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Foreword

A common assumption behind many existing constraint programming techniques is that
all information about problem variables and constraints is available locally. Distributed
Constraint Reasoning (DCR) provides a framework for problem solving in which
information and control about the problem is distributed among autonomous agents. This
distributed model promises to more closely match the assumptions underlying an
increasingly diverse range of real world multiagent problems.

This DCR workshop series addresses modeling, solutions and applications of Distributed
Constraint Reasoning, including both Distributed Constraint Satisfaction and
Optimization Problems. The goal of the DCR workshop series is to bring together
researchers from the many different areas that are relevant to distributed constraint
reasoning so that commonalities and relationships can be discovered and understanding
improved. DCR is an inter-disciplinary research area involving the Constraint
Programming, Multiagent Systems and AI communities. As such, this workshop has
historically rotated its location between the three major conferences in each of these
areas: CP (2000), IICAI (2001, 2003) and AAMAS (2002). Building upon these previous
successful workshops, we continue in 2004 with the Fifth International DCR workshop
held in conjunction with CP 2004 in Toronto, Canada.

We trust that these proceedings will provide the reader with a glimpse of the cutting edge
research currently going on in DCR. Looking into the future, we hope this workshop will
contribute to the continuing growth of this exciting research area.
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DCOP Games for Multi-agent Coordination

Jonathan P. Pearce, Rajiv T. Maheswaran and Milind Tambe

University of Southern California, Los Angeles, CA 90089, USA
{jppearce, maheswar, tambe}@usc.edu

Abstract. Many challenges in multi-agent coordination can be modeled as dis-
tributed constraint optimization problems (DCOPs) but complete algorithms do
not scale well nor respondfectively to dynamic or anytime environments. We
introduce a transformation of DCOPs into graphical games that allows us to de-
vise and analyze algorithms based on local utility and prove the monotonicity
property of a class of such algorithms. The game-theoretic framework also en-
ables us to characterize new equilibrium sets corresponding to a given degree of
agent coordination. A key result in this paper is the discovery of a novel mapping
between finite games and coding theory from which we can deteranpréri
bounds on the number of equilibria in these sets, which is useful in choosing the
appropriate level of coordination given the communication cost of an algorithm.

1 Introduction

A distributed constraint optimization problem (DCOP) [9, 11] is a useful formalism in
settings where distributed agents, each with control of some variables, attempt to op-
timize a global objective function characterized as the aggregation of distributed con-
straint utility functions. DCOPs can be applied for coordination in multi-agent domains,
including sensor nets, distributed spacecraft, disaster rescue simulations, and software
personal assistant agents. For example, sensor agents may need to choose appropriate
scanning regions to optimize targets tracked over the entire network, or personal assis-
tant agents may need to schedule multiple meetings in order to maximize the value of
their users’ time. As the scale of these domains become large, current complete algo-
rithms incur immense computation costs. A large-scale network of personal assistant
agents would require global optimization over hundreds of agents and thousands of
variables, which is currently very expensive. Though heuristics that significantly speed
up convergence have been developed [8], the complexity is still prohibitive in large-
scale domains. On the other hand, if we let each agent or variable react on the basis of
its local knowledge of neighbors and constraint utilities, we create a system that scales
up very easily and is far more robust to dynamic environments.

Recognizing the importance of local search algorithms, researchers initially intro-
duced DBA[12] and DSA[1] for Distributed CSPs, which were later extended to DCOPs
with weighted constraints [13]. While detailed experimental analyses of these algo-
rithms on DCOPs is available[13], we still lack theoretical tools that allow us to un-
derstand the evolution and performance of such algorithms on arbitrary DCOPs. To
provide such tools, this paper decomposes a DCOP into an equivalent grapbo&
game which differs from graphical games with general reward functions [4, 10]. DCOP



games not only allow us to analyze existing local search algorithms, they also suggest
an evolution tdk-coordinatedalgorithms, where a collection &fagents coordinate their
actions in a single negotiation round, which leads to new notions of equilibria. For ex-
ample, a 2-coordinated algorithm would be an algorithm in which at most two agents
could coordinate their actions, and a 2-coordinated equilibrium would be a situation in
which no 2-coordinated algorithm could improve the quality of the assignment of values
to variables. A key contribution of this paper is the application of a mapping between
finite games and coding theory to determapriori bounds on cardinality of equilib-

ria sets ofk-coordinated algorithms. Such bounds could be used to help determine an
appropriate level of coordination for agents to use to reach an assignment of variables
to values, in situations where the cost of coordination between multiple agents must be
weighed against the quality of the solution reached.

2 DCOP Gamesk-Coordinated Equilibria Sets and Bounds

We begin with a formal representation of a distributed constraint optimization problem
and an exposition to our notational structure. Vet {vi}iN: , denote a set of variables,
each of which can take avalvge = x; € X, i € N = {1,...N}. Here, X; will be a
domain of finite cardinality/i € N. Interpreting each variable as a node in a graph,
let the symmetric matribE characterize a set of edges between varighteles such
thatEjj = E; = 1 if an edge exists between andv; andE;; = E; = 0, otherwise

(Eii = 0Vi). For each pairi( j) such thatg; = 1, letU;;(x;, Xj) = U;i(Xj, %) represent a
reward obtained whew = x; andv; = x;. We can interpret this as a utility generated on
the edge betweew andv;, contingent simultaneously on the values of both variables
and hence referred to aganstraint The global or team utilityJ(x) is the sum of the
rewards on all the edges when the variables choose values according to the assignment
x e X = X3 X ---x Xy. Thus, the goal is to choose an assignmgng X, of values to
variables such that

X' € argma(x) = arg mgxl j; 1Uu(>q, X))
SJEij =

wherex; is thei-th variable’s value under an assignment vectar X. This con-
straintoptimizationproblem completely characterized by, €, U), wherel is the col-
lection of constraint utility functions, becomdsistributedin nature when control of the
variables is partitioned among a set of autonomous agents. For the rest of this paper,
we make the simplifying assumption that there ldragents, each in control of a single
variable.

We present a decomposition of the DCOP into a game as follows;; lbet called a
neighborof v; if Ejj = 1 and letV; = {j : j € N, Ej; = 1} be the indices of all neighbors
of thei-th variable. Let us defing; = [x;, --- xj, ], hereby referred to as@ntext be
a tuple which captures the values assigned td<ihe |Nj| neighboring variables of the
i-th variable, i.evj, = x;, whereU", jx = M.

In a DCOP game, for an assignmeqive define a utility functionr (x) for a team
of agents;T C N to be the sum of the utilities on all constraint links for which at least



one vertex represents an agent in the team, i.e.

UT(X)=Z Z Uij(Xi,Xj)—Z Z Uij (%, Xj).

i€T JiEj=1 i€T jeT,j>i,Ej=1

The utility for a single agenfl{ = {i}) is
ui(x) = Z Uij (X, X))

iEN:
Thus, in a DCOP game, team utilities are not the sums of individual utilities. We now
have @DCOP gamalefined by K, E, ur) whereur is a collection of the utility functions
for all teams.

In current local algorithms, agents change values based on anticipatefiispafyo
only their own utilities. Since DCOPs are inherently cooperative, it is natural for agents
to coordinate in order to improve global solution quality. DCOP games provide a frame-
work to analyze, categorize and evaluate such multi-agent coordination. Let us define a
k-concurrent deviatiofrom an assignment to be an assignmemtwhere exactlyk of
theN variables (agents) have valueffdient fromx, i.e.d(x, X) = [{i : X # %}| = k. We
now introduce the notion oflecoordinated equilibriunndefined to be an assignmexit
such that ifk < k,anyR—concurrent deviation from x*, i.e.d(x", X) < k, cannot improve
the team utility for the set of agents which deviatBgx*,X) = {i : X' # X} S N. A 1l-
coordinated equilibrium is identical to a Nash equilibrium@éc, X)| = d(X*, X) = 1is
a unilateral deviation and the team utility reduces to the utility; for a single agent.

Let Xk C X be the subset of the assignment space which captur&scabrdinated

equilibrium assignments:
Xee={XeX:XeX 1< d(X, )N() <k= UD(X;()(X) > UD()Q;)()?)}.

Proposition 1. If x* optimizes a DCOP characterized B, E, U), then X € Xy V Kk €
N.

Proof. Let us assume that* optimizes the DCOPX, E,U) and x* ¢ X« for some
k € N. Then, there exists somes"X such thatipx 5 (X*) < Upe,5(X). By adding

U, )= > > U(%,. %)
igD(x*,%) jgD(x*,%),j>i igD(x",%) jgD(x*,%),j>i

to both sides, we can sha(x*) < U(X), which is a contradictiorm

Simply put, the proposition states that the optimal solution to the DCOPkis a
coordinated equilibrium for ak up to the number of variables in the system. In our
DCOP framework, we are optimizing over a finite set. Thus, we are guaranteed to have
an assignment that yields a maximum. By the previous proposition, this assignment is
an element oKye Yk € N, includingk = 1. Thus, we are guaranteed the existence of a
pure-strategy Nash equilibrium. This claim cannot be made for any arbitrary graphical
game [4, 10]. Furthermore, from the definition above we see that fod,...,N — 1,
we haveXy.1)e € Xke because ik € Xy.1)e, we have

d(X7 )?) <k+1l1= UD(X,;()(X) > uD(x,)”()()?)



which impliesd(x,X) < k = upxg(X) = Upxy(X) and thus,x € Xce. Thus, ask
increases, the sets kfcoordinated equilibria can be pictured as a series of smaller and
smaller concentric circles, culminating in a single point, representing-to@rdinated
equilibrium fork = N, which is also the optimal solution to the DCOP.

In our notationX;g characterizes the set of all Nash equilibria (no unilateral devi-
ations) andXye characterizes the set of assignments that maximize global utility (no
N-agent deviations).

We exploit the set¥g in the design of a new class of DCOP local algorithms, and
analysis of their equilibrium points. In particular, for a given algorittaptet Z, denote
the set of assignments at which the algorithm will remain stationary, i.e. the terminal
states. An algorithna is k-coordinatedif Z, € X¢e andZ, ¢ X1 for k < N or
Z, C Xne for k = N.

Example 1.Meeting Scheduling.Consider two agents trying to schedule a meeting at
either 7:00 AM or 1:00 PM with the constraint utility as follows(7,7) = 1, U(7,1) =
U(1,7)=-100U(1,1) = 10. Ifthe agents started at, (%), any 1-coordinated algorithm
would not be able to reach the global optimum, while 2-coordinated algorithms would.

Section 3 illustrates that existing local DCOP algorithms are special cases of such
k-coordinated algorithms with = 1, andk > 2 may improve solution quality but at a
higher communication cost.

Choosing an appropriate level kfcoordination given the higher communication
cost is thus a critical question, similar to the choice of neighborhood size in large-
neighborhood search in centralized constraint satisfaction. We assurketiatinated
algorithms are capable of searching any neighborhood ofistzempletely, although
the price for this completeness must be paid in the increasing number of messages re-
quired to ensure k-equilibrium for increasing.

To begin answering this question, we proviaeriori bounds on the number of
equilibria in setsXkg, €.g. a significant reduction in number of equilibria may justify a
jump fromk-coordination to K + 1) coordination.

We first consider games, where each player (agent) can choose grstrategies
(values), i.e]X| = g, Vi € N. We assume that the pa¥ystructure is such that the
optimalk-concurrent response to any context of cardinadlity k is unique. Otherwise,
any bound can be violated in the case where all assignments yield identical utilities
and every assignment is an optimal equilibrium point. Furthermore, we assume that
agents have the ability to communicate with all other agents to facilitatecalhcurrent
deviations (although such communication may be indirect, requiring message relay).

To find upper bounds for the numberlotoordinated equilibria in such games, we
discovered a correspondence from games to coding theory [6, 5]. A fundamental prob-
lem in the theory of error-correcting codes is the determination of appropriate code-
words to use in a code. The code designer must balance the need for brevity, expres-
siveness, and error-correctability of the code, determined, respectively, by the length,
maximum number, and distinctiveness of the allowed codewords. A common measure
of the distinctiveness of two codewords is the Hamming distance, which is defined as
the number of places at which the codewordgedi

For our purposes, an assignment is analogous to a codeword of Hrfgtm an
alphabet of cardinalitg (Each variable in the DCOP maps to a place in a codeword,



and each member of the domain of the variables maps to a member of the alphabet from
which the codewords are created). An assignnxamhicth is ak-concurrent deviation
from an assignmenmt, can also be interpreted as two codewords with a Hamming dis-
tance ofk, whered(x,X) = |{i : x # X}| = k as stated earlier. IX; is ak-coordinated
equilibrium andxj is ak-concurrent deviation fronx;, X; cannot be &-coordinated
equilibrium point becausenxx (X) > Upxz(X) since there is a unique optimal response
to the context{x; : i € N'\ D(x, X). Thus, ifx, is a diferentk-coordinated equilibrium,
thenx, cannot be reachable frora via ak-concurrent deviation (and vice-versa). In the
language of coding theory; andx, must be separated by a Hamming distance greater
thank. The problem of finding the maximum possible numbek-abordinated equilib-
ria can then be reduced to finding the maximum number of codewords in a codespace
of sizeg" such that the the minimum distance among any two codeworis ik + 1.

In coding theory literature, g-ary (n, M, d) code refers to a collection of length
words constructed over an alphalfedf cardinalityq whereM codewords are chosen
such that the minimum Hamming distance between any two codewords is at.|east
Aq(n,d) = maxM : Jan [, M, d) code over alphabet}. Three well-known bounds
for Aq¢(n, d) are the Hamming bound:

WLyl _
A(.d) < q /{ > (i)(q—l)]
the Singleton bound:
Aq(n, d) < qn—dJrl

and the Plotkin bound:

Aq(n.d) < | d |

d-rn

Note that the Plotkin bound is only valid whem < d, wherer = 1-g*, andA3(n, d) =
g™ 41 [5]. For the special case of binarg € 2) codes, we can use the relation

Ag(n, 2r — 1) = Aq(ny, 2r)

[6] to obtain tighter bounds for even distances using the Hamming bounds for odd
distances. Thus, the numberletoordinated equilibria for a given, g andd = k+ 1
can be bounded by the tightest of the bounds mentioned above.

For non-binary codes, we note that the Hamming bound is identicdldodd + 1
whend is odd. The Hamming bound is derived by using a sphere packing argument
that states that the number of womglsmust be greater than the number of codewords
Aq(n, d) times the size of a sphere centered around each codeword. A spi{ere)
with centeru and radiug is the sefv e A" : d(u, V) < r}. It can be shown theBa(u,r)
in A" contains exactly’;_, g?)(q— 1) words. Ifd is odd, the tightest packing then occurs
with spheres of radiugl¢- 1)/2 and each word can be uniquely assigned to the sphere of
a codeword closest to it. tf is even, it is possible for a word to be equidistant from two
codewords and it is unclear how to assign this word to a sphere. The Hamming bound



addresses this issue by simply using the bound obtained with the smaller didtahce

which leads to smaller spheres and hence a larger bound than necessary. In essence, this
ignores the contribution of a word that lies on the “boundary” to the volume of a sphere.
We show one can appropriately partition these boundary assignments to achieve tighter
bounds.

Proposition 2. For even d,

0 (a1 «
ZL(d 1)/2J< )(q 1) ZL(d 1)/2J( )(q —1) + (df/lz)(q _ 1)d/2(%) ’

Proof. It is clear that any word that has Hamming distah@e— 1)/2] or less from a
codeword belongs in the sphere of that codeword, because belonging to more than one
sphere under those conditions would violate the distance requirement of the code. Given
an even distance, each codeword will ég;)(q— 1)%2 words that arel/2 away from it.

It cannot claim all those words as other codewords may be seeing the same words. We
do know however that each of the words on the boundary can be seen by atendst

words as a word of length can be on the boundary of at messpheres. Furthermore,

each word on a boundary can be seen by at gt d) codewords, i.e. the number of
codewords in the space. Thus, each codeword can safely incorppraie(h, Aq(n, d)}

of each boundary word into its sphere. Aggregating over all the words on the boundary,
we can increase the volume of the spher¢ fy)(q - 1)/ min{n, Ay(n, d)}. Using the
sphere packing argument,A§(n, d) < n, we have

[(d-1)/2] . n (q_l)d/z
@2 Al d)[ ()q‘l)'+(d/i<n ) }
q" - (¢,)(@ - 1)2
SHED2 (1) - 1) =G

Aq(n,d) < min{

= Aq(n,d) <
and if Aq(n, d) > n, we have

L@-1y2] (Mg 12
d'>amd) Y, (Ja-27+ %]

i=0

qn
ISV (M@= 1) + (g)@-1)¥2(E)
Now, we have®q(n, d) < n = A¢(n, d) < Gy andAq(n, d) > n = Ay(n, d) < G,. We can
show thaiG, o n © G, o n, Yo € {<, >, =}. FurthermoreG, ©n,G, 6 n & G; 6 G,.
Thus, wherG; < n, G, < n, we have both thab; is invalid andG; is the tighter bound
and wherG; > n,G; > n, G; isinvalid andG; is the tighter bound. We can then express
the bound as

= A4(n,d) <

Ag(n, d) < min{Gy, Go).m

We refer to this as thmodified Hamming bound@he new bound appears to domi-
nate other bounds for fiiciently largen, for evend andq > 2. In Figure 1, we illustrate
the usefulness of our new bound.
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Fig. 1. Modified Hamming Bound

3 DCOP Algorithms: Analysis and Design

The DCOP gameperspective also aids in the analysis of existing local-utility based
algorithms and design of key new algorithms. Among existing DCOP algorithms, the
firstis the MGM (Maximum Gain Message) algorithm which is a modification of DBA
(Distributed Breakout Algorithm) [12] focused solely on gain message passing. DBA
cannot be directly applied because there is no global knowledge of solution quality
which is necessary to detect local minima. The second is DSA (Distributed Stochastic
Algorithm) [1], which is a homogeneous stationary randomized algorithm.

These algorithms work as follows: For synchronous running, let us defmendas
the duration between a change in assignment for a particular algorithm. A single round
could involve multiple broadcasts afessagesEvery time a messaging phase occurs
in a round, we will count that as orggycleand cycles will be our performance metric
for speed, as is common in DCOP literature. k& e X denote the assignments at the
beginning of then-th round. We assume that every algorithm will broadcast its current
value to all its neighbors at the beginning of the round taking up one cycle. Once agents
are aware of their current contexts, they will go through a process as determined by the
specific algorithm to decide which of them will be able to modify their value. For MGM,
each agent broadcasts a gain message to all its neighbors that represents the maximum
change in its local utility if it is allowed to act under the current context. An agent is
then allowed to act if its gain message is larger than all the gain messages it receives
from all its neighbors (ties can be broken through variable ordering or other methods).
For DSA, each agent generates a random number from a uniform distributionidn [0
and acts if that number is less than some threspdltie agent will only change value
if there is a local utility gain). We note that MGM has a cost of two cycles per round
while DSA has a cost of only one cycle per round.

Given the game-theoretic perspective introduced earlier, we recognize that MGM
and DSA are in fectk-coordinated algorithms, wheie= 1. In particular, these al-
gorithms allow only unilateral actions by single agents in a given context. One method
to improve the solution quality is for agents to coordinate actions with their neigh-
bors, thus giving rise t&-coordinated algorithm classes. We define two such classes
as MGMk and SCAKk (Stochastic Coordination Algorithm), which facilitate mono-
tonic and randomized evolution, respectively. DSA is in the SCA family of algorithms,



namely SCA-1. In thesk-coordinated algorithms, teams of upkagents can coor-
dinate value updates in order to maximizg(x) whereT is the set of agents in the
team.

Instantiating this concept in SCA-2, we allow agents to makers to neighboring
agents to perform a joint change of value, such that the sum of the utilities of the two
agents will increase. They become committed partners if ffez ceceiver determines
that team utility yields a greater gain than its unilateral move. To determine the roles of
offerer or receiver, each agent generates a random number from a uniform distribution
on [0,1] and becomes anfierer if that number is less than some threshmlénd a
receiver otherwise.

Let MW c A denote the set of agents allowed to modify the values imttie
round. In SCA-2,M®™ includes all members of committed teams and uncommitted
agents who update with probability In MGM-2, additional rounds of message ex-
changes ensures thatiife M®™, theni belongs to a team (possibly a team of one)
whose gain is larger than the gains of the teams of all its neighbors.

MGM, DSA, and MGM-2 are presented in full in the appendix.

Through our game-theoretic framework, we are able to prove the following mono-
tonicity property of MGMK, where teams of up thagents can be formed.

Proposition 3. When applying MGM, the global utilit/(xX™) is strictly increasing
with respect to the round (n) untif% € Xye.

Proof. We assumeM® # 0, otherwise we would be at a Nash equilibrium. When
utilizing MGM, if i € M™ andE;; = 1, thenj ¢ M®™. If the i-th variable is allowed

to modify its value in a particular round, then its gain is higher than all its neighbors
gains. Consequently, all its neighbors would have received a gain message higher than
their own and thus, would not modify their values in that round. Because there exists at
least one neighbor for every variable, the set of agents who cannot modify their values
is not empty:M™° % 0. We havex™ % x vi € M® andx™? = X vi ¢ MO,

Also, u (XM ; XDy > u (" X) vi € M®, otherwise the-th player's gain message
would have been zero. Looking at the global utility, we have

U(X(n+l))
— U _(n+l)’ X(n+1)
i’j%:l " (X, i )
— U (n+l)’ X(_n+1) U (n+1)’ X(n+l)
i,i:%/ll(”), ’ (XI : ) i i,j:%/ll(“), ! (XI : )
jeM® Ej=1 jEM® Ejj=1
+ U (n+l), X(n+l) + U X§n+1), X(n+1)
i,j%;w, 1 (x] ] ) i’j:iQZM(n), 'J( i j )
jeM® Ejj=1 jeM® E; =1
= Z Uy (x™, xﬁ”)) + Z U;; (X, xﬁ”*l)) + Z Us; (X", xgn))
ijieM®, ijigM®, i,jigM®,

jeM® Ej=1 jeM® Ej=1 jEMO =1



S b ¢ 3w ()« 3w (0)

iemM® jeM® i'j:i%Mm)’
jeM® Ej=1
> Z U (xi(”);x(_r})) + Z uj (xﬁ”);x(_“j)) + Z Uij (xi(”),x(j”))
ieM® jemM® -i’j:i(g)'\é(n)’l
jeM® Ejj=
= X U ¢ 3 ) 3 )
ijieM®, ijigM®, i,jigM®,
jeM® E;=1 jeM® E;=1 jEM® E;=1
=U(x(”)).

The second equality is due to a partition of the summation indexes. The third equality
utilizes the properties that there are no neighbotd# and that the values for variables
corresponding to indexes not M™ in the (1 + 1)-th round are identical to the values

in the n-th round. The strict inequality occurs because agent{h must be making

local utility gains. The remaining equalities are true by definition. Thus, MGM yields
monotonically increasing global utility until equilibriurm.

Furthermore, it is clear that an equilibrium will be reached because this algorithm
can be mapped to a discrete Hopfield model in which agents act as neurons which
"fire” by choosing a value. It has been shown that such networks always reach local
equilibrium [3].

But why is monotonicity important? In anytime domains where communication may
be halted arbitrarily and existing strategies must be executed, randomized algorithms
risk being terminated at highly undesirable assignments. Given a starting condition with
a minimum acceptable global utility, monotonic algorithms guarantee lower bounds on
performance in anytime environments.
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Fig. 2. MGM and DSA for a High-Stakes Scenario



Consider the example in Figure 2 which displays a sample trajectory for both MGM
and DSA with identical starting conditions for a high-stakes scenario with 40 variables
with three values each. Here, if two neighboring agents take the same value, a penalty of
-1000 is incurred. If they take fierent values, they obtain a reward ranging from 10 to
100. To allow for a “safe” starting point for such a dangerous scenario, if two neighbor-
ing agents choose zero as their values, neither a reward nor a penalty is obtained. The
figure is cropped to highlight the oscillation that occurs with DSA. In domains such as
independent path planning of trajectories for UAVS or rovers, in environments where
communication channels are unstable, bad assignments could lead to crashes whose
costs preclude the use of methods without guarantees of monotonicity.

In addition, monotonicity provides insight as to why coordination might lead to
better solution quality. Ik, > ki, we know that for all assignmertswherex € Xy, g, X ¢
X, there exists an assignment Xy,e reachable fronx such thatU (%) > U(x). This
can be seen simply by running MGM-with initial assignmenk.

Example 2.The Traffic Light Game. Consider two variables, both of which can take
on the valuesed or green with a constraint that takes on utilities as follows:

U(red,red) = 0,U(red, green = U(greenred) = 1, U(greengreen = —100Q

Turning this DCOP into a game would require the agent for each variable to take the
utility of the single constraint as its local utility. I1f€d, red) is the initial condition,

each agent would choose to alter its valugteenif given the opportunity to move. If

both agents are allowed to alter their value in the same round, we would end up in the
adverse stategteen greer). When using DSA, there is always a positive probability
for any time horizon thatgreen green will be the resulting assignment.

4 Experiments

We considered two domains. The first was a standard graph-coloring scenario, in which
a cost of one is incurred if two neighboring agents choose the same color, and no cost is
incurred otherwise. Real-world problems involving sensor networks, in which it may be
undesirable for neighboring sensors to be observing the same location, are commonly
mapped to this type of graph-coloring scenario. The second was a fully randomized
DCOP, in which every combination of values on a constraint between two neighboring
agents was assigned a random reward chosen uniformly from tki set 10}.

In both domains, we used ten randomly generated graphs with 40 variables with
three values each, and 120 constraints. We ran: MGM, DSA with{.1, .3, .5, .7, .9},
MGM-2 with g € {.1, .3,.5,.7, .9} and SCA-2 with all combinations of the above values
of p andq (whereq is the probability of being anfterer andp is the probability of
an uncommited agent acting). Each graph shows an evolution of global solution quality
averaged over 100 runs (with random start-states) each for ten examples with selected
values ofp andaq.

We used communication cycles as the metric for our experiments, as is common
in the DCOP literature, since it is assumed that communication is the speed bottleneck.
However, we note that, as we move from 1-coordinated to 2-coordinated algorithms, the
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computational cost each agemust incur can increase by a factor of as much agx|

as the agent can now consider the combination of its and all its neighbors’ moves.
However, in the 2-coordinated algorithms we present, each agent randomly picks a
single neighbojj to coordinate with, and so its computation is increased by a factor of
only [Xj|. Although each run was 256 cycles, the graphs display a cropped view to show
the important phenomena.

Figure 3A shows a comparison between MGM and DSA for several valups of
For graph coloring, MGM is dominated, first by DSA witgh= 0.5, and then by DSA
with p = 0.9. For the randomized DCOP, MGM is completely dominated by DSA with
p = 0.9. MGM does better in the high-stakes scenario as all DSA algorithms have a
negative solution quality (not shown in the graph) for the first few cycles. This hap-
pens because at the beginning of a run, almost every agent will want to move. As the
value ofp increases, more agents act simultaneously, and thus, many pairs of neighbors
are choosing the same value, causing large penalties. Thus, these results show that the
nature of the constraint utility function makes a fundament@édénce in which algo-
rithm dominates. Results from the high-stakes scenario contrast with [13] and show that
DSA is not necessarily the algorithm of choice compared with DBA across all domains.

Figure 3B shows a comparison between MGM and MGM-2, for several valugs of
In all domains, MGM-2 eventually reaches a higher solution quality after about thirty
cycles, despite the algorithms’ initial slowness. The stair-like shape of the MGM-2
curves is due to the fact that agents are changing values only once out of every five
cycles, due to the cycles used in communication. Of the three valugsioéwn in
the graphs, MGM-2 rises fastest whers= 0.5, but eventually reaches its highest aver-
age solution quality wheq = 0.9, for each of the three domains. We note that, in the
high-stakes domain, the solution quality is positive at every cycle, due to the monotonic
property of both MGM and MGM-2. Thus, these experiments clearly verify the mono-
tonicity of MGM and MGM-2, and also show that MGM-2 reaches a higher solution
quality as expected.

Figure 3C shows a comparison between DSA and SCA-2pfer0.9 and several
values ofg. DSA starts out faster, but SCA-2 eventually overtakes it. The result of the
effect of g on SCA-2 appears inconclusive. Although SCA-2 with= 0.9 does not
achieve a solution quality above zero for the first 65 cycles, it eventually achieves a
solution quality comparable to SCA with lower valuesyof

Figure 3D shows a probability mass function (PMF) of solution quality for three
sets of assignments: the set of all assignments in the DEPEhe set of 1-coordinated
(Nash) equilibria Xig), and the set of 2-coordinated equilibrié:€). Here we consid-
ered smaller scenarios with twelve variables, 36 constraints, and three values per vari-
able in order to investigate tractably explorable domains. In both domains, the solution
quality of the set of 2-coordinated equilibria (the set of equilibria to which MGM-2 and
SCA-2 must converge) is, on average, higher than the set of 1-coordinated equilibria,
potentially explaining the higher solution quality of the experimental runs. Even though
a higher level of coordination yields better solution quality, the relationship between
magnitude of improvement and theffdrence in solution qualities of the equilibrium
sets is not obvious. Trajectories may not be uniformly distributed over the equilibrium
sets. Investigating theséects is a ripe area for further investigation.



5 Related Work and Summary

Research in general graphical games has focused on centralized algorithms for finding
mixed-strategy Nash equilibria [4, 10]. DCOP games not only guarantee pure-strategy
Nash equilibria but also introdudecoordination and hendecoordinated equilibria.

In [2], coordination was achieved by forming coalitions representedrbgrzgagemwho

made the assignment decisions for all variables within the coalition. These methods
require high-volume communication to transfer utility function information and the ab-
dication of authority which is often infeasible or undesired in many distributed decision-
making environments. Furthermore, the cost of forming a coalition discourages rapid
commitment and detachment from teams. M&Mnd SCAk allow for coordination

while maintaining the underlying distributed decision-making process and allowing dy-
namic teaming in each round.

A fundamental novelty of our approach is our analysis of distriblitedordination
algorithms as well ak-coordinated equilibria. The key contributions of this paper in-
clude: (i) an introduction oDCOP gamegor analysis of DCOP algorithms, (ii) devel-
opment ofk-coordinated DCOP algorithms, (iii) identification of a mapping between
finite games and coding theory leadingagriori bounds on cardinality of equilibria
sets ofk-coordinated algorithms, (iv) improvement on the tightness of current bounds,
(v) proof of monotonicity of the MGMk class of algorithms and (vi) an investigation
of the equilibria sets of algorithms offtiring degrees of coordination.

We provided key experimental results, verifying our conclusions about monotonic-
ity and equilibria bounds. This paper is a significant extension of the authors’ previous
work in DCOP games [7], in whick-coordinated algorithms and equilibria were intro-
duced. Our results comparing 1-coordinated and 2-coordinated algorithms illustrate the
need to developficientk-coordination algorithms for highéerin the future.
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Appendix A: Algorithms

Algorithm 1 MGM (allNeighbors, currentValue)

1:

0N U A WN

SendValueMessage(allNeighbors, currentValue)
: currentContext GetValueMessages(allNeighbors)
: [gain,newValuel BestUnilateralGain(currentContext)
: SendGainMessage(allNeighbors,gain)
. neighborGains: ReceiveGainMessages(allNeighbors)
: if gain> max(neighborGainghen
currentValue= newValue
end if

Al

gorithm 2 DSA (allNeighbors, currentValue)

1

2:

3

4.
5:
6:

: SendValueMessage(allNeighbors, currentValue)
currentContext GetValueMessages(allNeighbors)
. [gain,newValuel BestUnilateralGain(currentContext)
if Random(0,1x thresholdthen

currentValue= newValue
end if




Algorithm 3 MGM-2 (allNeighbors, currentValue)

13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

1
2
3
4
5:
6: end if
7: [gain,newValuel BestUnilateralGain(currentContext)
8:
9
10
11
12

. SendValueMessage(allNeighbors, currentValue)
: currentContext GetValueMessages(allNeighbors); committedo
: if Random(0,1x offererThresholdhen

committed= yes; partnee= RandomNeighbor(allNeighbors)
Send@rerMessage(partner,allCoordinatedMoves(partner))

offers= ReceiveGrers(allNeighbors); ferReplySet U {offers.neighbdr

. if committed= nothen

best@er = FindBestQfer(offers)
if bestQfer.gain> gainthen
oferReplySet offerReplySet { bestQrer.neighboy
committed= yes; partnere bestQfer.neighbor
newValue= bestQfer.myNewValue; gais bestQter.gain
Send@erReplyMessage(partner, commit, beSe@partnerNewValue, gain)
end if
for all neighbore offerReplySetio
Send@erReplyMessage(neighbor, noCommit)
end for
end if
if committed= yesthen
reply= ReceiveGferReplyMessage(partner)
if reply= committhen
newValue= reply.myNewValue; gais- reply.gain
else
committed= no
end if
end if
SendGainMessage(allNeighbors,gain)
neighborGains: ReceiveGainMessages(allNeighbors); changeVaioe
if committed=yesthen
if gain> max(neighborGainghen
SendConfirmMessage(partner, go)
else
SendConfirmMessege(partner, noGo)
end if
confirmed= ReceiveConfirmMessage(partner)
if confirmed:-yesthen
changeValueyes
end if
else
if gain> max(neighborGainghen
changeValueyes
end if
end if
if changeValueyesthen
currentValue= newValue
end if
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Abstract. We present in this paper a new complete method for distributed con-
straint optimization. This is a utility-propagation method, inspired by the sum-
product algorithm [6]. The original algorithm requires fixed messagesslnear
memory, and is time-linear in the size of the problem. However, it is coordy

for tree-shaped constraint networks. In this paper, we show howtémexhe
algorithm to arbitrary topologies using cycle cutsets, while preserving tharline
message size and memory requirements. We present some prelirexpeny-
mental results on randomly generated problems. The algorithm is foedular
optimization problems, but can be easily applied to satisfaction problemslas w

1 Introduction

Distributed Constraint Satisfaction (DisCSP) was firstigd by Yokoo [10] and has re-
cently attracted increasing interest. In distributed t@ist satisfaction, variables and
constraints are distributed so that each variable and i@nsts owned by an agent.
Systematic search algorithms for solving DisCSP are gépelerived from depth-first
search algorithms based on some form of backtracking [9,2,7, 3]. Recently, the
paradigm of asynchronous distributed search has beendedea constraint optimiza-
tion by integrating a bound propagation mechanism (ADOR]}- [

Backtracking algorithms are very popular in centralizestsgns because they re-
quire very little memory. In a distributed implementatidrgwever, they may not be
the best basis since in backtrack search, control shifigllyabetween different vari-
ables. Thus, every state change in a distributed backtrgckidim requires at least
one message. Furthermore, in the worst case even in a patgteithm there will be
exponentially many state changes [5], thus resulting iroagptially many messages.

