekly time-slots. From this
point of view, the MSP of [Wallace and Freuder2002] has one variable and the MSP of
[Bessiereet al.2001] has three variables. The constraints of the [Wallace and Freuder2002]
MSP are unary, consisting of all forbidden times and locations. The search space of
CSPs is exponential in the number of variables [Dechter2003] and in this respect both
of the above problems are not hard search problems.

In [Wallace2003] the family of MSPs as been extended to be the graph coloring
problem forn meetings (variables). The problem is to assign time-slots to alln variables
(meetings), such that each variable is owned by more than one agent. The constraints
among the values assigned to meetings which include a specific agent are inequality
constraints. This creates a graph coloring problem of a distributed nature. Each agent

owns the variables corresponding to meetings in which it participates and an inequality
constraint holds among them [Wallace2003]. The family of MSPs of the present study
are general DisCSPs and its arrival-time constraints are more general than inequalities.

Former studies of privacy eficiency trade-off in distributed search used either a sim-
ple iterative algorithm [Wallace and Freuder2002], or a synchronous distributed back-
tracking for solving the problem [Wallace2003]. The present study, investigates the pri-
vacy efficiency trade-off for a general MSP and for the enhanced asynchronous back-
tracking (ABT) algorithm. It measures the effect of asynchronous exchange of addi-
tional information on asynchronous search (see section 4).

In section 2 the Meeting Scheduling Problem (MSP) is defined, as well as itsCSP
representation and its distributed CSP form. Section 3 presents a version of theABT
algorithm [Bessiereet al.2001] for multi variable agents. The issue of additional infor-
mation for search enhancement, in the context of the MSP, is at the center of section 4. It
analyses ways of sending additional information during search and presents a form that
sends additional Nogoods to standard ABT. An extensive experimental investigation of
the behavior of the proposed method of voluntary information, with respect to search
efficiency, is described in section 5.

2 The Meeting Scheduling Problem

The definition of the meeting scheduling problem is presented in three stages. First, the
logical meeting scheduling problem. Second, its representation as a (centralized) CSP
and third, the representation as a distributed CSP. The meeting scheduling problem
(MSP)has been defined in many versions with different parameters, from duration of
meetings [Wallace and Freuder2002] to preferences of agents [Sen and Durfee1995].
The family of MSPs that is at the focus of the present study is defined as follows:

– A groupS of m agents
– A setT of n meetings
– Each meeting is associated with a setsi ⊂ S of agents that attend it
– Consequently, each agent has a set of meetings that it must attend
– Each meeting is associated with a location
– The scheduled time-slots for meetings inT must enable the participating agents to

travel among their meetings

An example of a conflict of an agent’s constraint is a meeting A, scheduled to 14:00
in Rome and a meeting B, that includes the same agent, that is scheduled for 16:00 in
Paris. Each meeting is one hour long and the traveling time between Rome and Paris
is two hours. It is assumed that there are no private meetings for any agent. This gen-
erates no loss of generality, since private meetings (or agents’ private calendars, as
in [Wallace and Freuder2002] for example) can be simply represented by unary con-
straints, removing values from domains of meetings. The duration of each meeting is
one hour and the traveling time between any two locations is equal for all the agents
(no agent is faster than another). The agents need to negotiate in order to search for a
schedule of all meetings that meets all of the participants arrival-time constraints.

The meeting scheduling problem as described above can be represented as a con-
straints satisfaction problem in the following way:

– a set of variablesZ - m1,m2..., mn the meetings to be scheduled
– domains of valuesD - all weekly time-slots
– a set of constraintsC - for every pair of meetingsmi,mj there is an arrival-time

constraint, if there is an agent that participates in both meetings

As already mentioned, private meetings are equivalent to unary constraints removing
values from domains of some meetings. Since all agents have the same arrival-times
between any two locations, there is only one type of arrival-time constraint.

arrival-time constraint - Given two time-slotsti, tj there is a conflict if
|time(ti)−time(tj)|−duration <= TravellingT ime(location(mi), location(mj))

The tightness of the arrival-time constraint can be measured for a given definition of
distances between locations. Expressing distances in terms of time-slots, enlarging the
arrival-times has the effect of tightening the constraints of the problem.

Fig. 1. the Meeting Scheduling Problem as a centralized CSP

Figure 1 presents the representation of a meeting scheduling problem as a CSP. The
nodes are the meetings (the variables) and each edge represents a binary arrival-time
constraint. Each edge is labeled by the agent, attending both meetings, that generates
the arrival-time constraint.

Representing the MSP as a distributed CSP needs to associate variables with the
different agents. Our distributed CSP representation can be described as follows:

– Agents - the GroupS of agents
– For each Agentsi ∈ S there is a variablexi

j , for Every meetingmj thatsi attends.
– Each agentsi includes arrival-time constraint between every pair of its local vari-

ablesxi
j , x

i
k.

– for each two agentssi, sj that attend meetingmk there is an equality inter-constraint
between the variablesxi

k, xj
k, corresponding to the meetingmk.

Fig. 2. the Meeting Scheduling Problem as a DisCSP

The representation of theMSP of figure 1 as aDisCSPcan be seen in figure 2,
where agents include multiple local variables connected by arrival-time constraints.
Edges between variables of different agents represent the equality inter-constraint.

2.1 Random Meeting Scheduling problems (RMSPs)

Random Meeting Scheduling Problems(RMSPs)can be parametrized in numerous
ways. Parameters can be the number of meetings, meetings’ locations, number of agents,
etc. To simplify the experimental design, one can use the relevant features of the CSP
representation. Let us first denote a set of parameters:

– number of meetings -m
– number of agents -n
– number of meetings per agent-k
– distances between locations of meetings
– domain size - number of time-slots

The meetings are the set ofm variables of the constraints network, each representing
a meeting at a specific location. The domains of values are the time-slots. An edge
between any pair of variables represents an agent that participates in both meetings. The
density of the constraints network depends on the number of agents and the distribution
of meetings that each agent attends. If each agent participates ink meetings, one can
generate the resulting CSP as follows. For each of then agents a clique ofk variables is
selected randomly, such that not all of the edges of the clique are already in the network.
Each clique is added to the CSP, representing the arrival-time constraint between the
meetings of each agent.

Similarly to randomly generated CSPs, one can calculate the resulting densityp1

of the network and the tightnessp2. p1 is the ratio of the total number of edges to the

maximal number -m × (m − 1)/2. The tightness of the generated CSPs,p2, can be
calculated by using the average distance between locations. For two meetingsmi,mj

connected by an arrival-time constraint, each value in the domain ofmi is inconsistent
with 2 × distance(mi,mj) values (time-slots) in the domain ofmj .

The representation of the above CSP as a distributed CSP is streightforward. Each
meeting variablemj in the CSP corresponds to the variablexi

j within each agentAi

that participates inmj . These variables are connected by the equality constraint onxi
j ,

meaning that for all agentsAi, the meetingmj is at the same time. When ordering the
DisCSP, the first of the variables that represent the same meeting is connected to all
other variables of the same meeting by an equality constraint. Each meeting has one
participating agent that is first in the global order. This agent proposes time-slots for the
meeting, during the run of asynchronous search. No other pair of participating agents
need to be connected by an equality constraint.

3 Multi-variable Asynchronous Backtracking

Every agent of the meeting scheduling problem includes multiple variables, one for
each meeting it attends. As a result, the distributed search algorithm must be able
to deal with multiple local variables. For asynchronous backtracking (ABT) this is a
special version of the algorithm that has not been described in the fundamental pub-
lications [Yokoo and Hirayama2000,Bessiereet al.2001]. The multi-variables version
of ABT that is presented below is an adaptation from [Bessiereet al.2001], but, uses
conflict- based backjumping (CBJ) [Prosser1993] for the local CSP of each agent.

As in standard ABT, all agents are assumed to be ordered [Bessiereet al.2001]. All
variables of each agent are ordered successively, so that the variables of agentAi+1

follow successively the variables of agentAi. The pseudo-code of theABT − CBJ
algorithm for multi-variable agents is presented in Figure 3. Agents running the algo-
rithm wait for messages and upon receiving a message call the suitable procedure for the
type of the received message. Elimination explanations are kept for each value of every
variable (cf. [Ginsberg1993,Bessiereet al.2001]. Explanations may contain either local
variables with higher priority or variables of other agents, with higher priority.

The processInfoprocedure is called when anok? message is received. It updates
theAgentV iew with the received assignment and removes all eliminating explanations
in all the local variables that contain the obsolete assignment of the received variable.

When a backtrack message is received, theresolveConflictprocedure is called. This
procedure is similar to theresolveConflictof ABT in [Bessiereet al.2001]. It checks
the consistency of the received Nogood with theAgentV iew. If it is consistent, then
resolveConflictupdates the relevant assignments in theAgentV iew (the nonΓ− vari-
ables in theAgentV iew, in terms of [Bessiereet al.2001]). It also removes the elimi-
nated value from the relevant local variable.

The chooseValues()procedure assigns values to all the local variables, checking
that all the eliminators in all the variables are consistent with theAgentV iew. Lines
1,2 deal with the case that the current assignment of all the local variables is consistent
with the AgentV iew and no changes needed. If this is not the case, then lines 4-18
find a consistent assignment for all the local variables. The order of all variables is

– ABT-CBJ:
1.SelfV ars← empty, end← false

2.chooseValues()
3.while (¬end)
4. msgs← recvieveall()
5. foreachmsg ∈ msgs do
6. switch (msg.type)
7. info : processInfo(msg)
8. Back : resolveConflict(msg)
9. Stop :end← true

– processInfo(msg):
1. update(AgentV iew, msg.variable, msg.value)
2. remove eliminators inconsistent withAgentV iew

3. chooseValues()

– chooseValues:
1.if consistent(SelfV ars, AgentV iew)
2. then return
3.else
4. for p = 0 to SelfV ars.size

5. found← find assignment(selfV ars[p])
6. if found =false

7. Nogood← resolve(SelfV ars[p].NogoodStore)
8. if rhs(Nogood)∈ SelfV ars

9. q ← index of rhs(Nogood)
10. for i = q + 1 to p

11. remove fromselfV ars Nogoods containingSelfV ars[i]
12. removeValue(SelfV ars[q], Nogood)
13. p = q

14. else
15. remove rhs(Nogood) from AgentView
16. backtrack(Nogood)
17. remove all Nogoods containingvariables ∈ SelfV ars

18. p=0
19. for eachagent ∈ Γ+(updatedV ariable) sendMsg:Info(agent, updatedV ariable)

– removeValue(variable, Nogood):
1. set eliminatorNogood atvariable

2. for eachvar ∈ SelfV ars

3. remove eliminators contianingvariable

– resolveConflict(msg):
1.if consistent(msg.Nogood, Γ− ∪ {SelfV ars})
2. for eachassign ∈ lhs(msg.Nogood) \ Γ− do
3. update(AgentV iew, ngV ar)
4. remove eleiminators inconsistent withAgentV iew

5. rhsV ariable← rhs(Nogood)
6. removeValue(rhsV ariable, Nogood)
7. chooseValues()
8.else ifmsg.sender ∈ Γ+∧ Consistent(msg.Nogood, SelfV ars[rhs(msg.Nogood)])
then sendMsg:Info(msg.sender, SelfV ars[rhs(msg.Nogood)])

Fig. 3.The multi-variable ABT algorithm

static. In line 5 a search for a value for the current variablexi
j is performed, such that

it is consistent with all assigned local variables and with theAgentV iew. If a value is
not consistent an eliminator is added for this value. If no consistent value is found, the
eliminators of the current variable are resolved to form a Nogood, in line 7.

When the Nogood points to a local variablexi
k then a backjump toxi

k will be per-
formed, with the Nogood as eliminator for the assignment ofxi

k (lines 9-13). The back-
jump requires the removal of all eliminators from all the local variablesxi

k+1..j , that
were jumped over (lines 10-11). This procedure implements the backjumping algorithm
for multi local variables. The backjumping algorithm that is implemented for local vari-
ables is similar to [Ginsberg1993]. If the right hand side of the Nogood is a variable of
a different agent, then it contains no local variables (since all the local variables are or-
dered successively). Therefore, the Nogood is sent in a backtrack message and the right
hand side assignment of the Nogood is removed from theAgentV iew (lines 15-16).
Next, the local process for consistent assignments to all local variables starts from the
beginning (line 17-18). When consistent assignments for all local variables have been
found, all new assignments are sent by anok? message to all the agents that are later
in the order of the problem (agents inΓ+ of the updated variable, similarly to standard
ABT [Bessiereet al.2001]).

4 Volunteering additional information

In studies of privacy issues of DisCSP search, the option of hiding information about as-
signments was considered by Meseguer and Jimenez [Meseguer and Jimenez2000]. In
order to keep privacy of assignments, Meseguer et. al. propose to send forward a list of
allowed values instead of the assignment itself. This idea cannot work for the MSP, be-
cause the equality constraint identifies the assignment of a single time- slot with the list
of legal assignments for the agent receiving theok? message. By the same token, con-
straints of the MSP cannot be kept private by the method of [Brito and Meseguer2003].
All the constraints of the meeting scheduling problem are arrival-time constraints which
areinternal to each agent. The inter- agent constraints are just equality constraints, for
which hiding is meaningless.

Recently, several studies have investigated the trade-off between privacy and the
efficiency of search. Wallace and Freuder [Wallace and Freuder2002] have looked at a
simple MSP to show that loss of privacy enhances search efficiency. In a later study,
Wallace have shown a similar trade-off to hold for a distributed graph coloring problem
[Wallace2003]. The version of the MSP that was presented in section 2, is more general
than the graph coloring problem of [Wallace2003]. However, by the above analysis of
the privacy of MSPs, both types of privacy are not simply connected to the run of the
search algorithm. For the family of meeting scheduling problems, the privacy question
can be replaced by the possibility of volunteering additional information, to help agents
arrive faster at a consistent solution.

Backtracking messages of the ABT algorithm contain Nogoods, which represent un-
soluble sub-search spaces. Backtracking messages are based on violation of constraints.
Since Nogoods contain the only information about constraints, one canadd Nogoods
in order to volunteer relevant information. Adding Nogoods to the asynchronous back-

tracking algorithm is presented below. It forms a method of adding viable information
to agents, to enhance their efficiency in arriving at a solution.