This leads us to believe that other search paradigms, irtpkmtthose based on dy-
namic programming, may be more appropriate for DisCSP. amele, an algorithm
that incrementally computes the set of all partial solwidor all previous variables
according to a certain order would only use a linear numbane$sages. However,
the messages could grow exponentially in size, and theittigowould not have any
parallelism.

Recently, the sum-product algorithm [6] has become pogalacertain constraint
satisfaction problems, for example decoding. It is an atat#@ compromise as it com-
bines a dynamic-programming style exploration of a segpeles with a fixed message



2 Adrian Petcu, Boi Faltings

size, and can easily be implemented in a distributed fasklowever, it is correct only
for tree-shaped constraint networks. In this paper, we diawito extend the algorithm
to arbitrary topologies using cycle cutsets, and reportnitial experiments with ran-
domly generated problems. The algorithm is formulated fainoization problems, but
can be easily applied to the satisfaction problem by hawifetions with utility either

Oorl.

2 Definitions & notation

Definition 1. A discretemultiagent constraint optimization problgfdCOP) is a tuple
< A, X,D,R > such that:

- A={4,,..., A,} is the set of agents interested in the problem/solution;

- X ={Xy,..., X;n} is the set of variables/solving agents;

— D ={dy,...,dn} is a set of domains of the variables, each given as a finitefset o
possible values.

— R = {r1,...,rp} is a set of relations, where a relation is a functiond;; x .. x
d;i, — R which is expressed by an age#t, and denotes how much utility that
agent assigns to each possible combination of values oftledvied variables.

We chose to model the problem in this way (with two separatecf@agents) having
in mind a social-choice-like problem, where a set of agedt3$ &re the "citizens” in-
terested in choosing an outcome denoted by the assignmealuefs to variablesX(;)
that are controlled by some public authorities.

In this paper we deal with unary and binary relations, beieg-known that higher
arity relations can also be expressed in these terms withriiodifications. In a MCOP,
any value combination is allowed; the goal is to find an agagmt X’ for the variables
X; that maximizes the sum of utilities of all the agepts

A tree-structured problem is a tree network in which we cawehseveral links
(constraints) belonging to different agents between twaawht nodes. Furthermore,
unary constraints on each variable are also allowed.

For a nodeX},, we define:

— RY(X},): constraints of arity on X, (where i is 1 or 2)
— Ngh(Xy): the neighbors o,

— Ry: the set of constraints belonging to agént

— Ry (X,): constraints betweel;, and its neighboiX ;

3 Distributed constraint optimization for tree-structure d networks

For tree-structured networks (see an example in Figuret 13, possible to devise
polynomial-time complete optimization methods (e.g. thesproduct algorithm [6])
In this problem setting there is a s&tof agents (each ageni; is responsible for a
variable), and a setl of agents that are interested in the assignments that are foad
the variablest. All the agentsA; declare their relation®; to the agentsy; concerned
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Fig. 1. Problem example where the underlying constraint graph is a tree.

in those relations (each relation is declared only to theehtsgX; and X, involved -
assuming binary constraints, or to a single agent in the esrary constraints). We
assume that the resulting constraint graph is a tree.

The “normal” agents A; participate in this process only by specifying their re-
lations; in the optimization itself, they have a passiveranly the “variable-agents”
will play an active role. Therefore, in the following, whiéxplaining the optimization
process, by “agent”, or “node” we will mean one of the ageXis

In this protocol, agents send messages to each other; theddas initiate the
process, and then the other nodes relay the messages agdarthie following rule:

Definition 2. Thek-1 rule: if node X; has k neighborsX; will send out a message to
its k" neighbor only after having received the other k-1 messagyes,will send out
the rest of k-1 messages after having received the messagerfek!” neighbor.

Each agen; executes Algorithm 1:

— In the beginning, examine its own relations. All the othegratg that are connected
through relations with the current node will be its neiglsh@uring the algorithm
an agent communicates only with its neighbors.

— Each agent determines whether it is a leaf in the constnaatdr not (if it has a
single neighbor, even if they share multiple constrairftsY{ is a leaf node, then
send theJTIL message to its only neighbor.

— Wait for incoming messages and respond to them.

The messages passed in this system are in fact utility \&gc@oneighborX; of
nodeX; would sendX; a vector of all the optimal utilities that can be achieved for
the subtree rooted &X; that containsX;, for each ofX;'s possible values (thus,
the size of each messagddsm (X;)|

The agents send messages to their neighbors followinkt thelle Upon receiving

k — 1 messages from the neighbors, since all of the respectiveegshare disjoint,
by summing them upX; computes how much utility each of its values gives for
the whole set ot — 1 subtrees. This, together with the relation(s) betw&emnd
the last neighbor, enabl€; to compute exactly how much utility can be achieved
by the entire subtree rooted at the last neighbor and cangak;, for each of this
neighbor’s values. Thusy; can send to its last({") neighbor itsUTIL message.
Eventually, the last neighbor would also send its messagk foaX;, and at this
point X; would be able to pick the optimal value for itself (as the eaflat max-
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imizes the sum of the utilities of all subtrees rooted atlfitssnd of any unary
constraints on itself, if any).
At this point, the algorithm is finished fo¥X;.

Proposition 1. Algorithm 1 is sound and complete.

PROOF

Correctnesssince there are no cycles in the problem, it means that adsages
that a nodeX; receives from its neighbors come from disjoint parts of thestraint
problem. They represent exact evaluations of the utilipt ttan be obtained by the
subtrees rooted at the sender nodes, for each possible thalu¥, can take (can be
inferred by induction from the leaves inside the tree) By sung all messages ug;
has accurate upper bounds on the amount of utility obtairead the whole problem,
for each of its values; it is therefore easy to pick the onegdhees the maximum utility.

Livenessagain, since there are no cycles in the problem, and alleteek initiate
the message propagation, it is guaranteed that each nodeveiitually receivek-1
messages (with k=the number of neighbors) and thereforitl ibevable to send it&'"
message. Therefore, it will also receive the final message fhe last neighbor, leading
to the conclusion of the algorithm for this node.

Proposition 2. Algorithm 1 is linear in the number of variables - there areaetty
2 x (n — 1) messages propagated through the system (where n is the nofrdgents
in the system)

PROOEF In a tree there are exactly— 1 edges between thenodes of the tree (if less
thann—1, then we have a set of disconnected problems which we cars&parately, if
more, the problem is not a tree anymore). Along each edges #re exactly 2 messages
going through (one from each of the nodes connected thrdweybdge)D

Observations In this algorithm, the agents do not assume any knowledgeeoptob-
lem structure, and do not have parent-child relationshifisthey need to know is
whether they are leaf nodes or not (a leaf node has only 1 beigghand a way to
distinguish between neighbors (ids).

The execution of Algorithm 1 proceeds in an asynchronousdasrom the leaves,
traversing the tree and going to other leaves. This meanséntin subtrees of the
problem proceed faster than others, and it's not alwaysdie that a "child” node is
the first to send &TIL message to its "parent” (like it would happen in a centralize
setting); it can also happen the other way around (condidegxample from Figure 1:
it could happen that nodes,, X5 and X; finish their processing faster, atd delivers
the UTIL message t&(; then, contrary to the centralized setting, would send its
message t& 4 before X, manages to send its message&g. In a sense, the "root” of
this tree is dynamically determined, as the single nodetthppens to receive messages
from all its neighbors before being able to send out any nggessa
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Algorithm 1: DTREE - Distributed optimization procedure for tree-stured net-
works.
1: DTREE: distributed tree-optimization(.A, X', D, R)
2: We have a set of agenl§; € X that each controls its variable, and a set of agents A
that are interested in the assignments of the varialiles
3: All agentsA; declare their relation®; to the subset of agents concerned about those
constraints. We assume that the resulting constraint graph is a tree.
Each ageniX; executes:

4:
5: Initialization( X;, R;)

6: R; « the set of relations binding;

7: Ngh(X;) < the neighbors of; (based orR;)
8: forall X; € Ngh(X;) do

9:  sendDom(X;) to X

10: receive and recorBom (Xx)

11: if [Ngh(X;)| == 1 (i.e. X, is a leaf node}hen
12:  letXy be the single element iVgh(X;)

13:  letutilsx, (X%) < Computeutils(Xy)

14:  SendmessageXy, utilsx, (Xk))

15: msg_cnt — 0

16: activate Messageandler()

17: return

19: Messagehandler(Xy,utilsx, (X))

20: storeXy, utilsx, (X;)

21: msgent ++

22: if msg_cnt = |[Ngh(X;)| — 1 then

23:  letX; be the only neighbor that did not sentiisx; (X;) yet
24:  letutilsx, (X,) « Computeutils(X)

25.  SendmessageX;, utilsx, (X;))

26: else

27:  if msg_cnt = |Ngh(X;)| then

28: forall X; € {Ngh(X;)\ X,}do

29: letutilsx, (X;) < Computeutils(X;)
go: SendmessageX;, utilsx, (X))
1:

X1ENgh(X;) ri €RY(X;)

Vi — argmaz,, < Z utilsx, (X = v;) + Z m(w))

32: X, —vf
33: FINISH _ALGORITHM
34: return

35:

36: Compute_utils(X;)

37: forall v; € Dom(X;) d

)
38: forall v; € Dom(X;)
39:

o
do

Utilxj (vi,vj) «— Z T‘i(’Ui)-f— Z ri(vi,vj)—i— Z ’U,t’ilSXZ (XZ = ’Ui)

r; €RY(X;) ri €R;(X;) X1 €{Ngh(X;)\X;}

40: v} (vy) « argmaz,, (Utilx; (vi,v;))

41: return a vectorutilsx, (X;) of all {Utilx, (v} (v;),v;)|v; € Dom(X;)}
42:

43: Sendmessagek;, utilsx, (X;))

44: send the utils vector to ageht;

45: return




6 Adrian Petcu, Boi Faltings

4 Distributed constraint optimization for general networks

The scenario is similar to the one for tree networks, exdegit we can now drop the
assumption that the constraint network is a tree. We willsimthe following how the
previous algorithm must be modified to accommodate this@han

First, let us consider what would happen if we would directhply theDTREE
algorithm to a graph. The fact that the constraint networkdy&les breaks thHezeness
argument from Proposition 1 and leads to a deadlock in theutiam of the algorithm:
messages would still circulate through all tiREEparts of the problem, hanging from
nodes involved in cycles; however, in a cycle there are nimledes to initiate the mes-
sage propagation, so the nodes involved in it wait for inc@messages indefinitely.

Based on this observation, we can devise a very simple cgtéztion mechanism:
whenever some nodes reach a (reasonably chosen) timedeatwdiiing for (some of)
their neighbors to send messages, that means that those a@mvolved in a cycle
with the neighbors that did not yet send their messages.

4.1 Cycle cutset

It has been pointed out in the literature [2, 4, 1] that bregld problem with cycles into
cycle-free parts can greatly improve the search perforeéorcentralized, crisp CSPs.
In the following, we will try to use this idea to find optimallstions for optimization
problems, in alistributedfashion.

The basic idea of such a technique would be to identify thesaw/olved in cycles,
select a subset of these nodes that will actyade cutsapply an algorithm similar to
DTREEto the now cycle-free parts of the problem, and in the end tpgether the
partial results in a coherent fashion. The rest of this eaatixplains how this can be
done.

4.2 Definitions

Node labeling In our model, the nodes of the constraint graph are labeledéof the
following ways:

1. TREE(nodes that have at most one path from themselves to at me&yaeCut
node) - initially only leaf nodes are label@REE

2. Cycle(nodes that are "between” several CC nodes - there is moredha path
from themselves to other CC nodes) - initially all but thef leades areCycle As
aCyclenode receiveg — 1 (wherek is the number of its neighbors) context-free
messages, it turns intoBEREENnode, and sends to thé" neighbor a context-free
message.

3. CycleCut - CC(nodes that are cycle cuts) - initially no noded€; after timeout
and negotiation, some becorG€

Definition 3.

— disconnected subtrea maximal set of interconnect&j/clenodes, that connect to
the rest of the problem only througPC or TREEnodes (e.gX; — X171 — X153 —
X, — Xy inFigure 2)
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— cyclic subgrapha maximal set of£C nodes connected pairwise through at least
2 differentCC nodes, or through disconnected subtregogether with theCycle
nodes from the disconnected subtrees connecting themx@on@e, X; and all the
lower-right box in Figure 2; a counter-example are SubgBagutd Subgraph2 in 3,
which are disjoint, since they are connected only throigh

— contextof a UTIL message: additional information attached to a Utkssage,
specifying under which “assumptions” the respective UTlessage is valid (for
instance, a context could b&{ = v, /4, X, = v4/7), meaning that the respective
UTIL message is valid wheX; takes its second value out of 4 possible values, and
X, takes its4*" value out out 7 possible values). The context can be null tgmp
in which case it means that this message is always validpwithny assumptions.
Such messages come from the tree parts of the problem. MesHzat circulate
inside cyclic subgraphs will have non-empty contexts.

— context unionthe union of one or more contexts is the union of the setsidbkes
from all the contexts, with their respective assignmerftenk or more variable
appears in several contexts, thiehas to have the same assignment in all of them

4.3 Topological considerations

In order for theCC nodes to know how to treat the incoming messages, it is irapbrt
for them to have some knowledge of the problem structures iBhimportant, since in
a utility-message propagation algorithm, it is possibkt timultiple messages coming
from the same cycle on different paths are actually dupiaand should be discarded.
On the other hand, messages coming from independent siisgsapuld always be
considered.

For a categorization of the possible neighborhoods an agentight have, please
refer to figure 2. Please note that a ™" denotes the possibilf having 0 or more
structures of that kind, a "+” denotes at least one, and a &fades exactly one. The
hashed nodes are the nodes that@®eand the others afEREEor Cyclenodes.

The possible neighborhoods of the nodgcan be categorized as follows:

1. TREE this region is a tree rooted &f;. X;'s neighbor that is the root of the subtree
will eventually send a context-frdéTIL message.

2. Subgraphself: this region is a part of the graph that contains cycles; lewe
it suffices to removeX; to break all these cycles. The probes sentyinto this
region will returnwith the same contexts, which only contaipas a CC nodeThe
contexts contain the same set of ids, but not in the same ¢(ddpending on the

path they took) NodeX; can differentiate between several independent subgraphs

of this type by the set o€yclenodes contained in the context.

3. Subgraphsafe this region may contain one or several other CC nodes aratalev
local cycles; however, apart from the lidk; — X; there is no other path between
X; and this region.

4. Subgraphunsafe this region may contain one or more other CC nodes and devera
local cycles; there are multiple paths frak) and this region (e.gX; — X7, and
X; — X12). What is important to see is that all these paths will evdhjteannect.
This is the general case, and the previous 2 kinds of cycéespmcial cases of this
one; therefore, in the following, we will discuss only abthis kind of cycle.
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Subgraph_ self]* [Subgraph_safe]*

[Subgraph unsafel]*

Fig. 2. Categorization of the possible neighborhoods AgEntcan have, when the underlying
constraint problem is a graph.

Topology probing The CC nodes initiate a topology probing process that hasessid
the fact that they can categorize their neighboring ardas pfobing begins with the C
nodes sending out probes to all of their neighbors. Injtile probes have eontext
composed only of the id of the emittingC node. The receiving nodes append their
own id to the context of the probes, and then forward themltthair other neighbors.
The forwarding stops when reachif@REE nodes, or when visiting the same node a
second time. For each incoming probe, €@ nodes update the largest context that the
sending neighbor has sent so far. Upon completion of thisgatare (typically after a
timeout has been reached), i€ nodes sort their neighbors into different sets (cyclic
subgraphs) according to their respective largest coritexipnes belonging to the same
subgraph will necessarily have the same context. They alsw kheir neighborhoods
up to the borders of the cyclic subgraphs they are involve@.ig. in Figure 3, nodes
X; or X, will know nothing of the Subgraph 1, not even that it existacs the only
contact point between them and any node in Subgraph 1 is tteXipwhich will not
forward the same probes both ways).

4.4 CyPro - distributed utility probing within a cyclic subg raph

In the most general configuration of a cyclic subgraph, weshaset ofCC nodes,
interconnected through an arbitrary number of disconuketrees (for example, in the
lower-right cycle from Figure 2, involvingl;, X;, and X, asCC nodes, we have 3
disconnected treexi7X12fXijk, Xl‘*Xllelg*Xijk, andefX14ka).

A subgraph like this can be arbitrarily complex. Let us ass@on now that there are no
links with the outside world (we will relax this condition gection 4.5, and present the
complete algorithm)
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Subgraph 1
Subgraph 2

Fig. 3. Problem seen as a meta-tree, composed of cyclic subgraphs contieoteghCC nodes

This algorithm (let us call iCyPro) will distributedly generate all the value combi-
nations for all theCC nodes involved in this cyclic subgraph, and for each contlina
compute the total optimal utility that this assignment g#&lprovided that the inter-
mediary disconnected trees that lie betweenGRenodes optimize their values w.r. to
this particular assignment of tl&C nodes. The optimization of the trees is done with
a version ofDTREE extended to support message contexts, therefore the nushber
messages is linear in the number of arcs of the trees.

During the topology probing phase, ea€l node received from all its neighbors
TOPOprobes that contained in their context each node in thecgalbgraph, with the
additionaldomain sizénformation for theCC nodes involved in this cyclic subgraph.
Therefore, each node can easily compute what is the totabeuwf combinations
of values required to explore the whole search sphfg: . |di|. Now, in order to
distributedly generate all combinations of values, eaaterdt, would cycle through all
its values forhigher times, in each cycle sending digtver probes with the respective
value, where

higher = max{1, H |d;|}, lower = maz{1, H |d;|}
{X;eCC|j>i} {X;eCC|j<i}

This ensures that all combinations are generated, with dkde having the highest
id cycling the slowest through its valueSC nodes send out their probes to all their
neighbors in the subgraph, and wait for replies (they do oitdrd any messages).

In between th€€C nodes there are the disconnected trees, compogeyiténodes
that act according to thie-1 rule, combining incoming contexts. This ensures that for
each value combination that the surround®@ nodes inject in the tree, the results
that come out of the tree are optimal with respect to that é¢oation (and contain as
context the complete set @ycle nodes from the tree, and tl&C nodes with their
values). Identical results come out from any of the leavethefiree, so alCC nodes
connected by that tree have a consistent view of the optitiigy uhe tree can achieve
in that context.

Since the subgraph is arbitrarily complex, it is possibkg there is no single node
which is connected to all the trees in the subgraph, thezafas possible that n€C
node has a global view of the total optimal utility for the @mt context. In order to
overcome this, a "leader” node is used (it is irrelevant whet teader is, it may be the
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node with the highest id in the cycle). EaCl€ node sends the leader a single message
that sums up the utilities of the trees that node is involvedaind in which it has the
highest id (this ensures that no tree is reported twice).n.hpoeiving messages from
all the CC nodes in the subgraph, the leader can sum them up, updabevés bound
(thus, itis not needed to store all incoming messages:iimeanory requirements), and
send back to the othéZC nodes the result (they can also update their lower bounds,
and remember the best local value used in the best contieat) a new context is tried,
until the last one. At the last context, ea€l€ node picks for itself the value that is
stored as the best one (from the context that generated ghesitiutility), and a final
round of propagations is initiated, with context-free naggEs, such that also ti@ycle
nodes within the extended cycle can choose their values.

The algorithm is formally presented in Algorithm 2; inforhagescription:

— If an agent has a single neighbor (even if there are multgllgions to that node),
then it labels itself a$REE otherwise a€ycle If X; is TREE then send th&TIL
message to its only neighbor.

The messages passed in this system are the same utilityyvextdnDTREE
augmented with context information (showing in which cemt@re these vectors
valid). If the message is relayed only throu§REEnodes, then it has an empty
context.

— Wait for incoming messages, and respond to them.

— Upon reaching a timeoufy; realizes it is involved in a cycle, and initiates a nego-
tiation with its neighbors to assume the role®fcleCut
If the negotiation is successfuX;; become<CC. In the following, theCC node will
execute two phasestapology probing phasend autility probing phase
Otherwise, negotiation/timeouts repeat until all cyclestaroken (detected by the
fact that all nodes receiu@TIL probes/messages).

If in the endX; remains &Cyclenode, then follow thé-1 rule

— CC nodes do theopology probing(described in section 4.3) and then tindity
probing(generate all the value combinations of @€ nodes involved in the cyclic
subgraph and computing the overall optimal utility for eacimbination)

— termination TREEandCyclenodes terminate when the node has received context-
free messages from all its neighbors, @ytleCutnodes terminate when all the
value combinations of the{fEC peers have been explored

Proposition 3. CyPro is sound and complete.

PrRooF Follows from the correctness of DTREE (Proposition 1), fdwet that all pos-
sible value combinations of the cycle cut nodes are triech{gefhumber), and that the
results of DTREE applied on the disconnected subtrees anbiced correctly (only
once) by the subgraph leader.

Overall, for each context, there islimear number of messages generat@dx
number_of_arcs+2 x (k—1), wherenumber_of_arcs is the number of links (which
is less than or equal with the number of relations) in the saiify, andk is the number
of CC nodes.

Alternatively, it is possible to cope without any leaderthé CC nodes are more
"verbose”, and send their results to each otlex (number_of _arcs + k x (k — 1)
messages for each context)
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Proposition 4. CyPro has the following complexity:

O((dom" + 1) x (2 x number_of .arcs + 2 x (k —1)))

wheredom=domain sizek=size of the cycle cutset amacs_in_cycle= the number
of arcs in this subgraph.

ProOF Follows from the discussion above.

Algorithm 2: CyPro: distributed utility probing in a cyclic subgraph.

1: CyPro(Subgraph®(X;))
2: for all possible contexts iSubgraph®(X;) do
3:  send ouUTIL probes with my corresponding value in that context, to all my neighbors
wait for incomingUTIL probes from all my neighbors ifiubgraph® (X;)
duplicates from the same subtree are discarded
if leaderthen
centralize the partial results from all tie€ peers inSubgraph” (X;), and send the
total back; update higher bound for my particular value.
else
9: send the leader the results from the subtrees that | am directly codnecsnd in
which | am theCC node with the highest ID; wait for the total coming from the leader;
update higher bound for this particular value of the leader, and rentembewn
value if bound was improved.
10: At the end, aliCC nodes know how much utility the wholgubgraph® (X;) would get in
an optimal assignment for each one of the leader’s values, and winchfdheir values
they would pick in that context.

NoaR

©

4.5 CyCOpt - distributed cycle-cutset optimization algorthm

We have seen in the previous section tB8gPro requires fixed message sizes, linear
memory, and its message complexity is exponential in treedfithe cycle cutse€CyPro
reduces the complexity fromdorn™ (equivalent to a standard backtracking)dan”
(wheren=number of nodes in the problem, ahdnumber of cycle-cut nodes). In the
case that the constraint graph is relatively loose, it Bljikhatkt < n (a small number
of the nodes in the graph are actually cycle-cuts); this damhount to an exponential
complexity reduction.

The obvious application of the previous section is to cosrside whole problem as
an extended cycle, and solve it in the afore mentioned way.

However, in the following, we explore the possibility of faer reducing the com-
plexity of the optimization procedure by breaking the pesblin separatesubgraphs,
exploring each of them usin@yPrag, and then combining the partial results using a ver-
sion of DTREEthat operates at a meta-level, on subgraphs instead oblesiarhis
approach would have the advantage that at a meta-levd) TREEwould be linear in
the number of subgraphs, and the overall complexity woulthbenighest complexity
of the composing subgraphs.

Some issues need to be considered however, in order to ttiprmesemble the par-
tial results ofCyProapplied to the subgraphs:
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— topology subgraphs must be independent, connected through at meStnode.
That node would play the role of a relay between subgraphs;

— synchronizationit is imperative that th&€yProbe started in a subgraph only after
all but one of the externalities (links with other subgrapifiteughCC nodes) have
been solved (this is the equivaldatl rulefor themeta-TREIE

The first point is already a by-product of the topology-prgpphase; it is certain that
eachCC node knows for sure if two subgraphs are independent or sstifaing that

there were a link between them in addition to the node itsellQPOprobe is sure to

have gone through that link and have returned toGfenode, which would have then
marked the two subgraphs as the same).

The second one is a little more difficult; in fact it is needbdttinside a subgraph
there exist a mechanism that allows all th€ nodes involved to announce to the other
CC nodes that they have finished their exter@gPros, and now they dispose of accu-
rate and final information about the utility that the restlof tneta-TREEcan achieve
for each of their values. Note that this is completely edentto thek-1 rule for the
standardDTREE the difference is that in the standadddREEthere was a local de-
cision (each node was receiving all the k-1 messages itsdi@reas now we need to
implement aistributedmechanism that mimics the same functionality.

We solved this problem with a token mechanism: upon solvihgfats external-
ities, a node throws a token in the subgraph; when k-1 (whésetke number ofCC
nodes involved in the subgraph) tokens are recei@gtProcan be launched. Note that
CCnodes that are involved in a single subgraph (keand.X;, in Figure 2) throw their
tokens in from the beginning, since they have no exterealifihey are the equivalent
of leaf nodes il TREE

A good strategy is to elect as subgraph leader the@&snhode that has not yet
thrown the token in the subgraph; afteyProis finished in the subgraph, it would be
this node that would throw its token in one of its other supps and star€yProin
there, and so on. This synchronization mechanism has thet gffatCyPros are starting
to cascade, exactly like tHeTREEpropagation that we explained in Section 3.

In the example of Figure 3, nod§;,, would immediately throw its token in Subgraph
3, X; in Subgraph 2 and; in Subgraph 3.X;, would not start anything in Subgraph
3 because there is a single token in thé#er having finishedCyProin Subgraph 2,
X; would throw its token in Subgraph 3, would see that 2=3-1 nekexist, and would
startCyProin Subgraph 3, etc.

When the last externality of a subgraph is solved, the resiplenSC node already
has complete information for the whole problem (similarhie tase irDTREEwhen
the last £'") message is received). It can immediately choose its vahjnform its
CCpeers in all its subgraphs, which in turn will choose thearg] so on.

The nodes labeled aBREE or Cycle will execute just as in Section 4.4, send-
ing/relaying messages by thel rule The difference is made by tHeC nodes that
are involved in several subgraphs, which operate in theeaf@ntioned way.

Proposition 5. Algorithm 3 is sound and complete.

PrRoOOF Follows from Proposition 1, Proposition 3, and the fact thach individual
subgraph is explored only when all but one of its exterredithre solved (therefore
observing the&k-1 rule for the meta-tree)d
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Algorithm 3: CyCOpt: distributed cycle-cutset optimization algorithm

1:

32:
33:
34:
35:
36:
37:

38:

39:

40:
41:

42:

CyCOpt(A, X, D, R)
Each ageniX; executes:

. Initialization( X, R;)
: same as iD-TREE
D if [INgh(X;)| == 1 (i.e. X; is aTREEnode)then

mark X; asTREE and sendJTIL message to the single neighbor
else
mark X; asCycle

. activate Messagbandler()
. activate Timeoubhandler()
: return

: Timeout_handler()
. if (! received any message from at legSiyh(X;)| — 1 neighbors)then

Cycle(X;) — {X; € Ngh(X;)|X; did not send any message yet
negotiate cycleut withvVX,; € Cycle(X;) ; setis_cycle_cutset accordingly
if is_cycle_cutset then

do TOPOLOGY PROBING

do MAIN PHASE
else

reactivate Timeoubandler()

: Messagehandler()
. if X; is TREEor Cyclethen

relay messages according to ki rule
terminate upon receipt of k context-free messages

: TOPOLOGY DEEP PROBING

: send ouTOPOprobes to neighbors i@'ycle(X;) and wait for their return

. probes are forwarded I§yC/Cyclenodes, collecting in their context the set of visited nodes
: upon completion¥X; can categorize all its neighbors in the SERE E(X;) (containing all

the TREEneighbors) and’ycle® (X;) (containing all the neighbors in thiedependent
cycle Cycle” (X,))

MAIN PHASE ( CCnodes)
if |Cycles(X;)| == 1then
send my token in my only cycle
for all Cycle®(X;) do
wait for c-1 tokens in each cycle (c=the numbe€@ nodes inCycle® (X;), then
perform CyPro in the cycle
when|Cycles(X;)| — 1 cycles have been explored, send my token in the last cycle, and
then perform CyPro in there as well
at this pointX; has complete information from allycle® (X;), and can choose its optimal
value
inform theCC peers from allC'ycle® (X;) about the value chosen
perform a last optimization step in ea€lycle” (X;) with the chosen valuand context-free
UTIL probes such that allCyclenodes can also choose their values and terminate.
terminate
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Proposition 6. Algorithm 3 has the following complexity:

O((dom" + 1) x (2 x number_of _arcs + 2 x (k —1)))

where dom=domain size, k=size of the cycle cutset for thgektrsubgraph, num-
ber_of_arcs = the number of arcs in the largest subgraph

PROOF As explained above, the problem is broken up in disjoingsaphs, which are
connected througlC nodes. Between subgraphs, there is no explicit commuaitati
(except for the fact that the node that connects them willodefpts token at some
point in one of them, when all the rest are done). The diffiputtblems lie within the
subgraphs, and the largest subgraph is the one that givesdhal complexity. Within

a subgraph, the message complexity is given by the formul€y&ro, so the overall
complexity is given by the largest complexity of all subdrapWhen the leader has
finally finished as well, another round ofcs_in_cycle x 2 messages is required, but
this is a one-time, linear number of messages.

5 Experimental evaluation

We have done some preliminary evaluation of the algorithmsamdomly generated
optimization problems (weighted graph coloring) with isasing number of variables.
We recorded the number of exchanged messages and presesstiiteng curve in
Figure 4. As expected, the number of messages increasethwighoblem size, which
in turn influences the size of the cycle cutset. However, fhecticorrelation is with
the cycle cutset, and not with the problem size, leading useti@ve that this method
is a good candidate for solving large but sparse problemsrevthe cycle cutset has
manageable sizes.
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Fig. 4. Number of messages exchanged while solving problems of incred=eing s
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6 Conclusions and future work

We presented in this paper a new complete method for digtidbeonstraint optimiza-
tion. This method is a utility-propagation method that exi® the sum-product algo-
rithm to work on arbitrary topologies using cycle cutsetstelquires fixed message
sizes, linear memory, and its message complexity is expg@iémthe size of the cycle
cutset for the largest subgraph in the problem. This meteddaes the complexity from
dom™ (equivalent to a standard backtracking)den” (CyPro) or evendom*" (Cy-
COpY), wheren=number of nodes in the problerb=total number of cycle-cut nodes,
and k’=number of cycle-cut nodes in the largest subgraph. Fotivelp loose prob-
lems, it is likely that the inequality. > &k > &’ holds, thus our method is likely to
produce important complexity reductions.

The algorithm is formulated for optimization problems, bah be easily applied to
the satisfaction problem as well.

As future work we consider experimenting with differenaségies of selecting the
cycle-cut nodes, developing more efficient methods for agatpn within cyclic sub-
graphs, and more informed topology probing techniques.
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Preprocessing Techniques for
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Abstract. Distributed Constraint Optimization (DCOP) has emergec &=y
technique for distributed reasoning, particularly givése recent progress on
complete DCOP algorithms that provide optimal solutioret, Yheir application
faces significant hurdles in many multiagent domains dudedr inefficiency.
Preprocessing techniques have been successfully useadéd sgp algorithms
for centralized constraint satisfaction problems. Thipgrantroduces a frame-
work of very different preprocessing techniques that asetdan dynamic pro-
gramming and speed up ADOPT, an asynchronous complete aéintbbpCOP
algorithm. We investigate when preprocessing is usefulvemidh factors influ-
ence the resulting speedups in two DCOP domains, namely g@lpring and
distributed sensor networks. Our experimental resultsasiestnate that our pre-
processing techniques are fast and can speed up ADOPT bythaorene order
of magnitude.

1 Introduction

Distributed constraint optimization (DCOP) [1, 2] has egeat as a key technique for
distributed reasoning in multiagent domains, given itditgttio optimize over a set of
distributed constraints. For example, DCOP is useful foeting scheduling in large
organizations, where privacy needs make centralized @nsbptimization difficult
[3]. DCOP is also useful for allocating sensor nodes to tariesensor networks [4, 1,
5], where the limited communication and computation povénaividual sensor nodes
makes centralized constraint optimization difficult. FipeDCOP is useful for coordi-
nating teams of unmanned air vehicles [6], where the needafuid local responses
makes centralized constraint optimization difficult.

Unfortunately, the application of DCOP algorithms facgm#icant hurdles in many
multiagent domains due to their inefficiency. Solving DC@psmally is known to be
NP-hard, yet one often needs to find optimal DCOP solutiomsktu In this context,
researchers have recently developed ADOPT, an asynctsauonoplete and optimal
DCOP algorithm that significantly outperforms competingdete and optimal DCOP
algorithms that do not allow partial or complete central@aof value assignments [1].

* This research was partly supported by a subcontract fromA$A®t Propulsion Laboratory
(JPL) and an NSF award under contract 11S-0350584. The v@@dsconclusions contained in
this document are those of the authors and should not bgisted as representing the official
policies, either expressed or implied, of the sponsorimgoizations or the U.S. government.



In this paper, we introduce a framework of preprocessinigrigpies that make ADOPT
even more efficient. We focus on ADOPT since it provides agiefit baseline and has
been used to solve DCOPs in domains where one needs to fimladRXCOP solutions
quickly, namely sensor networks [5] and meeting scheddtingeams of personal as-
sistant agents [3].

Preprocessing techniques have been studied before in titextwf CSPs. For
example, arc-consistency, path-consistency and genarahgistency algorithms can
speed up CSP algorithms dramatically [7]. The key idea lukthiese preprocessing
techniques is to reduce the search space, for example,rbinating possible values
for nodes. Recent work has applied similar preprocessiimigues to both distributed
CSPs[8, 9] and centralized COPs [10, 11]. However, presing techniques have not
yet been investigated in the context of DCOPs, which is ngir&ing since efficient
complete and optimal DCOP algorithms have been developgdecently. In this pa-
per, we close this gap. Our preprocessing techniques, feyae motivated by heuris-
tic search algorithms rather than preprocessing techeitpraCSPs and thus are very
different from preprocessing techniques for CSPs. ADOP@nisuninformed search
method and our preprocessing techniques speed it up bysogglwith heuristic val-
ues that focus its search. Our framework consists of a pcegsing phase followed
by the main phase which just runs ADOPT. The preprocessiagghbolves a relaxed
version of the DCOP to calculate the heuristic values, usititer ADOPT itself or
specialized preprocessing techniques. We show how oneystengatically construct
preprocessing techniques of polynomial runtime, some dthvlare more computa-
tion or communication intensive than others and thus terghtoulate more informed
heuristic values, thus trading off effort in the preprotegphase and main phase. We
investigate when preprocessing decreases the total effidrivhich factors influence
the resulting speedups in two DCOP domains, namely gragringland distributed
sensor networks. Our experimental results are very engogaFor example, our new
versions of ADOPT can solve a distributed sensor networklero with 40 nodes about
37 times faster than ADOPT, even with our most pessimistig @facounting cycles,
and about 92 times faster if we allow for larger messages.

2 Distributed Constraint Optimization

A DCOP consists of a set of nodes (= agets)D (n) denotes the set of possible values
of noden € N. ¢(d(n),d(n’)) denotes the cost of a soft binary constraint between
nodesn € N andn’ € N if noden is assigned valué(n) € D(n) and noden’ is
assigned valué(n’) € D(n'). The objective is to assign a value to every node so that
the sum of the costs of the constraints is minimal.

Figure 1 shows an example DCOP with three nodes (A, B and Chodles can be
assigned either the value x or the value y. There are contitaétween A and B, B and
C, and A and C. The DCOP has two cost-minimal solutions, naiffetx, B=y, C=x)
and (A=x, B=y, C=y).



cost

et | |
|t | |
b | =

|

C | cost

e C | cost

Fig. 1. Example DCOP

et | |

el Bl S
S I

R =]

et |t
,
-

3 Distributed Constraint Optimization with ADOPT

ADOPT is an asynchronous complete and optimal DCOP alguoritiat significantly
outperforms competing complete and optimal DCOP algostiimat do not allow par-
tial or complete centralization or value assignments []., t2was the first optimal
DCOP algorithm that used only localized asynchronous comication and polyno-
mial space for each node. Communication is local in the sHrmstea node does not
send messages to every other node. Rather, ADOPT consirootsstraint tree, which
is a tree of nodes with the property that any two nodes thainaodved in some con-
straint are in an ancestor-successor (but not necessariypchild) relationship in the
tree. For instance, the DCOP in Figure 1 is organized as anthege A is the root,
B is the child of A, and C is the child of B. In this case, the dogisit tree is a chain
since every node has at most one child. ADOPT searches tlstraon tree in a way
that resembles uninformed and memory-bounded versiong,a&ept that it does so
in a distributed way where every node sends messages onbygariént or successors
in the constraint tree: Each node asynchronously execytescassing loop in which
it waits for incoming messages, processes them and sendsmgyitgessages. VALUE
messages are sent from a node to its children in the cortstiraé) informing them of
the values of their ancestors. The children then recorcethakies in a “current con-
text.” In response to VALUE messages, nodes send COST nesssatheir parents to
provide them with feedback about the costs of the best campksignment of values
to nodes that is consistent with the current context of trden®o this end, a node adds
the exact costs of all constraints that involve nodes witbvkmvalues (= its ancestors)
and a lower bound cost estimate of the smallest sum of the obsif constraints in
the subtree rooted at the node (received from its childrarO@ST messages) for its
current context. Thus, COST messages contain estimatés gbst of the constraints
for the best complete assignment of values to nodes thatlisdoosistent with the cur-
rent context of the node and a lower bound on the actual casteslinitially use zero
as cost estimates, and update these cost estimates whereteese COST messages
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Fig. 2. Snapshots of Possible Execution Trace of ADOPT

from their children. Nodes reset their cost estimates to mdren their current context
changes.

Figure 2 illustrates the execution of ADOPT for the DCOP frBigure 1, with an
emphasis on aspects that illustrate the benefits of our matdns of ADOPT. The
figure shows three snapshots in the progression of a possibteition path of ADOPT.
Initially, the cost estimate of choosing value x and the dinehoosing value y are zero
for every node, and either value can thus be chosen. In FRfiikenodes A, B and C
initially each choose value x. Node A now sends VALUE messag@form its succes-
sors B and C about its choice of value x, and node B sends a VAhE§sage to inform
its successor C about its choice of value x, as indicateddghiltk arrows. The current
context of node B now records that node A has chosen valuedx¢@amputes its cost
estimate for the best complete assignment of values to ribdeis consistent with node
A having chosen value x. This cost estimate is one: If noded»shs value x (value y)
then the constraint cost between nodes A and B is one (twpecésgely), and the con-
straint cost between nodes that involve node C is estimatee rero since node B has
not yet received a COST message from node C. Thus, node B 86D@ST message
to inform node A of an estimated cost of one. The cost estimitdoosing value x is
now one for node A while the cost estimate of choosing valuesyiliszero. In Figure
2(ii), node A now chooses value y (the value with the smatiest estimate) and sends
VALUE messages to inform its successors B and C about its etudiealue y. Node B
then sends a COST message to inform node A of an estimatedfabsee. The cost
estimate of choosing value x is now one for node A while th¢ esimate of choos-
ing value y is three. Thus, in Figure 2(iii), node A now swigshback to value x and
thus backtracks in its search space, and the execution of PiDéntinues. ADOPT
is described in detail in [12], including some optimizasdhat are not relevant to this
paper and that we did not describe here. Our key point is thdé i switched its value
from x to y and back to x based on the cost estimates of its salivéile such context
switching is appropriate to avoid blocking in an asynchumexecution environment,
it causes successors to reconstruct their solution, arsdtbicould potentially improve
the performance of ADOPT if we we able to reduce such conteittking by supply-
ing it with better cost estimates. For example, if the cotieste of choosing value y



had been three for node A, then one would have avoided thexiswitch in Figure
2(ii).

Our new versions of ADOPT are motivated by the need to avoitkduce such
unnecessary context switches. These new versions of AD@Pitientical to ADOPT
except that they initialize ADOPT with non-zero cost estiesa called heuristic val-
ues. They solve DCOPs optimally if we guarantee that theistizivalues are indeed
lower bound cost estimates, which is the case since theyrepeqressing techniques
that calculate heuristic values by solving a relaxed versiotthe DCOP (= the DCOP
with some constraints deleted) in a preprocessing phasedtfey run ADOPT in the
main phase. The main question of this paper then is whetleetotal runtime of the
new versions of ADOPT is smaller than the one of ADOPT itsElfe answer is not
obvious since it takes time to compute the heuristic valliés known that running an
uninformed version of A* on a relaxed version of a search [mwbto obtain heuristic
values that are then used to focus the search of an informrexeA* on the original
version of the search problem cannot result in smaller tatatimes than just using the
uninformed version of A* on the original version of the sdaptoblem [13]. However,
the scheme may potentially work for ADOPT because ADOPT dat¢sesemble A*
but memory-bounded versions of A*.

4 Preprocessing Framework

The heuristic values can be calculated by using either ADO®# relaxed version of
the given DCOP or specialized preprocessing techniquesegiven DCOP directly.

In the following, we describe three preprocessing techesDP0, DP1 and DP2) that
trade-off between how long it takes to calculate the hdangtiues and how informed
they are. We use the following additional notation to ddsethem formallyC(n) € N
denotes the set of children of nodec N. A(n) denotes the set of those ancestors of
noden € N with which the node has constraints. Finally, the heurigicieh(d(n)) is

a lower bound cost estimate of the smallest sum of the coskseafonstraints between
two nodes, at least one of which is a successor of modeN in the constraint tree if
noden is assigned valué(n) € D(n).

DPO, DP1 and DP2 are dynamic programming algorithms thagrmaseguristic val-
ues to the nodes, starting at the leaves of the constragmard then proceeding from
each node to its parent. They set the heuristic values oéalids to zero, that is, they
seth(d(n)) := 0forall d(n) € D(n) andn € N with C(n) = (). They calculate the
remaining heuristic values(d(n)) for all d(n) € D(n) andn € N with C(n) # 0
as follows, where the minimums in the formulas guarantetttteresulting heuristic
values are lower bound cost estimates:

DPOA(d(n)) := 3 wecn) 2aneA(nr) Mila(n)e D(n') Miamen(n) c(d(n), d(n"))
DP1A(d(n)) := Zn/ec(n) mind(n/)ep(n/)(h(d(n’)) + ¢(d(n’),d(n)))

DP2h(d(n)) := Zn/EC(n) (ming(ye pny ((d(n”)) + c(d(n), d(n))

+ Zn”GA(n’) {n} mind(n”)eD(n”) C(d(nl)’ d(nn))))
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Fig. 3.DP2 Example

It is straightforward to implement DPO, DP1 and DP2 in a déedized way where
nodes send messages to their parents. Basically, the l@atiesconstraint tree calcu-
late the heuristic values for each possible value of thaiemta and then send them in
a message to their parents. All other nodes wait until thew neceived such messages
from each of their children, then set the heuristic valueaufreof their possible values
to the sum of the heuristic values reported by their childanthis value, and then
proceed in the same way as the leaves. For example, FigurscBilmes the operation
of DP2 on the DCOP example from Figure 1. In Step 1 of the pregesing phase, C
initializes the heuristic values for its values x and y to®Step 2, C calculates the
heuristic values for the values x and y of B. The heuristizgdbr the value x of B is
calculated as follows: If C is assigned the value x then ibst-gninimal to assume that
A is assigned the value x. In this case, the cost of the canstratween A and C is 3
and the cost of the constraint between B and C is 3, resultiag ioverall cost estimate
of 6. On the other hand, if C is assigned the value y then it &-odnimal to assume
that A is assigned the value y as well. In this case, the casteofonstraint between A
and C is 1 and the cost of the constraint between B and C is dlfiresin an overall
cost estimate of 5. The heuristic value for the value x of Biesinimum of the two
cost estimates and thus 5. Similarly, C calculates the heuvialue for the value y of
B. It then sends these heuristic values to B. In Step 3, B updtdeuristic values
and, in Step 4, calculates the heuristic values of the valwexl y of A. It then sends
these heuristic values to A, and finally, in Step 5, A updatebkewristic values, which
ends the preprocessing phase. In the main phase, node &lynithooses value x and
switches to value y only when the cost estimate of choosihgeva exceeds seven (=
the initial cost estimate of choosing value y) which avolus initial context switch in
Figure 2(ii).

DPO, DP1 and DP2 can differ in both the heuristic values ttagutate and in their
computation and communication overhead. Each heuridtiewd DP2 is guaranteed to



be at least as large (= at least as informed) as the correspmelristic value of either
DPO or DP1. The following table contains the heuristic valter our example, where
the last row contains the largest lower-bound cost estisntiia@t satisfy our definition
of the heuristic values:

A=x|A=y|B=x|B=y|C=x|C=y|
DPO 11112200

DP1 3/ 5[3|1]0]0
DP2 5/ 7[5|3]0]0
optmal 6 | 7| 53|00

We can now examine the overhead of DP0O, DP1 and DP2. Unfdelynd is non-
trivial to measure the runtime of the preprocessing teagscsince nodes can operate
in parallel but are often simulated in different threads mirgle-processor machine.
We follow other researchers and measure the runtime usiigsywhere every node is
allowed to process all of its messages in each cycle. Howeyeles typically measure
only the communication but not the computation overheadlé/this is appropriate in
those situations where the communication overhead dossrtae computation over-
head, we also investigate the computation overhead to etizatrit is not excessive.

— Computation Overhead: The computation overhead is affected by how many con-
straint costs a node must access. DP1 needs to access olystiseof the con-
straints that a node has with its parent while DPO and DP2reded to access the
costs of the constraints that the node has with its othersaoise

— Communication Overhead: The communication overhead is measured in cycles.
DPO needs only one cycle because it does not propagate tieusahies up the
constraint tree while DP1 and DP2 need a number of cyclestinsls the depth
of the constraint tree (plus one). For example, Steps 1 ant&itute one cycle in
the DP2 example from Figure 3, Steps 3 and 4 constitute anoyke, and Step 5
constitutes the third and final cycle. Another key differehetween DPO and the
other two preprocessing techniques is that DP0O sends oelheuristic value from
a node to its parent (because the heuristic values areédéfar all possible values
of the parent) while DP1 and DP2 send one heuristic valuedoh @ossible value
of the parent (because they can be different). For exampéey enode sends two
heuristic values to its parent in the DP2 example from Figurks discussed in the
section on experimental results, we penalize DP1 and DRBdarlarger messages
by increasing their cycle count by a factor that equals thelmer of heuristic values
they send per message (which simulates them only being abémtba single value
per message).

Based on these two axes of computation and communicatichead, we identify
two key design choices. They provide the rationale for owiads of DPO, DP1 and
DP2. In the following, we always list the choice first thatuks in more informed
heuristic values.

— Property a (= Computation Overhead): A preprocessing technique can either
take all constraints into account (1) or only the constsalirgtween nodes and their



parents (2), in which case the constraints form a tree. (2¢sponds to relaxing the
DCOP by deleting all constraints that are between any twesdldat are not in a
parent-child relationship in the constraint tree, whichasically exactly what DP1
does. Instead of using DP1 on a given DCOP, one can therdmeise ADOPT
itself on the relaxed DCOP to calculate the same heuristigega which needs
more cycles than DP1 but makes the preprocessing easiepterimant and might
still result in substantial speedups. (We also experintbntth other ways of delet-
ing constraints. For example, randomly deleting a givercgmiage of constraints
turned out not to be advantageous.)

— Property b (= Communication Overhead):A preprocessing technique can either
take the heuristic values of a node into account (1) or igtieeen (2) when calcu-
lating the heuristic values of the parent. (1) needs a nurobeycles that equals
the depth of the constraint tree (plus one) to propagate¢hestic values up the
constraint tree, while (2) can be computed in only one cycle.

The following table categorizes DP0O, DP1 and DP2 accordirthese two proper-
ties:

Property @Property |
DPQ (1) )
DP1 (2) 1)
DP2 (1) 1)

The following table shows the runtimes of DPO, DP1, and DRZpele as a func-
tion of the two properties, where = max,cn |D(n)| is the largest cardinality of the
set of possible values of any node= max,cn |A(n)| is the largest cardinality of the
set of those ancestors with which any node has constraidés)jotes the runtime of the
preprocessing technique measured in cyclesyamfinotes the size of its messages:

Preprocessing Cost per Cycle

low (c=1, m=1)high (c=tree depth, m=
Graph Structure tree O@?) |DP1 0@?)

full graphDPO0 Ogv?) [DP2 Okv?)

~

There arev? constraint costs for each constraint. Each preprocessitiinique
might have to process aif? constraint costs for each of the at masancestors of a
node with which it has constraints. If the constraints fortre@ (upper row of the ta-
ble), then the number of ancestors is one (k=1). When theti@nts do not form a tree
(lower row of the table), each node must examine its inputthodv? constraint costs
for each of itsk ancestors, and thus tie? cost is mandatory for both DPO and DP2.
The cost for DP2 needs further explanation since given a npidléerates over all the k
ancestors of all the children of n, and would thus appearduoire an additional cost of
iterating over all such children. However, in a decentedimplementation, each child
node only computes the heuristic values relevant to itsedf sends the values to the
parent node n, which sums the inputs from the children. Téarsh child incurs the cost
of kv? per cycle. This explains the table. Since the runtimes of, DAL, and DP2 are
polynomial per cycle and their number of cycles is polyndragwell, their runtimes
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are polynomial. This means that their runtimes are smahléwtorst case compared to
the runtime of the main phase since solving DCOPs is NP-hard.

5 Experimental Results

It is not immediately obvious whether the runtime of the poggssing techniques is
sufficiently overcome by the speedups achieved in the maaseland, if so, which
preprocessing technique results in the smallest totalmethat is, sum of the runtimes
of the preprocessing phase and main phase. We conductedhespts in two different
DCOP domains to answer these questions:

— Graph Coloring: Our first domain is a three-coloring problem with a link déysi
(= number of constraints over the number of nodes) of two.vEthees of the nodes
correspond to the colors, and all constraint costs are dwathruniform probability
from the integers between 1 and 100.

— Distributed Sensor Network (DSN): Our second domain is a distributed sensor
network problem where 24 sensors, arranged in either a ohaimH configuration,
have to track a given number of targets that are randomlytippsed between four
sensors each [14]. Figure 4 shows examples of the two seosfigarations, where
circles with Xs represent sensors and circles without Xsesmt targets. Each
sensor can track at most one target, which needs to be in itediate vicinity.
Each target is either tracked by exactly three sensors oirmoues a cost that is
drawn with uniform probability from the integers betweem@d.00. The mapping
from this DSN domain to a DCOP is described in detail in [14, Basically, one
creates the nodes TA1, TB1, TC1, and TD1 if the sensors A, Bard, D are
able to track target 1. Thus, there is one node for each catibmof a sensor
and one of its possible targets. The possible values of ttieee nodes are all
combinations of three sensors that are able to track thetté#d3C, ABD, ACD,
BCD), the value IGNORE that represents that no sensor witlktithe target, and
the value ABSENT that represents that the target disapgdeare thus no longer
needs to get tracked. There are equality constraints bataeg two nodes with
the same target. For example, there is an equility constoaimveen TA1 and TB1
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Fig. 5. Cycles in Graph Coloring (left) and DSN (right)

that requires sensors A and B to agree on the set of sensdrsabla target 1.

Similarly, there are mutual exclusion constraints betwaeyntwo nodes with the
same sensor. For example, there is a mutual exclusion egmtdtnat enforces that
sensor A cannot track targets 1 and 2 at the same time. The astzero if the

constraints are satisfied and very high if the constrairdsnat satisfied, making
them hard constraints. If a node is assigned the value IGN@HRE it incurs a cost
for ignoring that target.

The following table gives details on the number of nodes &ediumber of their
possible values for the two DCOP domains. We varied the sifeéke domains by
varying the number of their nodes. We report averages overdblem instances for
each domain and size:

Domain Number of NodefNumber of Values per Node
Graph Coloring 8, 10, 11, 12 3
DSN 28,32, 36,40 6

5.1 Discussion of Cycle Count

In the following, we refer to ADOPTO, ADOPT1 and ADOPT?2 as tteembination of
DPO, DP1 and DP2, respectively, in the preprocessing phas&BOPT in the main
phase. Figure 5 shows the total number of cycles of ADOPT lamthree new versions
of ADOPT as a function of the number of nodes (= agents). Relmeethat, whenever
we report cycles, we penalize ADOPT1 and ADOPT2 for thegdamessages in the
preprocessing phase by increasing their cycle count inrigyerpcessing phase by a fac-
tor that equals the number of heuristic values they send pssage, namely 3 in graph
coloring and 6 in DSN. ADOPT2 outperforms all other versioh®\DOPT in graph
coloring and its speedups increase with the size of the durkar example, ADOPT2
speeds up ADOPT by a factor of 9.8 in graph coloring with 12es0AADOPTO does not
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speed up ADOPT in DSN and ADOPT1 and ADOPT2 speed it up by time samount.
The bars for ADOPT and ADOPTO in DSN with 40 nodes have beenahed in the
figure since their number of cycles is 10,694, and ADOPT2 dpep ADOPT by a
factor of 37.6 in this case. It turns out that ADOPT2 even dpag ADOPT by a fac-
tor for 92.5 if we do not penalize it for its larger messages siimmarize, ADOPT2
has the smallest number of total cycles in graph coloringhB@OPT1 and ADOPT2
have the smallest number of total cycles in DSN, which meaasADOPT1 should
be preferred over ADOPT2 in this domain since the computatierhead of DP1 is
smaller than the one of DP2. On the other hand, ADOPTO is reotrtathod of choice
in either domain despite the small computation and comnatioic overhead of DPO
over DP1 and DP2.

Remember that one can use both DP1 on a given DCOP or ADOPT eaxed
version of the DCOP to calculate the same heuristic valuésapreprocessing phase.
Thus, the overhead in the main phase will be identical in lwaides and one should
choose the preprocessing technique that results in theeshalimber of cycles in the
preprocessing phase. Figure 6 shows that the number ofscgtBPL1 in the prepro-
cessing phase is smaller than the one of ADOPT by a factor &fi8yraph coloring
with 12 nodes and by a factor of 5.1 in DSN with 40 nodes. Its beinof cycles in the
preprocessing phase would even be smaller than the one oPAIY a factor of 157.4
in graph coloring with 12 nodes and by a factor of 30.5 in DSthw0 nodes if we did
not penalize DP1 for its larger messages by increasing @ @punt. To summarize,
there is an advantage to using specialized preprocessingitgies in the preprocessing
phase rather than the more general ADOPT itself.

5.2 Discussion of Accuracy

To understand better why the speedups depend on the prepigéechnique, remem-
ber that the heuristic values computed by the preprocessigiques are used to seed
the cost estimates of ADOPT in the main phase. ADOPT can tlaése cost estimates
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during its operation. We therefore computed the averadge oditthe cost estimates
computed by the preprocessing techniques and the costadstirafter the termination
of ADOPT. We refer to this ratio as the accuracy. The largerdhcuracy, the more
informed the heuristic values are. An accuracy of 0 percesama that the heuristic val-
ues are no more informed than the initial cost estimates oDRD itself. In this case,
the preprocessing technique does not speed up ADOPT. Othtbeland, an accuracy
of 100 percent means that the heuristic values computedeqyréiprocessing technique
were so good that ADOPT was not able to raise them. Figurewstiee accuracies of
DPO, DP1 and DP2. The accuracy of DPO is 45.1 percent, theawncaf DP1 is 53.4
percent, and the accuracy of DP2 is 81.6 percent in graphinglwith 12 nodes. On
the other hand, the accuracy of DPQ is zero percent (and hleadmmr does not appear
in the figure) in DSN with 40 nodes since the heuristic valudsudated by DPO are all
zero. This is so since every constraint has at least oneragmistost that is zero. Thus,
ADOPT and ADOPTO are equally fast in this case. The accusaniddP1l and DP2
are larger than zero percent but, for a similar reason, ickdreait 80.0 percent. Thus,
ADOPT1 and ADOPT2 are equally fast in this case. Figure 7 sttbat the number of
cycles from Figure 5 are closely correlated with the acdesaof the heuristic values.
The more accurate the heuristic values, the more they spea®0OPT.

To examine this relationship further in DSN with 36 nodes, fikst ran ADOPT
without preprocessing and obtained the cost estimatesi@ftermination. We then ran
ADOPT again but now simulated a preprocessing phase thdtipes heuristic values
that are equal to the product of the corresponding cost attsrafter the termination of
ADOPT and the same constant factor (smaller than one), wijstresents the desired
accuracy of the heuristic values. Figure 10 (left) shows tie total number of cycles
is closely correlated with the factors. Similar to the poad experiment, the larger the
factors and thus the more accurate the heuristic valuemyohe they speed up ADOPT.
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5.3 Discussion of Repeated and Unique Contexts

There are two reasons why the informedness of the heurigliees can have a large
effect on the resulting speedups. We explore both reastrsrdting that the speedups
are a combination of both reasons:

— The first reason why the informedness of the heuristic vataasave a large effect
on the resulting speedups is that ADOPT, as a memory-bouD@€&P algorithm,
has to regenerate partial solutions (in the form of curremtexts) when it back-
tracks to a previously explored part of the search spaceeNdormed heuristic
values reduce the amount of backtracking of ADOPT and thesithmber of re-
generated (= repeated) current contexts, resulting in dlesmmaumber of cycles
in the main phase. To verify our hypothesis, we measuredwbmge number of
regenerated current contexts at each node. Figure 8 shawththnumber of re-
generated current contexts is indeed closely correlatdd twe number of cycles
from Figure 5 and the accuracies from Figure 7. The more ateuhe heuristic
values, the fewer current contexts are repeated in the ni@isgy and the more the
heuristic values speed up ADOPT. The bars for ADOPT and AD@RDSN with
40 nodes have been shortened in the figure since their nurhbepenated current
contextsis 22,610, and ADOPT2 speeds up ADOPT by a factor.6fifi this case.

— The second reason why the informedness of the heuristiesalan have a large ef-
fect on the resulting speedups is that more informed héuvislues reduce the part
of the search space explored by ADOPT and thus the numberigde= differ-
ent) current contexts, resulting in a smaller number ofeyah the main phase. To
verify our hypothesis, we measured the average number giiergurrent contexts
at each node. Figure 9 shows that the number of unique curoeméxts, surpris-
ingly, changes very little in graph coloring and can evemease with the accuracy
of the heuristic values. The number of unique current cdatd&creases with the
accuracy of the heuristic values in DSN. The more accuradéuristic values in
this case, the fewer unique current contexts are genenatiéakimain phase, and
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the more the heuristic values speed up ADOPT. This diffexamntributes to the
speedups tending to be higher in DSN than graph coloring.

5.4 Discussion of Constraint Tree Topologies

We also tested the impact of the topology of the constraget tm the number of cycles

in DSN with 36 nodes. Our initial hypothesis was that the dpgs would be substan-

tially larger for chains than for trees. Figure 10 (rightpgls, however, that the speedup
of ADOPT2 over ADOPT is about the same in either case.

6 Conclusions

In this paper, we developed a framework of preprocessingnigoes that speed up
ADOPT, an asynchronous complete and optimal DCOP algori®uan preprocessing



techniques use dynamic programming to calculate inforroe&eil bound cost estimates
for ADOPT. Our empirical results in two DCOP domains, nanggigph coloring and
distributed sensor networks, demonstrated that our peegsing techniques are fast
and can speed up ADOPT by more than one order of magnituderedatavely low
preprocessing cost. We showed that the key reason for tleelspés the informedness
of the heuristic values, which in turn determines how manyigasolutions ADOPT
generates and how many of these it revisits. The resultsddsmonstrated that the
preprocessing techniques are significantly more efficiean tusing ADOPT itself in
the preprocessing phase. As outlined in [1], it is essettialke lower bound cost es-
timates in DCOP algorithms. Since our preprocessing tecisiocus on computing
such lower bound cost estimates, the ideas behind them algghapply to DCOP algo-
rithms other than ADOPT. It is future work to explore theipépability to other DCOP
algorithms as well as to develop even more sophisticatgatpcessing techniques.
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Abstract. We consider Distributed Constraint Satisfaction ProbleBisGSP)
when control of variables and constraints is distributed ragna set of agents.
This paper presents a distributed version of the centhlgzckJumping algo-
rithm, called theDynamic Distributed BackJumpingDDBJ algorithm. The ad-
vantage is twofoldDDBJ inherits the strength of synchronous algorithms that
enables it to easily combine with a powerful dynamic orderihgasiables and
values, and still it maintains some level of autonomy foraents. Experimental
results show thabDBJ outperforms theDiDB and AFC algorithms by a fac-

tor of one to twoorders of magnitude on hard instances of randomly generated
DisCSPs.

Keywords: Search, Constraint Satisfaction, Distributed Systems,iMgent Systems.

1 Introduction

Constraint Satisfaction has been used as a powerful parddigraneral problem solv-
ing. It consists of finding values for problem variables imsoparticular domains sub-
ject to constraints that specify possible consistent caatiins. Solving a CSP is to
find a set of variable assignments that satisfies all the ints.

A distributed CSP (DisCSP) is a CSP when variables and contstiaie distributed
among a network of automated agents. Each agent may holdromere variables
which are connected by local constraints, and also conndxtédter-constraints to
variables of other agents. Many application problems intMAglent Systems (MAS)
can be formulated and solved using a DisCSP framework ([ah s:s distributed re-
source allocation problems, distributed scheduling potsl or multi-agent truth main-
tenance tasks.

In solving DisCSPs, agents exchange messages about theleassignments and
conflicts of constraints. Several distributed search @lgms have been proposed for
solving DisCSPs. They can be divided into two main groupsnelssonous and syn-
chronous algorithms. The former are algorithms in which tleegss of assigning vari-
able values and exchanging messages is performed asyncistpbetween the agents,
whereas in the latter group, agents assign values to vasiabéesynchronous, sequen-
tial way. Each group has different strengths and drawbacksdtuss some of them
in the next section.



2 Related Work

One of the pioneer algorithms is thesynchronous BackTracking ABT algorithm
([2], [3]). It is a distributed, asynchronous version of angdc backtracking algorithm.
Agents communicate by two types of messag¥&® messages to distribute the current
value, andNogood messages to declare new constraints. The simplicity angotan
tional concurrency are its strengt#sBT needs polynomial space for storing nogoods
to be complete ([2]). The algorithm requires the assumphahmessages are received
in the order in which they were sent for completeness, otheralisgogoods have to
be stored and it would suffer from exponential space conifyle®ne way to work
around is to attach a sequence number for each message,@dé¢n®f messages can
be determined at the receiving end.

A later version ofABT which makes use of dynamic ordering of agents, called
the Asynchronous Weak-Commitment Sear@WGC is given in [3]. This algorithm is
shown to be faster thakBT, but the main drawback is that it requires exponential space
for completeness.

The Distributed Dynamic Backtracking DiDB algorithm is another distributed,
asynchronous algorithm which is inspired by its centralizedsion Dynamic Back-
tracking ([4]), presented in [5], [6]. Briefly, the algorithm transfos the constraint
network into a directed acyclic graph and performs dynaoniggs over the set of con-
flicting agents. Again, this algorithm requires the assuamptiiat messages are received
in the order in which they were sent and polynomial space fooodgtores. However,
the main weakness is the problem of message duplication. Dasytahrony, an agent
may keep asking values of its parents, and the parents keeingereply messages.
This process propagates down the whole graph, creates maligedeg messages. Ex-
perimental results show that the number of messages imgeamatically and soon
consumes all resources. Some duplication prevention métrhacan be added, but
great attention must be paid for not loosing solutions (Am@éway which consists in
sending a given message only once does not work!).

Another distributed asynchronous algorithm is given laiielfyr], the Asynchronous
Aggregation Search AAS This algorithm works in a similar way asBT, except that
consistent values of the partial solution are also includeeK messages. This mech-
anism helps in reducing number of backtracks. For problents large variable do-
mains, including consistent values produces long messapas,AASis more practical
for problems with small variable domains.

A recently proposed algorithm, called tAsynchronous Forward CheckirgAFC
(I8]), belongs to the group of distributed synchronous gthms. It is a generic back-
tracking algorithm combined with a look ahead heuristic byanseof asynchronous
forward checking messages. Agents assign their values fablas sequentially by
having one current partial assignment shared among altagétnen a dead end is de-
tected, the algorithm backtracks sequentially following teverse ordering. A strength
of this algorithm is in its algorithmic simplicity and goodmputational efficiency, in-
herited from centralized algorithms. It has been shown teigmbetter performance,
in terms of number of messages and constraint checks, tyactasnous algorithms
ABTandDiDB ([8]). The main drawback oAFCis that it does not exploit concurrency:
at any time, there is only either oW€&C or oneBT message that is exchanged between



the agents, results in long running time (running cycleshpared to asynchronous
algorithms.

3 Preliminaries

Constraint Satisfaction

Classically, Constraint Satisfaction Problems (CSP) heen defined for problems in
centralized architectures. A finite CSP is defined by a tf@leD, C), where

- X ={z1, ...,z } is the set of variables.

— D = {Dq,...,D,} is the set ofn finite, discrete domains of variables, ..., z,
respectively.

- C ={C4,...,C} is the set of constraints on the variables. These constraints give
the allowed values that the variables can simultaneousty tak(C}) is the set of
variables that are constrained &Y.

A solutionto a CSP is an assignment of values taken from the domains taral
ables such that all the constraints are satisfied. Conssaiisfaction is NP-complete
in general, and it is typically solved by a tree-search pdoce with backtracking.

Distributed Constraint Satisfaction

A distributed CSP (DisCSP) is a CSP in which the variables amdtcaints are dis-
tributed among a network of automated agents. Formallyjte fidisCSP is defined by
a 5-tuple(X, D, C, A, ¢), whereX', D andC are the same as in centralized CSP, and
- A={4,,...,A,} is the set op agents
- ¢: X — Ais afunction that maps variables to agents

Solving a DisCSP is to find an assignment of values to varidieake collective and
coordinated action of automated agentsdlutionto a DisCSP is a compound assign-
ment of values to all variables such that all constraintsatisfied.

In DisCSP, agents communicate with each other by sending gessa/le make the
following assumptions for the communication model simitatttose proposed in [3]:

1. An agent can send messages to other agents iff the agent kmewaddresses of
the agents.
2. The delay in delivering a message is finite but randomegtiseno message lost.

The second assumption has been partially relaxed from tgmaltone in [3] that also
assumes that messages are received in the order in which tmeyser@. Some algo-
rithms (ABT, DiDB) require this assumption to be complete. Furthermorejrigplcity
and without loss of generality, we assume that:

1. ¢ is a one-to-one function; it means that each agent holds amdyvariable; and
there are no intra-agent constraints.

2. C are binary constraints so thatr(C;) = 2, and every constraint is known by both
agents involved in the constraint.

By these assumptions, the constraint network is simplifieal¢constraint graph where
agents represent graph nodes and constraints represphtagiges.



4 The Algorithm DDBJ

The Dynamic Distributed BackJumping DDBJ, is a complete, distributed, semi-
asynchronous version of a graph-based backjumping ahgorithich was previously
introduced in centralized CSP ([9]). The algorithm combitiege concurrency of an
asynchronous dynamic backjumping algorithm and the coatioumial efficiency of the
synchronouAFC algorithm ([8]), coupled with the heuristics of dynamic valand
variable ordering.