Let us start with an example in which agentAi has received anok? message from
agentAl, proposing an assignment for its variable< xi

r = 15 : 00 >. AgentAi has
another meeting, with an assignment< xi

s = 14 : 00 >, proposed by agentAj . As
a result of arrival-time conflict,Ai has to reject the new assignment by sending the
Nogood{(xj

s = 14 : 00 → xl
r 6= 15 : 00)}. This Nogood informs agentAl that

meetingmr, for which it is responsible, is in conflict with meetingms. It can also
deduce that the agent responsible for meetingms is Aj . If the arrival time constraint
between meetingsmr andms is three hours, than the following Nogood holds -{(xj

s =
14 : 00 → xl

r 6= 16 : 00)}. In other words, agentAi can generate additional Nogoods
when the conflict occurs between its local variables. It is important to note here that
Nogoods retain their meaning. In other words, Nogoods are valid during all stages of
search. In that sense, the additional information retains its validity through all of the
search process.

Different versions of asynchronous backtracking retain Nogoods in different ways.
From retaining all of them in the first versions of ABT [Yokooet al.1998], to erasing
all Nogoods that are not currently consistent [Bessiereet al.2001]. It is important to
note that the variety of strategies for retaining received Nogoods during asynchronous
backtracking relates to space efficiency and not to completeness. This is why different
correct algorithms choose differently [Bessiereet al.2001]. The present method does
not interfere with the correctness of the multiple-variable ABT and it is independent of
the question whether additional (volunteered) Nogoods are retained or not.

An absolute measure of the information content of a Nogood is the size of the
eliminated subtree from the search tree. This measure depends on the size of the No-
good, the shorter the Nogood, the larger the eliminated subtree. It is easy to com-
pute the fraction of the search space that is eliminated. If the LHS of the Nogood is
< X1

k , T 1
k > . . . < Xi

m, T i
m > and there aren agents, then the eliminated subtree is of

sizeDi+1× . . .×Dn. The fraction of the search space that is eliminated by the Nogood
is simply Di+1

×...×Dn

D1
×...×Dn

For the meeting scheduling problem(MSP) a Nogood is a partial schedule, that
conflicts with a proposed assignment of a time-slot to a given meeting. If a Nogood is
generated by a conflict within the sending agent, it reflects a conflict of two or more
of the meetings of the sending agent. Alternatively, the Nogood sent has been received
(in longer form) by the sending agent and could not be resolved by it (see function
resolveConflicts()in Figure 3).

The present investigation uses locally generatedadditional Nogoods as a form of
volunteering information. The proposed method is to generate additional Nogoods and
add them to every backtrack message. In order to add Nogoods to backtrack messages,
the refined backtrack procedure is presented in Figure 4. The improved procedure
checks for addtional time slots ofxi

k, that create an immidate conflict between the
local variablexi

k of the meetingmk and local variablexi
w of meetingmw. In the code

of Figure 4,xi
k has an equality constraint with the right hand side of the Nogood that

forbids < xj
k, value > andxi

w has an equality constraint with one of the variables
on the left hand side of the Nogood that is being sent back in the backtrack message

(lines 3-5). When the enhanced backtrack procedure finds such a conflict, it adds it to
the additionalNogoodslist (line 6). When theadditionalNogoodslist reaches the size
of the predefined parameter -informationFactor, it is sent with the original nogood in a
backtrack message (lines 7-8).

– backtrack(nogood):
1.additionalNogoods← ∅
2.< x

j

k, value >← rhs(nogood)
3.for each< xl

w, val′ >∈ lhs(nogood) do
4. for eachval ∈ domain(xi

k do
5. if not consistent(< xi

w, val′ >, xi
k, val) then

6. additionalNogoods.add(< xl
w, val′ >→< x

j

k, val >)
7. if additionalNogoods.size ≥ informationFactor then
8. send:BT(Nogood, additionalNogoods)
9. return
10.send:BT(Nogood, additionalNogoods)

end procedure

Fig. 4.Backtrack procedure - sending additional Nogoods for agentAi

5 Experimetal Results

To simulate asynchronous agents, a Distributed CSP simulator is used, that implements
agents asJava Threads. Threads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - time, which is measured in terms of
computational effort and network load [Lynch1997]. The time performance of search
algorithms on DisCSPs has traditionally been measured by the number of computation
cycles or steps (cf. [Yokoo and Hirayama2000]). In order to take into account the effort
an agent makes during its local assignment the computational effort can be measured by
the number of concurrent constraints checks that agents perform ([Meiselset al.2002]).
Measuring the network load poses a much simpler problem. Network load is generally
measured by counting the total number of messages sent during search [Lynch1997].

In the asynchronous simulator, concurrent steps of computation are counted by
a method similar to that of [Lamport1978,Meiselset al.2002]. Every agent holds a
counter of computation steps. Every message carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the
cost of the search as the largest counter held by some agent at the end of the search,

we achieve a measure of concurrent search effort that is similar to Lamport’s logical
time [Lamport1978].

Meeting scheduling problems where generated randomly, as described in section 2.1.
Locations of meetings were selected randomly from a set of 4{P1, P2, P3, P4}. The
distances among the 4 locations, in terms of time of travel, generate the arrival-time
constraints among meetings. Two sets of experiments were performed. The first set of
experiments has 9 meetings and 16 agents. Each agent participates in 3 meetings. The
meetings of each agent were selected randomly, as described in section 2.1, by select-
ing cliques of 3 meetings. The random selection was performed so that no two agents
attend exactly the same 3 meetings. The second set of experiments used 9 meetings and
24 agents with 2 meetings per agent. Each agent in this experiment adds an edge and
not a clique, during the generation of random problems.

Two sets of distances among the meetings’ locations are used in the first set of
experiments. The distances are described in Figures 5. The domains of all meetings
contain 24 time-slots. Each experiment was performed 10 times and average results are
reported.

Fig. 5. (a) Distances between locations of meetings, (b) Smaller distances between locations of
meetings.

All experiments consist of performing search for a consistent solution of the ran-
domly generated problems, with different amounts of volunteered information. The runs
of the problems had 6 different numbers of added Nogoods, or in terms of the param-
eter of algorithmbacktrack() of Figure 4informationFactor ={0,1,2,4,6,8,10}. The
informationFactoris the maximum number of additional Nogoods per backtrack. The
actual number in the experiments was very close and the results are parametrized by the
average number of actual Nogoods sent.

Figures 6, 7 present the behavior of the three measures of performance, for grow-
ing number of additional Nogoods, in the first set of experiments (16 meetings and 9
agents). Two different distance graphs are presented in these figures. The grey columns
use the distance map of Figure 5(a) and the dark columns use a distance map of smaller
distances (Figure 5(b)). The smaller distances rule out fewer values per arrival-time
constraint, thus generating a CSP with lower tightness.

It is easy to see that the computational effort is decreasing with increasing number
of additional Nogoods. The overall factor of improvement in communication load is
larger than 3 for the experiment with larger distances. This is the harder problem to
solve. For the easier problem, with smaller distances, the overall scale is much smaller
(i.e. easier problem) and the improvement is less dramatic. The improvement in com-
munication load is easy to understabd. Backtracking messages rule out a larger number
of assignments for the receiving agent. As a result, lessinfo messages are sent forward.

The improvement in the number of steps of computation can be explained by the
following example. When an additional Nogood eliminatingxi

k = 4 is received by
agentAi, it eliminates a cycle of steps: assigningxi

k = 4, assigning the rest of the
local variables ofAi, sendingok? messages to all agents inΓ+ and finally receiving a
backtrack message that eliminatesxi

k = 4.

Fig. 6. (a) steps of computation vs. actual additional Nogoods, (b) total number of messages vs.
additional Nogoods.

It is important to note that the production of additional Nogoods has a computational
cost. For the MSP, the computational effort required for producing additional Nogoods
is relatively small. This is a result of the structure of the problem, because all the intra-
constraints are equality constraints. In other words, a Nogood (xi

k = 16 : 00 → xj
r 6=

17 : 00) can be generated easily in agentAl that attends both meetingsmk,mr.
The computational effort of generating the additional Nogoods should affect the

CCCs measure most, since the generation of Nogoods requires constraint checks. It
is therefore interesting that the CCC performance measure in Figure 7 shows an im-
provement with increasing number of additional Nogoods. It is important to note that
additional Nogoods are not always relevant for the receiving agent. The removed value
of the additional Nogood may have already been erased, thus wasting the effort of gen-
erating the additional Nogood.

In the second set of experiments we used 9 meetings and 24 agents, with 2 meetings
per agent. Each agent in this experiment adds an edge and not a clique, during the
generation of random problems. This set of problems require less computational effort

Fig. 7.Concurrent constraints checks (CCCs) vs. actual additional Nogoods

than the first two experiments, but the decrease of computational effort with increasing
number of additional Nogoods is clear (Figures 8).

6 Discussion

The first investigation of the trade-off between privacy and efficiency of search was done
by [Wallace and Freuder2002]. In their paper the agents tried to find a time-slot for a
single meeting of all agents. The additional information in [Wallace and Freuder2002]
was sets of time-slots that are already taken in individual calendars of agents. The addi-
tion of such information is immediately related to the privacy of agents. Sending lists of
taken time-slots (i.e. with former meetings) reveals parts of the calendar of the sending
agent.

Fig. 8.Two meetings per agent: (a) steps vs. actual additional Nogoods, (b) total number of mes-
sages vs. average additional Nogoods.

The present paper differs completely from [Wallace and Freuder2002], in that it
solves a search problem. A set of meetings, each with different subsets of the agents,
has to be assigned non conflicting time-slots. The assignment problem is exponential in
the number of meetings, thus different than a problem with one global meeting to sched-
ule. In the context of a CSP, prior meetings of agents can be represented by different
domains for agents. The constraints of the problem are arrival-time constraints, arising
from the different locations of the meetings that need assignments. This generates a
standard CSP with a clear set of variables, domains of values and constraints among
variables (see section 2). When a distributed search process is performed on the MSP,
partial assignments are temporary (i.e. the AgentView). This makes the privacy issue
less clear. Additional information about the state of assignments carries little informa-
tion about calendars of agents. Moreover, assignments are dynamic and change during
search. In the view of the present paper, the only private information that is revealed
during the distributed search process is the meetings in which each agent participates.

Because of the less clear nature of privacy during asynchronous search, the present
investigation focuses on volunteered (additional) information. For asynchronous back-
tracking Nogoods are a clear form of information [Yokoo and Hirayama2000]. In all
versions of ABT, differing amounts of Nogoods are kept as constraints discovered dur-
ing search [Bessiereet al.2001]. The choice of the present paper is to volunteer informa-
tion in the form of additional Nogoods that are sent during search (section 4). Nogoods
are units of information about the search space that are of permanent validity. However,
their relevanceto asynchronous backtracking at any given moment can change dynam-
ically (see [Bessiereet al.2001]). In other words, the usefulness of additional Nogoods
is not guaranteed.

The main experimental result of the present paper is that additional information
improves search efficiency. Sending additional Nogoods improves the performance of
asynchronous backtracking on the distributed meetings scheduling problem, in 3 dif-
ferent measures. The total number of messages decreases and so does the number of
computation cycles and the number of concurrent constraint checks (Figures 6, 7). The
largest improvement occurs for adding the first and second additional Nogoods. The
marginal gain, as more and more Nogoods are being added, becomes smaller. This is
evident for all sets of experiments (see also Figures 8). Problems with a larger number
of participating agents (i.e. 24), and a smaller number of meetings per agent are in gen-
eral easier. It will be interesting to perform further experiments with larger number of
meetings per agent. This will need much care during the process of problem generation,
as the resulting network is very dense and can become insoluble.

It is interesting to try and clear the impact of the additional information to the
present investigation, on the privacy of agents. To this end, one can think of internal con-
straints of arrival as private information. These constraints represent the set of meetings
in which a given agent participates. In the model of the present investigation an arrival-
time constraint of agentAi can be resolved by another agentAl after receiving a group
of immediate Nogoods fromAi. Take for example the following group of immediate
Nogoods, sent by agentAi to agentAl: {(x

j
k = 14 : 00 → xl

w 6= 14 : 00), (xj
k = 14 :

00 → xl
w 6= 15 : 00), (xj

k = 14 : 00 → xl
w 6= 16 : 00)} This set of Nogoods can be

interpreted by agentAl as a lower bound on the traveling time of agentAi from meet-

ing mk to meetingmw, in this case two hours. In this way, each immediate Nogood
generates knowledge on the meetings and locations of the sending agent.

The effect of additional Nogoods on the efficiency of asynchronous search on gen-
eral random DisCSPs can also be studied. The generation of additional Nogoods for
general DisCSPs can be described as follows. Before sending back a Nogood, for each
value in the domain of the destination agent, check whether this value (combined with
the left hand side of the Nogood) is in conflict with all remaining values in the domain
of the current (sending) agent. It is clear that this computation can be heavy for a general
DisCSP and a general set of constraints. For the MSP family of problems the number
of allowed domain values is extremely small, due to the equality constraint. Therefore,
the computational effort required for additional Nogoods generation in MSP can still
reduce the overall concurrent effort.

References

[Bessiereet al.2001] C. Bessiere, A. Maestre, and P. Messeguer. Distributed dynamic backtrack-
ing. In Workshop on Distributed Constraints in IJCAI-01, Seattle, 2001.

[Brito and Meseguer2003] I. Brito and P. Meseguer. Distributed forward checking. InCP 2003:
9th International Conference, pages 801–806, Kinsale, Ireland, 2003.

[Dechter2003] R. Dechter.Constraints Processing. Morgan Kaufmann, 2003.
[Garrido and Sycara1995] L. Garrido and K. Sycara. Multi-agent meeting scheduling: Prelim-

inary experimental results. In Victor Lesser, editor,Proc. 1st Intern. Conf. on Multi-Agent
Systems (ICMAS’95). MIT Press, 1995.

[Ginsberg1993] M. L. Ginsberg. Dynamic backtracking.Jou. of Art. Intell. Res., 1:25–46, 1993.
[Lamport1978] L. Lamport. Time, clocks and the ordering of events in a distributed system.

Comm. of ACM, 21:558–565, 1978.
[Lynch1997] N. A. Lynch.Distributed Algorithms. Morgan Kaufmann, 1997.
[Meiselset al.2002] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance

of distributed constraints processing algorithms. InProc. DCR Workshop, AAMAS-2002, pages
86–93, Bologna, 2002.