The Distributed BackJumping procedure
Agents perform value assignments in two phases:

— Advancing forwarchbhase: which occurs when a new assignment tuple is added to
the current partial solution.

— Backjumping (backward)hase: which occurs when an agent encounters a conflict.
The process is “jumped back” to the culprit agent.

An agentis either in forward phase or dackwardphase. Algorithmically, théorward
phase is performed sequentially: the assigning agent sam@X to the next agent
andFC messages to unassigned connected agents (similaAF@algorithm). If an
agent detects a conflict when receiving sdtké-C message, it performs thackward
phase asynchronously to backjump to the culprit agent, sulsendNG messages
to unassigned agents. At any time, there can be several tcatpents detected and
thus several backjumps are performed simultaneously. Tpgicagents will change
their values, hence the current partial solution (CPS),@ertbrm theforward phase,
without synchronizing with other agents nor waiting for othgents to switch phases.
Consequently, at any time, agents are performingfoineard and backwardphases
simultaneously in parallel without any synchronous control

An example of algorithm execution is illustrated in Fig.1. An&tl, agentA3
sends on€X message té4 (solid lines) and-C messages to connected agents (dotted
lines). At a later time?2, A11 finds a conflict and backjumps #8 by a BT message
(dashed lines) and sentl&s messages to others (not shown). At the same til3és
assignment has already propagated dowA@@andA7, and get backjumped &6 to
A4 and backtracked &7 to A5. However, the asynchronous executiond@tandA7
and the consequent ones will soon be overwritten by the negrassint atA3. These
execution flows are carried out simultaneously.

In AFC, backtracking is performed sequentially (or synchrongfsbm the detect-
ing agent to the culprit. At any time, there is only either @feor oneBT message being
sent. InDDBJ, any agent who receives @K or FC message can initiate a backjump.
Thus, there can be sevei@ and BT messages exchanged simultaneously, generat-
ing multiple asynchronous execution threads. However, tiseoaly oneOK message
which may potentially lead to a solution (the most updatedmrequivalently the one
on the highest level of the search tree). The ol messages will continue to propa-
gate and create the assignment chains down the search ttikentynwhen theNG or
newer messages arrive. Usually, it takes some cycles to step thbsolete processes,
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Fig. 1. An example of thédDBJ execution

depending on the size of the network, the connectivity dgrtsie message delivering
delay, etc.

The DDBJ algorithm is executed on every agent. Each maintains curren
value assignments of other agents in dgentView ([2]). We also adopt the
AgentView.consistent from [5] to represent whether the CPS it holds is consistent.
To determine whiclOK message is the most updated one and to discard obsolete mes-
sages, we introduce for each agent a time flag cdllede Stamp which is incremented
by 1 when the agent changes its value. When sen@i{i§C messages, an agent in-
cludes itsT'imeStamyp with its assignment. The receiving agent checks the attached
TimeStamps and updates its context only if the message is valid. Intamele above,
by theTimeStamps, A4’s new assignment (due #6’s backjump) will overwrite ex-
ecutions fromA5 (due toA7’s backtrack); however the neA3’s assignment (due to
Al1’s backjump) will eventually overwrite all executions below it

The Dynamic Value and Variable Ordering Heuristics

The DDBJ algorithm uses dynamic value and variable ordering haécsisEach agent
keeps a potential conflict counter list of its domain valuemsd a potential conflict
counter list of other agents. An agent chooses the value wiastthe lowest counter
value to assigns its variable, and sends@{emessage (which contains the partial so-
lution) to the agent which has the highest counter value {@Bdnessages to other
linked agents). If there is a tie, the agent can use the chogival order. At start, all
the counter values are equally zeros.

When a dead end is detected by an agent, the dead end discp{i@ED) agent
performs updating its priority lists in two steps. In thetfgtep, it decreases the counter
of the culprit agent (the agent whose value causes the degdthed it sends the
BT message to the culprit agent. The culprit agent, upon rieceihe BT message,
increases the counter of the sender (the DED agent) and sas¢he counter of its



A5 domain (7)
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Al conflicts —= A1 A1 Al Al = PC
A2 conflicts — A2 A2 A2 A2 <— PC
A3 conflicts —= A3 A3 A3

A4 conflicts — Ad A4 A4 <=— BT

Fig. 2. An example of the heuristics: AgedS comes to a dead end, send8® message to
culprit agentA4, sends “potential conflct” PCmessages tl, A2

value that causes the backtrack, then it follows the backijngnprocedure. In second
step, the DED agent determines its “potential conflictingnégje(PC agents). A PC
agent is thef i r st agent whose value conflicts with a value in the domain of the
DED agent. The DED agent increases the counters of the PC agentls a “potential
conflict” - PCmessage to the PC agents. The PC agents, after receiviRGthessage,
increase the counters of their values (that cause the deBdircrease the counter of
the DED agent. The idea here is to give more priority to the e@rhigher top level of
the search tree to change their values. The heuristics @frdinordering of value and
variable would intuitively help to avoid thrashing on vadugelected by the very first
agents and improve the ordering of agents.

An example is shown in Fig.2 to illustrate how the heuristicskwvégentA5 has 7
values in its domain. The value of agekit conflicts with the values (valueid) 1, 2, 4,5
of agentA5, thus these values are removed from the available valuegawitd5. The
value of agen®\2 conflicts with the values 2, 3, 4, 6. The value of aga8tconflicts
with the values 1, 3, 4. The value of ageft conflicts with the values 4, 6, 7 where
the value 7 is the last available value in the domain of agénfThusA4 is the culprit
agent with respect to ageAb. Following the first step, age®b increases the counter
of agentA4, sends &T to agentAd. AgentAd, upon receiving thd8T, increases the
counter of agend5 and increases the counter of its corresponding value.

In the second step, ageAb determines thaAl andA2 are the PC agents, as they
are first agents who remove the values 1, 2, 3, 4, 5, 6 from itattrAgentA3 is not a
PC agent, since its value conflicts with the values 1, 3, Asothat have been removed
by conflicting with the value of agents Al, A2. Thus, agéBtincreases the counters
of Al andA2, sendsPC messages t81 andA2. AgentAl andA2, when receive the
PCmessage, increase the counteAbfand increase the counter of their corresponding
value.

Detailed Algorithm Description
The DDBJalgorithm uses 8 types of messages as follows:

1. SUCCESS: a terminationmessage which is broadcasted to all agents, by the last
assigned agent, when a solution has been found.

2. FAl LURE: a terminationmessage which is broadcasted to all agents, by the first
agent, when it has determined the problem has no solution.



3. ERROR: aterminationmessage which is broadcasted to all agents when the algo-
rithm encounters error (e.g. exceeded limit of time/reses.

4. OK: a message which contains the current partial solution (€B8)posed of a
list of (variable, value) tuples and their associadl@meStamp’s. This message is
sent to the next agent according to the sending agent'sideciordering.

5. FC:. a message which contains a copy@f message. This message is sent by the
assigning agent to the linked agents that have not beemaskigccording to its
AgentView.

6. NG a message which contains a nogood partial solution. It i teethe linked
agents that have not been assigned, according #yi¢gatView.

7. BT: a message which contains a nogood partial solution. It istseak to the culprit
agent (the last agent in the nogood partial solution).

8. PC. a message which contains a nogood partial solution. It istegrotential con-
flicting agents determined by the agent when a conflict occurs.

The DDBJ algorithm is executed simultaneously on all agents in palralin ap-
propriate function is called depending on the type of theikex message. At start, an
emptyCK message is sent to the first agent for initialization.

Upon receiving arOk message, functioreceiveOK() is executed. It first checks
if the message is valid (line 1); otherwise, it is older thangqually timely to, the
storedTimeStamps® and discarded. Next}imeStamps get updated (line 2). It then
checks whether the message’s partial solution (MPS) canthin previously deter-
mined nogoodmeaning currenfgentView.consistent = false and the MPS con-
tains AgentView). If it is the case, the agent simply does nothing and ret(ins
3,4). Otherwise, it updates its context by the MPS (line 6)h# tipdate succeeds,
meaning its consistent domain of values is not empty, thetaagsigns the value (line
8). Otherwise, it backtracks to the last assigned agent (e 1

FunctionreceiveFC() is called when ai-C message is received. The agent checks
and discards obsolete message (line 1), otherwise updafsnke Stamps (line 2). It
then checks whether the message does not contain the priguietsrmined nogood.

If it is the case, it resets the consistency stateri@ (line 3,4). Whenever the consis-
tency state igrue (line 5), the agent updates its context (line 6). If the updides

not succeed, it does the following: sendiNG messages to linked agents that are not
assigned, sendingC messages to the determined PCAs, updating its memory of PCAs
and backjumping to the culprit agent.

When receiving anNG message, the functioreceiveNG() checks to see if
AgentView contains the MPS. If it is the case, it removes last one or mapkes
in its AgentView to be the same as the received nogood, restores the valumsg-acc
ingly (which are associate with those tuples) (line 2) andtseee consistency state
(line 3). Otherwise, if the message is newer thandgntView, the agent updates
its context (line 5,6,7). If the update does not succeedyritfions similarly to func-
tion receiveFC(). In both cases, if the agent is an assigned agent, it has &b itesif
unassigned (line 11,12).

% the latter happens when the agent has already receivs@ aressage which contains the same
time fag



procedure receive OK()

1: if Msg is newer thamgentView then
2:  updateT'imeStamps

3: if previously determined nogodten
4 return

5. setAgentView.consistent =true
6: updateDomain(MPS)

7.  if successhen
8
9

assignVal()
: else
10: backJump(previous)
end

procedure receiveFC()

1: if Msgis newer thamgentView then
updateT'imeStamps
if not previously determined nogodigen
setAgentView.consistent = true
if AgentView.consistent then
updateDomain(MPS)
if not succesthen
update PCA
sendNGto unassigned agentBC to agents in PCA
backJump(culprit)

[En
e

end
procedure receiveNG()

1: if AgentView orderly containsV/sg then
restoreDom()
setAgentView.consistent = false

else if M sg is newer thardgentView then
setAgentView.consistent = false
updateT'ime Stamps
updateDomain(MPS-last)
if not succesghen

update PCA

10: send\Gto unassigned agentBCto agents in PCA

11: backJump(culprit)

12: if self is assignedhen

13:  resetto unassigned

end

FunctionreceivePC() simply updates the agent’'s memory of PCAs and value pri-
ority. FunctionreceiveBT(), when aBT message is received, first updates the memory
of PCAs and value priority (line 1,2). It then finds the nextilalge value, by calling
functionassignval(). Note that it has to check if the message is still valid (megttiat
its variable is assigned and the message is not too oldg, 8jA,5), since sever&8T
messages can be sent simultaneously to the agent, and seealifgady arrived and
been processed.



procedurereceivePC()

1. update value priority / PCA
end
procedure receiveBT()

1: update value priority / PCA
2: if self is assignedhen

3:  if my AgentView is NOT newerM sg then
4 assignVal()
end
procedure assignVal()

1: findNextVal()

2: if found a consistent valufen
3:  Increasd’imeStamp

4: if self is last agenthen
5: broadcasBUCCESS to all agents
6: else
7 sendK to next agentFCto connected agents
8: else
9:  backJump(previous)
end

procedure backJump(AgentIndex)

1: if self is first agenthen

2:  broadcasFAl LUREto all agents

3: else

4:  setAgentView.consistent = false
5:  resetto unassigned

6: sendBT to agentAgentIndex

7 update PCA

Function assignval() tries to find a next consistent value (line 1), forwards
the CPS to the next agent (line 7), otherwise it backtrackse (). Function
backJump(AgentIndez) performs the backjumping by resetting the agent context and
sendingBT message to agentgentIndex. FunctionupdateDomain(MPS) simply up-
dates its value domaidgentView with the input MPS. As soon as it finds the domain
empty, the function returns the detected nogood.

5 Soundness, Completeness and Termination

The argument for soundness is close to the one given in [&.fatt that agents only
forward consistent assignments@ messages at only one place in functassign-
val(), line 7, implies that the receiving agents receive only @iast assignments. A
solution is reported by the last agent only in functisrignval() at line 5. At this point,
all the agents have assigned their variables, and the assige are consistent. Thus
the algorithm is sound.



For completeness, we need to show thBBJ is able to produce all solutions and
terminate. The algorithm only backtracks, by send#igmessages, in functioack-
Jump(), which implements the graph-based backjumping. It has Heamrsin [10] that
graph-based backjumping only malgsfe jumpsin other words, the algorithm back-
jumps to the culprit variable, and this jump does not lead igsimg any solution. Sim-
ilarly in DDBJ, multiple safe jumpsnay be performed at the same time simultaneously
which are caused by different culprits detected by diffeegy@nts. The re-assignments
of the culprit agents then happen simultaneously. Howeverptie with the highest
level in the search hierarchy tree will eventually replad@tiders. Thus the algorithm
performs an exhaustive search and is able to produce afi@mduHence, it is complete.

In each backtrack step, there is at least one value of a Vattadt is removed (line 5
in backJump()). The domains of variables are finite implies finite numberadktracks,
or BT messages, untiAl LURE messages are broadcasted (line RackJump()). Sim-
ilarly, eachOK message (only sent issignVval(), line 7) increases the number of as-
signed variables by 1, until the last variable whBHECCESS messages are broadcasted.
Therefore, the algorithm terminates,

In DDBJ, agents do not have to store nogoods. An agent has to keephentyt-
rentAgentView and the associatélimeStamp’s, which have at most elements. In
addition, an agent also needs to maintain two priority ti$iss value domain and other
agents. Thus, the algorithm’s spatial complexity is linear

6 Experimental Results

This section gives an experimental evaluation of our atgoriDDBJ in comparison
with two other well known algorithms, the distributed asynctowos algorithm DiDB
([6]) and the distributed synchronous algorithrAFC ([8]). The DDBJ is tested in 2
versions: one version is without the dynamic ordering héiasscalledDBJ, to measure
the performance of the semi-asynchronous backjumpingepiue itself, and the other
version is the fulDDBJ algorithm.

The algorithms are tested on distributed binary CSPs whiehaardomly generated
using the problem generatdavaCSR([11]). The problems are generated based on 4
setting parameters:

— v - The number of variables (or number of agents),

— d - The number of values in the domain of each variable (doria&),s

— ¢ - The constraint density (which reflects the number of coimdgg and

— t - The constraint tightness (which refers to the number oferglairs which are
disallowed by the constraint).

These settings are commonly used in experimental evatuati€SP algorithms ([12],
[13], [8]). The problem generator has the ability to geneatly feasible problem in-
stances (having solutions). Thus, it is advantage to génerdy feasible problem in-
stances for problems in transition phase which are most batdesolve and so it is
easy to highlight differences in algorithm performancg)([Blote that the problem in-
stances are generated with the setting parameters apptiballgl not by interleaving
of independent subproblems.



We recall the distinction between Distributed Systems andibiged Computing
([3])- The latter is belong to the research field of High Perfance Computing, where
the problem is to divide/distribute, in a efficient way, soceenputation load onto sev-
eral connected (or distributed) computing machines. Theieficy is then defined as
speedup/N whereN is the number of distributed machines ([14]).

In this work, we are concerning the former case, Distributest&ys, where the
problemsin question have their distributed charactessti nature: they are spread over
a number of distributed agents. As in [3], [6], [8], [5], we uke following measures
as the criteria for evaluation:

— Number of cyclegor running time): to estimate the algorithm concurrencgyra
chrony, as used in [2].

— Number of messaget estimate the overhead of the algorithm affecting on the
distributed environment, where the cost of sending mesdagesially considered
being more expensive than local computation of agents.([8])

— Number of constraint check® evaluate computational efforts done locally by the
agents.

— Number of value assignments represent the cost of value changes committed
that may be high in some applications.

The first two measures are the most important factors in miegsthe efficiency
of distributed algorithms. The number of cycles indicatesrunning time of an algo-
rithm. More importantly, it shows how much parallelism is ifed in asynchronous
algorithms compared to synchronous ones. The notion ofcieent checks” is dis-
cussed in [15]. In this work, we make an assumption that thetcaints are simple
so that an agent is able to process incomming messagestmerézessary constraint
checks and send out messages in one clock cycle ([2]). Thesatio “N.Constraint
checks/N.Cycles” gives a good estimate of the average nuofisencurrent constraint
checks. As argued in [16], synchronous distributed algoritlusually have better ef-
ficiency than asynchronous ones (in terms of overheadsndaht efforts, etc.), but
asynchronous algorithms can exploit concurrency, thudtieg in better running time
(or less number of running cycles). The latter issue is nstudised in [8] when the
authors compar@FC with asynchronous algorithmAsBTandDiDB.

The messages are set up to be delivered to destinadomecessarily in the order in
which they were sengxcept for the algorithr@iDB where it requires the messages are
delivered in order. The number of messages is an importaasune for DiSCSP algo-
rithms, since in distributed environment, sending messagether distributed agents
is considered expensive ([3]).

To simulate a distributed environment and asynchronousutixa, we use a dis-
crete event simulator. We have a global discrete clock ¢ognibh cycles to simulate
a realtime clock. At each cycle, all agents read the incommiegsages, process the
computation and send out messages to other agents. If theogdény incomming mes-
sage, an agent simply sits idly. We recall the assumptidretihagent is able to process
incomming messages, perform necessary constraint chadksemd out messages in
one clock cycle. The algorithm is executed simultaneouspairallel on all agents. All
agents terminate when an termination message is broadcastetthe algorithm fin-
ishes. The algorithm’s running time is counted as the nurbetobal clock cycles.
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Fig. 3. Results (inogl0scale) for N.vars v=15, domain d=15, density c=0.5. At tramsiphase
when tightnes$ = 0.5 — 0.7, DiDB solved50% — 80%, AFC, DBJandDDBJ solved100% of
100 generated instances

Furthermore, to simulate the real distributed environnaentlose as possible, we set
up the link channels between agents such that the delivegyiimandomly generated
between 1 and the total number of agents, which best reflectsffibet of the size
of the constraint network. Because the concurrency of caatiom of asynchronous
algorithms is difficult to see from other measurements (nemab constraint checks,
number of messages), this setting helps to differentigtedsonous and synchronous
(or sequential) execution schema. The same argument foefs comparison is also
pointed out in [15].

Because of limited space, the results of 2 test sets arerniegkeT he first test set
includes problems with the number of variabtes= 15, the variable domaid = 15,
the constraint density probability= 0.5 and the constraint tightness varying frém
t0 0.9 in 0.1 steps. The results itngl0scale are shown in Figure 3. Each plot point
is the average of results taken from 100 randomly generatgdrices. An algorithm is
stopped when the number of running cycle reaches a lini0pd00, 000 cycles or the
number of messages séntone cycleexceedd00, 000.



In term of running time, th®BJis about 2-4 times faster than tA&C at transition
phase. The difference indicates the concurrency effedte@fsynchronous backward
phase oDBJ. The DIDB, because of its fully asynchronous nature, is better than th
DBJ and AFC. However, when combined with the dynamic ordering heuristius, t
DDBJis the best algorithm among the four for most cases.

On number of messages, tB®DBJ is better than the other three algorithms by a
factor of one order approximately. The only drawback is thatrhessageK of DDBJ
(andAFC, DBJ) is longer than that oDiDB. However, since the number of elements
in a message is at most equal to the number of variatded each element contains
agentid, value id and its associdtémestamp, that all can be represented by 3 integer
numbers, the size of a message is not more 8mainteger numbers.

In term of computational performand@PBJ outperforms both algorithmSiDB
andAFC by a factor of5 to 100 on hard instances, where tBBJ comes next. This
can be explained by the fact that by combining good valu&ieée ordering heuristics
and exploiting concurrency, it also helps to increase therthm’s computational effi-
ciency and reduces the number of messages. Note that theragnols algorithnAFC
always performs better than the fully asynchronous aligorDiDB, that it agrees with
the result obtained in [8].

In more details, at transition phase where problems are saimisolve (constraint
tightness is betweei.5 and0.7), DiDB is only able to solves0% — 80% of the gen-
erated problem instances: we stop the algorithm when the nuofilbeessages sent in
one cycle exceeds the limit @00, 000 messages, since most of the time and memory
resources are consumed by processing duplicated mes3aigemessage duplication
problem arises significantly when the messages are delivatedome random delay.
The other three algorithms are able to solve all the probieittn the limits of running
cycles and messages.

In the second test set, we evaluate the algorithms by 4 feadimh dimension
problems, with the number of variables equals 20, 30, 30 andedpectively. The
constraint tightness is set to a value clos@.®so that the problems are in the transi-
tion phase. The limit of number of cycles is now set @8, 000, 000. We excludeDiDB
because of its limited capacity of solving high dimensiooigpems: the number of mes-
sages explodes exponentially so that after a few hundredngreycles, the number of
messages soon exceeds the limit of available resource.eBudts inlog10scale are
shown in Figure 4. The percentages show the numbers of prstdeived by the algo-
rithms. Each subgraph shows the median value of the resB3 génerated instances.
The reason of taking the median value instead of the meae \@that in the transition
phase, the variance of the results is too high, thus the mediae indicates better the
result average.

It is clear that the semi-asynchronous algorittJ always performs better than
AFC by a factor of 2 or more. It shows the effect of the asynchrormackjumping
phase on the algorithm efficiency. TB¥®BJ outperforms both the others by a factor
of one to two orders for all measures. On the number of probtaived, theDDBJis
able to solve all the problem instances for the 4 cases wilt@riime limit, where the
other two algorithms can not. This measure again confirmsigpe efficiency of the
heuristics used iDDBJ. For the last two problems where the numbers of variables are
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Fig. 4. Results (inlogl0scale) of feasible, high dimension problems. The percestagpresent
the number of problems solved within a time limit.

a) N.vars v=20, domain d=15, density c=0.5, tightness t=0.45

b) N.vars v=30, domain d=10, density c=0.2, tightness t=0.55

¢) N.vars v=30, domain d=10, density c=0.3, tightness t=0.4

d) N.vars v=40, domain d=15, density c=0.2, tightness t=0.4

30 and 40AFC s able to solve onlp4% and40% of the instances. The performance
measures oAFC are at least one order behind thoseDddBJ. These factors will be
larger if we increase the running time limit f&iFC to solve more instances.

One can also notice that as the number of variables increhseserformance dif-
ference between thBDBJ and the other algorithms increases. Wherl5, DDBJ is
faster by a factor of about one order, wher30,40,DDBJ outperforms the others by
a factor of about two orders of magnitude on number of runoyaes and number of
messages.

7 Conclusion

A new complete, distributed, semi-asynchronous algorith®BJ, is presented. The
algorithm adopts a sequentially assigning procedure, amchsonous forward check-
ing scheme in itadvancing phasand an asynchronous graph-based safe-backjumping



scheme in itbackjumping phaseThe sequentiality of variable assignment enables
DDBJto integrate the powerful heuristics of dynamic value andidde ordering and
still easily to control the algorithm completeness. Expenital results show that the
DDBJ algorithm outperforms thBIiDB and theAFC algorithms by a factor obne to
two orders of magnitude on hard instances of randomly gene@i&@SPs, both on
concurrent running time, number of messages and on othesuresssof number of con-
straint checks, number of variable assignments.
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Abstract. This paper describes a way to integrate established propaga-
tion techniques known from monolithic algorithms in the asynchronous
distributed tree-based algorithm IDIBT without extending its protocol.
It furthermore provides some preliminary experimental results of the in-
tegrated algorithms. These results show that propagation can often, es-
pecially in very hard problems, reduce the number of required messages
to solve the problem. The trade-off for this, i.e. the number of required
(concurrent) constraint checks, naturally increases when more propaga-
tion is applied. However, this computational effort can be reduced when
propagation is performed incrementally as in the algorithms introduced
in this paper.

1 Introduction

Constraint propagation is known to massively improve the performance of search
in monolithic Constraint Satisfaction Problems (CSP). With propagation the
search space can be significantly pruned such that solutions are found quicker.
In the past two decades several propagation algorithms to enhance tree-based
search have been investigated. The most popular are Forward-Checking and
Look-Ahead which improve the performance of complete depth-first search for
almost all problems although they produce some computational overhead.
Consequently, an integration of Propagation in distributed search algorithms
was a topic of various research efforts in recent years. It could be very success-
fully applied in synchronized distributed search algorithms [7] (the propagation
may still be asynchronous). Synchronized distributed algorithms with propa-
gation currently seem to be among the fastest algorithms to solve Distributed
CSP. It seems that the pruning of the search space makes up the drawback of
synchronization, namely that no use is made of parallel computational power.
In completely asynchronous search it is unclear whether propagation will have
a positive effect at all. The crucial point is that in asynchronous algorithms the
processes have to reason on the basis of beliefs which can be wrong. If the re-
sults of such error-based reasoning are propagated, this may handicap the global

* This work has received support from the Embark Initiative of the Irish Research
Council of Science Engineering and Technology under Grant PD2002/21 and from
Science Foundation Ireland under Grant 00/P1.1/C075



approximation to a solution. I know of only one family of algorithms that per-
forms propagation during asynchronous distributed search is DMAC-ABT [9, 5].
These algorithms are said to maintain any kind of consistency (not necessarily
AC) during the complete and asynchronous distributed search with the algo-
rithm AAS [10]. Using bounds-consistency DMAC-ABT is said to use in average
10 times fewer messages than AAS on random problems.

In this paper I investigate to which extend constraint propagation can im-
prove the performance of the asynchronous distributed search algorithm Inter-
leaved Distributed Backtracking [4]. T integrate Forward-Checking and Partial-
Look-Ahead in the complete algorithm IDIBT and analyze the performance of
the resulting algorithms.

The paper is organized as follows: In the next Section I provide some basic
definitions from CSP, Distributed CSP, Distributed Systems and give a short
Introduction to Forward-Checking and Look-Ahead; In Section 3 I outline the
simplified version of the IDIBT algorithm that I will use as a basis for the
new algorithms IDIBT_FC and IDIBT_LA which are described in Sections 4
and 5; In Section 6 I prove the correctness of the new algorithms and provide
some preliminary experimental results; Section 7 concludes and describes some
directions for future work.

2 Preliminaries

(Distributed) Constraint Satisfaction Problems A Constraint Satisfaction
Problem (CSP) is given by a triple (C, X, D) where C is a set of constraints,
X = {x1,...,x,} is a set of variables and D = {Dy, ..., D,,} are their respective
domains. In a binary CSP each constraint C;; € C is associated to a binary
relation sem(C;;) € D; x Dj in the Cartesian Product of the domains of the
constraint’s two variables x; and x;. A Distributed CSP (DisCSP) is given by
a tuple (C, X, D, A) such that (C, X, D) is a CSP which is distributed among a
set of uniform agents A.

Constraint Solving and Constraint Propagation With Constraint Solving
we refer to the process of finding a solution to a CSP or DisCSP or proving that
no solution exists. A solution to P = (C, X, D) is a variable assignment which
maps to every variable z; € X a value d; € D;, such that VC;; € C : (d;,d;) €
sem(Ci;) ANVCy; € C - (dj,d;) € sem(Cj;) holds. Given a total order < on X
the complete labeling tree associated to P and <:= {(z;,x;)|i < j}, is given by

— the direct descendants of the root are (1, d) for each d € D,
— The direct descendants of node (z;,d) are the nodes (z,11,e) where e €
Dji.

In a complete labeling tree, each path from the root to any leaf represents one
distinct assignment of all variables to values from their respective domain. Such a
tree can be pruned without restricting the set of solutions. Whenever no solution



is represented by the assignments in a subtree, this subtree can be safely pruned.
Forward-Checking considers the constraints between any node (z;,d;) and all
nodes (x;,d;) in the subtree with root (z;,d;). Whenever a constraint C;; exists
such that (d;,d;) ¢ sem(Cj;), then the node (x;,d;) and all its descendants
can be pruned. Informally speaking this means that with the choice of a value
for a variable all values from future variables that are inconsistent with that
choice are not considered during search. Look-Ahead prunes even more from
the search tree. It uses the notion of Arc-consistency (AC), which is defined as
follows. A constraint C;; (i.e. an arc in the constraint graph associated to a CSP
[3]) is said to be arc-consistent if and only if for each value d; € D; at least
one value d; € D; exists such that (d;,d;) € sem(C;). A binary CSP (resp. its
associated graph) is said to be arc-consistent if and only if all its constraints are
arc-consistent. Partial-Look-Ahead enforces AC after Forward-Checking for all
future variables of the search, i.e. AC of all constraints between variables that
are not yet labeled. Full-Look-Ahead or MAC (Maintaining Arc-consistency)
enforces arc-consistency after Forward-Checking for the whole CSP. Look-Ahead
may exclude further values from the domain of un-instantiated variables and thus
prune the respective subtrees in the complete labeling tree. For a more detailed
description of these techniques please refer to [1].

Distributed Systems Distributed Systems (DS) are given by a set of agents
which are executed in concurrent processes and communicate by messages. Each
agent can send any other a message provided it knows its address. In this paper,
I use the following communication primitives for DS:

send(R,msg) sends the message msg to the each agent in R. The message can
be any string;

behavior receive(msg) provides an agent-behavior, i.e. a procedure which is
called as soon as a certain message msg arrives. msg can be or can contain
variables which will be unified with the received values. Thus msg is usually
a pattern which an incoming message must match in order to trigger the
behavior. The pattern is usually a structured term which identifies the kind
of message received, and its arguments are variables which are unified with
the actual information contained in the message;

Furthermore, I assume that every message eventually arrives, and that between
every directed pair of agents the order in which messages are sent is the same
as that in which they are received. Whenever an agent refers to itself it will use
the synonym self. A more detailed introduction to distributed computing can
be found in [2].

3 Background: The IDIBT Algorithm

Interleaved Distributed Backtracking (IDIBT) is defined in [4]. It solves DisCSPs,
where each variable imposes one agent and the same assumptions concerning the



message passing are made that I described in the previous Section. That paper
introduces a protocol for finding a global static variable ordering and a protocol
for search. The first is not of interest in this paper. I assume any static order
< of variables to be given. From this order, IDIBT infers for each agent z; the
sets of children I'" = {z;|z; < x; A 3C;; € C} and parents I'™ = {zj|z; <
x; N\ HCij S C} .

The search algorithm is given by a protocol for multiple uniform worker
agents and one controller agent which starts the algorithm and is to detect
termination. Each agent executes NC parallel search contexts to speed up the
algorithm. For simplicity I omit this technique and assume NC=1 throughout
this paper without restricting generality. Upon initialization, each worker x;
chooses any value d; from its domain and sends an infoVal (z;,d;) message to
each agent in I'T. Then search is performed by two behaviors: One processes
infoVal messages and one processes btSet messages, they are presented in
Algorithms 1 and 2 and outlined in the following text. The behaviors use the
following local data structures and procedures:

I'" and I'" as described above

myDomain the allowed values for self

constraints the constraints over self

myVal the current value of self

myCpt the current instantiation number of self. This is used as a time-stamp
of the assignment to myVal

value[p] the currently known value of agent p for each p € I'~

cpt[p] the time-stamp associated to value [p]

procedure getValue(type) returns a value which is consistent with '~ and
increments myCpt. If no such value exists it does not increment the counter.
If type equals info, then it returns the first value from myDomain starting
at myVal in a circular manner. If type = bt, it returns the first value that is
larger than myVal.

procedure contextConsistency(rcpt):boolean returns true, iff the context
represented in rept is consistent with myCpt and cpt, i.e. if the timestamps
for all elements in rcpt and the local knowledge are equal. Otherwise it
returns false.

procedure nearest(A):agent returns the nearest agent from A, which is in
IDIBT the smallest which is greater than self with respect to the chosen
order of agents.

When an agent receives the information of a new assignment x = d of one
of its parents with an infoVal(x,d) message, it updates its local view to = by
adapting value [x#] and incrementing cpt [x]. Then it tries to find a value which
is compatible with the new knowledge. If it finds one and if it is different! from
the previous one it sends respective infoVal messages to all children. If it cannot
find a consistent value in its domain, it initiates backtracking and sends a btSet

! This is not described in [4], but implemented in Youssef Hamadi’s version of the
algorithm



Algorithm 1: IDIBT behavior to process assignments of remote agents

behavior receive(infoVal(z,d)) begin

value[z] := d;

cptlz] := cptlz] +1;

oldVal := myVal;

myVal := getValue(info);

if myVal # nil AND myVal # oldVal then
‘ sendMsg(['",infoVal (self,myVal));

else
| sendMsg(nearest (I~ ),btSet (I"",cpt [I'1);

end

message to its nearest parent. This message contains the set of all parents and
the currently known context cpt of self.

Algorithm 2: IDIBT behavior to process backtracking messages

behavior receive(btSet(set, rept)) begin
if contextConsistency(rcpt) then
myVal := getValue(bt);
if myVal # nil then
‘ sendMsg(I'",infoVal (self ,myVal));
else
if I'" Uset =) then
‘ broadcast(noSolution);
else
| sendMsg(nearest(I"'~ Uset),btSet (I~ Uset,cpt [I"~ Urcptl);

end

When an agent receives a btSet message, it checks whether the context in
that the message was created matches the currently known local context. If not,
the backtracking was initiated on different beliefs and is thus obsolete. If the
context matches, self tries to find another consistent value from its domain
which was not used before. If such a value exists, it is communicated to the
children. If no consistent value in myDomain remains, further backtracking be-
comes necessary. However, if there are no parents, i.e. self is the root node of
the labeling tree we can deduce that the DisCSP is insoluble. This is broadcast
to all other agents to make them terminate. If self has no values left, but has
parent agents, it tries to make them backtrack and change their values. This is
done by sending a btSet message to the nearest parent or the nearest node in
the set of parents of the children that initiated the backtracking.