[Meseguer and Jimenez2000] P. Meseguer and M. A. Jimenez. Distributed forward checking. In
CP-2000 Workshop on Distributed Constraint Satisfaction, Singapore, 2000.

[Prosser1993] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.Computa-
tional Intelligence, 9:268–299, 1993.

[Sen and Durfee1995] S. Sen and E. H. Durfee. Unsupervised surrogate agents and search bias
change in flexible distributed scheduling. In Victor Lesser, editor,Proc. 1st Intern. Conf. on
Multi-Agent Systems (ICMAS’95), pages 336–343, San Francisco, CA, 1995. MIT Press.

[Wallace and Freuder2002] R. J. Wallace and E. C. Freuder. Constraint-based multi-agent meet-
ing scheduling: Effects of agent heterogeneity on performance and privacy loss. In M. Yakoo,
editor,AAMAS-02 Workshop on Distributed Constraint Reasoning, pages 176–182, Bologna,
2002.

[Wallace2003] R. J. Wallace. Reasoning with possibilities in multiagent graph coloring. In4th
Intern. Workshop on Distributed Constraint Reasoning, pages 122–130, 2003.

[Yokoo and Hirayama2000] M. Yokoo and K. Hirayama. Algorithms for distributed constraint
satisfaction: A review.Autonomous Agents & Multi-Agent Sys, 3:198–212, 2000.

[Yokoo et al.1998] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed con-
straint satisfaction problem: Formalization and algorithms.IEEE Trans. on Data and Kn. Eng.,
10:673–685, 1998.

Multiagent Meeting Scheduling with Rescheduling

Pragnesh Jay Modi and Manuela Veloso

Computer Science Department
Carnegie Mellon University

Pittsburgh PA 15213
{pmodi,mmv}@cs.cmu.edu

Abstract. We are interested in how personal agents who perform calendar man-
agement on behalf of their human users can schedule meetingseffectively. A key
difficulty of concern is deciding when to reschedule an existing meeting in favor
of a new meeting. We model the meeting scheduling problem as aspecial sub-
class of distributed constraint reasoning (DCR) called theIncremental, Limited
Information Exchange Multiagent Assignment Problem (IL-MAP). Key novel-
ties of our approach include i) a focus on incremental scheduling, ii) scheduling
under a limited information exchange paradigm and, iii) using models of other
agents to schedule more effectively. Our results are the first in DCR to show how
models of other agents can be used to improve problem solvingperformance.

1 Introduction

Meeting scheduling is a time consuming routine task that when delegated to a
personal assistant agent promises to significantly reduce daily cognitive load. A
key competency of agents who do meeting scheduling is their ability to coor-
dinate schedules such that all attendees of a meeting agree on its start time [3,
9, 2]. The problem is challenging in part because a) each agent chooses its own
schedule, i.e., scheduling isdistributed, b) new meetings are introduced over
time, i.e., scheduling isincremental, and c) agents arelimited in the informa-
tion they can exchange. This article provides an approach tomultiagent meeting
scheduling using the Distributed Constraint Reasoning (DCR) paradigm [1, 4,
5, 10, 11]. Previous researchers have proposed DCR as a framework for multia-
gent coordination and considerable progress has been made over the last several
years. However, novel techniques are needed to address the challenges described
above.

The main idea in this paper is to exploit given models of “scheduling diffi-
culty” with other agents’ in order improve meeting scheduling performance. The
specific hypothesis we investigate is that an agent can use models of the calendar
density of other agents where we assume that the calendar density is correlated
with the agent’s rank in an organization. This is novel because to our knowl-
edge, existing methods for DCR have not investigated how to take advantage of

learned or given models of other agents to aid in making scheduling decisions.
Further, we evaluate our approach in anincremental schedulingparadigm, in
which new meetings must be scheduled in the context of an existing schedule.
Existing DCR approaches have focused primarily on batch problem solving and
are not designed for minimizing disruption to an initial given solution. Finally,
we assume that communication between agents is limited. We explicitly prohibit
the communication of information about variables between agents who are not
involved in the variable’s value assignment. This restriction is motivated by the
meeting scheduling domain in which schedule privacy is a keyconcern. Exist-
ing DCR algorithms typically communicate “context” information which does
not adhere to this restriction.

We first formalize the meeting scheduling problem by defininga special
form of DCR which we call the Incremental, Limited Information Exchange
Multiagent Assignment Problem (IL-MAP). IL-MAP requires agents to assign
values to variables where multiple agents must agree on value assignments but
are limited in what and to whom information can be communicated. Second,
we describe a basic distributed protocol for IL-MAP in whichan initiator pro-
poses assignments to others who either agree or refuse the proposed assignments
based on their own existing assignments. The protocol conforms to our need for
limited information exchange by only communicating allowed information to
relevant agents. Third, we use this basic protocol to investigate using models
of scheduling difficulty with other agents to increase effectiveness of the mul-
tiagent meeting scheduling process. Finally, we demonstrate that our approach
improves scheduling effectiveness in an agent organization hierarchy where the
lower ranked agents have lower calendar density than the higher ranked agents
in the hierarchy.

The multiagent meeting scheduling problem has been previously investi-
gated but methods for making effective rescheduling decisions is lacking. Sen
and Durfee [9] formalize the problem and identify a family ofnegotiation proto-
cols aimed at searching for feasible solutions in a distributed manner. However,
rescheduling of existing meetings or modeling of other agents to improve per-
formance is not a major focus. Sen and Durfee also describe a contract-net ap-
proach for multiagent meeting scheduling [8] and in this context, rescheduling
and cancellation of existing meetings is discussed. The critical issues are raised
and a rich decision making framework is presented but is mainly theoretical. Our
research represents a further investigation of some of the critical issues raised
by them. Freuder, Minca and Wallace [2] have previously investigated meeting
scheduling within the DCR framework where the primary motivation was to in-
vestigate tradeoffs between efficiency of scheduling and loss of privacy, but not
issues of incremental problem solving or agent modeling arenot addressed.

2 Meeting Scheduling as Distributed Constraint Reasoning

We view meeting scheduling as a distributed problem in whicheach agent man-
ages and is responsible for its own calendar. A centralized approach is also pos-
sible in which a single server is assumed to have access to each agent’s calendar
and makes scheduling decisions for all agents. However, a centralized approach
has several drawbacks including that it requires agents to reveal potentially pri-
vate calendar information to the central server.

We use the Distributed Constraint Reasoning (DCR) paradigm[11] to model
distributed meeting scheduling. DCR is defined by a set of variables where each
variable is assigned to an agent who has control of its value,and agents must
choose values for their assigned variables so that a given set of constraints are
satisfied or optimized. Constraints between variables assigned to the same agent
are calledintra-agentconstraints, while constraints between variables assigned
to different agents are calledinter-agentconstraints. To ensure that inter-agent
constraints are satisfied, agents must coordinate their choice of values for vari-
ables through a communication protocol.

2.1 The Multiagent Assignment Problem (MAP)

In this section, we introduce an important subclass of DCR which we call the
multiagent assignment problem(MAP) . In MAP, we assume that agents must
map elements from one set, which are modeled as the variables, to elements of
a second set, which are modeled as the values. Importantly, we assume multi-
ple agents need to agree on the assignment of a value to a givenvariable. Since
decision-making control is distributed among the agents, this “agreement” re-
quirement raises many unique challenges.

We define MAP as follows.

– A = {A1, A2, ..., An} is a set ofagents.
– V = {V1, V2, ..., Vm} is a set ofvariables.
– D = {d1, d2, ..., dk} is a set ofvalues.
– participants(Vi) ⊆ A is a set of agents who are assigned the variableVi.
– vars(Ai) ⊆ V is a set of variables assigned to agentAi.
– For each variableVi, an inter-agentagreementconstraint is satisfied if and

only if the same value fromD is assigned toVi by all the agents inparticipants(Vi).
– For each agentAi, an intra-agentmutual exclusionconstraint is satisfied

if and only if no value fromD is assigned to more than one variable in
vars(Ai).

MAP has some similarities to the classical “assignment problem” from com-
binatorial optimization research[7]. Two key differencesare that a) MAP re-
quires distributed agents to agree on assignments and b) MAPdoes not yet

model degrees of solution quality, only valid and invalid solutions. Further ex-
tension of MAP to model optimization problems is important future work.

2.2 Meeting Scheduling as MAP

We describe the multiagent meeting scheduling problem followed by its for-
mulation as a MAP. Meeting scheduling requires meetings to be paired with
timeslots subject to three constraints: a) each meeting is assigned to exactly one
timeslot, b) each timeslot is paired with no more than one meeting, and c) all
the attendees of a given meeting agree on its assigned timeslot. The goal of the
following model is to represent these three constraints.

We define the meeting scheduling problem as follows.

– A = {A1, A2, ..., An} is a set of agents.
– M = {M1,M2, ...,Mm} is a set of meetings. We assume each meeting has

the same durationd.
– attendees(Mi) ⊆ A are the attendees of meetingMi.
– meetings(Ai) ⊆ M are the meetings of whichAi is an attendee.
– initiator(Mi) ∈ attendees(Mi) is the designated initiator of meetingMi.
– T = {T1, T2, ..., Tp} is a set of discrete non-overlapping contiguous times-

lots of lengthd.
– Sinit = {S1, S2, ..., Sn} is a set of calendars. EachSi is a mapping from

the meetings inmeetings(Ai) to timeslots inT . A calendarSi is valid if and
only if a) each meeting is mapped to exactly one timeslot and no timeslot
has more than one meeting mapped to it, and b) for each meetingMk and
for all attendeesAi, Aj ∈ attendees(Mk), Si(Mk) = Sj(Mk). That is, the
calendars of all attendees of a meeting agree on its assignedtimeslot.

The representation of meeting scheduling as MAP is straightforward. The
set of MAP variablesV is given by the set of meetingsM and the set of MAP
valuesD is given by the set of timeslotsT . The participants of variableVi

correspond to theattendeesof meetingMi. The MAP intra-agent mutual exclu-
sion constraint prevents a timeslot from being double-booked and the inter-agent
agreement constraint ensures that meeting attendees agreeon the time.

Figure 1 illustrates the multiagent assignment problem (and its solution)
with three agentsA1, A2, A3, five meetingsM1,M2,M3,M4,M5 and four times-
lots. Note that for each agent, each meeting is assigned to a different value in
order to satisfy the intra-agent mutual exclusion constraint. Between agents, the
variables corresponding to the same meeting are assigned the same value in
order to satisfy the inter-agent agreement constraint.

1T 2T 3T 4T

A1

A2

A3

Values:

M1

M4

M5

M5

M3

M3

M2

M5M2

Solution:

1

2

3

4

5

1

1M : A , A2

2M : A , A3
M : A3

1 2M : A , A , A3

Variables and Participants

M : A

Fig. 1.Meeting Scheduling as the Multiagent Assignment Problem.

2.3 IL-MAP: MAP in Incremental, Limited Information Exchan ge
Domains

We further extend the scheduling problem to introduce the IL-MAP problem
in which agents must solve MAP in an incremental fashion while limiting the
information they can exchange. These two features are described next.

Incremental In an incremental MAP, new variables and associated constraints
are added to the problem over time and must be integrated intoan existing
assignment. In meeting scheduling for example, new meetings arise over
time and must be scheduled in the context of an existing calendar. In addition
to the elements of MAP defined above, in the incremental version we are
also given:

– Sinit = {(V1, di), (V2, dj), ..., (Vm, dk)} is an initial solution.
– Vm+1 is a new variable to be assigned a value.
– participants(Vm+1) ⊆ A is a set of agents who are assigned the variable

Vm+1.

The key difficulty that arises in incremental MAP is that existing assign-
ments may need to be changed in order to successfully accommodate the
new variable but it is difficult to determine in advance whichchanges will
result in a set of valid schedules.

Limited Information Exchange Although agents must exchange some infor-
mation in order to obtain feasible solutions, the information exchange pro-
cess is limited due to the distributed nature of the problem.In particular, we
assume the following condition.

– Agents do not communicate information about a variable to agents who
are not participants in that variable.

For example, the id of a variable, its current value, or the participants in
the variable are not communicated between agents who are notboth partic-
ipants in the variable. A key challenge is to schedule effectively under this
condition.

procedure initiate(Mj):
(1) initiator(Mj)← Ai

(2) t← GetT imeslot(Mj)
(3) if t is null:
(4) return
(5) status(Mj ,t)← PENDING
(6) for each Ak ∈ attendees(Mj):
(7) send (PROPOSE,Mj , t, Ai) to Ak

procedure when received(PROPOSE,
Mj , t, initiator):

(8) if existsMk where status(Mk, t) is PENDING:
(9) reply← IMPOSSIBLE
(10) else ifexistsMk where

status(Mk, t) is CONFIRMED:
(11) if BumpingRule(Mj, Mk) is true:
(12) status(Mk,t)← BUMPED
(13) status(Mj ,t)← PENDING
(14) reply← PENDING
(15) else:
(16) reply← IMPOSSIBLE
(17) else:
(18) status(Mj ,t)← PENDING
(19) reply← PENDING
(20) send (REPLY,Mj , t, reply,Ai) to initiator

procedure when received(REPLY,
Mj , t, reply,Attendee):

(21) agentView(Mj ,t,Attendee)← reply
(22) if exists t’ where∀Ak ∈ attendees(Mj),

agentView(Mj , t’,Ak) is PENDING
and status(Mj , t’) is PENDING

(23) status(Mj , t’) ← CONFIRMED
(24) resolved(Mj)
(25) for each Ak ∈ attendees(Mj):
(26) send (CONFIRM,Mj , t’) to Ak

(27) if existsMk where status(Mk,t’) is BUMPED:
(28) reschedule(Mk)
(29) else:
(30) t”← GetT imeslot(Mj)
(31) if t” is null:
(32) resolved(Mj)
(33) for each Ak ∈ attendees(Mj):
(34) send (FAIL, Mj) to Ak

(35) else:
(36) status(Mj ,t”) ← PENDING
(37) for each Ak ∈ attendees(Mj):
(38) send (PROPOSE,Mj , t”, Ai) to Ak

procedure when received(CONFIRM,Mj , t):
(39) status(Mj , t)← CONFIRMED
(40) resolved(Mj)
(41) if existsMk where status(Mk,t) is BUMPED:
(42) reschedule(Mk)

procedure when received(FAIL, Mj):
(43) resolved(Mj)

procedure when received(RESCHEDULE,Mj):
(44) reschedule(Mj)

procedure reschedule(Mj):
(45) if Ai equalsinitiator(Mj):
(46) if exists t where status(Mj ,t) is

BUMPED or CONFIRMED:
(47) status(Mj , t)← IMPOSSIBLE
(48) for each Ak ∈ attendees(Mj):
(49) for each t where agentView(Mj , t,Ak) is

IMPOSSIBLE or PENDING:
(50) agentView(Mj , t ,Ak)← POSSIBLE
(51) initiate(Mj)
(52) else:
(53) send (RESCHEDULE,Mj) to initiator(Mj)

procedure resolved(Mj):
(54) for each t where status(Mj , t) is PENDING:
(55) status(Mj , t)← POSSIBLE
(56) if existsMk where status(Mk, t) is BUMPED:
(57) status(Mk, t)← CONFIRMED

Fig. 2. Algorithm for AgentAi

3 A Solution Technique for IL-MAP in Meeting Scheduling

We are interested in solution techniques for IL-MAP in the context of distributed
meeting scheduling. We first describe a basic negotiation framework upon which
our techniques are applied. Next, we describe the problem ofrescheduling ex-
isting meetings. Finally, we present our approach for making this rescheduling
decision effectively.