4 The IDIBT FC Algorithm

IDIBT already uses a form of Forward-Checking by choosing only values for
myVal which are consistent with I"~. This is indeed Forward-Checking, because
I'~ includes all agents that have constraints with self and are located closer
to the root of the labeling tree. The procedure getValue in IDIBT checks ev-
ery new value against all constraints with parent variables. However, the do-
main of the variable is not changed in IDIBT and the computation of consistent
values must be performed from scratch with every received infoVal message.
IDIBT_FC does the constraint checking incrementally and prunes the variable
domain such that the procedure getValue can return any value from the current
variable domain while still implementing Forward-Checking. With this we can
omit the constraint checks performed by getValue in IDIBT. The IDIBT_FC
behavior to process infoVal messages extends the IDIBT algorithm by pruning
and relaxing myDomain incrementally with every received new knowledge about
remote assignments. IDIBT_FC uses Algorithm 2 to process btSet messages
just as IDIBT, but differs in the behavior to process infoVal messages. The
IDIBT _FC version of the latter behavior is presented in Algorithm 3. When an

Algorithm 3: IDIBT_FC behavior to process assignments of remote agents

behavior receive(infoVal(z,d)) begin
1 if value[z] # nil then
| relax(x,valuelz],cptlz]);

value[z] := d
cptlz] := cptlz] +1;
2 propagate(x,d,cpt [z]);
oldVal := myVal;
myVal := getValue(info);
if myVal # nil AND myVal # oldVal then
‘ sendMsg(I'",infoVal (self,myVal));
else
| sendMsg(nearest(I'”),btSet (I ,cpt [I""]);

end

IDIBT _FC agent receives an assignment of a remote agent, it relaxes its domain
by “de-propagating” the formerly known assignment (line 1) of that variable.
After updating its local knowledge it prunes its domain with Forward-Checking
the new assignment (line 2). The manipulation of myDomain is performed by the
procedures relax and propagte which are presented in Algorithms 4 and 5.
They use the the following additional data structures:

initDomain the initial domain of self
counter [d] the number of removals of value d €initDomain. It counts, how
often the value d had to be pruned due to Forward-Checking



removed [(var, val, cent)] the set of all values that are pruned due to the assign-
ment of the remote variable var to val when cnt [var] equals cent.

Furthermore the procedure getValue(type) is changed, such that in the case of
type = bt it returns the value from initDomain which is greater than curVal.
With this adaptation it is invariant against the changes of myDomain and thus
behaves exactly as in in IDIBT. In the case of type = info the procedure get-
Value does not perform any constraint checks, but just delivers the next value
from myDomain. Thus, it differs from the respective procedure in IDIBT which
checks consistency with I'~ for each value to be returned.

Algorithm 4: Procedure to relax former assignment

procedure relax(var, val, cent) begin
foreach d € removed[(var,val, cent)] do
counter [d] := counter[d] -1;
if counter[d] = 0 then
| myDomain := myDomain U{d};

end

The procedure relax (Alg. 4) decrements the counter for all values which
were pruned due to the obsolete assignment (var,val,cent). If one of these
counter-values thus becomes zero, no justification remains to exclude the re-
spective value from myDomain and it is consequently re-inserted in myDomain.

Algorithm 5: Procedure to propagate new assignment

procedure propagate(var,val, cent) begin
D := getInconsitentValuesFC(var, val);
foreach d € D do
myDomain := myDomain \{d} ;
L counter [d] := counter[d] +1;
removed [ (var, val, cent)] := D;

end

The procedure propagate (Alg. 5) computes all values from initDomain
which are inconsistent with the assignment (var,val,cent). This is done with
the procedure getInconsistentValuesFC which is presented in Algorithm 6.
All of these values d, non-regarding whether d € myDomain, are removed from
myDomain and the pruning is counted by incrementing counter [d]. Finally the
pruned values are stored in removed[(var, val, cent)].

The procedure getInconsistenValuesFC(var, val) (Alg. 6) checks for each
value d € initDomain whether it is consistent with the constraint ¢ over self
and var. If no such constraint exists d is consistent, otherwise d is consistent if



Algorithm 6: Procedure to compute inconsistent values for IDIBT_FC

procedure getInconsistenValuesFC(var, val):set begin
res = ();
foreach d €initDomain do
if (c(self,var) € constraints A (d,val) ¢ sem(c)) V (c(var, self) €
constraints A (val,d) ¢ sem(c)) then
| res :=res U{d};

return res;

end

(d,val) € sem(c) or (val,d) € sem(c). If d is not consistent it is added to the set
of values which can be pruned, i.e. the set which is returned by the procedure.

5 The IDIBT _LA Algorithm

The IDIBT_LA algorithm works very similar to the IDIBT_FC algorithm. The
difference is that the procedure getInconsistent ValuesFC is replaced by get-
InconsistentValuesL A, which is capable of detecting more values which can
be safely removed from myDomain. It computes all values that are inconsistent
in the sense of Arc-consistency with the current assignment of parent variables.
It thus prunes all non-arc-consistent values from unlabeled variables making it
a Partial-Look-Ahead search algorithm. A Full-Look-Ahead respectively a MAC
algorithm would require a view to the assignments of children as well and is thus
not applicable to IDIBT without extending the protocol. For the extra propa-
gation in Look-Ahead we have, however, to pay a high price (with my current
implementation): We have to store the entire CSP in each agent. This is certainly
not a practical approach to a distributed Look-Ahead algorithm and I am trying
to find decentralized ways to compute the set of those inconsistent values in a
distributed algorithm in my ongoing research (cf. [8]). For the current topic of
my research, namely the investigation of the speedup we can expect from prop-
agation in distributed search, it is sufficient to use the Look-Ahead algorithm
described below.

The procedure getInconsistentValuesLA (var,val) (Alg. 7) uses an addi-
tional data structure csp which stores the entire CSP as it was when self was
created. First csp is copied to cesp and the domain of var is assigned to {val}.
Then Arc-consistency is enforced for ccsp. If this leads to the detection of an
inconsistency initDomain is returned to make Algorithm 3 backtrack because
no values are left that get Value could choose. If the resulting CSP is consistent,
the pruned values of self are returned allowing Alg. 3 to selet one of remaining
values and post it to the children of self.

The IDIBT_LA algorithm is only used for the experimental evaluation of
the integration of propagation in IDIBT. I do not consider it in the theoretical
evaluations because of its practical irrelevance.



Algorithm 7: Procedure to compute inconsistent values for IDIBT_LA

procedure getInconsistenValuesLA (var, val):set begin
cesp = csp.clone();
ccsp.assign(var, val);
cesp.enforce-AC();
if inconsistent(ccsp) then
L return initDomain

return initDomain \ ccsp.getDomain(self);

end

6 Evaluation

6.1 Correctness of IDIBT_FC

Assuming that IDIBT is sound and complete I can show that IDIBT_FC is also.
For this I show that no solutions are pruned by the propagation (completeness),
that it does not allow for more solutions (soundness) and that it terminates.

Theorem 1. The IDIBT_FC algorithm is correct.

Proof. Completeness and Soundness.

The algorithm IDIBT is sound and complete, thus it is sufficient to show that
the procedure getValue in IDIBT_FC will return just the same values that it
returns in IDIBT. Algorithm 5 incrementally prunes all values from myDomain
that are not consistent with any value known from the view to parent agents
stored in value. The procedure getValue(info) will only return values from
the thus reduced myDomain. Whenever an assignment of a remote agent is known
to be obsolete, all its consequences are removed from the current knowledge by
Algorithm 4. This includes that all values for which no justification remains
to exclude them are re-inserted in myDomain. All values that are not returned
by getValue(info) are thus inconsistent with the current knowledge on par-
ent values and would thus not be returned by getValue(info) in IDIBT. The
procedure getValue(bt) operates on initDomain and behaves thus just as in
IDIBT. Consequently, getValue in IDIBT_FC will return just the same values
as it does in IDIBT.

Termination.

Since all variable domains are finite, the sets removedl[(var,val,cent)] and
initDomain are finite and thus the loops in Algorithms 4,5 and 6 will termi-
nate. These algorithms send no messages such that no deadlocks may occur.
Since IDIBT terminates and the additionally executed algorithms (4, 5 and 6)
all terminate, IDIBT_FC will also always terminate.

6.2 Empirical Evaluation

I have implemented the IDIBT, IDIBT_FC and IDIBT_LA algorithms in a multi-
threaded Java program. Each agent constitutes one concurrent thread and the



agents communicate by dropping messages to other agents’ message-channels.
A random delay between 10 and 300 msec is applied for each message delivery.
Another source of randomness results from the scheduling of the concurrent
threads by the Operating System. This scheduling can be assumed to be fair,
but not follow any regular patterns. The common memory of the threads is not
used except the references to the channels. To evaluate the efficiency I used the
following measures:

— The number of (sequential) messages sent until one solution is found or the
algorithm detected that no solution exists. Sequential messages represent the
largest number of messages the were executed consecutively. The number of
messages exposes the required communication effort;

— The number of concurrent constraint checks [6] which exposes the computa-
tional effort of the agents.

I ran two sets of tests to evaluate the performance of the algorithms with Java
1.4.2 on a Linux desktop computer one 1.8GHz Pentium processor and 512MB
memory.

rbe-t Random binary CSPs (v, z, d, t) with v variables, domains size = (for each
variable), density = d and varying tightness ¢. The sample size was 20 and
the figures show median values.

n-queens The n-queens problem. For each n I used a sample size of 20 and the
figures show median values.

The experimental results for (20, 8, 0.2, ¢) instances of rbc-t are shown in Figures
1 and 3. All the problems with tightness smaller than 0.53 had solutions, some
of the problems with tightness 0.53 to 0.6 had solutions while almost none of
the problems with tightness larger than 0.63 had solutions. The results for the
bf n-queens are shown in Figures 2 and 4. All instances of this problem have
comparably many solutions. Please note that all figures have logarithmic scales!

It can be seen in Figures 1 and 2 that the median number of concurrent
constraint checks can almost always be reduced by using incremental constraint
propagation in IDIBT_FC compared to IDIBT. When IDIBT_LA is applied,
more constraint checks become necessary to enforce the stronger form of local
consistency. However, in the tight problems inconsistencies can be detected faster
such that the difference of ccc between IDIBT_MAC and the other algorithms
becomes smaller.

The median number of messages can be reduced when more propagation
is used as can be seen in Figures 3 and 4. The first figure represents the ab-
solute number of messages while the latter represents the largest number of
sequential messages. When Look-Ahead is applied IDIBT is almost always sig-
nificantly faster then with Forward-Checking. Especially insoluble problems can
be “solved” much faster with more propagation, because inconsistencies are de-
tected earlier. The number of required messages does not always match be-
tween IDIBT and IDIBT_FC, although the same propagation (namely Forward-
Checking) is performed. This seems to be an effect of the small sample size I
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used in this set of experiments. The standard deviation of these numbers is very
large in all experiments.
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Fig.3. Absolute number of messages required to solve random binary CSP
(20,8,0.2, tighness).

7 Conclusion

The number of messages required to solve a DisCSP with the IDIBT algorithm
can in most cases be reduced when constraint propagation is applied. The more
values are pruned during propagation, the less messages become necessary. The
trade-off for this reduction of communication is that more constraint checks
become necessary inside the agents. A trade-off between constraint checks and
search is well known from monolithic CSP. For most CSPs the integration of
some, usually not the most restrictive, propagation into some, usually not the
most clever, search algorithm yields the fastest runtime results. In DisCSP, this
trade-off has to be re-investigated with respect to the number of required mes-
sages. This common metric for the evaluation of distributed algorithms may lead
to completely different ideal combinations of search and inference.
Incrementality is an important prerequisite for efficient constraint process-
ing. When solving NP-complete problems, it is often highly desirable to main-
tain previously processed results and not to recompute everything from scratch.
Although constraint propagation is not NP-complete, it still is performed incre-
mentally in most state-of-the-art professional constraint solvers. The algorithms
presented in this reduce the required number of constraint checks and thus the
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local computational effort of the agents by using incremental constraint propa-
gation.

In future work we will investigate more precisely the trade-off between com-

putation and communication. Another topic to be looked at is the robustness
of the algorithm against message delays. For this we will check the standard
deviation of our metrics after running the tests on larger samples. Furthermore
we will investigate extensions of the algorithms presented here, which may use
additional messages for propagation purposes. This will be done by integrating
distributed propagation into a distributed search.
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Abstract. There is some debate about the kind of algorithms that ar¢ suits
able to solve DisCSP. Synchronous algorithms exchangeteghdaformation
with a low degree of parallelism. Asynchronous algorithres less updated in-
formation with a higher parallelism. Hybrid algorithms coime both features.
Lately, there is some evidence that synchronous algoritoutd be more effi-
cient than asynchronous ones for one problem class. In #pempwe present
some improvements on existing synchronous and asynchsaalgarithms, as
well as a new hybrid algorithm. We provide an empirical ifigegtion of these
algorithms om-queens and binary random DisCSPs.

1 Introduction

In the last years, the Al community has shown an increasiterést in distributed
problem solving. Regarding distributed constraint reasgprseveral synchronous and
asynchronous backtracking procedures have been proposadve a constraint net-
work distributed among several agents [15, 16,6, 13,1,]14,4

Broadly speaking, a synchronous algorithm is based on themof privilege a
token that is passed among agents. Only one agent is activg &éitne, the one having
the privilege, while the rest of agents are waitlngvhen the process in the active agent
terminates, it passes the privilege to another agent, wivehbecomes the active one.
These algorithms have a low degree of parallelism, but thgénts receive updated
information. In an asynchronous algorithm every agenttis@at any time. They have
a high degree of parallelism, but the information that angriéagknows about other
agents is less updated than in synchronous procedures.

There is some debate around the efficiency of these two typdgofithms. The
general opinion was that asynchronous algorithms were raffi@ent than the syn-
chronous ones, because of their higher concurrénbythe last decade, attention was

* This research is supported by the REPLI project TIC-2002704C03-03.

1 Except for special topological arrangements of the coimttmgaph. See [3] for a synchronous
algorithm where several agents are active concurrently.

2 However, a careful reading of [17] shows that "synchronacdracking might be as efficient
as asynchronous backtracking due to the communicatiomesaef (footnote 15).



mainly devoted to the study and development of asynchropoacedures, which rep-
resented a new approach with respect to synchronous omestlylderived from cen-
tralized algorithms.

Recently, Zivan and Meisels reported that the performarfce distributed and
synchronous version of Conflict-Based Backjumpi@B() surpasses Asynchronous
Backtracking ABT) for the random problem clags = 10, m = 10, p; = 0.7).

Inthis paper we continue this line of research, and we stielpérformance of three
different procedures, one synchronous, one asynchromalsrge hybrid, for solving
sparse, medium and dense DisCSPs. The synchronous algisi#CBJ a distributed
version of the Conflict-Based BackjumpinGBJ) [12] algorithm. The asynchronous
algorithm is the standardBT enhanced with some heuristics. The hybrid algorithm
is ABT-Hyh a novelABT-like algorithm, where some synchronization is introdutzed
avoid redundant messages. In addition, we present a dktgjgroach for processing
messages by packets instead of processing messages ore byABIT andABT-Hyh
We also provide an experimental evaluation for new low-bestristics for variable and
value reordering.

The rest of the paper is organized as follows. In Section 2esall some basic def-
initions of DisCSP. In Section 3 we recall two existing ali¢fums for DisCSP solving:
the synchronouSCBJ and the asynchronodsBT. In Section 4 we prese®BT-Hyh
a new hybrid algorithm that combines asynchronous and sgnolus elements, prov-
ing its soundness and completeness. In Section 5 we deskalexperimental setting
(including some implementation details) and discuss thpeemental results. Finally,
Section 6 contains several conclusions and directionsrtfiéawork.

2 Distributed CSP

A constraint network is defined by a tripl’, D, C), whereX = {z,..., 2, } isaset
of n variables,D = {D(a1),..., D(x,)} is the set of their respective finite domains,
and(C is a set of constraints declaring those value combinatidrislware acceptable
for variables. The CSP involves finding values for the problariables satisfying all
constraints. We restrict our attention to constraintgirdgtwo variables, namelginary
constraints. A constraint among the variabtegndz; will be denoted by:; ;.

A distributed CSP (DisCSP) is a CSP where the variables, dwnaad constraints
of the underlying network are distributed among automatghts. Formally, a finite
variable-based distributed constraint network is defingé I5-tuple(X', D, C, A, ¢),
whereX’, D and(C are as befored = {1,...,p} is a set ofp agents, and : ¥ — A
is a function that maps each variable to its agent. Each blartzelongs to one agent.
The distribution of variables dividein two disjoint subsetsy,,.:,. = {cijlo(x) =
&(x;)}, andCipnser = {cijlé(x;) # é(x;)}, called intra-agent and inter-agent con-
straint sets, respectively. An intra-agent constrajptis known by the agent owner
of #; andx;, and it is unknown by the other agents. Usually, it is consideéhat an
inter-agent constraing; is known by the agents(r;) andé(z;) [6, 17].

A solution of a distributed CSP is an assignment of valuesartables satisfying
every constraint (although distributed CSP literaturaufms mainly on solving inter-
agent constraints). Distributed CSPs are solved by theaole and coordinated action



of agents4. Agents communicate by exchanging messages. It is assuragth¢ delay
in delivering a message is finite but random. For a given plaiigents, messages are
delivered in the order they were sent.

For simplicity purposes, and to emphasize on distributispeats, along the rest
of the paper we assume that each agent owns exactly one leaVdb identify the
agent number with its variable index«; € X', ¢(z;) = 7). For this assumption, in the
following we do not differentiate between a variable anditsier agent.

3 Existing Algorithms for DisCSP

3.1 Synchronous Search: SCBJ

Synchronous procedures can be directly derived from cainstlgorithms in central-

ized search when extended to distributed environmentsei@iiy, only one agent is
active at any time in a a synchronous algorithm. Becauseigftthe active agent has
always updated information, in the form of either a parttdlion (from the part of the

problem already assigned) or a backtracking.

The synchronous backtrackin§BT) algorithm for DisCSP was presented in [17].
Synchronous Conflict-Based BackjumpirgGBJ [21] is a distributed version of the
centralized Conflict-Based Backjumping B.7) algorithm [11]. WhileSBT performs
chronological backtrackkingsCBJdoes not. Each agent keeps ttanflict set(C9),
formed by the assigned variables which are inconsisteltit satne value of the agent
variable. Letself be a generic agent. When a wipe-out occurs, it allonsetbto back-
track directly to the closest conflict variable(itt;.; s, sayz; and sends'S;.;r — {#;}
to be added ta”'s;. Like SBT, SCBJexchangesnfo and Back messages, which are
processed as follows¢lf is the receiver):

— Info(partial-solution) self receives the partial solution, assigns its variable censis
tently, selects the next variable and sends the new padiatisn to it in alnfo
message. If it has no consistent valself sends aBack message to the closest
variable inC'Ss.; .

— Back(conflict-set)self has to change its value, becawsnderhas no value con-
sistent with the partial solution. The current valueseff is discarded, and the new
conflict-set ofself is the union of its old conflict-set and the one received. Afte
this, self behaves as after receivindréfo message.

After receiving any of these messageslf becomes the active agemself passes
the privilege to other agent sending to it brfo or a Backmessage. The search ends
unsuccessfully when any agent encounters an empty domdinsa@Sis empty. Oth-
erwise, a solution will be found when the last agent is redaral there is a consistent
value for it.

3.2 Asynchronous Search: ABT

In asynchronous search, all agents are active at any timadha high degree of par-
allelism. Asynchronous Backtracking\BT) [15, 17-19] was a pioneer asynchronous



algorithm to solve DisCSRABT requires a total agent ordering. Agethias higher pri-
ority thanj if i appears beforgin the ordering. Each agent keeps its own agent view
and nogood store. Considering a generic agetlf the agent view oself is the set

of values that it believes to be assigned to its higher ggi@gents. The nogood store
keeps nogoods as justifications of inconsistent values.

Whenself makes an assignment, it seridfo messages, to its lower priority agents,
informing about its current assignment. Whself receives éBack message, the in-
cluded nogood is accepted if it is consistent waif's agent view, otherwise it is dis-
carded as obsolete. An accepted nogood is addedlfs nogood store to justify the
deletion of the value it targets. In standaBT, whenself cannot take any value con-
sistent with its agent view, because of the original commstsar because of the received
nogoods, new nogoods are generated as inconsistent sab#etsagent view, and are
sent, aBackmessages, to the closest agent involved, causing backtgack

In our ABT implementation, we keep a single nogood per removed vallenV
there is no value consistent with the agent view, a new nogogeherated by resolving
all nogoods, as described in [1]. This nogood is sentBaekmessage.

If self receives a nogood mentioning another agent not connectibdtyself re-
quires to add a link from that agent $elf. self sends an assignment to that agent and
after received, a link from the other agenstif will exist. The search terminates when
achieving quiescence in the network, meaning that a soltiés been found because all
agents are agree with their current assignment, or whemtpé&yenogood is generated,
meaning that the problem is unsolvable.

4 Hybrid Search: ABT-Hyb

In ABT, manyBackmessages are obsolete when they arrive to the recéiBdrcould
save much work if these messages were not sent. Althougletiikesagent cannot de-
tect those messages that will become obsolete when reaitt@mgceiver, it is possible
to avoid sending those which are redundant.

Let self be a generic agent. Wheself sends éBack message, it performs a new
assignment and informs of it to lower priority agents, withavaiting to receive any
message showing the effect of tBackmessage in higher agents. This can be a source
of inefficiency in the following situation. I sends 8ackmessage t¢ causing a wipe-
outiny, thenj sends 8ackmessage to some previous agerit j takes the same value
as before and sends émfo message té& before: changes its valug; will find again
the same inconsistency so it will send the same nogogdita Backmessage. Agent
will discard this message as obsolete, sending again i valaninfo. The process is
repeated generating useless messages, until some higiadanie@ahanges its value and
the correspondintnfo arrives toj andk.

Based on this intuition, we preseABT-Hyh a hybrid algorithm that combines
asynchronous and synchronous elemeABT-Hybbehaves likeABT when no back-
tracking is performed: agents take their values asynchrsigy@nd inform lower prior-
ity agents. However, when an agent has to backtrack, it degschronously as follows.
If self has no value consistent with its agent view and its nogoa® sitosends @ack
message and enters innaaiting state. In this stateself has no assigned value, and it



does not send out any message. Any receliéaimessage is accepted, updatsadf’'s
agent view accordingly. Any receivegiack message is rejected as obsolete, ssalé
has no value assignesklf leaves the waiting state when receiving one the following
messages,

1. aninfo message that allovelf to has a value consistent with its agent view or,

2. aninfo message from the receiver of the I&ick message (the one causing to
enter the waiting state) or,

3. aStopmessage informing that the problem has not solution.

When self receives one of these messages, it leaves the waiting statkis point,
ABT-Hybswitches toABT.

Like in ABT, the problem is unsolvable if during the search an empty adge
derived. Otherwise, a solution is found when no messagesrarelling through the
network (i.e.quiescence is reached in the network). Noendlie synchronous back-
tracking,ABT-Hybinherits the good theoretical propertiesABT, namely soundness,
completeness and termination. To proof these propertiestart with some lemmas.

Lemma 1. In ABT-Hyb, no agent will stay forever in a waiting state.

Proof. In ABT-Hyh an agent enters the waiting state after sendiBgek message to
a higher priority agent. The first agent;{ in the ordering will not enter in the waiting
state because iBackmessage departs from it. Suppose thatno agentins, . . ., =
is waiting forever, and suppose thatenters the waiting state after sendingackmes-
sage tar; (1 < j < k — 1). We will show thatz; will not be forever in the waiting
state.

Whenz; receives th®ackmessage, there are two possible states:

1. »; is waiting. Since no agent ify, -, . .., #;_ iS waiting forever; will leave
the waiting state at some pointalf has a value consistent with its new agent view,
it will send it to «;, in anInfo message. I%; has no value consistent with its new
agent view, it will backtrack and enter again in a waitingestd his can be done
a finite number of times (because there is a finite number afegaper variable)
before finding a consistent value or discovering that thélera has no solution
generating &topmessage. In both cases, will leave the waiting state.

2. x; is not waiting. TheBackmessage could be:

(a) Obsolete in the value af;. In this case, there is amfo message travelling
from z; to x5 that has not arrived te;. After receiving such a message,
will leave the waiting state.

(b) Obsolete not in the value of;. In this case;:; resends ta:;; its value by an
Info message. After receiving such a messagewill leave the waiting state.

(c) Not obsolete. The value of; is forbidden by the nogood in tigackmessage,
and a new value is tried. if; finds another value consistent with its agent view,
it takes it and send amfo message ta,, which will leave the waiting state.
Otherwise;z; has to backtrack to a previous agent in the ordering, andsente
the waiting state. Since no agentip, z-, . .., 25 _1 iS waiting foreverx:; will
leave the waiting state at some point, and as explained ipdh# 1 above, it
will cause thatr;, will leave the waiting state as well.



Therefore, we conclude thaf, will not stay forever in the waiting state. a
Lemma 2. In ABT-Hyb, if an agentis in a waiting state, the network is quaiescent.

Proof. An agentis in a waiting state after sendinBackmessage. Because Lemma 1,
this agent will leave the waiting state in finite time. Thiglsne after receiving almfo

or Stopmessage. Therefore, if there is an agent in a waiting stagenétwork cannot
be quiescent at least until one of those messages has bekrcedo a

Lemma 3. A nogood, discarded as obsolete because the receiver is aitmg state,
will be resent to the receiver until the sender realizes ihaas been solved, or the
empty nogood has been derived.

Proof. If an agentk sends a nogood to an agerthat is in a waiting state, this nogood

is discarded and age#tenters the waiting state. From Lemma 1, no agent can stay
forever in a waiting state, so agehtwill leave that state in finite time. This is done
after receiving either,

1. An Info message from. If this message does not solve the nogood, it will be
generated and resenddf it solves it, this nogood is not generated, exactly in the
same way a#\BT does.

2. An Info message allowing a consistent value forln this case, the nogood is
solved, so itis not resent again.

3. A Stopmessage. The process terminates without solution.

Therefore, we conclude that the nogood is sent again uigisitlved (either by ainfo
message from or from another agent) or the empty nogood is generated. a

Proposition 1. ABT-Hyb is sound.

Proof. From Lemma 2ABT-Hybreaches quiescence only when no agent is in a waiting
state. From this factABT-Hybsoundness derives directly froABT soundness: when
the network is quiescent all agents satisfy their conssago the current assignments
of agents form a solution. If this would not be the case, atleae agent would detect

a violated constraint and it would send a message, breakeguiescence assumption.
0

Proposition 2. ABT-Hyb is complete and terminates.

Proof. From Lemma 3, the synchronicity of backtrackingABT-Hybdoes not cause
to ignore any nogood. TheABT-Hybexplores the search space as goodB3$ does.
From this fact ABT-Hybcompleteness comes directly frodBT completeness. New
nogoods are generated by logical inference from the intbalstraints, so the empty
nogood cannot be derived if there is a solution. Total agem¢ning causes that back-
tracking discards one value in the highest variable reablyedtieBackmessage. Since
the number of values is finite, the process will find a solutidrexists, or it will derive
the empty nogood otherwise.



To see thaABT-Hybterminates, we have to prove that no agent falls into an infi-
nite loop. This comes from the fact that agents cannot stagwéw in the waiting state
(Lemma 1), and thaABT agents cannot be in an endless loop. a

Alternatively to synchronous backtracking, we can avosmraling redundarmack
messages assuming exponential-space algorithms. Lehasthatself stores every
nogood sent, while it is not obsolete. If a wipe-out occursel if the new generated
nogood is equal to one of the stored nogoods, itis not sei.allowsself not sending
identical nogoods until some higher agent changes its \aidehe correspondirigfo
arrives toself But it requires exponential space, since the number of odggenerated
could be exponential in the number of agents with higherrfiyidghan self. A similar
idea is also found in [16] for the asynchronous weak-commiithalgorithm AWC).

5 Experimental Results

We have teste&CBJ ABT andABT-Hybalgorithms on the distributee-queens prob-
lem and on random binary problems. Algorithmic performasevaluated considering
computation and communication costs. In synchronous ihgos, the computation ef-
fort is measured by the total number of constraint cheeks &nd the global commu-
nication effort is evaluated by the total number of messayebanged among agents
(msg).

For the asynchronous algorithm8T and ABT-Hyh computation effort is mea-
sured by the number of “concurrent constraint checks®)( which was defined in [8],
following Lamport’s logic clocks [10]. Each agent has a crautior its own number of
constraint checks. The number of concurrent constrairgkshiss computed by attach-
ing to every message the current counter of the constragukshof the sending agent.
When an agent receives a message, it updates its counter higther value between
its own counter and the counter attached to the receivedagesi/hen the algorithm
terminates, the highest value among all the agent coursteakén as the number of con-
current constraint checks. Informally, this number apprates the longest sequence
of constraint checks not performed concurrently. As forckyonous search, we evalu-
ate the global communication effort as the total number cfsages exchanged among

agents{nsg).

5.1 Implementation Details

Nogood managementTo assure polynomial space ABT and ABT-Hyh we keep
one nogood per forbidden value. However, if several nog@wdsavailable for each
value, it may be advisable to choose the most appropriatévess in order to speed
up search. With this aim, we implement the following heueidf a value is forbidden
for some stored nogood, and a new nogood forbidding the salue arrives, we store
the nogood with the highest possible lowest variable ined\Notice that, even those
nogoods which are obsolete on the value of the receivinglbrican be used to select
the most suitable nogood with respect to the heuristic.



Saving messagesn asynchronous algorithms, some tricks can be used to aleetbe
number of messages exchanged. We implement the following:

1. Value inAddL. When a new link with agerit is requested bgelf, instead of send-
ing the AddL message and assuming this assignment until a confirmatices is
ceived,ABT include in theAddL message the value of, recorded in the received
nogood. After reception of thAddL message, ageritinformsself of its current
value only if it is different from the value contained in tAeldL message. In this
way, some messages may be saved.

2. Avoid resending same valuegsBT can keep track of the last value taken dBjf.
When selecting a new value, if it happens that the new valikeissame as the
last value self does not resend it to'+ (sel f), because this information is already
known. Again, this may save some messages.

Processing Messages by PackeBT agents can process messages one by one, react-
ing as soon as a message is received. However, this strategygte-message process
may cause some useless work. For instance, consider theticecef aninfo message
reporting a change of an agent value, immediately followedrwotherinfo from the
same agent. Processing the first message causes some wdnkdbmes useless as
soon as the second message arrives. More complex examplég cievised, causing
to waste substantial effort.

To prevent useless work, instead of reacting after eaclveztenessage, the algo-
rithm reads all messages that are in the input buffer an@éstibvem in internal data
structures. Then, the algorithm processes all read messega whole, ignoring those
messages that become obsolete by the presence of anotlsaigaed/e call this strat-
egyprocessing messages by packetsere a packet is the set of messages that are read
from the input buffer until it becomes empty. Somehow, tlisa was mentioned in
[17] and [21]. In the latter, a comparison betwesimgle-message proceasdprocess-
ing messages by packeésspresented. However, in none of them a formal protocol for
processing messages by packstsompletely developed.

When an agent processes messages by packets, it readssdbeméom its input
buffer, and processes them as a whole. The agent looks foc@rsgistent value after
its agent view and its nogood store are updated with theserimg messages. To do
that, we propose a protocol which requires three lists teestoe incoming messages,
thelnfo-1.ist, Back Iist and theAddL-/.ist. In each list is stored the messages of the
corresponding type, following the reception order. Eashdf messages is processed
as follows.

1. Info-T.ist. First, thelnfo-I.ist is processed. For each sender agent|rdtl mes-
sages but the last are ignored. The remaitirigmessages updaself agent view,
removing nogoods if needed.

2. Backlist. Second, thdBack.ist is processed. ObsoleBack messages are ig-
nored.self stores nogoods of no obsolete messages, and it afdlsmessages
to unrelated agents appearing in those nogoods. For thassages containing the
correct current value dafelf, the sender is recorded RemainderSet

3. AddL-T.ist. Third, theAddL-/.ist is processed updating™ (sel f) without sending
thelnfo message.



lex SCBJ ABT ABT-Hyb

n ccf msg ccd msg ccd msg
10 1,612 170 2,22 740 1,69 502
15 31,761 2,231 56,412 13,978 32,373 6,881
20| 6,518,652306,33711,084,0122,198,304 6,086,376 995,902
25| 1,771,192 70,336 3,868,136 693,832 1,660,448 271,092

rand SCBJ ABT ABT-Hyb

n ccf msg ccd msg ccd msg
10 965 91 1,742 332 916 238
15 4,120 247, 7,697 1,185 4,007 786

20 19,537 921 20,661 4,772 15,729 2,748
25 21,374 746 31,849 6,553 27,055 3,863

min SCBJ ABT ABT-Hyb
n ccf msg ccd msg ccd msg
10 2,800 204 3,71 896 2,98 555

15 35,339 2,210 49,447 11,05% 32,303 5,904
20| 215,816 10,765 320,278 63,37§ 165,33 28,684
25119,949,074791,08938,450,785,716,50%17,614,33(2,795,319

Table 1. Results for distribute@-queens with lex, random and min-conflict value ordering.

4. Consistent value. Fourtkelf tries to find a value consistency with the agent view.
If a wipe-out happens in this process, the corresponBarkmessage is sent, and
a consistent value is searched.

5. Info sent. FifthInfo messages containisglf current value are sent to all agents in
't (sel f) and to all agents iRemainderSefrhe three lists become empty.

As described in Section 3.2, the search ends when quiestereached (i.e. all agents
are happy with their current assignment) or an empty nogedeiived.

5.2 Distributed n-queens Problem

The distributedh-queens problem is the classiealqueens problem (locate queens
in ann x n chessboard such that no pair of queens are attacking eaeh) athere
each queen is hold by an independent agent. We have evaltiegealgorithms for
four dimensions: = 10,15, 20, 25. In Table 1 we show the results in terms of con-
straint checks/concurrent constraint checks and totaleuraf messages exchanged,
averaged over 100 executions with different random seéglsgte broken randomly).
Lexicographic (static) variable ordering has been use®foB] ABT, and ABT-Hyb
Three value ordering heuristics have been teleflexicographic)rand (random) and
min (min-conflicts) [9] on all the algorithms. Given that an exagin computation re-
quires extra messages, we have made an approximation, adndists of computing
the heuristic assuming initial domains. With this approaiion, theminvalue ordering
heuristic can be computed in a preprocessing step.