3.1 Basic Negotiation Protocol

Sen and Durfee [9] describe a basic negotiation protocol formeeting scheduling
in which agents negotiate inrounds. Each meeting has a designated initiator
who manages the negotiation of the meeting by proposing times and collecting
responses from the other attendees in a sequence of rounds. In each round, each
attendee responds with a PENDING (accept) or IMPOSSIBLE (reject) message
for the proposed time. The initiator collects the responsesin each round and does
a set intersection to try to find a mutually acceptable time. If a time is found, the
meeting is CONFIRMED (scheduled) in one additional round and the process
terminates. Otherwise, the process continues in rounds until the initiator runs
out of times to propose in which case the process terminates with failure.

We adopt a variant of this basic protocol in which attendees may tentatively
bump a CONFIRMED meeting in favor of a new meeting in order to decrease
the possibility of scheduling failure. We say it is tentatively bumped because an
agent waits until the new meeting is confirmed in the bumped timeslot before
initiating rescheduling of the bumped meeting. If the new meeting is confirmed
in some other slot or fails to be scheduled, the bumped meeting is re-instated
into its original slot. If an agent needs to reschedule a meeting of which it is not
the original initiator, it sends a RESCHEDULE message to theinitiator, who
will be responsible for restarting a negotiation episode for the meeting.

Details of the algorithm are shown in Figure 2. Two functionsGetT imeslot

andBumpingRule are purposely left unspecified in Figure 2.GetT imeslot

returns a free timeslot from the calendar or null if one does not exist. This func-
tion encapsulates a local optimization routine which ranksall the free timeslots
according to a complex set of user preferences, and returns the top ranked time.
Further discussion is out of scope of this paper and we refer the reader to [6]
for more details. TheBumpingRule function returns true or false, and encap-
sulates the reasoning of the agent about whether one meetingshould be bumped
for another. A technique for making this decision is described in rest of this next
section.

3.2 The Problem of When to Reschedule

A key algorithmic decision to be made is when to bump an existing meeting
in favor of a proposed meeting. More specifically, an attendee Ai must make a
rescheduling decision when it receives a proposal for meetingM1 at time slotT1

butAi already has a meetingM2 confirmed in slotT1. Ai has to decide between
accepting the proposal or rejecting it. If the agent decidesto accept the proposal,
it may need to rescheduleM2 with the other attendees. This rescheduling may
cause the other attendees in turn to bump other meetings, which can result in
cascading disruption costs throughout the set of agents. The alternative is forAi

to reject the proposal forM1, but this entails risk also because the scheduling of
M1 may ultimately fail. It is difficult to determine in advance which is the better
decision because other people’s schedules are not directlyobservable.

Fixed strategies such as always rejecting or always bumpingfail to be effec-
tive. Table 1 shows a comparison of the average performance of the two fixed
strategies. (The exact experimental set-up is described inmore detail in Sec-
tion 5. These results are with 20 agents who have initial calendar densities of
85%.) The “failures” column shows that for the Never-Bump strategy a mu-
tually free timeslot could not be found in 49 out of 50 cases. The “timeouts”
column shows that for the Always-Bump strategy the negotiation failed to ter-
minate after a given amount of time (10 minutes) in 50 out of 50cases. In these
cases, a cascading effect caused many meetings to be bumped until ultimately a
maximum time limit was reached.

Table 1. Empirical analysis of two strawman strategies illustratesthe need for intelligent
rescheduling techniques

Strategy RoundsMsgsFailuresTimeouts
Never-Bump 6.88 44 49/50 –
Always-Bump 614 2736 – 50/50

3.3 Modeling Scheduling Difficulty

We propose a method for making rescheduling decisions in which agents use a
model of “scheduling difficulty” with other agents. Such models can be given
to an agent or they can be learned by the agent over time. In this paper we are
interested in how a scheduling difficulty model, once obtained, can be used by
an agent to improve rescheduling decisions. Also, we note that more complex
models of scheduling difficulty are possible than the one presented here. How-
ever, such models require more effort to construct and are not guaranteed to

A2

A5 A36
1

32 3
A4

6

Fig. 3. A model of relative scheduling difficulty with four agentsA2,A3,A4 andA5.

improve scheduling. We opt for the following model which is computationally
convenient and can be shown to improve scheduling performance.

Let SDi be a number denoting thescheduling difficultyof an agentAi, i.e.,
if SDi > SDj , then scheduling a meeting with agentAi is expected to be more
“difficult” than with agentAj . SD is measured in scheduling difficulty “units”.
We use this factor to encapsulate the many relevant featuresthat contribute to
scheduling difficulty with another agent. Assuming that each agent is operating
on behalf of a human,SD could take into account factors such as stubbornness
or accessibility to email communication. We will consider calendar density as
associated with position in a organization as a key factor. We defineki,j as the
relative difficulty for scheduling a meeting withAi versus scheduling a meeting
with Aj . It makes natural sense for this relation to be multiplicative and transi-
tive. That is, for three agentsA2, A3, A4, we require thatk2,3 × k3,4 = k2,4.

Example: Figure 3 showsA1’s model of relative scheduling difficulty with
a group of four other agentsA2,A3,A4, andA5. The arrow fromA3 to A4 with
magnitude 3 represents the relationSDA4

= 3×SDA3
, i.e., scheduling a meet-

ing with A4 is 3 times “more difficult than” scheduling a meeting withA3.

Given a model of scheduling difficulty, we now have a way to define a deci-
sion rule for when to reschedule a meeting in favor of another. Given a meeting
Mj , Ak computes the difficulty of schedulingMj as

Difficulty(Mj) =
∑

Ai∈attendees(Mj)−{Ak}

SDi (1)

Finally, the bumping rule is given as follows. An agent bumpsa meeting
Mj in favor of a meetingMi if and only if the followingBumpingRule(Mi,Mj)
evaluates totrue:

Difficulty(Mj) < Difficulty(Mi) (2)

4 Example of a Meeting Scheduling Negotiation

We describe an example scheduling negotiation episode involving an agentA1.
Figure 3 showsA1’s model of relative scheduling difficulty with four other
agentsA2,A3,A4, andA5. Details of the negotiation using this model is shown
in Figure 4. Each box represents the state of agentA1’s calendar at a given
time. Arrows denote incoming and outgoing messages. Each message is 3-
tuple of meeting id, time, and meeting status, where status is eitherpossible,
pending, bumped, confirmedor impossible. In this example,attendees(M1) =
{A1, A2, A3}, attendees(M2) = {A1, A4}, andattendees(M3) = {A1, A5}.

At time 1, A1 has meeting M1 currently confirmed at time 10 am and re-
ceives a request fromA4 who is the initiator of meeting M2. The time proposed
is 10 am, which conflicts with M1.A1 must now decide whether to rejectA4’s
proposal, or accept it and bump meeting M1. Referring to Figure 3 and Equa-
tion 1,A1 computes the scheduling difficulty of M1 asSD2+SD3 = 1+1 = 2
and the scheduling difficulty of M2 asSD4 = 3. SinceDifficulty(M1) <

Difficulty(M2), A1 decides to bump.
At time 2,A1 changes the status of M1 to bumped, and sets status of M2 as

pending for 10 am, and a response is sent toA4. At time 3, as an example of
concurrency,A1 receives a request fromA5 for 10 am for a new meeting M3. At
time 4,A1 responds impossible since 10 am is already pending for M2. Pending
meetings are never bumped (only confirmed meetings can be bumped). At time
5, A1 hears back fromA4 that M2 should now be confirmed for the previously
proposed time of 10 am. At time 6,A1 sets the status of M2 to confirmed, and
begins the rescheduling of M1 by proposing a new time to the other attendees
A2 andA3. (This example has assumed thatA1 is the initiator of M1. If it were
not, then in our protocol,A1 would have sent a message to the initiator of M1
indicating that 10 am is now impossible, and the initiator would be responsible
for restarting the negotiation and rescheduling M1). At time 7,A1 hears back
from A2 that 11 am is pending in its calendar for meeting M1. At time 8,A1

records this information in its current state. At time 9 and 10, A1 hears back
from A3 and records the response. At time 11,A1 has now heard back from
all attendees for meeting M1, and all have agreed on 11 am.A1 sends the final
confirmation message to all attendees. We end the example here, but realize that
sinceA2 or A3 may have bumped meetings at 11 am to accommodateA1’s
request for meeting M1, the scheduling episode may not be over.

5 Experimental Results

We present experimental results comparing rescheduling strategies that use a
model of “scheduling difficulty” with other agent versus strategies that do not. In

Fig. 4. An example negotiation between an agent and four other agents A2,A3,A4 andA5.

the first strategy, denotedAtt, agents simply compare the number of attendees
and bump the meeting with fewer attendees when there is a conflict between
two meetings. They do not use knowledge about other agents inmaking their
bumping decisions. In the second strategy, denotedSD, we assume that agents
know the rank of other attendees and use this information to make bumping
decisions, i.e., they can assign a “scheduling difficulty” to each attendee.

5.1 Experimental Setup

We evaluate each strategy by averaging measurements over a number of “runs”.
Each run consists of two phases: a problem generation phase followed by a
problem solving phase. We describe each phase in turn. In ourexperiments, we
report measurements from the problem solving phase only.

Phase 1The problem generation phase is centralized. We automatically gen-
erate a set of agentsA each with a desired initial schedule density. Each
agent’s calendar has 50 timeslots to simulate a 5 day 10-hourwork week.
Next, we automatically generate and schedule meetings between random
subsets of the agents until all calendars are filled to their desired density.
The attendees of a given meeting are chosen according to a uniform ran-
dom distribution. The number of attendees for a given meeting is chosen
according to a distribution in which meetings of more peopleare less likely
than meetings with fewer people. Every meeting has at least two attendees.
Finally, we generate one additional new meetingMm+1 that must be sched-
uled in the problem solving phase. The attendees of the new meeting are
chosen to be a random subset of the agents. In our experiments, the number
of attendees of the new meeting is fixed to 4. One of them is randomly cho-
sen to be the initiator. Every generated problem is ensure tohave a solution.

Phase 2The problem solving phase is completely distributed. The goal is to
find a timeslot for the new meeting{Mm+1} while successfully reschedul-
ing any bumped existing meetings. That is, the goal is to find an assign-
ment of timeslots to meetings inM∪ {Mm+1} that satisfy the intra-agent
and inter-agent constraints. We measure number offailureswhich is defined
as the number of meetings inM ∪ {Mm+1} unassigned a timeslot after a
given amount of time. Failures may occur either because the initiator gives
up scheduling the meeting or a max time elapses. Note that thenumber of
failures in a given run can be greater than one when multiple meetings are
bumped and fail to be rescheduled.

5.2 Experiments in a Hierarchical Agent Organization

Human organizations typically have hierarchies in which higher ranked people
have denser calendars than lower ranked ones. We hypothesisthat the density of

an agents calendar and thus her organizational rank, is a good predictor of the
difficulty of scheduling with that person.

To evaluate our hypothesis, we begin with an extreme case – a simple two-
level organization hierarchy. We divide agents into two equal size groups of
“busy” and “not busy” agents, where the initial density of schedules is fixed to
90 percent and 30 percent, respectively. The scheduling difficulty model used
by theSD strategy in this scenario is defined asSDbusy = 3 × SDnonbusy.

Figure 5 contrasts two strategies as we increase the total number of agents.
The graph shows theSD strategy is more effective in terms of preventing
scheduling failures than theAtt strategy. At 50 agents, theSD strategy results
in a failure rate of 0.28 on average, while the simpler strategy Att results in 0.76
failures on average. Failure rate is computed by summing thenumber of failures
over all runs and then dividing by the total number of runs. Wedo 50 runs for
each datapoint where each run follows the methodology described above. This
graph shows that the use of our scheduling difficulty model isable to reduce
scheduling failures. Also, the high failure rate caused by uncontrolled cascad-
ing of bumps, as we saw in Table 1 for the Always-bump strategy, is avoided.

Next, we evaluate the effect of varying our scheduling difficulty model in
the busy/non-busy hierarchy. We use a scheduling difficultymodel defined as
SDbusy = k × SDnonbusy and examine the effects of varyingk. The same set
of scheduling problems are used for each value ofk, i.e., the only difference
is the rescheduling decision rule used by the agents. We expect that changes in
performance will level off as the scheduling difficulty multiplier k is increased.
This is because after some point, an increase ink no longer modifies an agents
rescheduling decisions. For example, a meetingM1 with 4 non-busy attendees
will be bumped in favor a meetingM2 with one busy attendee whenk = 5.
M1 will continue to be bumped ifk is increased. Thus increasingk should
stop having an effect on agent decision making at some point.Figure 6 shows
empirical data consistent with our hypothesis. An organization of 10 agents was
used. Each datapoint represents the average over 50 runs. The graph shows that
the effect on failure rate levels off as predicted.

Finally, we experiment with a more complex scheduling difficulty model
where there are four levels rather than just two. We use the organization hier-
archy shown in Figure 7 with 8 agents in each level, for a totalof 32 agents.
We experiment with four levels with initial schedule densities of 90,70,50,30
percent respectively. We defineSDLi

= 2 × SDLi+1
. That is, the difficulty of

scheduling with an agent at leveli is twice as difficult as scheduling with an
agent at leveli + 1. The empirical results over 500 runs are shown in Figure 8.
The failure rate is reduced from 0.28 using theAtt strategy to 0.02 using the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

4 10 20 30 40 50
A

vg
 N

um
be

r
of

 F
ai

lu
re

s
Number of Agents

Number of Scheduling Failures

Att
SD

Fig. 5. Comparison of two rescheduling strategies (Att, SD) as a function of organization size.
The average number of meetings that failed to be scheduled isshown.

 0

 0.2

 0.4

 0.6

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 N
um

be
r

of
 F

ai
lu

re
s

Scheduling Difficulty Multiplier (k)

Effect of Multiplier on Failure Rate

Fig. 6. Effect of increasing value of scheduling difficulty multiplier on scheduling performance.
The average number of meetings that failed to be scheduled isshown.

SD strategy. We can conclude that theSD strategy significantly reduces the
number of scheduling failures.
6 Conclusion
We have modeled the multiagent meeting scheduling problem as a form of dis-
tributed constraint reasoning in which agents must assign aset of values to a
set of variables. We presented a novel approach to the problem in which agents
use given or learned “scheduling difficulty” models of otheragents in order to
decide when to change their existing assignments in order toaccept proposals
from others. We have shown that this approach controls the amount of bumping
so that the negotiation is able to terminate in a given amountof time, while also
reducing the scheduling failure rate over an alternative approach that does not
take into account such models. In future work, we are interested in how an agent
can automatically learn these models from past negotiationhistory.
References

1. C. Bessire, A. Maestre, and P. Meseguer. Distributed dynamic backtracking. InInternational
Joint Conference on AI Workshop on Distributed Constraint Reasoning, 2001.

Hierarchy Level and Calendar Density

70%L2:

50%L3:

30%L4:

90%L1:

Scheduling Difficulty

SD = 1L4

SD = 2L3

SD = 4L2

L1 SD = 8

Fig. 7.Agent hierarchy where higher ranked agents have higher calendar densities.

 0

 0.25

 0.5

Att SD

A
vg

 N
um

be
r

of
 F

ai
lu

re
s

Rescheduling Strategy

32 Agent Four Level Hierarchy

Fig. 8.Comparison of two rescheduling strategies (Att, SD) in a four level organization hierarchy.
The number of meetings that failed to be scheduled (average over 500 run) is shown.

2. Eugene C. Freuder, Marius Minca, and Richard J. Wallace. Privacy/efficiency tradeoffs in
distributed meeting scheduling by constraint-based agents. In IJCAI-2001 Workshop on
Distributed Constraint Reasoning, 2001.

3. Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling: Preliminary experi-
mental results. InProceedings of the First International Conference on Multi-Agent Systems
(ICMAS’95). The MIT Press: Cambridge, MA, USA.

4. R. Mailler and V. Lesser. A mediation based protocol for distributed constraint satisfaction.
In The Fourth International Workshop on Distributed Constraint Reasoning, 2003.

5. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed constraint
optimization with quality guarantees.Artificial Intelligence, 2004.

6. P. J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A personal assistant agent for calendar
management. InAgent Oriented Information Systems, (AOIS) 2004, 2004.

7. Christos H. Papadimitriou and Kenneth Steiglitz.Combinatorial optimization: algorithms
and complexity. Prentice-Hall, Inc., 1982.

8. Sandip Sen and Edmund Durfee. A Contracting Model for Flexible Distributed Scheduling.
Annals of Operations Research, 65:195–222, 1996.

9. Sandip Sen and Edmund H. Durfee. A formal study of distributed meeting scheduling. In
Group Decision and Negotiation, volume 7, pages 265–289, 1998.

10. M.C. Silaghi, D. Sam-Haroud, and Boi Faltings. Asynchronous search with aggregations. In
Proceedings of National Conference on Artificial Intelligence, 2000.

11. M. Yokoo. Distributed Constraint Satisfaction:Foundation of Cooperation in Multi-agent
Systems. Springer, 2001.

On the Evaluation of DisCSP Algorithms?
Ismel Brito, Fernando Herrero, and Pedro Meseguer

Institut d’Investigació en Intel.ligència Artificial
Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.fismel|fhcarron|pedrog@iiia.csic.es
Abstract. Not every research paper in DisCSP evaluates algorithms in the same
way. Motivated by this fact, we revise some elements of the area of distributed
algorithms as well as distributed constraints, which can help to develop a well-
founded methodology for evaluation of DisCSP algorithms. Although prelimi-
nary, we suggest a number of points which should be considered in such method-
ology.

1 Introduction

In this paper we aim at collecting a number of thoughts and ideas about the task of how
evaluate algorithms for solving DisCSP. As researchers on distributed constraint satis-
faction, we often develop new versions of existing procedures, we devise new heuristics
and we produce new solving algorithms. To assess the practical importance of these new
developments, their evaluation is a crucial point. Facing this issue, we often consider
questions like,

– what is the most adequate environment to test our algorithms?
– on which benchmarks should they been evaluated?
– which are the most adequate parameters to measure algorithmic efficiency?

Often, different research groups have different answers tothese questions. Our goal
is to achieve a consensus in the community of distributed constraint satisfaction, in
order to establish a common acceptedmethodologyon the way algorithms should be
evaluated. Obviously, this methodology should follow standard methods in the area of
distributed algorithms(see [4] for a comprehensive review of this area). In addition,
since constraint solving is NP-complete, many solving algorithms have the same worst-
case complexity. To really evaluate these algorithms in practice, we have to identify
some parameters whose measure could give an idea of the amount of resources used in
the algorithm execution. The methodology has to answer two types of questions. First,
to definewhatparameters should be measured (total CPU time, number of cycles, con-
current constraint checks, number of messages exchanged, etc.). Second, to definehow
this can be measured, in a double sense:on which environmentevaluation is performed
(reality vs. simulation, several computers vs. one computer), andon which benchmarks? This research is supported by the REPLI project TIC-2002-04470-C03-03.

(distributed random, distributed versions of existing CSP, specific DisCSP appplica-
tions, etc.). As a consequence, we expect that comparison among different approaches
would be facilitated, and the value of scientific communication would be promoted.

In the following, we discuss some of these issues (the question of benchmarks is not
considered) based on our experience. We strongly believe that other research groups can
provide valuable ideas and suggestions, and we urge them to do so.

2 Preliminaries

There are several definitions of distributed constraint satisfaction problems. Without
trying to be exhaustive, we think that all of them share the following idea. Adistributed
constraint satisfaction problem(DisCSP) is a CSP which is distributed among several
agents. Each agent contains a part of the problem, but no agent contains the whole
problem. Some overlapping may exist among agents, althoughno two of them can
contain exactly the same initial information. Because somereasons (privacy, size, etc.),
the information of each agent cannot be transferred into a central server, where the
whole problem could be solved by classical, centralized CSPsolving methods. In the
distributed setting, the task is to find a solution of the problem (an assignment of all the
variables satisfying all constraints), by exchanging messages among agents.

Depending on the model that we assume about the timing of events in the distributed
system, we obtain different types of algorithms. In [4], three timing models are consid-
ered, which are informally described as follows:

1. The synchronous model. “This is the simplest model to describe, to program and to
reason about. We assume that components (agents) take stepssimultaneously, that
is, that execution proceeds in synchronous rounds.”

2. The asynchronous model. “We assume that separate components (agents) take steps
in arbitrary order, at arbitrary relative speeds.”

3. The partially synchronous model. “We assume some restrictions on the relative tim-
ing of events, but execution is not completely lock-step as it is in the synchronous
model.”

These three timing models generate three types of algorithms for DisCSP solving.
Broadly speaking, a synchronous algorithm is based on the notion of privilege, a token
that is passed among agents. Only one agent is active at any time, the one having the
privilege, while the rest of agents are waiting1. When the process in the active agent
terminates, it passes the privilege to another agent, whichnow becomes the active one.
In an asynchronous algorithm every agent is active at any time, and it does not have to
wait for any event. A partially synchronous algorithm in in between of these two types.
An agent running a partially syncronous algorithm may require to wait for some special
event, but not for every event.

To solve a DisCSP instance, the three types of algorithms differ in their functionality
and efficiency. Considering functionality, asynchronous algorithms are the most general

1 Except for special topological arrangements of the constraint graph. See [2] for a synchronous
algorithm where several agents are active concurrently.

and portable, because they impose no assumptions on the timing of computation steps.
Usually, they are more robust and offer more privacy than theother two types. Regard-
ing efficiency, as the amount of resources required to compute a solution, there is some
debate on which type of algorithm is more efficient. We come back on this issue in the
Section 5.

3 Evaluation

Two complexity measures, on time and on communication, are proposed in [4] for dis-
tributed algorithms that exchange messages.Time complexityaims at bounding the time
required to compute a global solution by the whole system.Communication complexity
considers the amoung of network resources needed to achievea solution.

3.1 Time Complexity

For synchronous algorithms, [4] proposes using the number of rounds required to find
a solution as the time complexity measure. For asynchronousalgorithms, [4] requires
to have an upper bound on the time between succesive chances of a task to perform
a step. This is called a timed execution. The time of the eventis the supremum of the
times that can be assigned to such an event in all timed executions. Since CSP solving is
NP-complete, this worst-case expression is exponential and does not help in clarifying
the relative efficiency of different algorithms.

Alternatively, [3] proposes a new measure of time complexity as counting the num-
ber of constraint checks that cannot be performed concurrently when solving a DisCSP.
A constraint check occurs when a value tuple is checked against a constraint. In clas-
sical CSP it is considered an atomic operation, which has to be performed for (almost)
all constraint algorithms, so the number of constraint checks is a good estimation of
the search effort. Inspired in the logical clocks of Lamport[5], in [3] the number of
concurrent constraint ckecks is computed as follows. Each agent keeps a counter of its
own performed constraint checks, and every message that it sends contains the value of
that counter (when it was sent). When the receiver gets that message, it updates its own
counter to the maximum between its counter and the counter contained in the message.
When the algorithm stops, the maximum of the counters is the total concurrent con-
straint checks, and approximates the size of the longest sequence of checks that cannot
be done concurrently.

At the end of the search, the number of concurrent constraintchecks performed
approximates the runtime of the algorithm if it is assumed that the elapsed time between
two constraint checks not performed concurrently is approximately the same. However,
this assumption does not hold in presence of random delays orfor partially synchronous
algorithms with unbounded waiting episodes. In this last case, waiting episodes can be
counted at agent level. Following a similar approach to concurrent constraint checks,
we can assess the longest sequence of waiting episodes whichcannot be performed
concurrently.

Other measures can provide complementary information. Forinstance, the distribu-
tion of constraint checks really performed by agents in the network gives some idea of
how balanced is search effort among agents.

3.2 Communication Complexity

For the three timing models considered, [4] considers the total number of messages
exchanged as the measure of communication complexity. How messages are counted
depends on the communication model used, described in Section 3.3. This is also the
common position of the distributed constraints community.

The size of messages can also be taken into account as secondary measure, follow-
ing [4]. The cost of sending a message is the cost of setting the communication link plus
the cost of properly sending the message. The cost of settingthe communication link
is paid when the first message is sent through that link. The cost of properly sending a
message depends on its length (the message size plus the header added by the commu-
nication software). So message size has to be considered, especially when comparing
algorithms exchanging messages whose sizes differ in more than a constant.

Assuming the Unicast communication model (see Section 3.3), the idea of con-
current constraint checks can be applied to messages. Each agent keeps a counter of
the sent messages, and every message contains the value of that counter when it was
sent. When the receiver gets that message, it updates its owncounter to the maximum
between its counter and the counter contained in the message. We call this value con-
current messages, and gives an idea of the length of the longest sequence of messages
that cannot be done concurrently.

Other measures can provide complementary information. Forinstance, the distribu-
tion of the number of messages sent/received by agents in thenetwork gives some idea
of how balanced is the communication among agents.

3.3 Communication Model

It is often the case that algorithmdescription and analysisdo not consider the underlying
communication model. However, a real-case study should take this into account, as the
communication costs may vary depending on which model is used. We analyze two
communication models:

1. Unicast (also calledsend/receiveor point-to-pointcommunication). On a unicast
network, messages are sent one by one to each of the recepients, thus requiring
linear resources on the number of agents. This is the common model used in exper-
iments and simulations.

2. Multicast. On the other hand, advantage could be taken from multicast networks,
such as IP networks, on which agents can subscribe to a group and messages sent to
that group do not imply any additional cost per agent. This model provides constant
time and resources, irrespective to the number of recepients.

Since this is an implementation issue, it makes sense to reflect which of these mod-
els was actually used when presenting experimental results. It is not uncommon to con-
sider “broadcast” communication as a single process, when in fact the implementation
means sending one message to each receiver.

4 Simulator

Ideally, to evaluate a new algorithm one should haven dedicated processors connected
to a common network on which tests would be done. However, this setting is often not
available in most of our labs. Even if there is a number of computers available, the
workload of each computer and the load of the communication network are out of the
control of the experimenter, and these aspects have a significant impact on the efficiency
of the algorithms. Because of that, we consider that simulation into a single computer is
a suitable alternative to make the tunning and most of the experimentation for DisCSP
algorithms. After that, some algorithms can be tested on a real setting, assuming the
resources needed to perform a field test. In the following, weconsider the different
options for DisCSP algorithms when are evaluated by simulation on a single computer.

Usually, DisCSP algorithms are described in terms of agents. An agent is an au-
tonomous entity that contains a part of the problem, it is able to perform its own rea-
soning process and to communicate with other agents. In a multi-task computer (for
instance, a desktop with Linux operating system (OS)), a direct option is to imple-
ment each agent as a different task, all having the same priority. The OS scheduler is
in charge of activating / desactivating the agents, that take control of the CPU as any
other task in the system. Communication among agents is performed using standard
task communication facilities (usually implemented usingdisk storage). This approach
is relatively simple to implement but present some drawbacks. First, it depends on the
OS, so results obtained in computers with different OS couldnot be directly compara-
ble. Second, even using the same computer and the same implementation, it is difficult
to reproduce exactly the same results when repeating the same experiments. There are
some sublte factors (such as the mail server, the network load, the disk storage) which
change between executions and are out of the control of the experimenter. Because of
that, exact reproduction of previous results is almost impossible with this approach.