We observe that the random value ordering provides the leefsirmance for every
algorithm and every dimension tested. Because of thatgihaffiowing we concentrate
our analysis on the results of random value ordering.

Considering the relative performance of asynchronousrilgos, ABT-Hybis al-
ways better thaABT, in both number of concurrent constraint checks and totalber
of messages. It is relevant to scrutinize the improvemeABJ-Hybover ABT with re-
spect to the type of messages. In Table 2, we provide thertotaber of messages per
message type foBCBJ ABT and ABT-Hybwith random value ordering. IABT-Hyb
the number of obsole@ackmessages decreases in one order of magnitude with respect
the same type of messagesABT, causingABT-Hybto improve overABT. However,
this improvement goes beyond the savings in obs@attkmessages, becaulsgo and
Backmessages decrement to a larger extent. This is due to tlee/fol collective ef-
fect. When amABT agent sends Back message, it tries to get a new consistent value
without knowing the effect that backtracking causes in bigiriority agents. If it finds
such a consistent value, it informs to lower priority agemdsgInfo messages. If it
happens that this value is not consistent with new valuashifektracking causes in
higher priority agents, thedafo messages would be useless, and Bawk messages
would be generateddBT-Hybtries to avoid this situation. When ahBT-Hybagent
sends Backmessage, it waits until it receives notice of the effect afkbiaacking in
higher priority agents. When it leaves the waiting stat&jés to get a new consistent
value. At this point, it knows some effect of the backtrackan higher priority agents,
so the new value will be consistent with it. In this way, thevn@lue has more chance
to be consistent with all higher priority agents, andltife messages carrying it will be
more likely to make useful work.

Considering the performance of synchronous vs. asynchissagorithms, we com-
pareSCBJagainstABT-Hybwith random value ordering. In terms of computation ef-
fort (constraint checkspCBJperforms better thadBT-Hybfor n — 25 and worse
for n = 20, with very similar results fon = 10, 15. In terms of communication cost,
SCBJuses less messages theBIT-Hybfor the four dimensions tested. This comparison
should be qualified, noting that the lenghtinfo messages differ from synchronous to
asynchronous algorithms. BCBJ aninfo message contains the partial solution which
could be of sizen, while in ABT-Hyban Info message contains a single assignment of
size 1. Assuming that the communication cost depends marggadlly on the number
of messages than on their length, we conclude$i@BJis more efficient in communi-
cation terms thaABT-Hyh Considering both aspects, computation effort and commu-
nication costSCBJseems to be the algorithm of choice for theueens problem.

5.3 Random Problems

Uniform binary random CSPs are characterizedbyl, p1, p2) wheren is the number
of variables, the number of values per variabjg, the networkconnectivitydefined
as the ratio of existing constraints, angdthe constraintightnessiefined as the ratio of
forbidden value pairs. We have tested random instances afjébts and 8 values per
agent, considering three connectivity classes, sparse0(2), medium %,=0.5) and
dense §,=0.8).



ran SCBJ ABT ABT-Hyb

n ||Info|Back]| Info| BacklObsol| Info|BacklObso
10| 55 36| 251 81 24| 195 43 2
151|146 101 901 284 91| 649 137 10
20||539 382|3,6121,160 408|2,293 455 38
25 (/452 294|5,0271,524 520/3,24Q 623 50

Table 2. Number of messages exchanged3%BJ ABT andABT-Hybper message type, for the
distributedr-queens problem with random value ordering.

Solving <n =16, m =8, p1 = 0.20>

Solving <n =16, m = 8, p1 = 0.20>
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Fig. 1. Constraint checks and number of messageSB.J SCBJ-amd1SCBJ-amd2ABT and
ABT-Hybon binary random problems.

In a synchronous algorithm, it is simple to implement someriséic for dynamic
variable ordering. Considering the heuristic of minimunmddn, an exact computation



ran SCBJ (|sCBJ-amd ABT ABT-Hyb

p> || Info| Backl| Info| Back] Info| BackObsol|Link|| Info| BackObsolLink
0.20([2,6471,254| 100 63| 3,587 1,310 320 26|| 3,141 949 53 24
0.50|/6,9133,556| 477 321j|24,728 7,0252,334 40|(17,6503,335 321 37
0.80((9,7615,265|1,052 758|58,28316,4346,497 19||37,0465,95 755 18

Table 3. Number of messages exchanged3§BJ SCBJ-amdJABT andABT-Hybper message
type, for random binary problems with random value ordering

requires extra messages. To avoid this, we have implemémegdllowing approxima-
tions,

— AMDL1. Each agent computes the inter{@lin, , maz;] of the minimum and max-
imum number of inconsistent values in the domain of everyssigamed variable
x; with the partial solution. This interval is included in th&o message. Then,
the next variable to be assigned is chosen as follows: (héfd isz; such that
min; > min{d, mazx;},Ve; unassigned, selecis (whered is the domain size);
(i) otherwise, selects the variable with maximuima. ;.

— AMD2. This approach only computes the current domains ofitessigned vari-
ables afteBackmessages. Wheself sends @ackmessage te;, instead of send-
ing it directly tox; it goes chronologically. Each intermediate variable reipes
that it is not its destination, and it includes the currezesif its domain in the
message. This messages ends  irand after assigning it, the minimum domain
heuristic without considering the effect 8f’s assignment can be applied on the
subset of intermediate variables. It causes some extraagessbut its benefits
pay-off.

In Figure 1, we report results averaged over 100 executimSE€BJ SCBJ-amdl
SCBJ-amd2ABT andABT-Hyh with random value ordering.

Considering synchronous algorithms, approximating mimimgomains heuristic is
always beneficial both in computation effort and in commatian cost. Consistently
in the three classes tested, the approximatimmi 1provides better results thamd?2
both in terms of checks and messages. When uaimd] the baseline of constraint
checks is not zero, due to the heuristic computation donepaspocessing step.

Considering asynchronous algorithms, we observe agatnABa-Hybis always
better thamABT for the three problem classes, in both computation effattt@mmu-
nication cost. We believe that this is due to the effect alyedescribed for the dis-
tributedn-queens problem. This is confirmed after analyzing the nurabmessages
per message type of Table 3.

Comparing the performance of synchronousABT-Hyh we observe the follow-
ing. In terms of computation effort (constraint checkSi;BJis always worse than
ABT-Hyh andSCBJis often the worst algorithm (except in thes, 8, 0.8) class, where
itis the second worst). This behaviour changes dramagiedien adding the minimum
domain heuristic approximationSCBJ-amdhandSCBJ-amdare the best and second
best algorithms in the three classes tested, and they aagabetter tha\BT-Hyh



min SCBJ SCBJ-amdl] SCBJ-amd? ABT ABT-Hyb

P cc] msg cc[ msg cc] msg ccd msg ccd msg
0.20( 7,10q 3,274 907| 153 1,811 687 3,771 4,004 3,448 3,535
0.50| 44,024 9,367 5,631 78311,6712,669 30,71926,84022,22719,141]
0.80(102,15315,11116,2061,84340,4497,142101,49270,03358,42843,459

Table 4. Results near of the pick of difficulty on binary random classe = 16, m = 8) with
min-conflict value ordering.

Regarding communication costs, synchronous algorithmsabways better than
asynchronous ones: consistently in the three classesl (&EBJ-amd,1lSCBJ-amd2
andSCBJare the three best algorithms (in this order). Again, thetaddof minimum
domain approximations is very beneficial. As mentioned icti®a 5.2,/n fo messages
are of different sizes in synchronous and asynchronousitiigts. Under the same as-
sumptions (communication costs depends more on the numbeessages exchanged
than on their length), we conclude that for solving randonaby problemsSCBJ-amd1
is the algorithm of choice.

We have also tested the three problem classes using theanflietvalue ordering.
Results appear in Table 4 for the peak of maximum difficultg. 8dserve a minor but
consistent improvement of all the algorithms with respec¢he random value ordering.
In this case, the relative ranking of algorithms obtainethwandom value ordering
remains SCBJ-amdbeing the algorithm with the best performance.

We have also testefBT andABT-Hybwith random message delays. This issue was
raised firstin [5], and subsequently in [21]. Preliminarsuies show thafBT decreases
performance and als®BT-Hybdoes, butto a lesser extent. This last algorithm exhibits a
more robust behavior in presence of random delays. It iswating that synchronous
algorithms do not increase the number of checks or messagssence of delays.

6 Conclusions

We have presented three algorithms, one synchroB8@RB) one asynchronousBT
and one hybricdABT-Hyh the two first being already known. We have propos&-
Hyb, a new algorithm that combines asynchronous and synchsaiementsABT-Hyb
can be seen as &BT-like algorithm where backtracking is synchronized: anragleat
initiates backtracking cannot take a new value before lgasome notice of the effect
of its backtracking. This causes a kind of “contention dfféc backtracking agents.
Their decisions tend to be better founded than the correpgrdecisions taken by
ABT agents, and therefore they are more likely to succA&T-Hybinherits the good
theoretical properties &&BT: it is sound, complete and terminates.

We have implementedBT and ABT-Hybwith a strategy for processing messages
by packets, together with some simple ideas to improve pedoce. OnSCBJwe
have proposed two approximations for the minimum domainmikc. Empirically we
have observed th&BT-Hybclearly improves oveABT, in both computation effort and
communication costs. ComparigCBJwith ABT-Hyh we observe thaBCBJalways
requires less messages thaBT-Hyh for both problems tested. Considering compu-
tation effort, SCBJrequires a similar effort a8BT-Hybin distributedn-queens, while



SCBJrequires more effort thaABT-Hybfor binary random problems. However, when
enhanced with minimum domain approximation for dynamigalzle orderingSCBJ-
amdlis the best algorithm in terms computation effort and in nandf messages ex-
changed. Grouping these evidences together, we conclatleythchonous algorithms
enhanced with some minimum domain approximation are glpbadre efficient than
asynchronous ones. This does not mean that synchronouglageshould always be
preferred to asynchronous ones, since they offer diffdramdtionalities (synchronous
algorithms are less robust to network failures, privacyéssare not considered, etc.).
But for applications where efficiency is the main concermctyonous algorithms
seems to be quite good candidates to solve DisCSP.
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Privacy is a real concern for e-services users. In digital environments (digital
information, dematerialization of actors, computers and networks operating mode),
technologies don’t preserve, in native mode, user’s privacy. Cyber crime, Eavesdropping,
theft of strategic information, commercial proposition, etc. could give economic
advantage to unfair competitors. The privacy concept in the cyberspace looks like a
luxury. Nowadays, cyber-criminal, hacker or cracker, what ever we call them, represent
a real threat to the society, causing malicious harm to ICT resources, to individuals,
organizations and states. Police investigations in information and communication
environments are more and more necessary and frequent. Cyber crime, as the increased
justice and police investigations needs affect effective e-privacy solutions.

Our paper presents the actual privacy concern over the Internet, describes in details our
enterprises privacy study, and analyzes the benefits and the limits of P3P approach.
Finally, recommendations are proposed to preserve privacy and satisfy security
objectives for e-services.

To see how enterprises deal with e-privacy concern, we analyze, through a study, several
privacy criteria in enterprise privacy policies. The sample is composed of 200 websites
(including amazon.com nfl.com, nba.com...) taken at random. The main criteria are
about the use of personal data, security issues, cookies manipulation, etc... We propose a
graphic representation to visualize main criteria that enterprises must bet on and how
they can improve their privacy policy. The result shows that the majority of enterprises
don't say anything about the notification of their users when the privacy policy changes,
how they deal with users' IP addresses, the presence of third parties and the fact of
sharing or selling personal data to other entities.

We can easily notice that the needs to privacy and security are not yet well identified and
satisfied for individuals and organizations. To contribute to satisfy these needs, the
World Wide Web Consortium (W3C) tries, with the Platform for Bivacy Preferences
(P3P) approach, to ensure privacy. The Platform for Privacy Preferences (P3P) is
indented to be a simple, automated way for Internet users to have more control over the
use of personal information on visited website. In fact, P3P imposes that privacy policies
covering a page are easy to find so that users can find the policy from the site they are
visiting and the policies of other websites that are contributing to that page. In addition,



the privacy policies, using P3P, are easy to understand and do not consist of pages of
legalese. However, P3P has its limits for guaranteeing privacy over the Internet. As, the
W3C is a specification setting organization; it does not have the ability to make a public
policy guarantee that its specifications be followed over the Internet. This specification
needs to be used in concert with effective legislation, strategic policy and other privacy
enhancing tools.

From the study done, many recommendations can be extracted. Some recommendations
are related to the form of the privacy policy published on the WEB by enterprises, the
others affect directly the contents of these policies. The enterprise must present the
privacy policy document in a readable and ergonomic form. The policy document must
be clear (with a medium police size and paragraph separators) and easy to understand by
all users (not a complex model full of technical terms). The published policy must give
at least an answer to the users' needs of understanding privacy concern. Simple and clear
answers must obligatorily be given to crucial privacy questions. In addition, the use of
encryption can solve many issues. In fact, Encryption is a cheap way to obtain integrity,
authentication and confidentiality. Small and Medium size enterprises can use these
technique to reach security objectives.

To conclude, legal framework and security solutions must be developed to satisfy e
privacy needs taking into account the respect of fundamental human rights. In the
meantime enterprises have to implement available e-security and e-privacy solutions.
Most of them are accessible and enough effective to satisfy current needs of enterprises
and organizations.

Keywords:
E-privacy, e-security architecture, e-business, white collar crime, police and justice
investigations, e-economy, information society.
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Abstract. This paper presents the new DDAC4 algorithm for dynamic
arc consistency enforcement in Distributed Constraint Satisfaction Prob-
lems. The algorithm is an adaptation of the well known AC-4 algorithm
to system settings where constraints can be added and deleted in concur-
rent processes. It is the first algorithm for arc-consistency enforcement
in this system setting. Arc-consistency is achieved whenever the overall
system reaches quiescence after a constraint is added or deleted.

1 Introduction

Constraint propagation has become one of the most successful methods for con-
straint processing. If applied as a preprocessing step or during search this tech-
nique can significantly reduce the required effort of tree-based search methods
to solve Constraint Satisfaction Problems (CSP). However, its applicability is
currently often restricted to monolithic and/or static problems. In todays soft-
ware systems, for example in the field of global computing, these preconditions
can usually not be met. Applications that use the Internet as a platform of con-
straint satisfaction are often required to be able to adapt dynamically to newly
emerging knowledge in a distributed and completely asynchronous manner. It
is often not possible and very rarely desirable to gather information centrally
for constraint processing. Consequently there is a strongly increasing need for
methods to perform dynamic and distributed constraint processing.

In this paper I describe the new DDAC4 algorithm which implements the
successful constraint propagation technique of arc-consistency enforcement for
a distributed and dynamic setting. To the best of my knowledge it is the first
algorithm that provides this functionality.

2 Preliminaries

2.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is given by a triple (C, X, D) where C
is a set of constraints, X = {x1,...,x,} is a set of variables and D = {D», ..., D, }

* This work has received support from the Embark Initiative of the Irish Research
Council of Science Engineering and Technology under Grant PD2002/21 and from
Science Foundation Ireland under Grant 00/P1.1/C075



are their respective domains. In a binary CSP each constraint C;; € C is asso-
ciated to a binary relation sem(C;;) € D; x D; in the Cartesian Product of
the domains of the constraint’s two variables x; and x;. In this paper I denote
a constraint ¢ over variables x and y with an associated relation s by the term
c(z,y,s). A constraint C;; (i.e. an arc in the constraint graph associated to a
CSP [4]) is said to be arc-consistent if and only if for each value d; € D; at least
one value d; € D; exists such that (d;,d;) € sem(C;;). A binary CSP (resp. its
associated graph) is said to be arc-consistent if and only if all its constraints are
arc-consistent. A detailed introduction to CSP can be found in [4].

2.2 Multi-Agent-Systems

Multi-Agent-Systems (MAS) are given by a set of agents which are executed in
concurrent processes and communicate by messages. Each agent can send any
other a message provided it knows its address. In this paper, I use the following
communication primitives for MAS:

send (r,msg) sends a message msg to the agent r. The message can be any
string;

broadcast(msg) sends msg to each known agent;

behavior receive(s,msg) provides an agent-behavior, i.e. a procedure which is
called as soon as a certain message msg from a sender s arrives. Both, s and
msg can be or can contain variables which will be unified with the received
values. Thus msg is usually a pattern which an incoming message must
match in order to trigger the behavior. The pattern is usually a structured
term which identifies the kind of message received, and its arguments are
variables which are unified with the actual information contained in the
message;

blockingReceive(s,msg) waits for a message msg from the agent s. It halts
the execution of its thread until a message which fits the pattern is received.
Please note that while a thread is halted, other threads (i.e. behaviors) of
the same agent may be active, and receive and process messages.

Furthermore, I assume that every message evetnually arrives, and that between
every directed pair of agents the order in which messages are sent is the same
as that in which they are received. Whenever an agent refers to itself it will use
the synonym self. A more detailed introduction to distributed computing can
be found in [2].

3 Background

Finding solutions for arc-consistent CSPs can be much easier than finding solu-
tions to equivalent (wrt. the set of solutions) CSPs which are not arc-consistent.
Thus the enforcement of arc-consistency both as a preprocessing step and during
search has a long tradition in CSP research.



3.1 AC-4

One method for the enforcement of arc-consistency is the algorithm AC-4 [6].
The input of that algorithm is any binary CSP which AC-4 transforms into an
equivalent arc-consistent binary CSP. The idea of the algorithm is that in an
arc-consistent CSP, each value z in each variable domain must have at least one
value y in the domain of another variable such that (z,y) is an element of the
relation associated to any constraint. The value y is called the support of x. To
be more precise: the set of all supports of a value d; € D; are elements of the set
support(d;) = {d;|3C;; € C,d; € D; : (d;,d;) € sem(Cy;)}. AC-4 uses a data
structure counter which associates the number of values which use d; as support
to each value d;, i.e. counter(d;,) = |{d; € D,|d; € support(d;)}|. Whenever
the counter of a value d; is zero, it does not support any other value via any
constraint and can thus be removed from its domain D; without reducing the
set of solutions to the CSP.

AC-4 computes the counter for each value in a CSP and deletes any value if
its counter is zero. To do this, the algorithm consists of two stages: first the data
structures support and counter are set up for each value and then the values are
iteratively pruned until no more zero counters exist. A more detailed description
of the algorithm can be found in [6, 4].

3.2 DisAC4

The distributed version of AC-4 [7] is implemented in a set of “worker”-agents
and a central “controller”-agent. All agents communicate by messages and the
same assumptions concerning the protocol I described in section 2.2 are made.
The controller is used to detect termination of the algorithm and to stop all
workers if one has detected that no solutions exist. The algorithm terminates
as soon as all workers have reached quiescence, i.e. there are no messages to be
processed and all computations are finished. The actual arc-consistency enforce-
ment is performed by the workers. The main difference to the centralized AC-4
is that the knowledge stored in the data structures support and counter is parti-
tioned among the agents. Each worker w is related to a set of variables X,, C X
which are located in its process. The worker w stores the sets counter(x) and
support(x) for each z € X,,.

DisAC-4 works in two similar stages as AC-4. It differs from AC-4 by keeping
track of all values that can be pruned in two lists list and toSendList. After the
first stage the toSendList is broadcast to other workers and the list is processed
in the loop that implements the second stage of the algorithm similar to AC-4.
Whenever the list is empty, the toSendList is broadcast to other workers. Upon
the receipt of such a toSendList the workers add all its elements to their local
list to check against their local knowledge. For a more detailed description of
the algorithm, please refer to [7].



3.3 DnAC-4

Like AC-4 and DisAC-4, the dynamic DnAC-4 algorithm [1] uses the data struc-
tures counter and support to find values that must be pruned to achieve arc-
consistency. These structures are incrementally updated whenever a constraint
is added.

In order to be able to relax constraints an additional structure justif which
stores justifications for value prunings is incrementally processed. It associates
to each variable z; a removed variable-value pair (z;, d;) such that the constraint
between x; and z; caused the removal of d;. With this storage of justifications
it may be possible that justifications build circular dependencies and will not
be “well-founded” as described in [1]. When a constraint is deleted values that
have potentially been pruned due to that constraint are re-inserted in their
domain. Then the new values are checked against the other constraints and may
be excluded again if another constraints prohibits them.

4 The distributed algorithm DDAC4

Like DisAC-4, the DDAC4 algorithm uses one controller and several worker
agents. The controller starts and terminates the workers. However, the algorithm
is not terminated as quiescence is reached, but only if this is explicitly requested.
Whenever quiescence is reached in DDAC4, arc-consistency will be present in
the currently existing distributed CSP. In contrast to the DisAC-4 algorithm,
I assume for DDACA4 in this paper that every worker represents exactly one
variable. The worker agent and the variable are considered to be the same and
refer to itself with self. This one-to-one topology is no restriction to generality as
the algorithm can easily be adapted to the general case by extending the internal
data structures counter and support (see below) with another dimension for
the respective local variable. A more significant difference to DisAC-4 and AC-
4 is that DDAC4 is not implemented in two stages: the initialization phase is
omitted. As in DnAC-4 the necessary computations of this phase are performed
whenever a new constraint is added.

The main difference to DnAC-4 is that the justifications for pruned values
are handled differently. Most importantly, the justifications are not variables, but
constraints and multiple justifications for the removal of every pruned value can
be stored. Consequently, DDAC4 does not have to consider the “well-founded-
ness” as described in [1]. Furthermore, this allows the relaxation of constraints
in one phase and omit the need for a subsequent propagation phase to ensure
arc-consistency as for instance DnAC-4 uses it.

All worker agents run the same code using different locally stored data. Each
worker uses the following private data structures, procedure and behaviors:

domain the set of all allowed values of self;
initDomain[x] , the domain of variable x as it was when the respective agent
was created;



list a set of triples (var,val,j). As in DisAC-4 this set contains values val of
variables var that can be pruned. The justification for this is the constraint
J, which may be directly or indirectly responsible for this pruning;

toSendList a similar set to list which aggregates relevant information to be
sent to adjacent workers;

knownAsDeleted a set which contains all constraints that self knows to be
deleted;

constraints the set of all constraints over self;

neighbors the set of all adjacent agents;

support [x] [y] the set of values from the domain of self that support variable-
value pairs (x,y) of other agents as known from DisAC-4;

counter [x] [y] the number of values of variable y that use the value x of self
as support;

removelist a list of triples (var,val, j) where counter [val]l [var] was reduced
because of the propagation of j.

procedure sendList() sends the toSendList to all neighbors and assigns it
to the empty list afterwards;

behavior receive(sender, addConstraint(c)) invokes local  procedure
addConstraint(c) and sends initialDomain[self] to sender;

behavior receive(sender, deleteConstraint(c)) invokes local procedure
deleteConstraint(c)

behavior receive(sender, relax(c)) invokes local procedure relax(c)

Each worker provides methods to add and to delete constraints. The con-
straint addition method and its propagation are presented in Algorithms 1 and
2 and the deletion method, including the problem relaxation, is shown in Algo-
rithm 3.

I start with the description of Algorithm 1. First, the algorithm makes sure
that the new constraint was not deleted before and that there is no other con-
straint between the two respective variables. The first prohibits the re-addition
of constraints after deleting it, such that a new constraint has to be created in
such a situation. The second prohibits several constraints between the same pair
of variables. Multiple constraints between same variables are also not supported
in Dis-AC4 and other DisCSP algorithms. However, the DDAC4 algorithm can
be easily extended to support multiple constraints between same variable pairs
by adding a further dimension to store the constraint in the support and counter
arrays. Then, the new constraint c is integrated properly in the system by adding
it to the set constraints of self and the agent A which holds the other variable.
Furthermore, the address of A respectively self is added to the set of neighbors
of self respectively A. The manipulation of agent A is performed by sending
it a newConstraint message. After that the self waits for the reply containing
the initial (and thus invariant) domain of A. Then the algorithm checks for all
combinations of values of ¢’s variables if they are consistent. If they are consis-
tent it updates the counter and support arrays. If the counter of a local value
v is zero after checking all values of the remote variable, v can be pruned as
it does not support any other value. Thus it is removed from the variable do-
main and a respective triple is added to 1list, toSendList and removedList.



Finally the toSendList is sent to the neighbors. This is an improvement to the
corresponding method in the DisAC-4 algorithm. In DisAC-4 the toSendList
is broadcast in the system, i.e. sent to all agents. With this slight change the
required number of messages coul;d be reduced significantly. This efficiency im-
provement does not change the outcome of the algorithm, since all propagation
has to begin with the neighboring variables anyway.

Algorithm 1: Worker method for constraint addition.

procedure addConstraint(c(x,y,sem)) begin
if this = x then

‘ other :=y;
else
| other := x;
1 if other € neighbors U knownAsDeleted then
| return;
2 constraints := constraints U c;

neighbors := neighbors U other;
send(other,newConstraint(c));
blockingReceive(other,domain(other Domain));

initDomain[other] := other Domain;
3 foreach d € initDomain[this] do
foreach d’ € otherDomain do
if (this =x AND (d,d’) € sem) OR (this =y AND (d’,d) € sem)
then

counter[d][other] := counter|[d][other|+1 ;
L support[other][d’] := support|other][d'] U {d}

if counter[d][other] = 0 then

list := list U {(this,d,c)};

toSendList := toSendList U {(this,d,c)};
removedList := removedList ++ {(this,d,c)};
5 domain := domain \{d};

6 sendList();
end

Algorithm 2 implements constraint propagation throughout the CSP. When
a worker receives a propagate message, it performs similar steps as for the
integration of a new constraint. The respective behavior is represented in Al-
gorithm 2. First it adds all the triples received from another agent to its local
list. Then, for each element (var,val,j) of the 1list, it performs the following
propagation steps: it retrieves from the support array all values v of the local
variable that support the value val for variable var; if j is not known to be
deleted, the worker decrements the counter for v and stores a respective triple
in removedList. If the counter reaches zero and v is in the current domain, then



v can be pruned as it was described in the previous paragraph. Finally, the newly
updated toSendList is sent to all neighbors.

Algorithm 2: The propagation behavior of DDAC4 workers.

behaviour receive(sender,propagate(l)) begin
list :=list Ul;

while 1ist # () do

remove any (var,val, j) from list;
foreach v € support[var][val] do

1 if j ¢ knownAsDeleted then
counter[v][var] := counter[v][var] -1;

2 removedList = (var,v,j) ++ removedList;
if counter(v]{var] = 0 AND v € domain then

toSendList := toSendList U {(this,v,j)};

list := list U {(this,v,5)};
domain := domain \{U};

4 sendList();
end

The constraint deletion method each worker provides and the necessary be-
haviors to relax the CSP, i.e. to de-propagate the deleted constraint, are pre-
sented in Algorithm 3. Upon a call to the deleteConstraint method, the deleted
constraint is removed from the local set of constraints and its other variable is re-
moved from the set of neighbors. The same is done asynchronously in the remote
agent that hosts the constraint’s other variable by sending it a delConstraint
message. After that, the support and counter arrays are adapted inversely to
the way they were changed when the constraint was added. Finally a relax
message is broadcast to all agents (including self) to make them relax their
variables for the deleted constraint. The method relax is invoked upon receipt
of a relax message with a reference to the deleted constraint. This method adds
the newly deleted constraint to the set knownAsDeleted. Then it checks for all
values in the removedList to find out whether they were removed because of
the deleted constraint. Is so, the respective triple is removed from that list and
the counter is incremented. If the counter reaches one, there are no justifications
left to exclude the value and it is added to the domain.

4.1 Difficulties and Pitfalls

Concurrent Propagation and Relaxation In a dynamic and distributed sys-
tem, constraints can be added and deleted concurrently in separate processes.
These concurrent events may yield consequences for common variable domains
which can lead to non-determined results and even non-terminating runs. Con-
sider for example three variables x,y and z which all have the domain {1, 2, 3}



Algorithm 3: Worker method and behavior for constraint deletion.

procedure deleteConstraint(c(x,y,s)) begin
if ¢ ¢ constraints then
| return ;

constraints := constraints \{ c};
if this = x then

‘ other := y;
else
| other :=x;

neighbors := neighbors \{other};
send(other,deleteConstraint(c));
foreach d € initDomain[this] do
foreach d' € initDomain[other] do
counter [d] [other] := counter[d] [other] —1;
L support [other] [d'] := support [other] [d']1\{d};

1 broadcast(relax(c));

end

procedure relax(c) begin
if c € knowAsDeleted then
| return ;

2 knownAsDeleted := knownAsDeleted U{c};
foreach (var,val,j) € removedList do
if j = c then
counter[val][var] := counter[val|[var] +1;
removedList := removedList — (var,val, j);
3 if counter[val][var] = I then
| domain := domain U{val};

end

and a constraint ¢;(z,y,{(1,2)}) which has been posted. If in this situation the
concurrent events addConstraint(ce(z, z,{(2,2)})) and deleteConstraint(c;) oc-
cur, the outcome of the constraint processing is non-determined: the value 3 may
or may not be in the domain of x, depending on the order of the processing of
the events. The problem is that due to the addition of ¢y the value is pruned
while due to the deletion of ¢ it is added at the same time. Clearly, the correct
(arc-consistent) result should exclude 3 from x, but this may not be the result
of the concurrent algorithm.

DDAC4 prevents non-determined results by storing justifications for every
pruned value and by allowing values to be “pruned multiply”. In the data struc-
ture removedValues the algorithm keeps track of each value that must be pruned
and stores the respective constraint which justifies this pruning. Please note that
this list may contain several entries regarding the same value. removedValues
contains all justifications for each excluded value of the initial variable domain.
Thus, there can be several justifications for each pruned value. Unlike AC-4



or DisAC-4 the counter values can consequently be below zero. Whenever the
counter passes zero the domain is manipulated: when it changes from one to
zero, a value is pruned (as in AC-4) and when it changes from zero to one, a
value is added. As soon as there is at least one justification to remove a value,
it is actually removed from the variable’s domain. However, when a value is
to be added due to a relaxation, this is only performed if there are no more
justifications for its pruning (Alg.3, line 3).

Message-Waves take Shortcuts Another problem occurring in the dynamic
and distributed setting arises from message delays in the concurrent execution.
Assume an application which adds and deletes a constraint within a short time:
the processing of the constraint addition may not be globally completed before
the same constraint is deleted. With “not globally completed” I mean that the
wave of the respective propagate messages has not yet reached every relevant
variable. Consequently, there may be propagate and relax messages regarding
the same constraint to be processed in parallel. From the general assumption that
messages always arrive in the same order they were sent, it cannot be deduced
that a wave of relax messages cannot “overtake” an earlier initiated wave of
propagate messages. This follows from message delays or the used protocols.
For example in DDAC4 the relax messages are broadcast, while the propagate
messages are handed over from agent to agent along the lines of the constraint
graph. If the wave of relax messages takes a “shortcut”, it may overtake the
wave of propagate messages. Thus a variable domain may be relaxed before it
was actually pruned. The pruning will then be performed afterwords yielding
incorrect results as the constraint is actually obsolete.

I solve this problem by storing the set of all deleted constraints in the set
knownAsDeleted in each agent. Whenever an agent discovers that a constraint
was deleted, it stores this information. After that, each agent will not prune any
more values due to this constraint (Alg.2, line 1). Furthermore, the propagation
will be stopped as no triples will be added to the toSendList in this algorithm.
The use of knownAsDeleted is not ideal programming style as the set will con-
stantly be extended and never reduced in continuous program executions. Thus,
the complexity of Alg.2 (which checks every constraint against this set) is in
the order of a potentially infinite number of deleted constraints. However, in the
implementation of a concrete application this problem may be solved by deleting
references from this set as soon as it can be assumed (with a sufficient likelihood)
that no further propagation regarding the deleted constraint is to be performed.

5 Evaluation

5.1 Correctness

First T show that DDAC4 propagation is correct and achieves arc-consistency.
Arc-consistency can be expected to be achieved as soon as the entire network
has reached quiescence, i.e. the algorithm has terminated. This is the case when
the following conditions are satisfied:



— no workers are executing any procedures or behaviors
— no worker has stored messages to be processed
— no messages were sent and not received

Any global state that satisfies all three conditions is called globally stable. For
such states it can be shown that adding constraints will retain arc-consistency.

Lemma 1. If no constraint deletion occurs, then constraint addition with DDACY,
will result in an arc-consistent globally stable state if all other constraints were
also added with DDACY.

Proof. Since the algorithm of the workers is based on the correct AC-4 algorithm
[6] it is sufficient to show that: (i) for each added constraint all variable-value
pairs that it prohibits are detected; (ii) this inconsistency is reported to all
agents that can deduce further inconsistencies and (iii) the algorithm reaches
quiescence.

(i) Since all values of both involved workers are checked against any new con-
straint (Alg. 1 lines 2-5) the two workers to which the constraint was added
will detect all inconsistent values.

(ii) Each inconsistent variable-value pair (i,v) is sent to all neighboring (Alg.1
line 6 and Alg. 2 line 4) workers. These include all workers that host a variable
which is adjacent to self in the constraints graph and thus have common
constraints with the sender (Alg.1 line 2). No other worker can detect further
inconsistencies from (i,v) since it will not host a constraint over i. Each
worker will process the inconsistencies (Alg.2) and detect all possible new
inconsistencies because it checks all values from its initial domain (Alg.1
line 3) against all its constraints (Alg.2 lines 1-3). Since the system will
not reach quiescence before all workers have finished processing their local
list and no more inconsistencies are being communicated, there will be no
inconsistencies (4, v) in the CSP that were not checked against all constraints
over .

(iii) Since there is only a finite number of values in each domain and there
is no constraint deletion, there can only be a finite number of necessary
value deletions and therefore the loop in Alg. 2 will always terminate. There
are no deadlocks in the algorithm since all messages, except of domain, are
asynchronous. The domain messages will not lead to a deadlock since it is
triggered uniquely by the asynchronous message newConstraint.[]

Now I will show that the constraint deletion algorithm will always reach
arc-consistency. This also requires that quiescence is reached in the network.

Lemma 2. Given a globally stable arc-consistent state of a CSP, the constraint
deletion with DDACY will result in an arc-consistent globally stable state iff no
constraint addition occurs.