To overcome this fact, an alternative is to use a simulator that offers the same fa-
cilities as the OS, but allows one complete control. This simulator allows agents to
execute, performs the scheduling among agents and providescommunication facilities.
With this approach, results are reproducible, the same experiment generates the same
results (providing random elements are initialized with the same seed).

The first simulator of this kind appears in the seminal work ofYokoo [6, 7]. Each
agent keeps its own clock, which is incremented at each cycleof computation. One
cycle for an agent consists of reading all its incoming messages, processing them and
writing all messages generated as answers. It is assumed that a message sent at timet
is available to the receiver at timet+ 1. This means a kind of synchronicity in the acti-
vation of agents, which is somehow contradictory with the evaluation of asynchronous
procedures. We come back on this point in Section 5.

Another scheduling policy is to activate agents randomly: arandom number be-
tween 1 andn determines the identifier of the agent to activate. When thisagent ter-
minates, the same process selects the next agent to activate. This approach seems to be
more adequate to evaluate asynchronous procedures. Other scheduling policies could
offer some interesting alternatives.

5 Discussion

In this Section we contrast some of the criteria presented above with current practices
in the evaluation of DisCSP algorithms. With this exercise we identify some aspects
which could be improved in distributed algorithm evaluation.

5.1 Evaluation Parameters

Time and communication.Often we see DisCSP algorithms which are evaluated con-
sidering time or communication, but not both aspects. In general, we think that this
approach provides incomplete information and does not allow one to assess globally
the amount of resources needed for an algorithm. Following standard practice in dis-
tributed algorithms, we propose to use these two measures when evaluating DisCSP
algorithms. Some researchers have suggested to aggregate both measures in one (or
translate one measure into another). When possible, this approach is attractive because
it allows us to deal with a single number. However, in many cases it cannot be done
without making arbitrary assumptions, difficult to justify. In such cases, we suggest to
keep both measures separated.

Timing model. Evaluating an algorithm should follow methods which are adequate for
the timing model assumed by the algorithm. Synchronous algorithms can be evaluated
using the number of rounds as time complexity measure. However, asynchronous algo-
rithms should not be evaluated using methods that assume a synchronous model (such
as the number of rounds).

An interesting question is the evaluation of partially synchronous algorithms, es-
pecially on those parts which require waiting for some eventcaused by other agents.
During a waiting episode, an agent may not use its own resources but it is causing some
delay to agents which require its input. Waiting episodes can be counted at agent level.
In addition, following a similar approach to concurrent constraint checks, we can assess
the longest sequence of waiting episodes which cannot be concurrent.

Communication model. Most of DisCSP papers does not deal explicitely with the
communication model. It is usually assumed that when an agent sends a message top
other agents, this causesp physical messages in the network. In other words, the unicast
model is implicitely assumed. This is fine, the only concern here is that the communi-
cation model should be made explicit, so algorithms could beevaluated using different
models. This will bring closer the DisCSP paradigm to real communication networks,
which finally could promote the use of DisCSP algorithms for practical applications.

Message size.When messages of different sizes are present in DisCSP algorithms, usu-
ally size differences are neglected and the number of messages is the only evaluation
parameter considered. We believe that this is not a fair approach and the message size
cannot be ignored, especially when message sizes differ in more than a constant (for in-
stance, in a function that depends on problem dimensions). We suggest to take message
size differences into account, as suggested in the area of distributed algorithms [4].

5.2 Processing Messages: One by One vs Packets

Asynchronous DisCSP algorithms are often described assuming that agents react in-
mediately after receiving a message: they process messagesone by one. However, some
algorithms are evaluated processing messages by packets: an agent reads all messages
that are waiting in the input buffer and processes them as a whole. It is worth noting
that these two strategies may produce quite different results considering the evaluation
parameters described above.

The motivation of asynchronous algorithms for processing messages by packets,
instead of one by one, is to prevent useless work. A simple example occurs when two
consecutive messages arrive from the same agent, informingthat it has taken two differ-
ent values. Obviously, the first message becomes obsolete assoon as the second arrives.
All the work generated by processing the first message and extra messages that this
processing might be caused, could be saved if the agent wouldhave known the second
message. Somehow, this idea was mentioned in [7] and [8]. Recently, in [1] a formal
protocol for processing messages by packets is proposed.

Informally, when any agent processes messages by packets, it first reads all mes-
sages that are in its input buffer. Then, it processes all read messages as a whole, ignor-
ing those messages that become obsolete by the presence of another message. The agent
looks for any consistent value after its agent view and its nogood store are updated with
these incoming messages.

Thus, every outgoing message that an agent will send is consequence of the previ-
ous incoming messages because all of them update the agent view before agent checks
consistency. Therefore, before agent looks for a consistent value, the agent’s concurrent
counter has to be updated to the maximum value between its owncounter before start-
ing to process the packet and the maximum of all concurrent counter of all messages
contained in the processed packet.

Empirically, we have tested both types of message processing on distributed binary
random problems using two algorithms: one asynchronous andone partial synchronous.
The former is the well-knownABT algorithm [6, 7]. The latter isABT-Hyb[1], an novel
ABT-like algorithm which introduces some synchronization points to avoid sending
redundant messages. It can be seen as a partially synchronous algorithm.

In our experiments, we have 16 variables/agents (n = 16) and 8 values per variable
(m = 8). The connectivity of the network is set to 0.5 (p1=0.5). On Table 1 and Table2
we report results averaged over 100 executions in terms of the following parameters:

– the sum of all constraint checks performed by all agents (cc)
– the number of concurrent constraint checks (ccc)
– the total number of messages exchanged (mess)
– the number of concurrent messages, computed in the same way as ccc (cmess)
– the total number ofInfo messages exchanged (info)
– the total number ofBackmessages exchanged (back)
– the total number ofAdd-Linkmessages exchanged (link)
– the number ofBackmessages that are obsolete when are received (obso)

Regarding the communication cost, the number of messages exchanged in both al-
gorithms processing messages by packets is lower than processing messages one by

messages processingcc ccc mess cmess info back link obso
one by one 92,86023,14833,1843,63525,4137,733 38 4,824
by packets 77,55035,40831,9865,55824,8777,770 39 2,339

Table 1.Results in the pick of difficulty forABT with both types of messages processing

messages processingcc ccc mess cmess info back link obso
one by one 57,36422,72024,1074,25019,7204,437 37 1,567
by packets 56,68022,60323,9634,22919,6604,303 67 1,525

Table 2.Results in the pick of difficulty forABT-Hybwith both types of messages processing

one. Considering the number of concurrent constraint checks, processing messages by
packets increases the number of concurrent constraint checks with respect to process-
ing messages one by one. However, the number of obsolete messages decreases when
agents process messages by packets. This phenomenon can be seen better if we compute
the following ratios:

– ratio of concurrency of constraint checks,rccc = 1� ccccc (1)

– ratio of concurrency of messages,rcm = 1� cmessmess (2)

– ratio of information quality ofBack messages,riq = 1� obsoback (3)

The ratiorccc can give us an idea of how concurrent is our algorithm. On contrast,
ratiorccc and ratioriq can help us to measure the use of the resources of the network.
These parameters are easily extended to synchronous algorithms. In them,rccc = 0,rcmess = 0 andriq = 1 2.

On Table 3 and Table 4 we show the results of computing these ratios to the ex-
perimental results reported on Table 1 and Table 2. Regarding ABT, we can see that it
becomes less concurrent when messages are processed by packets, although the qual-
ity of the information is higher. RegardingABT-Hybwhen messages are processing by
packets, the concurrency of the algorithm and the quality ofthe information remains
approximately the same as processing messages one by one. This happens because an
ABT-Hybagent can be in awaiting statewithout sending any outgoing message. In
that state, the agent receives allInfo messages updating its agent view accordingly.

2 Except for special arrangements of the constraint graph, asdescribed in [2]

messages processingrccc rcmess riq
one by one 0.75070.89050.3757
by packets 0.54340.82620.6692

Table 3.Ratios forABTalgorithm with both types of messages processing.

messages processingrccc rcmess riq
one by one 0.60390.82370.6395
by packets 0.60130.82350.6456

Table 4.Ratios forABT-Hybalgorithm with both types of messages processing.

Then, when an agent leaves thewaiting stateit will have a better idea of the current
assignments of the other agents.

Finally, it is worth noting that although concurrency decreases when processing
messages by packets, this does not necessarity means that the process is less efficient.
In fact, it saves some useless work. This is reflected in the increment ofriq (ratio of
information quality) of theBackmessages and in the decrement ofrccc (ratio of con-
current constraint checks) andrcmsg (concurrent messages).

6 Summary

We believe that the evaluation of current DisCSP algorithmsis not completely estab-
lished, and a common methodology is badly needed. Such methodology should follow
standard evaluation methods in distributed algorithms. Wehave reviewed some basic
elements of this area, such as the timing model, the communication model, time and
communication complexities. We have also considered evaluation procedures suggested
from the distributed constraint community. We have tried toapply them to the evalua-
tion of DisCSP algorithms. Doing this exercise, we have identified some points which
should be followed in the evaluation of DisCSP algorithms. These results can be seen
as preliminary. More work is needed to achieve a global and coherent methodology for
the evaluation of DisCSP algorithms.

References

1. Brito I., Meseguer P. Synchronous, asynchronnous and hybrids algorithms for DisCSP. Sub-
mitted toCP-04 Workshop on Distributed Constraint Reasoning.

2. Collin Z., Dechter R., Shmuel K. On the Feasibility of Distributed Constraint Satisfaction.
In Proc. of the 12th International Joint Conference on Artificial Intelligence, IJCAI-91, 318–
324, 1991.

3. Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing Performance of Distributed Con-
straint Processing Algorithms.AAMAS-02 Workshop on Distributed Constraint Reasoning,
86–93, Bologna, Italy, 2002.

4. Lynch N.Distributed Algorithms, Morgan–Kaufmann, 1996.

5. Lamport L. Time, Clock, and the Ordering of Evens in a Distributed System.Communica-
tions of the ACM, 21(7), 558–565, 1978.

6. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. DistributedConstraint Satisfaction for For-
malizing Distributed Problem Solving.In Proc. of the 12th International Conference on Dis-
tributed Computing System, 614–621, 1992.

7. Yokoo M., Durfee E.H., Ishida T., Kuwabara K. The Distributed Constraint Satisfaction
Problem: Formalization and Algorithms.IEEE Trans. Knowledge and Data Engineering10,
673–685, 1998.

8. Zivan, R. and Meisels, A.Synchronous and Asynchronous Search on DisCSPs.In Proc. of
EUMAS-2003, Oxford, UK, 2003

Message delay and DisCSP search algorithms

Roie Zivan and Amnon Meisels
{zivanr,am}@cs.bgu.ac.il

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, 84-105, Israel

Abstract. Due to the distributed nature of the problem, message delay can have
unexpected effects on the behavior of distributed search algorithms onDistributed
constraint satisfaction problems(DisCSPs). This has been recently shown in an
experimental study of two asynchronous DisCSP algorithms [Fernandez et. al.2002].
To evaluate the impact of message delay on the run of DisCSP search algorithms,
anAsynchronous Message Delay Simulator(AMDS) for DisCSPs which in-
cludes the cost of message delays is introduced. The number of steps of computa-
tion calculated by theAMDS (or number of concurrent constraints checks) can
serve as good performance measures, when messages are delayed.
The performance of three representative algorithms is measured on randomly
generated instances of DisCSPs with several types of delays for messages.
Two measures of performance are used - concurrent computation time and net-
work load. The performance of asynchronous backtracking deteriorates on sys-
tems with random message delays, for both measures. For synchronous algo-
rithms, with delayed messages, time performance becomes worse then asyn-
chronous backtracking, but the network load is not affected. Concurrent search
algorithms, are affected very lightly by message delay with respect to both mea-
sures.

Acknowledgment: Supported by the Lynn and William Frankel center for Com-
puter Sciences.

Key words: Distributed Constraint Satisfaction, Search, Distributed AI.

1 Introduction

Distributed constraints satisfaction problems (DisCSPs) are composed of agents, each
holding its local constraints network, that are connected by constraints among vari-
ables of different agents. Agents assign values to their variables, attempting to gener-
ate a locally consistent assignment that is also consistent with all constraints between
agents (cf. [Yokoo2000,Solotorevsky et. al.1996]). To achieve this goal, agents check
the value assignments to their variables for local consistency and exchange messages
among them, to check consistency of their proposed assignments against constraints
with variables that belong to different agents [Yokoo2000,Bessiere et. al.2001].

Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - time, which is measured in terms of
computational effort and network load [Lynch1997]. The time performance of search
algorithms on DisCSPs has traditionally been measured by the number of computation
cycles or steps (cf. [Yokoo2000]). In order to take into account the effort an agent makes
during its local assignment the computational effort can be measured by the number of
concurrent constraints checks that agents perform ([Meisels et. al.2002,Silaghi2002]).
Measuring the network load poses a much simpler problem. Network load is generally
measured by counting the total number of messages sent during search [Lynch1997].

When instantaneous message arrival is assumed, steps of computation in a stan-
dard simulator can serve to measure the concurrent run-time of a DisCSP algorithm
[Yokoo2000]. For an optimal communication network, in which messages arrive with
no delay, one can also use the number of concurrent constraints checks (CCCs), for an
implementation independent measure of concurrent run time [Meisels et. al.2002]. On
realistic networks, in which there are variant message delays, the time of run cannot
be measured simply by the steps of computation. Take for example Synchronous Back-
tracking [Yokoo2000]. Since all agents are completely synchronized and no two agents
compute concurrently, the number of computational steps is not affected by message
delays. However, the effect on the run time of the algorithm is completely cumulative
(delaying each and every step) and is thus large (see section 6 for details).

In order to evaluate the impact of message delays on DisCSP search algorithms, we
present anAsynchronous Message Delay Simulator(AMDS) which measures the log-
ical time of the algorithm run in steps of computation or concurrent constraints checks,
and simulates message delays accordingly. TheAMDS is described in detail in sec-
tion 3. It can simulate systems with different types of message delays from fixed mes-
sage delays, through random message delays, to systems in which the length of the
delay of each message is dependent on the current load of the network. Since the de-
lay is measured in concurrent computation steps (or concurrent constraints checks), the
final logical time that is reported as the cost of the algorithm run, includes steps of com-
putation which were actually performed by some agent, and computational steps which
were added as message delay simulation while no computation step was performed
concurrently (see section 3).