Proof. The constraint deletion removes the constraint properly from the CSP as
can be seen in the procedure deleteConstraint(c) (Alg.3), it resets all changes



that were performed by addConstraint(c) (Alg.2) before. Every constraint
deletion will cause a broadcast of relax messages (Alg.3 line 1). In the method
relax(c) self will consider for every removed value whether it can be put back
in its domain. It puts only those values back that were directly or indirectly
removed by ¢ and no other constraint. Thus it keeps all values excluded that
are not arc-consistent in the CSP without c¢. The constraint deletion protocol
reaches quiescence, since in each worker only finitely many values can have been
pruned such that removedList is finite and the loop in the procedure relax
terminates.[]

Now it can also be deduced that the concurrent execution of addition and
deletion and thus DDAC4 is correct.

Theorem 1. Any CSP which is processed exclusively by DDACY is arc-consistent
i any globally stable state.

Proof. Regarding Lemmas 1 and 2, it remains to be shown that the concurrent
addition and deletion of constraints is correct. For this I show that: (i) the
constraint addition is independent of the progress of execution of any constraint
deletion; (ii) constraint deletion will not miss any values to be added to the
domain and (iii) constraint deletion and addition of identical constraints are
always synchronized.

(i) Constraint addition and propagation exclusively use the initial variable do-
mains for their inference, and are thus independent of the sets domain and
removedValues which may or may not have been manipulated by the con-
currently running constraint deletion algorithm.

(ii) According to Lemma 2, the constraint deletion algorithm will always put all
values that have lost all justifications to be excluded back in the domain . But
for every pruned value it knows all justifications from the set removedValues.

(iii) Due to the use of knownAsDeleted it will never be the case in any worker
that propagation is performed after relaxation for the same constraint. It is
not possible to add the same constraint twice (Alg.1 line 1). O

5.2 Complexity

For the following complexity analysis I leave out the required effort of the ter-
mination detection, as this is not part of the DDAC4 algorithm. As I mentioned
before the complexity depends on the size of the set knownAsDeleted which
should (and can) be kept low in typical applications. In the following I assume
it contains k elements. Furthermore I refer to the number of valid constraints as
¢, to the number of variables as n and to the size of the largest domain of any
variable as d. I specify the time, space and message complexity of DDAC4 al-
gorithms. For the specification of the time complexity of distributed algorithms
one must assume the worst case in which no computations are performed in
parallel. Thus I specify the time complexity of the procedures addConstraint
and deleteConstraint in the overall system. The required space of each worker



is considered separately. In distributed settings, the global space complexity is
usually not of interest. The number of required messages is generally considered
one of the most important features of distributed algorithms.

Theorem 2. The time complexity of the procedure addConstraint is O(n? *
d* x k).

Proof. Lines 1-2 Algorithm 1 in use O(k) + O(c) steps, lines 3-5 take O(d?) and
line 6 takes O(c). This is performed in two workers yielding 2(O(k) + O(c) +
O(d?) +O(e)) = O(k) + O(c) + O(d?). Algorithm 2 is executed in the worst case
for every deleted value (there are n * d values) by every worker and thus n? * d
times. Algorithm 2 itself has the following complexity: “foreach v € support”
takes at most O(d) steps, line 1 takes O(k) steps, and line 4 O(c). Overall Alg.2 is
thus O(d)*O(k)+O(c). Putting things together and knowing that O(c) C O(n?)
holds in binary CSP the complexity of addConstraint is O(k)+ O(c) +O(d?) +
n?xdx (0(d) » O(k) + O(c)) = O(n? x d* k).

Theorem 3. The time complezity of the procedure deleteConstraint is O(n x
k) +O(n? xdx*c).

Proof. The procedure deleteConstraint takes O(c) + O(d?) + O(n) steps for
checking if the constraint exists, updating support and counter and broadcast-
ing a message to all workers. This is done twice. The procedure relax is executed
once in every worker. It takes O(k) steps to check whether the constraint is known
as deleted. Then it traverses removedList, which may contain for every value of
every variable and every constraint an element. It’s traversal may thus cost up to
O(n * d*c) steps. Putting things together the complexity of deleteConstraint
is 2(0(c) + O(d?) + O(n)) + n* (O(k) + O(nxdx*c)) = O(nxk) +O(n?xd *c)

Theorem 4. The space complezity of each worker is O(k) + O(n x d * c).

Proof. T define the function size which assigns to each data structure x € X in
the DDAC4 workers its worst case size: size = {(domain, O(d)), (initDomain,
0(d)), (1ist, O(n = d)), (toSendList, O(n * d)), (knowAsDeleted, O(k)),
(constraints, O(c)), (neighbors, O(n)), (support, O(dxn)), (counter, O(d
n)), (removedList, O(n *d « ¢))}. The space complexity of each worker is thus
ngsize(:r) =O0(k)+ O(n=*dx*c)

Theorem 5. The DDACY algorithm requires O(n® * d) messages for constraint
propagation.

Proof. The procedure sendList sends O(n) messages each time it is invoked.
For every new constraint it is invoked twice by the procedure addConstraint
and once in each execution of Algorithm 2. Alg. 2 is executed at most n? * d
times as I have shown in the proof of Theorem 2. Thus propagation requires
overall O(n) * (2 +n? x d) = O(n®) * d messages.

Theorem 6. The DDACY algorithm requires O(n) messages for constraint re-
lazation. This complezity is optimal.



Proof. As can be seen in Algorithm 3, the procedure deleteConstraint broad-
casts a message to all n workers. This is executed twice and there is one
delConstraint message. Thus constraint deletion requires 14 2% O(n) = O(n)
messages. This is optimal, since every constraint may yield consequences in ev-
ery variable and thus every worker. Consequently each worker must be notified
for constraint relaxation.

5.3 Empirical Evaluation

I have implemented the DisAC-4 and DDAC4 algorithms in a multi-threaded
Java program. Each agent contsitutes one concurrent thread and the agents com-
municate by dropping messages to other agents’ message-channels. The common
memory is not used except the references to the channels. For evaluation I mea-
sured the runtime, which is the overall CPU time when the concurrent program
is executed on one processor, the total number of messages and the number
of(concurrent) constraint checks. I ran four tests to evaluate the performance
of DDAC4 with Java 1.4.2 on a Linux desktop computer one 1.8GHz Pentium
processor and 512MB memory:

rbc-x Random binary CSPs with 30 variables, domains size 15 (for each vari-
able), density = 0.5 and varying tightness x between 0.2 and 0.8. The sam-
ple size was 30. For these problems I measured the average effort to enforce
arc-consistency by DisAC-4 and DDACA4. In the latter, all constraints were
iteratively added.

rq30-x The 30-queens problem where x queens are placed on (consistent) po-
sitions. I compared the performance of DisAC-4 and DDAC4 to achieve
arc-consistency.

inc30g-x This test evaluates the incrementality of constraint addition. In the
30-queens problem, I check the effort of DDAC4 to put the x-th queen (con-
sistently) in the x-th coloumn, while all queens in more left hand colomns
remain set. Setting a queen is performed by adding a new binary constraint
over x and a new variable such that only one value is allowed for x.

dyn30qg-x This evaluates the efficiency of constraint deletion. One queen is set
on an empty chessboard in colomn x and removed again. This is done in two
ways: first, the system waits for global quiescence after adding the constraint
and second the constraint is deleted immediately after it was sent such that
the propagation will most likely not be perfomed completely.

The results of rbe-x and rq30-x are shown in Figure 1. These diagrams compare
the effort to enforce arc-consistency. In all our experiments both the number
of sent messages and the runtime of DDAC4 is better than that of DisAC-
4. The number of (concurrent) constraint checks was also monitored and, as
expected, it was equal for both algorithms in all tests. The results of the inc30g-
X test are shown in the left diagram in Figure 2. It can be seen that due to the
incremental constraint addition, the propagation effort decreases as the search
space is pruned. The cost to add new constraints gets as low as the cost to check
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Fig. 1. Effort to enforce arc-consistency.

its consistency once. The results of dyn30qg-x are shown in the right diagram of
Figure 2. It can be seen that the effort to delete is always much smaller with a
constant factor than the effort to add a constraint. In the comparison of the test
perfomed with and without waiting for quiescence after the constraint addition
it can be seen that the runtime without waiting is smaller than the sum of
both tasks performed separately. Partially, this speedup is gained by leaving out
the effort for termination detection in between both steps. However, there can
also be less propagation performed if the constraint is deleted immediately after
adding it. This results from the fact that the relax-messages can reach agents
faster than their repsective propagate messages as described in Section 4.1 and
thus make the propagation obsolete. This could also be seen by the number
of constraint checks in this experiement. In the n-queens example, this gain of
efficiency can only be reflected in runtime or constraint checks, as the number of
messages will always be the same since the constraint graph is fully connected.
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Fig. 2. Effort of incremental constraint addition (left) and effort to add and delete a
constraint (right).

6 Future Work

The AC-4 algorithm is not the most efficient algorithm for arc-consistency en-
forcement, neither in a centralized [10], a distributed [5] nor dynamic [3] setting.



Thus I plan to use the experience gained in the development of the DDAC4 algo-
rithm to find more efficient AC algorithms for distributed and dynamic problems.
The distributed DisAC-9 [5] algorithm which is proven to be optimal with re-
spect to the number of required messages will be the starting point for my future
research. I expect that the DisAC-9 and DnAC-6 [3] algorithms can be integrated
in a similar way to the integration of their AC-4 counterparts I presented in this
paper.

With a dynamic AC algorithm constraint programmers are not only able
to add (and propagate) and delete (and de-propagate) binary, but also unary
constraints such as variable instantiations. With this investigate look-ahead algo-
rithms for distributed problems which are based on IDIBT [8]. The implemen-
tation of look-ahead in asynchronous systems is highly complex as no central
structures exist to trail the history of the search [9]. The distributed search can-
not restore a former global state upon backtracking, but may still have to relax
potentially every variable domain in the CSP. My approach will be to use dis-
tributed and incremental constraint addition and deletion. If the addition and
deletion of instantiations can be (de-)propagated in an efficient way, a distributed
look-ahead algorithm can be expected to significantly improve the efficiency of
today’s asynchronous search algorithms. This expectation follows from the effi-
ciency improvement in monolithic systems, from other distributed search with
propagation [9] and prelimenary experiements [8].
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Using additional information in DisCSPs search*
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Abstract. A method of volunteering information during asynchronous search on
DisCSPs is presented. The meeting scheduling problem (MSP) is formulated as
a distributed search problem. In order to implement asynchronous backtracking
(ABT) for the MSP, a multi-variable version of ABT is described. Agents partic-
ipate in multiple meetings, where each meeting is represented by a variable that
needs to be assigned a time-slot. Assignments are constrained by arrival-time
constraints, since meetings take place in different locations. All constraints are
local to their agents.

Additional information is in the form of Nogoods. During search for a consis-
tent schedule for all meetings, agents can generate and send additional Nogoods
to those sent by the ABT algorithm. When additional Nogoods are sent, the ef-
ficiency of asynchronous backtracking is enhanced. This effect grows with the
number of additional volunteered Nogoods.

1 Introduction

An important goal of search algorithms for the distributed constraint satisfaction prob-
lem is to support agents’ privacy. During cooperative search for a globaly consistent so-
lution, agents exchange messages about their assignments and about conflicts with other
agents’ assignments. This creates a natural trade-off between information disclosure
and the efficiency (and correctness) of the distributed search process. The first to investi-
gate measures of privacy for DisCSPs were Meseguer et. al. [Brito and Meseguer2003].
In a series of two papers they presented algorithms for maintaining two types of privacy
during the run of the asynchronous backtracking (ABT) algorithm

[Meseguer and Jimenez2000,Brito and Meseguer2003].

A different approach for investigating the privacy of distributed search was pre-
sented first by [Wallace and Freuder2002]. This concrete family of problems was used
to compare the amount of needed computations for finding a solution, when different
quantities of information were exchanged among the searching agents [Wallace2003].

The present paper uses the family of meetings scheduling problems (MSPs) to
achieve three goals. First, to define a general familyvleketings scheduling search
problemsthat will serve as framework for the study of privacy. For the family of MSPs
the agents need to solve a hard search problem. The second goal is to enhance the

* Partially supported by the Lynn and William Frankel Center for Computer Science



asynchronous backtracking algorithm [Yokoo and Hirayama2000], for multiple vari-
ables per agent. This is needed in order for each agent to schedule its multiple meetings
and then cooperate with other agents to search for compatible schedules for all meet-
ings. The third and main goal of the present study is to define a consistent method for
enhancing the information content of messages of the search algorithm (ABT) that will
enable a more efficient computation.

This paper examines the effect of volunteering additional information, in the form of
additional Nogood messages, on the efficiency of search. The trade-off between infor-
mation and efficiency is investigated in the context of the meetings scheduling problem
[Wallace and Freuder2002].

The meeting scheduling proble(MSP) is the problem of coordinating a meet-
ing among several agents each one with its own calendar and has appeared first in
[Garrido and Sycaral1995,Sen and Durfeel1995]. A very restricted form of the MSP was
investigated with respect to privacy by [Wallace and Freuder2002]. The tradeoff be-
tween the privacy of agents’ meetings and the efficiency of the search process is studied
by the use of a simple instance of the meeting scheduling problem. The instances used
in [Wallace and Freuder2002] have only one meeting to coordinate, which all agents
have to attend. Agents must be able to get from their private meetings to the sched-
uled meeting according to the traveling time constraints. Each agent has its own private
calendar that defines its constraints regarding the time and location of the meetings.

The MSP has two main characteristics that make it into a DiSCSP. It is logically
distributed among all agents and since calendars are privately owned, it must use a
distributed search process in order to find a solution that is consistent with all agents.
The meetings of every agent are constrained with each other and the solution is globaly
consistent if every agent is able to reach all meetings in which it participates.

The aspect of privacy is very natural to the MSP. Agents do not want to reveal infor-
mation regarding their calendar. In the studies of [Wallace and Freuder2002,Wallace2003],
privacy is in fact measured by the fraction of calendars of agents that becomes known
to other agents during the search process.

Another simplified form of the MSP was used by Bessiere et. al. [Bessie2001]
for testing the Asynchronous Backtracking algorithm. The problem used in [Bessigi2001]
has three groups. Each group has to schedule a meeting for all its members, with
the constraint that two groups cannot meet at the same time and location. Perceived
as a centralized constraints satisfaction problem (CSP), each meeting can be repre-
sented by a variable and the values to be assigned are the weekly time-slots. From this
point of view, the MSP of [Wallace and Freuder2002] has one variable and the MSP of
[Bessiereet al2001] has three variables. The constraints of the [Wallace and Freuder2002]
MSP are unary, consisting of all forbidden times and locations. The search space of
CSPs is exponential in the number of variables [Dechter2003] and in this respect both
of the above problems are not hard search problems.

In [Wallace2003] the family of MSPs as been extended to be the graph coloring
problem forn meetings (variables). The problem is to assign time-slots towakiables
(meetings), such that each variable is owned by more than one agent. The constraints
among the values assigned to meetings which include a specific agent are inequality
constraints. This creates a graph coloring problem of a distributed nature. Each agent



owns the variables corresponding to meetings in which it participates and an inequality
constraint holds among them [Wallace2003]. The family of MSPs of the present study
are general DisCSPs and its arrival-time constraints are more general than inequalities.

Former studies of privacy eficiency trade-off in distributed search used either a sim-
ple iterative algorithm [Wallace and Freuder2002], or a synchronous distributed back-
tracking for solving the problem [Wallace2003]. The present study, investigates the pri-
vacy efficiency trade-off for a general MSP and for the enhanced asynchronous back-
tracking (ABT) algorithm. It measures the effect of asynchronous exchange of addi-
tional information on asynchronous search (see section 4).

In section 2 the Meeting Scheduling Problem (MSP) is defined, as well &Sk
representation and its distributed CSP form. Section 3 presents a version4Bilie
algorithm [Bessieret al 2001] for multi variable agents. The issue of additional infor-
mation for search enhancement, in the context of the MSP, is at the center of section 4. It
analyses ways of sending additional information during search and presents a form that
sends additional Nogoods to standard ABT. An extensive experimental investigation of
the behavior of the proposed method of voluntary information, with respect to search
efficiency, is described in section 5.

2 The Meeting Scheduling Problem

The definition of the meeting scheduling problem is presented in three stages. First, the
logical meeting scheduling problem. Second, its representation as a (centralized) CSP
and third, the representation as a distributed CSP. The meeting scheduling problem
(MSP)has been defined in many versions with different parameters, from duration of
meetings [Wallace and Freuder2002] to preferences of agents [Sen and Durfeel1995].
The family of MSPs that is at the focus of the present study is defined as follows:

— A group.S of m agents

— A setT of n meetings

— Each meeting is associated with a setC S of agents that attend it

— Consequently, each agent has a set of meetings that it must attend

— Each meeting is associated with a location

— The scheduled time-slots for meetings/irmust enable the participating agents to
travel among their meetings

An example of a conflict of an agent’s constraint is a meeting A, scheduled to 14:00
in Rome and a meeting B, that includes the same agent, that is scheduled for 16:00 in
Paris. Each meeting is one hour long and the traveling time between Rome and Paris
is two hours. It is assumed that there are no private meetings for any agent. This gen-
erates no loss of generality, since private meetings (or agents’ private calendars, as
in [Wallace and Freuder2002] for example) can be simply represented by unary con-
straints, removing values from domains of meetings. The duration of each meeting is
one hour and the traveling time between any two locations is equal for all the agents
(no agent is faster than another). The agents need to negotiate in order to search for a
schedule of all meetings that meets all of the participants arrival-time constraints.

The meeting scheduling problem as described above can be represented as a con-
straints satisfaction problem in the following way:



— aset of variable¥ - m1, ms...,m, the meetings to be scheduled

— domains of value® - all weekly time-slots

— a set of constraint§’ - for every pair of meetings;, m; there is an arrival-time
constraint, if there is an agent that participates in both meetings

As already mentioned, private meetings are equivalent to unary constraints removing
values from domains of some meetings. Since all agents have the same arrival-times
between any two locations, there is only one type of arrival-time constraint.

arrival-time constraint - Given two time-slots,, ¢; there is a conflict if
[time(t;)—time(t;)|—duration <= TravellingTime(location(m;), location(m;))

The tightness of the arrival-time constraint can be measured for a given definition of
distances between locations. Expressing distances in terms of time-slots, enlarging the
arrival-times has the effect of tightening the constraints of the problem.

Al -artends m1, m3, m4
AZ- attends m?2, m4
A3-attends ml, m2
Ad- attends m?2, m4

Fig. 1.the Meeting Scheduling Problem as a centralized CSP

Figure 1 presents the representation of a meeting scheduling problem as a CSP. The
nodes are the meetings (the variables) and each edge represents a binary arrival-time
constraint. Each edge is labeled by the agent, attending both meetings, that generates
the arrival-time constraint.

Representing the MSP as a distributed CSP needs to associate variables with the
different agents. Our distributed CSP representation can be described as follows:

— Agents - the Grouf of agents

— For each Agent; € Sthereisa variable:}, for Every meetingn; thats; attends.

— Each agens; includes arrival-time constraint between every pair of its local vari-
ablesz!, r}.

— for each two agents;, s; that attend meetingy;, there is an equality inter-constraint
between the variables, , x; corresponding to the meetimg,.



Fig. 2. the Meeting Scheduling Problem as a DisCSP

The representation of thRISP of figure 1 as aDisCSPcan be seen in figure 2,
where agents include multiple local variables connected by arrival-time constraints.
Edges between variables of different agents represent the equality inter-constraint.

2.1 Random Meeting Scheduling problems (RMSPs)

Random Meeting Scheduling Problerti@fMSPs)can be parametrized in numerous
ways. Parameters can be the number of meetings, meetings’ locations, number of agents,
etc. To simplify the experimental design, one can use the relevant features of the CSP
representation. Let us first denote a set of parameters:

number of meetingsm

number of agentsn

number of meetings per aget-
distances between locations of meetings
— domain size - number of time-slots

The meetings are the set of variables of the constraints network, each representing
a meeting at a specific location. The domains of values are the time-slots. An edge
between any pair of variables represents an agent that participates in both meetings. The
density of the constraints network depends on the number of agents and the distribution
of meetings that each agent attends. If each agent participates@etings, one can
generate the resulting CSP as follows. For each ofithgents a clique of variables is
selected randomly, such that not all of the edges of the clique are already in the network.
Each clique is added to the CSP, representing the arrival-time constraint between the
meetings of each agent.

Similarly to randomly generated CSPs, one can calculate the resulting dgnsity
of the network and the tightnegs. p; is the ratio of the total number of edges to the



maximal number s x (m — 1)/2. The tightness of the generated CSps,can be
calculated by using the average distance between locations. For two meetings
connected by an arrival-time constraint, each value in the domain @f inconsistent
with 2 x distance(m;, m;) values (time-slots) in the domain of;.

The representation of the above CSP as a distributed CSP is streightforward. Each
meeting variablen; in the CSP corresponds to the variabl;‘ewithin each agent;
that participates imn;. These variables are connected by the equality constrai;njt on
meaning that for all agentd;, the meetingn; is at the same time. When ordering the
DisCSP, the first of the variables that represent the same meeting is connected to all
other variables of the same meeting by an equality constraint. Each meeting has one
participating agent that is first in the global order. This agent proposes time-slots for the
meeting, during the run of asynchronous search. No other pair of participating agents
need to be connected by an equality constraint.

3 Multi-variable Asynchronous Backtracking

Every agent of the meeting scheduling problem includes multiple variables, one for
each meeting it attends. As a result, the distributed search algorithm must be able
to deal with multiple local variables. For asynchronous backtracking (ABT) this is a
special version of the algorithm that has not been described in the fundamental pub-
lications [Yokoo and Hirayama2000,Bessieteal 2001]. The multi-variables version

of ABT that is presented below is an adaptation from [Bess¢€e2001], but, uses
conflict- based backjumping (CBJ) [Prosser1993] for the local CSP of each agent.

As in standard ABT, all agents are assumed to be ordered [Bessiai2001]. All
variables of each agent are ordered successively, so that the variables ofiagent
follow successively the variables of agefif. The pseudo-code of th&é BT — CBJ
algorithm for multi-variable agents is presented in Figure 3. Agents running the algo-
rithm wait for messages and upon receiving a message call the suitable procedure for the
type of the received message. Elimination explanations are kept for each value of every
variable (cf. [Ginsberg1993,Bessiertal 2001]. Explanations may contain either local
variables with higher priority or variables of other agents, with higher priority.

The processinfoprocedure is called when ak? message is received. It updates
the AgentView with the received assignment and removes all eliminating explanations
in all the local variables that contain the obsolete assignment of the received variable.

When a backtrack message is receivedréselveConflicprocedure is called. This
procedure is similar to theesolveConflictof ABT in [Bessiereet al2001]. It checks
the consistency of the received Nogood with theentView. If it is consistent, then
resolveConflicupdates the relevant assignments in ffgentView (the nonl"~ vari-
ables in thedgentView, in terms of [Bessieret al2001]). It also removes the elimi-
nated value from the relevant local variable.

The chooseValues(procedure assigns values to all the local variables, checking
that all the eliminators in all the variables are consistent withApentView. Lines
1,2 deal with the case that the current assignment of all the local variables is consistent
with the AgentView and no changes needed. If this is not the case, then lines 4-18
find a consistent assignment for all the local variables. The order of all variables is



— ABT-CBJ:
1.SelfVars < empty,end «— false
2.chooseValues()
3.while (—end)
4. msgs < recvieveall()
5. foreachmsg € msgs do
switch (msg.type)
7 info : processinfat.sg)
8. Back: resolveConflictsg)
9 Stop :end — true

o

— processinfo(nsg):
1. updateflgentView, msg.variable, msg.value)
2. remove eliminators inconsistent wittyentView
3. chooseValues()

— chooseValues
1.if consistentfel fVars, AgentView)
2. then return
3else
4. for p =0to SelfVars.size
found — find_assignment{el fV ars|p])
6. if found =false
7.  Nogood « resolvefSel fVars[p].NogoodStore)
8. if rhs(Nogood)e Sel fVars
9 q < index of rhs(N ogood)
10. fori=qg+1top

o

11. remove fronsel fVars Nogoods containingel fV ars]i]
12.  removeValuefel fVars|q|, Nogood)

13. p=gq

14. else

15. remove rhd{ ogood) from AgentView

16. backtracklVogood)

17. remove all Nogoods containingriables € Sel fVars

18. p=0

19.for each agent € I'" (updatedV ariable) sendMsg:Infoggent, updatedV ariable)

— removeValuepariable, Nogood):
1. set eliminatotN ogood atvariable
2. for eachvar € SelfVars
3. remove eliminators contianinguriable

— resolveConflict(nsg):
1if consistentfrsg. Nogood, I'~ U {Sel fVars})
. for eachassign € lhs(msg.Nogood) \ I~ do
updatelgentView, ngVar)
. remove eleiminators inconsistent wittyentView
. rhsVariable < rhs(Nogood)
. removeValue(hsV ariable, N ogood)
. chooseValues()
8.else ifmsg.sender € I'" A Consistentfrsg. Nogood, Sel fV ars[rhs(msg.Nogood)])
then sendMsg:Infofnsg.sender, Sel fV ars[rhs(msg.Nogood)])

NoOUTAWN

Fig. 3. The multi-variable ABT algorithm



static. In line 5 a search for a value for the current variaiy'lds performed, such that

it is consistent with all assigned local variables and withAlgentView. If a value is

not consistent an eliminator is added for this value. If no consistent value is found, the
eliminators of the current variable are resolved to form a Nogood, in line 7.

When the Nogood points to a local variablg then a backjump ta will be per-
formed, with the Nogood as eliminator for the assignmentiofiines 9-13). The back-
jump requires the removal of all eliminators from all the local variabigs, ;, that
were jumped over (lines 10-11). This procedure implements the backjumping algorithm
for multi local variables. The backjumping algorithm that is implemented for local vari-
ables is similar to [Ginsberg1993]. If the right hand side of the Nogood is a variable of
a different agent, then it contains no local variables (since all the local variables are or-
dered successively). Therefore, the Nogood is sent in a backtrack message and the right
hand side assignment of the Nogood is removed fromabentView (lines 15-16).

Next, the local process for consistent assignments to all local variables starts from the
beginning (line 17-18). When consistent assignments for all local variables have been
found, all new assignments are sent byak? message to all the agents that are later

in the order of the problem (agentsii™ of the updated variable, similarly to standard
ABT [Bessiereet al2001]).

4 \Volunteering additional information

In studies of privacy issues of DisCSP search, the option of hiding information about as-
signments was considered by Meseguer and Jimenez [Meseguer and Jimenez2000]. In
order to keep privacy of assignments, Meseguer et. al. propose to send forward a list of
allowed values instead of the assignment itself. This idea cannot work for the MSP, be-
cause the equality constraint identifies the assignment of a single time- slot with the list
of legal assignments for the agent receiving @k message. By the same token, con-
straints of the MSP cannot be kept private by the method of [Brito and Meseguer2003].
All the constraints of the meeting scheduling problem are arrival-time constraints which
areinternal to each agent. The inter- agent constraints are just equality constraints, for
which hiding is meaningless.

Recently, several studies have investigated the trade-off between privacy and the
efficiency of search. Wallace and Freuder [Wallace and Freuder2002] have looked at a
simple MSP to show that loss of privacy enhances search efficiency. In a later study,
Wallace have shown a similar trade-off to hold for a distributed graph coloring problem
[Wallace2003]. The version of the MSP that was presented in section 2, is more general
than the graph coloring problem of [Wallace2003]. However, by the above analysis of
the privacy of MSPs, both types of privacy are not simply connected to the run of the
search algorithm. For the family of meeting scheduling problems, the privacy question
can be replaced by the possibility of volunteering additional information, to help agents
arrive faster at a consistent solution.

Backtracking messages of the ABT algorithm contain Nogoods, which represent un-
soluble sub-search spaces. Backtracking messages are based on violation of constraints.
Since Nogoods contain the only information about constraints, onaadriNogoods
in order to volunteer relevant informatioAdding Nogoods to the asynchronous back-



tracking algorithm is presented below. It forms a method of adding viable information
to agents, to enhance their efficiency in arriving at a solution.

Let us start with an example in which agetit has received anok? message from
agentA;, proposing an assignment for its variabtez’ = 15 : 00 >. Agent A; has
another meeting, with an assignmentz’ = 14 : 00 >, proposed by agem;. As
a result of arrival-time conflictd; has to reject the new assignment by sending the
Nogood{(zJ = 14 : 00 — zL # 15 : 00)}. This Nogood informs agent; that
meetingm,., for which it is responsible, is in conflict with meeting,. It can also
deduce that the agent responsible for meetingis A;. If the arrival time constraint
between meetings,,. andm is three hours, than the following Nogood holdgz? =
14 : 00 — z! # 16 : 00)}. In other words, agem; can generate additional Nogoods
when the conflict occurs between its local variables. It is important to note here that
Nogoods retain their meaning. In other words, Nogoods are valid during all stages of
search. In that sense, the additional information retains its validity through all of the
search process.

Different versions of asynchronous backtracking retain Nogoods in different ways.
From retaining all of them in the first versions of ABT [Yokebal 1998], to erasing
all Nogoods that are not currently consistent [Bessaia@ 2001]. It is important to
note that the variety of strategies for retaining received Nogoods during asynchronous
backtracking relates to space efficiency and not to completeness. This is why different
correct algorithms choose differently [Bessieteal2001]. The present method does
not interfere with the correctness of the multiple-variable ABT and it is independent of
the question whether additional (volunteered) Nogoods are retained or not.

An absolute measure of the information content of a Nogood is the size of the
eliminated subtree from the search tree. This measure depends on the size of the No-
good, the shorter the Nogood, the larger the eliminated subtree. It is easy to com-
pute the fraction of the search space that is eliminated. If the LHS of the Nogood is
< XL, T!>...< X! T: > and there are agents, then the eliminated subtree is of
sizeDt! x ... x D", The fraction of the search space that is eliminated by the Nogood
is simply 25X D"

For the meeting scheduling problef®SP)a Nogood is a partial schedule, that
conflicts with a proposed assignment of a time-slot to a given meeting. If a Nogood is
generated by a conflict within the sending agent, it reflects a conflict of two or more
of the meetings of the sending agent. Alternatively, the Nogood sent has been received
(in longer form) by the sending agent and could not be resolved by it (see function

resolveConflicts()in Figure 3).

The present investigation uses locally generateditional Nogoods as a form of
volunteering information. The proposed method is to generate additional Nogoods and
add them to every backtrack message. In order to add Nogoods to backtrack messages,
the refined backtrack procedure is presented in Figure 4. The improved procedure
checks for addtional time slots af;, that create an immidate conflict between the
local variableoc}'c of the meetingn;, and local variable:?, of meetingm,, . In the code
of Figure 4,z¢% has an equality constraint with the right hand side of the Nogood that
forbids < xi,value > andz?, has an equality constraint with one of the variables
on the left hand side of the Nogood that is being sent back in the backtrack message



(lines 3-5). When the enhanced backtrack procedure finds such a conflict, it adds it to
the additionalNogooddist (line 6). When theadditionalNogooddist reaches the size

of the predefined parameteinrformationFactor it is sent with the original nogood in a
backtrack message (lines 7-8).

— backtrack(nogood):
l.additional Nogoods < ()
2.< zl,value >+ rhs(nogood)
3.for each < z!,, val’ >€ lhs(nogood) do
4. for eachval € domain(z}, do
5. if not consistent¢ z?,, val’ >, zt,val) then
6. additional Nogoods.addk ', val' >—< xi, val >)
7. if additional Nogoods.size > in formationFactor then
8. send:BT{Nogood, additional N ogoods)
9. return
10.send:BTNV ogood, additional N ogoods)

end procedure

Fig. 4. Backtrack procedure - sending additional Nogoods for agént

5 Experimetal Results

To simulate asynchronous agents, a Distributed CSP simulator is used, that implements
agents aslava ThreadsThreads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - time, which is measured in terms of
computational effort and network load [Lynch1997]. The time performance of search
algorithms on DisCSPs has traditionally been measured by the number of computation
cycles or steps (cf. [Yokoo and Hirayama2000]). In order to take into account the effort
an agent makes during its local assignment the computational effort can be measured by
the number of concurrent constraints checks that agents perform ([Meis¢2002]).
Measuring the network load poses a much simpler problem. Network load is generally
measured by counting the total number of messages sent during search [Lynch1997].

In the asynchronous simulator, concurrent steps of computation are counted by
a method similar to that of [Lamport1978,Meiselsal2002]. Every agent holds a
counter of computation steps. Every message carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the
cost of the search as the largest counter held by some agent at the end of the search,



we achieve a measure of concurrent search effort that is similar to Lamport’s logical
time [Lamport1978].

Meeting scheduling problems where generated randomly, as described in section 2.1.
Locations of meetings were selected randomly from a set oPd4 P», Ps, P,}. The
distances among the 4 locations, in terms of time of travel, generate the arrival-time
constraints among meetings. Two sets of experiments were performed. The first set of
experiments has 9 meetings and 16 agents. Each agent participates in 3 meetings. The
meetings of each agent were selected randomly, as described in section 2.1, by select-
ing cliques of 3 meetings. The random selection was performed so that no two agents
attend exactly the same 3 meetings. The second set of experiments used 9 meetings and
24 agents with 2 meetings per agent. Each agent in this experiment adds an edge and
not a clique, during the generation of random problems.

Two sets of distances among the meetings’ locations are used in the first set of
experiments. The distances are described in Figures 5. The domains of all meetings
contain 24 time-slots. Each experiment was performed 10 times and average results are
reported.

o

P3 P4+

Fig. 5. (a) Distances between locations of meetings, (b) Smaller distances between locations of
meetings.

All experiments consist of performing search for a consistent solution of the ran-
domly generated problems, with different amounts of volunteered information. The runs
of the problems had 6 different numbers of added Nogoods, or in terms of the param-
eter of algorithmbacktrack() of Figure 4informationFactor ={0,1,2,4,6,8,19. The
informationFactoris the maximum number of additional Nogoods per backtrack. The
actual number in the experiments was very close and the results are parametrized by the
average number of actual Nogoods sent.