To demonstrate the behavior of DisCSP search algorithms in the presence of mes-
sage delay, three algorithms are compared. Although the three chosen algorithms are
similar in their run-time results on systems with no message delay they are very different
from one another. The first,Conflict based Back Jumping(CBJ) [Zivan and Meisels2003]
is a synchronous algorithm which performs pruning of its search space according toDy-
namic Backtracking(DB) methods [Ginsberg1993,Zivan and Meisels2003]. The sec-
ond is theAsynchronous Backtracking(ABT) algorithm in which agents perform as-
signments concurrently and asynchronously [Yokoo2000,Bessiere et. al.2001]. The third,
Concurrent Backtracking[Zivan and Meisels2004] is a concurrent algorithm in which
a dynamic number of independent search processes explore concurrently and asyn-
chronously, non intersecting parts of theDisCSP search space. The results presented
in section 6 show the different impact of message delays on these three algorithms.

Distributed constraints satisfaction problems (DisCSPs) are presented briefly in
section 2. A detailed introduction of the algorithm and method for simulating message
delays inDisCSP search, and of the method of evaluating the run time of an algo-
rithm, is presented in section 3. A proof of the validity of the simulating algorithm is
presented in section 4. A description of the compared algorithms - synchronous Con-
flict based Backjumping (CBJ), Asynchronous Backtracking (ABT), and Concurrent
Backtracking (ConcBT), is presented in section 5. Section 6 presents extensive exper-
imental results, comparing all three algorithms on randomly generatedDisCSPs with
different types of message delays. A discussion of the new insights of the performance
and on the advantages of these three algorithms, on differentDisCSP instances and
communication networks, is presented in section 7.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSP) is composed of a set ofk agentsA1, A2, ..., Ak. Each agentAi contains
a set of constrained variablesXi1 , Xi2 , ..., Xini

. Constraints orrelations R are sub-
sets of the Cartesian product of the domains of the constrained variables. For a set
of constrained variablesXik

, Xjl
, ..., Xmn

, with domains of values for each variable
Dik

, Djl
, ..., Dmn

, the constraint is defined asR ⊆ Dik
× Djl

× ... × Dmn
. A binary

constraint Rij between any two variablesXj andXi is a subset of the Cartesian prod-
uct of their domains;Rij ⊆ Dj × Di. In a distributed constraint satisfaction problem
DisCSP, the agents are connected by constraints between variables that belong to dif-
ferent agents (cf. [Yokoo et. al.1998,Solotorevsky et. al.1996]). In addition, each agent
has a set of constrained variables, i.e. alocal constraint network.

An assignment (or a label) is a pair< var, val >, wherevar is a variable of some
agent andval is a value fromvar’s domain that is assigned to it. Apartial assignment
(or a compound label) is a set of assignments of values to a set of variables. Asolution
to aDisCSPis a partial assignment that includes all variables of all agents, that satisfies
all the constraints. Following all former work onDisCSPs, agents check assignments
of values against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of the other
agents.

The delay in delivering a message is assumed to be finite [Yokoo2000]. One simple
protocol for checking constraints, that appears in many distributed search algorithms,
is to send a proposed assignment< var, val >, of one agent to another agent. The
receiving agent checks the compatibility of the proposed assignment with its own as-
signments and with the domains of its variables and returns a message that either ac-
knowledges or rejects the proposed assignment. The following assumptions are rou-
tinely made in studies of DistributedCSPs and are assumed to hold in the present
study [Yokoo2000,Bessiere et. al.2001].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message to its reception

is finite.

3. Messages sent by agentAi to agentAj are received byAj in the order they were
sent.

4. Every agent can access the constraints in which it is involved and check consistency
against assignments of other agents.

3 Simulating search on DisCSPs

The standard model of Distributed Constraints Satisfaction Problems has agents that are
autonomous asynchronous entities. The actions of agents are triggered by messages that
are passed among them. In real world systems, messages do not arrive instantaneously
but are delayed due to networks properties. Delays can vary from network to network
(or with time, in a single network) due to networks topologies, different hardware and
different protocols used. To simulate asynchronous agents, the simulator implements
agents asJava Threads. Threads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [Lamport1978,Meisels et. al.2002]. Every agent holds a
counter of computation steps. Every message carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the
cost of the search as the largest counter held by some agent at the end of the search,
we achieve a measure of concurrent search effort that is similar to Lamport’s logical
time [Lamport1978].

On systems with message delays, the situation is more complex. For the simplest
possible algorithm, Synchronous Backtrack (SBT) [Yokoo2000], the effect of message
delay is very clear. The number of computation steps is not affected by message delay
and the delay in every step of computation is the delay on the message that triggered it.
Therefore, the total time of the algorithm run can be calculated as the total computation
time, plus the total delay time of messages. In the presence of concurrent computa-
tion, the time of message delays must be added to the total algorithm timeonly if no
computation was performed concurrently. To achieve this goal, the algorithm of the
Asynchronous Message-Delay Simulator(AMDS) counts message delays in terms of
computation steps and adds them to the accumulated run-time when no computation is
performed concurrently.

In order to simulate message delays, all messages are passed by a dedicatedMailer

thread. The mailer holds a counter of concurrent computation steps performed by agents
in the system. This counter represents the logical time of the system and we refer to it as
theLogical Time Counter(LTC). Every message delivered by the mailer to an agent,
carries theLTC value of its delivery to the receiving agent. To compute the logical
time that includes message delays, agents perform a similar computation to the one
used when there are no message delays [Meisels et. al.2002]. An agent that receives a
message updates its ownLTC to the largest value between its own and theLTC on the
message received. Then the agent performs the computation step, and sends its outgoing
messages with the value of itsLTC incremented by 1.

– upon receiving messagemsg:
1. LTC←max(LTC, msg.LTC)
2. delay← choose delay

3. msg.delivery time← LTC + delay
4. outgoing queue.add(msg)
5. deliver messages

– when there are no incoming messages and all agents are idle
1. LTC← outgoing queue.first msg.LTC
2. deliver messages

– deliver messages
1. foreach (message m in outgoing queue)
2. if (m.delivery time ≤ LTC)
3. m.LTC← LTC
4. deliver(m)

Fig. 1.The Mailer algorithm

The mailer simulates message delays in terms of concurrent computation steps. To
do so it uses its own (global)LTC, according to the algorithm presented in figure 1. Let
us go over the details of theMailer algorithm, in order to understand the measurements
performed by theAMDS during run time.

When the mailer receives a message, it first checks if theLTC value that is car-
ried by the message is larger than its own value. If so, it increments the value of the
LTC (line 1). This generates the value of the global clock (of the Mailer) which is
the largest of all logical times of all agents. In line 2 a delay for the message (in num-
ber of steps) is selected. Here, different types of selection mechanisms can be used,
from fixed delays, through random delays, to delays that depend on the actual load of
the communication network. To achieve delays that simulate dependency on network
load, for example, one can assign message delays that are proportional to the size of
the outgoing message queue. Each message is assigned adelivery time which is the
sum of the current value of the Mailer’sLTC and the selected delay (in steps), and
placed in theoutgoing queue (lines 3,4). Theoutgoing queue is a priority queue
in which the messages are sorted bydelivery time, so that the first message is the
message with the lowestdelivery time. In order to preserve the third assumption of
section 2, messages from agentAi to agentAj cannot be placed in the outgoing queue
before messages which are already in the outgoing queue, which were sent fromAi

to Aj . This property is essential to asynchronous algorithms which are not correct
without it (cf. [Bessiere et. al.2001]). The last line of theMailer’s code calls method
deliver messages, which delivers all messages withdelivery time less or equal to
the mailer’s currentLTC value, to their destination agents.

When there are no incoming messages, and all agents are idle, if theoutgoing queue

is not empty (otherwise the system is idle and a solution has been found) theMailer

increases the value of theLTC to the value of thedelivery time of the first message
in the outgoing queue and callsdeliver messages. This is a crucial step of the simu-
lation algorithm. Consider the run of a synchronous search algorithm. ForSynchronous

Backtracking(SBT) [Yokoo2000], every delay needs the mechanism of updating the
Mailer’s LTC (line 1 of the second function of the code in figure 1). This is because
only one agent is computing at any given instance, in synchronous backtrack search.

The concurrent run time reported by the algorithm, is the largestLTC held by some
agent at the end of the algorithm run. By incrementing theLTC only when messages
carryLTCs with values larger than the mailer’sLTC value, steps that were performed
concurrently are not counted twice. This is an extension of Lamport’s logical clocks
algorithm [Lamport1978], as proposed for DisCSPs by [Meisels et. al.2002], and ex-
tended here for message delays.

A similar description holds for evaluating the algorithm run in logical concurrent
constraints checks. In this case the agents would extend the value of theirLTCs in
each step, not by one, but by the number of constraints checks they actually performed.
This enables a concurrent performance measure that incorporates the computational
cost of the local step, which might be different in different algorithms. Furthermore, it
also enables to evaluate algorithms in which agents perform computation which is not
triggered or followed by a message.

4 Correctness of theAMDS

In order to prove the validity of the proposed measure simulation, its correspondence
to runs of aSynchronous Cycles Simulatoris presented. In aSynchronous Cycle Sim-
ulator [Yokoo2000], in every cycle each agent can read all messages that were sent to
it in the previous cycle and perform a single computation step which can be followed
by the sending of messages (which will be received in the next cycle). Agents can be
idle in some cycles, if they do not receive a message which triggers a computation step.
The cost of the algorithm run, is the number of synchronous cycles performed until a
solution is found or a non solution is declared (see [Yokoo2000]). Message delay can
be simulated in such a synchronous simulator by delivering messages to agents some
cycles after they were sent.

Theorem 1. Any run ofAMDS can be simulated by aSynchronous Cycle Simulator
(SCS), in which cycleci of theSCS corresponds to anLTC value ofAMDS.

The proof of the theorem is immediate. Every messagem sent by an agentAi to
agentAj can be assigned a valued which is the largest value between theLTC carried
by m in the AMDS run and the value of theLTC held byAj when it receivedm.
Running aSynchronous Cycle Simulator(SCS) and assigning each messagem with
the valued calculated as described above, the message can be delivered toAj in cycle
d. The outcome of the specialSCS is that every agent in every cycleci will have the
same knowledge about the other agents as the agents performing the matching steps
in the AMDS run. Assuming the algorithm is deterministic, the agent will perform
the same computation and send the same messages. If the algorithm includes random
choices the run can be simulated by recordingAMDS choices and forcing the same
choice in the synchronous simulator run. To complete the proof of the theorem one
needs to show the following Lemma.

Lemma 1. At any cycleci of the synchronous simulator, theLTC values of all agents
performing the matching steps in theAMDS are equal toi.

Proof: We prove Lemma 1 by induction. After performing step number one, all agents
in AMDS advance theirLTC to one. Assuming the Lemma holds forN −1 cycles, all
agents that are about to perform theNth step, hold counters with values less or equal
to N − 1. The messages they will receive will carry thedelivery time LTC which is
N − 1. Since the agent’sLTCs are updated to the largest between the receivedLTC

and their own, after receiving the message and performing the next step of computation,
theirLTC value will be equal toN . �

The theorem demonstrates that for computing steps of computation, the asynchronous
simulator is equivalent to a standardSCS that does not wait for all agentsto complete
their computation in a given cycle, in order to move to the next cycle.

The most important advantage of the asynchronous simulator can now be described.
When computational effort is computed, in terms of constraints checks for example, the
SCS becomes useless. This is because at each cycle agents perform different amounts
of computation, depending on the algorithm, on arrival of messages, etc. The simulator
does not “know” the amount of computation performed by each agent and, therefore,
cannot move the resulting message in the correct cycle (one that matches the correct
amount of computation and waiting). The natural way to compute concurrentCCs is
by using an asynchronous simulator, theAMDS as proposed in section 3

5 The tested algorithms

In order to check the behavior of distributed search algorithms under message delays,
the AMDS is used to compare the run of three algorithms for solvingDisCSPs.
These algorithms represent three different families of algorithms:

– Synchronous algorithms represented by synchronous Conflict based Backjumping
(CBJ) [Zivan and Meisels2003].

– Asynchronous Backtracking algorithms represented byABT [Bessiere et. al.2001].
– Concurrent search algorithms represented by Concurrent Backtracking (ConcBT)

[Zivan and Meisels2004].

In the following subsections the three representative algorithms are described. The
performance of the algorithms is evaluated in section 6 and the impact of delayed mes-
sages on their performance is described. The relation of the impact of delayed messages
on each of the algorithms and the properties of the algorithm’s family, is discussed in
section 7.

5.1 Conflict based Backjumping

The Synchronous Backtrack algorithm (SBT) [Yokoo2000], is a distributed version of
chronological backtrack [Prosser1993].SBT has a total order among all agents. Agents

exchange a partial solution that we termCurrent Partial Assignment(CPA) which car-
ries a consistent tuple of the assignments of the agents it passed so far. The first agent
initializes the search by creating aCPA and assigning its variables on it. Every agent
that receives theCPA tries to assign its variable without violating constraints with the
assignments on theCPA. If the agent succeeds to find such an assignment to its vari-
able, it appends the assignment to the tuple on theCPA and sends it to the next agent.
Agents that cannot extend the consistent assignment on theCPA, send theCPA back
to the previous agent to change its assignment, thus perform a chronological backtrack.
An agent that receives aCPA in a backtrack message removes the assignment of its
variable and tries to reassign it with a consistent value. The algorithm ends successfully
if the last agent manages to find a consistent assignment for its variable. The algorithm
ends unsuccessfully if the first agent encounters an empty domain.

The version of Conflict based Backjumping (CBJ) [Prosser1993] improves on sim-
ple synchronous backtrack (SBT) by using a method based on dynamic backtrack-
ing [Ginsberg1993,Bessiere et. al.2001]. In the distributedCBJ , when an agent re-
moves a value from its variable’s domain, it stores the eliminating explanation (Nogood),
i.e. the subset of theCPA that caused the removal. As in the corresponding version
of asynchronous backtrack [Bessiere et. al.2001], when a backtrack operation is per-
formed the agent resolves itsNogoods creating a conflict set which is used to determine
the culprit agent to which the backtrack message will be sent. The resulting synchronous
algorithm has the backjumping property (i.e.CBJ) [Ginsberg1993]. When theCPA

is received again, values whose eliminatingNogoods are no longer consistent with the
partial assignment on theCPA are returned to the agents’ domain.

5.2 Asynchronous Backtracking

TheAsynchronous Backtrack algorithm (ABT) was presented in several versions
over the last decade and is described here in accordance with the more recent pa-
pers [Yokoo2000,Bessiere et. al.2001]. In the ABT algorithm, agents hold an assign-
ment for their variables at all times, which is consistent with their view of the state of
the system (i.e. theirAgent view). When the agent cannot find an assignment consis-
tent with itsAgent view, it changes its view by eliminating a conflicting assignment
from itsAgent view data structure and sends back aNogood.

The Asynchronous Backtrack algorithmABT [Yokoo2000], has a total order of pri-
orities among agents. Agents hold a data structure calledAgent view which contains
the most recent assignments received from agents with higher priority. The algorithm
starts by each agent assigning its variable, and sending the assignment to neighboring
agents with lower priority. When an agent receives a message containing an assign-
ment (anok? message [Yokoo2000]), it updates itsAgent view with the received as-
signment and if needed replaces its own assignment, to achieve consistency. Agents
that reassign their variable, inform their lower priority neighbors by sending themok?

messages. Agents that cannot find a consistent assignment, send the inconsistent tuple
in their Agent view in a backtrack message (aNogood message [Yokoo2000]). The
Nogood is sent to the lowest priority agent in the inconsistent tuple, and its assignment
is removed from theirAgent view. Every agent that sends aNogood message, makes

another attempt to assign its variable with an assignment consistent with its updated
Agent view.

Agents that receive aNogood, check its relevance against the content of their
Agent view. If the Nogood is relevant, the agent stores it and tries to find a con-
sistent assignment. In any case, if the agent receiving theNogood keeps its assign-
ment, it informs theNogood sender by re-sending it anok? message with its assign-
ment [Bessiere et. al.2001]. An agentAi which receives aNogood containing an as-
signment of agentAj which is not included in itsAgent view, adds the assignment of
Aj to it’s Agent view and sends a message toAj asking it to add a link between them.
In other words,Aj is requested to informAi about all assignment changes it performs
in the future [Yokoo2000].

The performance ofABT can be strongly improved by requiring agents to read all
messages they receive before performing computation [Yokoo2000]. A formal protocol
for such an algorithm was not published. The idea is not to reassign the variable until
all the messages in the agent’s ’mailbox’ are read and theAgent view is updated. This
technique was found to improve the performance ofABT on the harder instances of
randomly generated DisCSPs by a factor of 4 [Zivan and Meisels2003]. However, this
property makes the efficiency ofABT dependent on the contents of the agent’s mailbox
in each step, i.e. on message delays (see section 6). The consistency of theAgent view

held by an agent, with the actual state of the system before it begins the assignment
attempt is affected directly by the number and relevance of the messages it received up
to this step.

Another improvement to the performance ofABT can be achieved by using the
method for resolving inconsistent subsets of theAgent view, based on methods of dy-
namic backtracking [Ginsberg1993]. A version ofABT that uses this method was pre-
sented in [Bessiere et. al.2001]. In [Zivan and Meisels2003] the improvement ofABT

using this method overABT sending its fullAgent view as aNogood was found to
be minor. In all the experiments in this paper a version ofABT which includes both
of the above improvements is used. Agents read all incoming messages that were re-
ceived before performing computation andNogoods are resolved, using the dynamic
backtracking method.

5.3 Concurrent Backtracking

TheConcBT algorithm [Zivan and Meisels2004] performs multiple concurrent back-
track searches on disjoint parts of theDisCSPsearch-space. Each agent holds the data
relevant to its state on each sub-search-space in a separate data structure which is termed
Search Process (SP). Agents in theConcBT algorithm pass their assignments to other
agents on aCPA(Current Partial Assignment) data structure. EachCPArepresents one
search process, and holds the agents current assignments in the corresponding search
process. An agent that receives aCPA tries to assign its local variable with values that
are not conflicting with the assignments on theCPA, using the current domain in theSP
related to the receivedCPA. The uniqueness of theCPA for every search space ensures
that assignments are not done concurrently in a single sub-search-space.

Exhaustive search processes which scan heavily backtracked search-spaces, can be
split dynamically. Each agent can generate a set ofCPAs that split the search space of a

Fig. 2.ConcBT with two CPAs

CPA that passed through that agent, by splitting the domain of its variable. Agents can
perform splits independently and keep the resulting data structures (SPs) privately. All
other agents need not be aware of the split, they process allCPAs in exactly the same
manner (see [Zivan and Meisels2004] for a detailed explanation).CPAs are created ei-
ther by the Initializing Agent (IA) at the beginning of the algorithm run, or dynamically
by any agent that splits an active search-space during the algorithm run. A heuristic
of counting the number of times agents pass theCPA in a sub-search-space (without
finding a solution), is used to determine the need for re-splitting of that sub-search-
space. This generates a mechanism of load balancing, creating more search processes
on heavily backtracked search spaces.

A backtrack operation is performed by an agent which fails to find a consistent
assignment in the search-space corresponding to the partial assignment on theCPA.
Agents that have performed dynamic splitting, have to collect all of the returningCPAs,
of the relevantSP , before performing a backtrack operation.

Figure 2 presents an example of a DisCSP, searched concurrently by two syn-
chronous processes represented by two CPAs,CPA1 and CPA2. Each of the four
agentsA1 to A4, holds twoSPs. Only the current domains of the SPs are shown in
Figure 2. The domains on the left represent the state after 3 assignments toCPA1. The
domains on the right of figure 2 represent the state after the first assignment toCPA2.

AgentA1 has assigned the value 1 onCPA1 and the value 3 onCPA2. The values
that are left in each of its domains are 2 inSP1 and 4 inSP2. The two CPAs are
traversing non intersecting sub search spaces in whichCPA1 is exploring all tuples
beginning with 1 or 2 for agentA1, andCPA2 all tuples beginning with 3 or 4.CPA1

is depicted on the LHS of figure 2 andCPA2 is on the top RHS. Each CPA has its ID
on its right.

Fig. 3.Concurrent steps of computation with no message delays

6 Experimental evaluation

The network of constraints, in each of the experiments, is generated randomly by select-
ing the probabilityp1 of a constraint among any pair of variables and the probabilityp2,
for the occurrence of a violation among two assignments of values to a constrained pair
of variables. Such uniform random constraints networks ofn variables,k values in each
domain, a constraints density ofp1 and tightnessp2, are commonly used in experimen-
tal evaluations of CSP algorithms (cf. [Prosser1996]). Experiments were conducted on
networks with 10 variables (n = 10) and 10 values (k = 10). All instances were created
with density parameterp1 = 0.7. The value ofp2 was varied between0.1 to 0.9. This
creates problems that cover a wide range of difficulty, from easy problem instances to
instances that take several CPU minutes to solve.

In order to evaluate the algorithms, two measures of search effort are used. One
counts the number of concurrent steps of computation [Lynch1997,Yokoo2000], to
measure computational cost. The other measures communication load in the form of
the total number of messages sent [Lynch1997]. Concurrent steps of computation are
counted by a method similar to that of [Lamport1978,Meisels et. al.2002]. In order to
evaluate the logical time (including message delays) of the algorithm, in steps of com-
putation, we use the simulator as described in section 3.

In the first set of experiments the three algorithms are compared without any mes-
sage delay. The results presented in figure 3 show that the numbers of steps of compu-
tation that the three algorithms perform are very similar, on systems with no message
delays.ABT performs slightly less steps thanCBJ andConcBT performs slightly
better thanABT . However, when it comes to network load, the results in figure 4 show
that for the harder problem instances, agents inABT sendsix times more messagesthan
sent by agents inCBJ and more than twice the number of messages sent by agents in
ConcBT .

Fig. 4.Total number of messages with no message delays

Fig. 5.Logical number of concurrent steps with random message delays

In the second set of experiments, the simulator’sMailer delayed messages ran-
domly for 5-10 steps (as described in section 3).

Figure 5 presents the results of logical time, counted in concurrent steps, for random
message delays. It is clear in figure 5 that even though message delays do not affect the
number of concurrent steps performed by agents inCBJ , when message delay is cor-
rectly counted,CBJ is affected the most. The number of steps performed byABT in
the presence of delays, grows by a large factor. This is expected, since agents are more
likely to respond to a single message, instead of all the messages sent in the former
(ideal) cycle of computation. Messages in asynchronous backtracking are many times
conflicting. As a result, agents perform more unnecessary computation steps when re-

Fig. 6.Number of messages with random message delays

Fig. 7.Logical number of concurrent constraints checks with random message delays

sponding to fewer messages in each cycle.This can explain a similar result forABT ,
on a different set of problems [Fernandez et. al.2002]. The logical time performance
of concurrent search process algorithms, is not strongly affected by message delay. For
the harder problemsConcBT performs less than half the steps of computation ofABT

(see figure 5). Network load, for the same (delayed messages) experiments is presented
in Figure 6. BothCBJ andConcBT send the same number of messages as in the case
of no message delays. The number of messages sent by asynchronous backtracking in-
creases dramatically.ABT sends almost twice as much messages in the presence of ran-
dom message delays, than it sends in the case of no message delays (figure 6). Figure 7

Fig. 8.Logical number of steps with different random message delays

presents the results for logical time that is counted in units of concurrent constraints
checks. In this experiment the local computation is taken in to account. The delay for
every message is chosen a random value between 50 to 150 constraints checks.

The last set of experiments tests the dependence of algorithm performance on the
amount of delay of messages. All algorithms are run on the hardest problem instances
(p2 = 0.5) with an increasing amount of message delay. The different impact of random
delays on the different algorithms is presented in figure 8. The number of steps of
synchronous and of asynchronous backtracking grows with the size of message delay.
In contrast, larger delays do not have an impact on the number of steps of concurrent
search (Figure 8).

7 Discussion

A study of the impact of message delays on the behavior ofDisCSP search algorithms
has been presented. Use was made of an asynchronous simulator that runs theDisCSP

algorithms with different types of message delays and measures performance in con-
current steps of computation. The logical number of steps/constraints-checks takes into
account the impact of message delays on the actual runtime ofDisCSP algorithms.
Three different algorithms for solvingDisCSPs were investigated.

In asynchronous backtracking, agents perform assignments asynchronously. As a
result of message delay, some of their computation can be irrelevant (due to inconsistent
Agent views while the updating message is delayed). This can explain the large impact
of message delays on the computation performed byABT (cf. [Fernandez et. al.2002]).
The results presented in section 6 strengthen the results reported by Fernandez et.
al. [Fernandez et. al.2002], and do so for a larger family of random problems.

The impact of message delays on concurrent search algorithms is minor. This is
very apparent in Figure 8, where the number of steps of computation is independent of
the size of message delay forConcBT .

To understand the robustness ofConcBT to message delay imagine the following
example. Consider the case whereConcBT splits the search space multiple times and
the number ofCPAs is larger than the number of agents. In systems with no message
delays this would mean that some of theCPAs are waiting in incoming queues, to be
processed by the agents. This delays the search on the sub-search-spaces they represent.
In systems with message delays, these queues are shortened due to later arrivals of
CPAs. The net result is that agents are kept busy at all times, performing computation
against consistent partial assignments. The results in section 6 demonstrate that the
above possible description can be achieved.

In terms of network load, the results of the experimental investigation show that
asynchronous backtrack puts a heavy load on the network, which doubles in the case
of message delays. The number of messages sent, in both synchronous and concurrent
algorithms, is much smaller than the load of asynchronous backtracking and is not
affected by message delays.

References

[Bessiere et. al.2001] C. Bessiere, A. Maestre and P. Messeguer. Distributed Dynamic Back-
tracking.Proc. Workshop on Distributed Constraints, IJCAI-01, Seattle, 2001.

[Fernandez et. al.2002] C. Fernandez, R. Bejar, B. Krishnamachari, K. Gomes Communica-
tion and Computation in Distributed CSP Algorithms.Proc. Principles and Practice of
Constraint Programming, CP-2002, pages 664-679, Ithaca NY USA, July, 2002.

[Ginsberg1993] M. L. Ginsberg Dynamic Backtracking.Artificial Intelligence Research, vol.1,
pp. 25-46, 1993

[Lamport1978] L. Lamport Time, clocks and the ordering of events in a distributed system.
Comm. of ACM, vol. 21, pp.558-565, 1978.

[Lynch1997] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
[Meisels et. al.2002] A. Meisels et. al. Comparing performance of Distributed Constraints Pro-

cessing Algorithms.Proc. DCR Workshop, AAMAS-2002, pp. 86-93, Bologna, July, 2002.
[Prosser1993] P. Prosser. Hybrid Algorithm for the Constraint Satisfaction Problem,Computa-

tional Intelligence, vol. 9, pp. 268-299, 1993.
[Prosser1996] P. Prosser An empirical study of phase transition in binary constraint satisfaction

problemsArtificial Intelegence, vol. 81, pp. 81-109, 1996.
[Silaghi2002] M.C. Silaghi Asynchronously Solving Problems with Privacy Requirements.

PhD Thesis,Swiss Federal Institute of Technology (EPFL), 2002.
[Solotorevsky et. al.1996] G. Solotorevsky, E. Gudes and A. Meisels. Modeling and Solving

Distributed Constraint Satisfaction Problems (DCSPs).Constraint Processing-96, New
Hamphshire, October 1996.

[Yokoo et. al.1998] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara. Distributed Constraint
Satisfaction Problem: Formalization and Algorithms.IEEE Trans. on Data and Kn. Eng.,
vol. 10(5), pp. 673-685, 1998.

[Yokoo2000] M. Yokoo. Algorithms for Distributed Constraint Satisfaction: A Review.Autons
Agents Multi-Agent Sys 2000, vol. 3(2), pp. 198-212, 2000.

[Zivan and Meisels2003] R. Zivan and A. Meisels. Synchronous vs. Asynchronous search on
DisCSPs.Proc. EUMAS-03 1st European Workshop on Multi-agent Systems, pp. 202-208,
Oxford, December, 2003.

[Zivan and Meisels2004] R. Zivan and A. Meisels. Concurrent Backtrack Search on DisC-
SPs. Proc. FLAIRS-04, Miami Beach, May, 2004. (full version can be loaded from
http://www.cs.bgu.ac.il/ zivanr)