Figures 6, 7 present the behavior of the three measures of performance, for grow-
ing number of additional Nogoods, in the first set of experiments (16 meetings and 9
agents). Two different distance graphs are presented in these figures. The grey columns
use the distance map of Figure 5(a) and the dark columns use a distance map of smaller
distances (Figure 5(b)). The smaller distances rule out fewer values per arrival-time
constraint, thus generating a CSP with lower tightness.



It is easy to see that the computational effort is decreasing with increasing number
of additional Nogoods. The overall factor of improvement in communication load is
larger than 3 for the experiment with larger distances. This is the harder problem to
solve. For the easier problem, with smaller distances, the overall scale is much smaller
(i.e. easier problem) and the improvement is less dramatic. The improvement in com-
munication load is easy to understabd. Backtracking messages rule out a larger number
of assignments for the receiving agent. As a result,ilfssmessages are sent forward.

The improvement in the number of steps of computation can be explained by the
following example. When an additional Nogood eliminating = 4 is received by
agent4;, it eliminates a cycle of steps: assigning = 4, assigning the rest of the
local variables of4;, sendingok? messages to all agentsint and finally receiving a
backtrack message that eliminatgs= 4.

Steps Messages

4000 - 30000 -
3500 1 25000 -
3000 -
2500 20000
2000 15000
1500 10000 -
1000
500 5000 -

0 0

0 1 2 4 5 8 9 0 1 2 4 6 8 9

Fig. 6. (a) steps of computation vs. actual additional Nogoods, (b) total number of messages vs.
additional Nogoods.

Itis important to note that the production of additional Nogoods has a computational
cost. For the MSP, the computational effort required for producing additional Nogoods
is relatively small. This is a result of the structure of the problem, because all the intra-
constraints are equality constraints. In other words, a Nogopa=(16 : 00 — zJ #

17 : 00) can be generated easily in agehtthat attends both meetings;,, m,..

The computational effort of generating the additional Nogoods should affect the
CCCs measure most, since the generation of Nogoods requires constraint checks. It
is therefore interesting that the CCC performance measure in Figure 7 shows an im-
provement with increasing number of additional Nogoods. It is important to note that
additional Nogoods are not always relevant for the receiving agent. The removed value
of the additional Nogood may have already been erased, thus wasting the effort of gen-
erating the additional Nogood.

In the second set of experiments we used 9 meetings and 24 agents, with 2 meetings
per agent. Each agent in this experiment adds an edge and not a clique, during the
generation of random problems. This set of problems require less computational effort



CCC's

700000
600000 4
500000
400000 4
300000

200000 4
100000 -
0 -

Fig. 7. Concurrent constraints checks (CCCs) vs. actual additional Nogoods

than the first two experiments, but the decrease of computational effort with increasing
number of additional Nogoods is clear (Figures 8).

6 Discussion

The first investigation of the trade-off between privacy and efficiency of search was done
by [Wallace and Freuder2002]. In their paper the agents tried to find a time-slot for a
single meeting of all agent3he additional information in [Wallace and Freuder2002]
was sets of time-slots that are already taken in individual calendars of agents. The addi-
tion of such information is immediately related to the privacy of agents. Sending lists of
taken time-slots (i.e. with former meetings) reveals parts of the calendar of the sending
agent.

Steps Messages
600 - 3000 -
500 2500 4
400 2000 -
300 - 1500
200 - 1000
100 500 -
0 0
0 1 2 4 ] 7 9 0 1 2 4 6 7 9

Fig. 8. Two meetings per agent: (a) steps vs. actual additional Nogoods, (b) total number of mes-
sages vs. average additional Nogoods.



The present paper differs completely from [Wallace and Freuder2002], in that it
solves a search problem. A set of meetings, each with different subsets of the agents,
has to be assigned non conflicting time-slots. The assignment problem is exponential in
the number of meetings, thus different than a problem with one global meeting to sched-
ule. In the context of a CSP, prior meetings of agents can be represented by different
domains for agents. The constraints of the problem are arrival-time constraints, arising
from the different locations of the meetings that need assignments. This generates a
standard CSP with a clear set of variables, domains of values and constraints among
variables (see section 2). When a distributed search process is performed on the MSP,
partial assignments are temporary (i.e. the AgentView). This makes the privacy issue
less clear. Additional information about the state of assignments carries little informa-
tion about calendars of agents. Moreover, assignments are dynamic and change during
search. In the view of the present paper, the only private information that is revealed
during the distributed search process is the meetings in which each agent participates.

Because of the less clear nature of privacy during asynchronous search, the present
investigation focuses on volunteered (additional) information. For asynchronous back-
tracking Nogoods are a clear form of information [Yokoo and Hirayama2000]. In all
versions of ABT, differing amounts of Nogoods are kept as constraints discovered dur-
ing search [Bessieret al2001]. The choice of the present paper is to volunteer informa-
tion in the form of additional Nogoods that are sent during search (section 4). Nogoods
are units of information about the search space that are of permanent validity. However,
their relevanceo asynchronous backtracking at any given moment can change dynam-
ically (see [Bessieret al2001]). In other words, the usefulness of additional Nogoods
is not guaranteed.

The main experimental result of the present paper is that additional information
improves search efficiency. Sending additional Nogoods improves the performance of
asynchronous backtracking on the distributed meetings scheduling problem, in 3 dif-
ferent measures. The total number of messages decreases and so does the number of
computation cycles and the number of concurrent constraint checks (Figures 6, 7). The
largest improvement occurs for adding the first and second additional Nogoods. The
marginal gain, as more and more Nogoods are being added, becomes smaller. This is
evident for all sets of experiments (see also Figures 8). Problems with a larger number
of participating agents (i.e. 24), and a smaller number of meetings per agent are in gen-
eral easier. It will be interesting to perform further experiments with larger number of
meetings per agent. This will need much care during the process of problem generation,
as the resulting network is very dense and can become insoluble.

It is interesting to try and clear the impact of the additional information to the
present investigation, on the privacy of agents. To this end, one can think of internal con-
straints of arrival as private information. These constraints represent the set of meetings
in which a given agent participates. In the model of the present investigation an arrival-
time constraint of agend; can be resolved by another agehtafter receiving a group
of immediate Nogoods froml;. Take for example the following group of immediate
Nogoods, sent by agent; to agentd;: {(z], = 14 : 00 — z!, # 14 : 00), (], = 14 :

00 — !, # 15 : 00), (z] = 14 : 00 — !, # 16 : 00)} This set of Nogoods can be
interpreted by agem,; as a lower bound on the traveling time of agdnptfrom meet-



ing my, to meetingm,,, in this case two hours. In this way, each immediate Nogood
generates knowledge on the meetings and locations of the sending agent.

The effect of additional Nogoods on the efficiency of asynchronous search on gen-
eral random DisCSPs can also be studied. The generation of additional Nogoods for
general DisCSPs can be described as follows. Before sending back a Nogood, for each
value in the domain of the destination agent, check whether this value (combined with
the left hand side of the Nogood) is in conflict with all remaining values in the domain
of the current (sending) agent. It is clear that this computation can be heavy for a general
DisCSP and a general set of constraints. For the MSP family of problems the number
of allowed domain values is extremely small, due to the equality constraint. Therefore,
the computational effort required for additional Nogoods generation in MSP can still
reduce the overall concurrent effort.
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Abstract. We are interested in how personal agents who perform calenala-

agement on behalf of their human users can schedule meeffiegtively. A key

difficulty of concern is deciding when to reschedule an éxismeeting in favor
of a new meeting. We model the meeting scheduling problemspeeaial sub-
class of distributed constraint reasoning (DCR) calledititeemental, Limited
Information Exchange Multiagent Assignment Problem (Il&AR). Key novel-

ties of our approach include i) a focus on incremental scliregiui) scheduling

under a limited information exchange paradigm and, iingsnodels of other
agents to schedule more effectively. Our results are thafilBCR to show how
models of other agents can be used to improve problem sobérfgrmance.

1 Introduction

Meeting scheduling is a time consuming routine task thatnwdelegated to a
personal assistant agent promises to significantly redaite abgnitive load. A
key competency of agents who do meeting scheduling is thdityato coor-
dinate schedules such that all attendees of a meeting agriée siart time [3,
9, 2]. The problem is challenging in part because a) eachtafp@oses its own
schedule, i.e., scheduling distributed b) new meetings are introduced over
time, i.e., scheduling isicremental and c) agents arémited in the informa-
tion they can exchange. This article provides an approaanfutbagent meeting
scheduling using the Distributed Constraint ReasoningRPp@aradigm [1, 4,
5,10, 11]. Previous researchers have proposed DCR as afmknfor multia-
gent coordination and considerable progress has been naadthe last several
years. However, novel techniques are needed to addredsatenges described
above.

The main idea in this paper is to exploit given models of “stiieg diffi-
culty” with other agents’ in order improve meeting schedglperformance. The
specific hypothesis we investigate is that an agent can udelsof the calendar
density of other agents where we assume that the calendsitydencorrelated
with the agent’s rank in an organization. This is novel bseato our knowl-
edge, existing methods for DCR have not investigated hoake advantage of



learned or given models of other agents to aid in making sdhmgddecisions.
Further, we evaluate our approach inianremental schedulingaradigm, in
which new meetings must be scheduled in the context of atirgxischedule.
Existing DCR approaches have focused primarily on batchlpno solving and
are not designed for minimizing disruption to an initial givsolution. Finally,
we assume that communication between agents is limitedxpliely prohibit
the communication of information about variables betwegenés who are not
involved in the variable’s value assignment. This restitis motivated by the
meeting scheduling domain in which schedule privacy is adacern. Exist-
ing DCR algorithms typically communicate “context” infoation which does
not adhere to this restriction.

We first formalize the meeting scheduling problem by defirengpecial
form of DCR which we call the Incremental, Limited Informati Exchange
Multiagent Assignment Problem (IL-MAP). IL-MAP requiregents to assign
values to variables where multiple agents must agree o \adsignments but
are limited in what and to whom information can be commumidaiSecond,
we describe a basic distributed protocol for IL-MAP in whih initiator pro-
poses assignments to others who either agree or refuseiireged assignments
based on their own existing assignments. The protocol corgo our need for
limited information exchange by only communicating allalhieformation to
relevant agents. Third, we use this basic protocol to iflyat& using models
of scheduling difficulty with other agents to increase dffemess of the mul-
tiagent meeting scheduling process. Finally, we demaestrat our approach
improves scheduling effectiveness in an agent organizéierarchy where the
lower ranked agents have lower calendar density than theehiginked agents
in the hierarchy.

The multiagent meeting scheduling problem has been prelidovesti-
gated but methods for making effective rescheduling deassis lacking. Sen
and Durfee [9] formalize the problem and identify a familynegotiation proto-
cols aimed at searching for feasible solutions in a distetbumanner. However,
rescheduling of existing meetings or modeling of other &gémimprove per-
formance is not a major focus. Sen and Durfee also describateact-net ap-
proach for multiagent meeting scheduling [8] and in thisteat) rescheduling
and cancellation of existing meetings is discussed. Thie&rissues are raised
and arich decision making framework is presented but is in#ieoretical. Our
research represents a further investigation of some ofritieat issues raised
by them. Freuder, Minca and Wallace [2] have previously stigated meeting
scheduling within the DCR framework where the primary mation was to in-
vestigate tradeoffs between efficiency of scheduling ass & privacy, but not
issues of incremental problem solving or agent modelinghat@ddressed.



2 Meeting Scheduling as Distributed Constraint Reasoning

We view meeting scheduling as a distributed problem in we&th agent man-
ages and is responsible for its own calendar. A centralippdoach is also pos-
sible in which a single server is assumed to have accesshagaat's calendar
and makes scheduling decisions for all agents. Howeventsatized approach
has several drawbacks including that it requires agen&vieal potentially pri-
vate calendar information to the central server.

We use the Distributed Constraint Reasoning (DCR) paragligijto model
distributed meeting scheduling. DCR is defined by a set aélsbes where each
variable is assigned to an agent who has control of its valnd,agents must
choose values for their assigned variables so that a givesf senstraints are
satisfied or optimized. Constraints between variablegasdito the same agent
are calledntra-agentconstraints, while constraints between variables asdigne
to different agents are callédter-agentconstraints. To ensure that inter-agent
constraints are satisfied, agents must coordinate theicelod values for vari-
ables through a communication protocol.

2.1 The Multiagent Assignment Problem (MAP)

In this section, we introduce an important subclass of DCRlwkve call the
multiagent assignment proble(AP) . In MAP, we assume that agents must
map elements from one set, which are modeled as the varjableements of

a second set, which are modeled as the values. Importarglgsaume multi-
ple agents need to agree on the assignment of a value to awgikiable. Since
decision-making control is distributed among the ageis, ‘tagreement” re-
quirement raises many unique challenges.

We define MAP as follows.

- A={A1, Ay, ..., A, } is a set ofagents

-V ={W,,..,V,}is aset olvariables

— D ={dy,ds,...,dy} is a set olvalues

participantyV;) C A is a set of agents who are assigned the vari&hle
vars(A;) C Vis a set of variables assigned to agdnt

For each variablé/;, an inter-agenagreementonstraint is satisfied if and
only if the same value fror® is assigned td; by all the agents iparticipant{V;).
For each agentl;, an intra-agenmutual exclusiorconstraint is satisfied

if and only if no value fromD is assigned to more than one variable in
vars(4;).

MAP has some similarities to the classical “assignmentlprabfrom com-
binatorial optimization research[7]. Two key differenca® that a) MAP re-
quires distributed agents to agree on assignments and b) d8&B not yet



model degrees of solution quality, only valid and invalidusions. Further ex-
tension of MAP to model optimization problems is importautufe work.

2.2 Meeting Scheduling as MAP

We describe the multiagent meeting scheduling problenoviat by its for-
mulation as a MAP. Meeting scheduling requires meetingsetgdired with
timeslots subject to three constraints: a) each meetingsig@ed to exactly one
timeslot, b) each timeslot is paired with no more than onetimgeand c) all
the attendees of a given meeting agree on its assigned dim€&kk goal of the
following model is to represent these three constraints.

We define the meeting scheduling problem as follows.

- A={Ay, As,..., A, } is a set of agents.

- M = {My, My, ..., M, } is a set of meetings. We assume each meeting has

the same duratiod.

attendee§\/;) C A are the attendees of meeting.

meetingéA4;) C M are the meetings of whicH; is an attendee.

initiator (M;) € attendees(M;) is the designated initiator of meetirdd;.

- 7T ={T1,T5,...,T,} is a set of discrete non-overlapping contiguous times-
lots of lengthd.

— Sinit = {S1,52,...,5,} is a set of calendars. Ea}) is a mapping from
the meetings imeetingsA;) to timeslots in7. A calendars; is valid if and
only if a) each meeting is mapped to exactly one timeslot amtimeslot
has more than one meeting mapped to it, and b) for each mektingnd
for all attendeesd;, A; € attendeeg§\},), S;(My) = S;(Mjy). That is, the
calendars of all attendees of a meeting agree on its assigneslot.

The representation of meeting scheduling as MAP is strimighard. The
set of MAP variabled’ is given by the set of meetingst and the set of MAP
valuesD is given by the set of timeslotg. The participants of variable V;
correspond to thattendee®f meetingM;. The MAP intra-agent mutual exclu-
sion constraint prevents a timeslot from being double-kdand the inter-agent
agreement constraint ensures that meeting attendeesamtiee time.

Figure 1 illustrates the multiagent assignment problend (& solution)
with three agentsl,, A,, As, five meetings\{y,Ms,M3,M4,Ms and four times-
lots. Note that for each agent, each meeting is assigned ifteeedt value in
order to satisfy the intra-agent mutual exclusion constr&etween agents, the
variables corresponding to the same meeting are assigeesathe value in
order to satisfy the inter-agent agreement constraint.



Variables and Participants Solution:

Mo A AL [ M [ My, [ Mg | |
. 1 1 2 5
3- 72, A M M M
e e 2 T My [ My [ My
Mz A LA,
sh A A Ay M ] WMy T Wy ]
Values: T1 T, T3 T4

Fig. 1. Meeting Scheduling as the Multiagent Assignment Problem.

2.3 IL-MAP: MAP in Incremental, Limited Information Exchan ge
Domains

We further extend the scheduling problem to introduce thé/IAP problem
in which agents must solve MAP in an incremental fashion evhihiting the
information they can exchange. These two features areidedanext.

Incremental In an incremental MAP, new variables and associated contstra
are added to the problem over time and must be integratechmexisting
assignment. In meeting scheduling for example, new mestimge over
time and must be scheduled in the context of an existing dakein addition
to the elements of MAP defined above, in the incremental @ergie are
also given:

— Sinit = {(Vl, dl), (VQ, dj), ceny (Vm, dk)} is an initial solution.

— Vi1 is a new variable to be assigned a value.

— participant{V,,,+1) C Ais a set of agents who are assigned the variable

Vinat-

The key difficulty that arises in incremental MAP is that ¢ixig assign-
ments may need to be changed in order to successfully accdatenthe
new variable but it is difficult to determine in advance whafanges will
result in a set of valid schedules.

Limited Information Exchange Although agents must exchange some infor-
mation in order to obtain feasible solutions, the informatexchange pro-
cess is limited due to the distributed nature of the problerparticular, we
assume the following condition.

— Agents do not communicate information about a variable entgwho
are not participants in that variable.

For example, the id of a variable, its current value, or thdigipants in
the variable are not communicated between agents who at®tiopartic-
ipants in the variable. A key challenge is to schedule dffelst under this
condition.



procedure initiate(lM;):

()
)
®)
(4)
®)
(6)
@)

initiator(M;) «— A;

t— GetTimeslot(M;)

if tis null:
return

status{/;,t) < PENDING

for each Aj € attendees(M;):
send (PROPOSEM;, t, A;) to A

procedur e when recei ved(PROPOSE,
M;, t, initiator):

(8)
9)
(10)

(11)
(12)
(13)
(14)
(15)
(16)
17)
(18)
(19)
(20)

if existsM}, where status{/y, t) is PENDING:

reply «— IMPOSSIBLE
else ifexists M}, where
status(//y, t) is CONFIRMED:
if BumpingRule(M;, M) is true:
statusi/y,t) — BUMPED
status{/;,t) — PENDING
reply< PENDING
else
reply— IMPOSSIBLE
else
statusi/;,t) «— PENDING
reply— PENDING
send (REPLY, Mj, t, reply, A;) to initiator

procedur e when recei ved(REPLY,
M;, t, reply, Attendee):

(21)
(22)

(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
@37)
(38)

agentView{/; t,Attendee) < reply

if exists t’ wherev Ay, € attendees(M;),

agentView(//;, t', Ay) is PENDING

and statusi/;, t') is PENDING
statusf/;, t') «— CONFIRMED
resol ved(M;)
for each A € attendees(M;):

send (CONFIRM, M;, t') to A

if existsM}, where status{/y,t’) is BUMPED:

r eschedul e(My)
else
t” — GetTimeslot(M;)
if t"is null:
resol ved(M;)
for each Aj € attendees(M;):
send (FAIL, M;)to Ay
else
status{/;,t") — PENDING
for each Aj € attendees(M;):
send (PROPOSEM;, t", A;)to Ay

procedure when recei ved(CONFIRM, M;, t):
(39) statusi/;, t) — CONFIRMED

(40) resol ved(M;)

(41) if existsM}, where status{/y,t) is BUMPED:
(42) r eschedul e(My)

procedure when recei ved(FAIL, M;):
(43) resol ved(M;)

procedure when recei ved(RESCHEDULE M;):
(44) reschedul e(My)

procedur e reschedul e(M;):

(45) if A; equalsinitiator(M;):
(46) if exists t where status(; t) is
BUMPED or CONFIRMED:
(47) status{/;, t) — IMPOSSIBLE
(48) for each Aj € attendees(M;):
(49) for each t where agentView{(/;, t,Ax) is
IMPOSSIBLE or PENDING:
(50) agentView(/;, t ,Ax) < POSSIBLE
(51) initiate(M;)
(52) else
(53) send (RESCHEDULE Mj) to initiator (Mj)

procedure resol ved(M;):
(54) for each t where status{/;, t) is PENDING:

(55)  status{/;, t) — POSSIBLE
(56) if exists M}, where statusi/y, t) is BUMPED:
(57) statusi/y, t) « CONFIRMED

Fig. 2. Algorithm for AgentA;



3 A Solution Technique for IL-MAP in Meeting Scheduling

We are interested in solution techniques for IL-MAP in thateat of distributed
meeting scheduling. We first describe a basic negotiateimémvork upon which
our technigues are applied. Next, we describe the problerascheduling ex-
isting meetings. Finally, we present our approach for nmgkims rescheduling
decision effectively.

3.1 Basic Negotiation Protocol

Sen and Durfee [9] describe a basic negotiation protocahfeeting scheduling
in which agents negotiate imunds Each meeting has a designated initiator
who manages the negotiation of the meeting by proposingstane collecting
responses from the other attendees in a sequence of roarexh round, each
attendee responds with a PENDING (accept) or IMPOSSIBLE¢temessage
for the proposed time. The initiator collects the respoimseach round and does
a set intersection to try to find a mutually acceptable tirha time is found, the
meeting is CONFIRMED (scheduled) in one additional round Hre process
terminates. Otherwise, the process continues in roundkthatinitiator runs
out of times to propose in which case the process terminatadailure.

We adopt a variant of this basic protocol in which attendeay tentatively
bump a CONFIRMED meeting in favor of a new meeting in orderdordase
the possibility of scheduling failure. We say it is tentativbumped because an
agent waits until the new meeting is confirmed in the bumpeediot before
initiating rescheduling of the bumped meeting. If the newetimgy is confirmed
in some other slot or fails to be scheduled, the bumped ngeétine-instated
into its original slot. If an agent needs to reschedule a mgeif which it is not
the original initiator, it sends a RESCHEDULE message toititeator, who
will be responsible for restarting a negotiation episodetie meeting.

Details of the algorithm are shown in Figure 2. Two functiGhgTimeslot
and BumpingRule are purposely left unspecified in Figure @etTimeslot
returns a free timeslot from the calendar or null if one damsemist. This func-
tion encapsulates a local optimization routine which raaikhe free timeslots
according to a complex set of user preferences, and retouertsp ranked time.
Further discussion is out of scope of this paper and we raterd¢ader to [6]
for more details. ThdBumpingRule function returns true or false, and encap-
sulates the reasoning of the agent about whether one meétindd be bumped
for another. A technique for making this decision is desim rest of this next
section.



3.2 The Problem of When to Reschedule

A key algorithmic decision to be made is when to bump an exgsineeting

in favor of a proposed meeting. More specifically, an attendemust make a
rescheduling decision when it receives a proposal for mgéti; at time slotl;

but A; already has a meetiny, confirmed in slofl;. A; has to decide between
accepting the proposal or rejecting it. If the agent decidescept the proposal,

it may need to reschedul®/s with the other attendees. This rescheduling may
cause the other attendees in turn to bump other meetingshwhin result in
cascading disruption costs throughout the set of agentsaltérnative is for4;

to reject the proposal fab/y, but this entails risk also because the scheduling of
M7 may ultimately fail. It is difficult to determine in advancénigh is the better
decision because other people’s schedules are not diudlrvable.

Fixed strategies such as always rejecting or always bunfpihip be effec-
tive. Table 1 shows a comparison of the average performaintde dwo fixed
strategies. (The exact experimental set-up is describedoire detail in Sec-
tion 5. These results are with 20 agents who have initialnckle densities of
85%.) The “failures” column shows that for the Never-Bummatggy a mu-
tually free timeslot could not be found in 49 out of 50 casdse Ttimeouts”
column shows that for the Always-Bump strategy the nedotiafailed to ter-
minate after a given amount of time (10 minutes) in 50 out o€&€es. In these
cases, a cascading effect caused many meetings to be bumipedtimately a
maximum time limit was reached.

Table 1. Empirical analysis of two strawman strategies illustraties need for intelligent
rescheduling techniques

Strategy RoundsMsgg FailuresTimeoutg
Never-Bump | 6.88 | 44 | 49/50 -
Always-Bump 614 (2736 - 50/50

3.3 Modeling Scheduling Difficulty

We propose a method for making rescheduling decisions icwdigents use a
model of “scheduling difficulty” with other agents. Such netalcan be given
to an agent or they can be learned by the agent over time.drpéper we are
interested in how a scheduling difficulty model, once ol#dincan be used by
an agent to improve rescheduling decisions. Also, we naerttore complex
models of scheduling difficulty are possible than the onsgmted here. How-
ever, such models require more effort to construct and areyumaranteed to
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Fig. 3. A model of relative scheduling difficulty with four agentls,, A3,A4 and As.

improve scheduling. We opt for the following model which @wputationally
convenient and can be shown to improve scheduling perfarenan

Let SD; be a number denoting tleeheduling difficultyof an agent4;, i.e.,
if SD; > SD;, then scheduling a meeting with agefitis expected to be more
“difficult” than with agentA;. SD is measured in scheduling difficulty “units”.
We use this factor to encapsulate the many relevant feathatontribute to
scheduling difficulty with another agent. Assuming thatreagent is operating
on behalf of a humarn§' D could take into account factors such as stubbornness
or accessibility to email communication. We will considatendar density as
associated with position in a organization as a key facter.définek; ; as the
relative difficulty for scheduling a meeting with; versus scheduling a meeting
with A;. It makes natural sense for this relation to be multiplieatnd transi-
tive. That is, for three agentd,, A3, A4, we require thaky 3 x k3 4 = kg 4.

Example: Figure 3 showsA;’s model of relative scheduling difficulty with
a group of four other agent$,,A3,A4,, andAs. The arrow fromAs to A4 with
magnitude 3 represents the relati® 4, = 3 x SDy,, i.e., scheduling a meet-
ing with A4 is 3 times “more difficult than” scheduling a meeting with.

Given a model of scheduling difficulty, we now have a way torteh deci-
sion rule for when to reschedule a meeting in favor of anof@&ren a meeting
M;, Ay, computes the difficulty of schedulingy/; as

Difficulty(M;) = > SD; (1)
A;€cattendees(M;)—{ Ay}

Finally, the bumping rule is given as follows. An agent bunapmeeting
M; in favor of a meetingV/; if and only if the followingBumpingRuléM;, M)
evaluates tarue:

Difficulty(M;) < Difficulty(M;) (2)



4 Example of a Meeting Scheduling Negotiation

We describe an example scheduling negotiation episodévingoan agent4;.
Figure 3 showsA;’s model of relative scheduling difficulty with four other
agentsA,, A3z, A4, and As. Details of the negotiation using this model is shown
in Figure 4. Each box represents the state of agkrd calendar at a given
time. Arrows denote incoming and outgoing messages. Eadsage is 3-
tuple of meeting id, time, and meeting status, where statestherpossible,
pending, bumped, confirmed impossible In this examplegattendees(M1) =
{A1, Ag, A3}, attendees(M2) = { A1, A4}, andattendees(M3) = { A1, As}.

At time 1, A; has meeting M1 currently confirmed at time 10 am and re-
ceives a request from, who is the initiator of meeting M2. The time proposed
is 10 am, which conflicts with M14; must now decide whether to rejedt,’s
proposal, or accept it and bump meeting M1. Referring to feiliand Equa-
tion 1, A; computes the scheduling difficulty of M1 89Dy + SD3 =141 =2
and the scheduling difficulty of M2 a§D, = 3. Since Difficulty(M1) <
Difficulty(M2), A, decides to bump.

At time 2, A, changes the status of M1 to bumped, and sets status of M2 as
pending for 10 am, and a response is senljo At time 3, as an example of
concurrencyA; receives a request frod; for 10 am for a new meeting M3. At
time 4, A; responds impossible since 10 am is already pending for M&liRg
meetings are never bumped (only confirmed meetings can bpdm)imAt time
5, Ay hears back fromi, that M2 should now be confirmed for the previously
proposed time of 10 am. At time 8!, sets the status of M2 to confirmed, and
begins the rescheduling of M1 by proposing a new time to thercattendees
A, and As. (This example has assumed tifgtis the initiator of M1. If it were
not, then in our protocol4d; would have sent a message to the initiator of M1
indicating that 10 am is now impossible, and the initiatorugdoe responsible
for restarting the negotiation and rescheduling M1). Atdiif) A; hears back
from A, that 11 am is pending in its calendar for meeting M1. At time43,
records this information in its current state. At time 9 ariy A, hears back
from A3 and records the response. At time M, has now heard back from
all attendees for meeting M1, and all have agreed on 114nsends the final
confirmation message to all attendees. We end the exam@gelhgrealize that
since A; or A3 may have bumped meetings at 11 am to accommodate
request for meeting M1, the scheduling episode may not be ove

5 Experimental Results

We present experimental results comparing rescheduliagegies that use a
model of “scheduling difficulty” with other agent versusagirgies that do not. In
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Fig. 4. An example negotiation between an agent and four other sigentls, A, and As.



the first strategy, denotedtt, agents simply compare the number of attendees
and bump the meeting with fewer attendees when there is aictdpdtween
two meetings. They do not use knowledge about other agemtsking their
bumping decisions. In the second strategy, denstBdwe assume that agents
know the rank of other attendees and use this information akenbbumping
decisions, i.e., they can assign a “scheduling difficulty&ach attendee.

5.1 Experimental Setup

We evaluate each strategy by averaging measurements ousrtgenof “runs”.

Each run consists of two phases: a problem generation plotleerdd by a
problem solving phase. We describe each phase in turn. laxpariments, we
report measurements from the problem solving phase only.

Phase 1The problem generation phase is centralized. We autonigtigan-
erate a set of agentd each with a desired initial schedule density. Each
agent's calendar has 50 timeslots to simulate a 5 day 10\otk week.
Next, we automatically generate and schedule meetingseleetwandom
subsets of the agents until all calendars are filled to thesirdd density.
The attendees of a given meeting are chosen according td@mnian-
dom distribution. The number of attendees for a given mgasnchosen
according to a distribution in which meetings of more peakeless likely
than meetings with fewer people. Every meeting has at leasattendees.
Finally, we generate one additional new meetidg,, 1 that must be sched-
uled in the problem solving phase. The attendees of the nestimgeare
chosen to be a random subset of the agents. In our experinteatsumber
of attendees of the new meeting is fixed to 4. One of them isorahgdcho-
sen to be the initiator. Every generated problem is ensunave a solution.

Phase 2 The problem solving phase is completely distributed. Thal goto
find a timeslot for the new meeting\/,,, .1 } while successfully reschedul-
ing any bumped existing meetings. That is, the goal is to fiméssign-
ment of timeslots to meetings i U {M,,,11 } that satisfy the intra-agent
and inter-agent constraints. We measure numb&ilofeswhich is defined
as the number of meetings ikt U {M,,+1} unassigned a timeslot after a
given amount of time. Failures may occur either becausenttiator gives
up scheduling the meeting or a max time elapses. Note thatuimder of
failures in a given run can be greater than one when multietimgs are
bumped and fail to be rescheduled.

5.2 Experiments in a Hierarchical Agent Organization

Human organizations typically have hierarchies in whigjhler ranked people
have denser calendars than lower ranked ones. We hypathatsike density of



an agents calendar and thus her organizational rank, is & gealictor of the
difficulty of scheduling with that person.

To evaluate our hypothesis, we begin with an extreme casemymaestwo-
level organization hierarchy. We divide agents into twoaasize groups of
“busy” and “not busy” agents, where the initial density ofiedules is fixed to
90 percent and 30 percent, respectively. The schedulifigudty model used
by the S D strategy in this scenario is defined$8y,,s, = 3 X SDponbusy-

Figure 5 contrasts two strategies as we increase the tatabeuof agents.
The graph shows th& D strategy is more effective in terms of preventing
scheduling failures than thétt strategy. At 50 agents, theD strategy results
in a failure rate of 0.28 on average, while the simpler styatétt results in 0.76
failures on average. Failure rate is computed by summinguhaber of failures
over all runs and then dividing by the total number of runs. d&€50 runs for
each datapoint where each run follows the methodology iestabove. This
graph shows that the use of our scheduling difficulty modelhie to reduce
scheduling failures. Also, the high failure rate caused hgomtrolled cascad-
ing of bumps, as we saw in Table 1 for the Always-bump stratisggvoided.

Next, we evaluate the effect of varying our scheduling diffic model in
the busy/non-busy hierarchy. We use a scheduling diffiomodel defined as
SDpysy = k X SDyonpusy @and examine the effects of varyikg The same set
of scheduling problems are used for each valué,ate., the only difference
is the rescheduling decision rule used by the agents. Weceita changes in
performance will level off as the scheduling difficulty miplier % is increased.
This is because after some point, an increasenio longer modifies an agents
rescheduling decisions. For example, a meefihgwith 4 non-busy attendees
will be bumped in favor a meeting/, with one busy attendee whén= 5.
M, will continue to be bumped it is increased. Thus increasirkgshould
stop having an effect on agent decision making at some peigiwre 6 shows
empirical data consistent with our hypothesis. An orgaitnaof 10 agents was
used. Each datapoint represents the average over 50 rumgrdph shows that
the effect on failure rate levels off as predicted.

Finally, we experiment with a more complex scheduling diffig model
where there are four levels rather than just two. We use thanization hier-
archy shown in Figure 7 with 8 agents in each level, for a tof882 agents.
We experiment with four levels with initial schedule deiesitof 90,70,50,30
percent respectively. We defiteD;, = 2 x SDp,, . Thatis, the difficulty of
scheduling with an agent at levels twice as difficult as scheduling with an
agent at level + 1. The empirical results over 500 runs are shown in Figure 8.
The failure rate is reduced from 0.28 using th& strategy to 0.02 using the
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SD strategy. We can conclude that tié strategy significantly reduces the

number of scheduling failures.

6 Conclusion

We have modeled the multiagent meeting scheduling probteanfarm of dis-
tributed constraint reasoning in which agents must assiget ®f values to a
set of variables. We presented a novel approach to the pnablevhich agents
use given or learned “scheduling difficulty” models of otlagents in order to
decide when to change their existing assignments in ordacdept proposals
from others. We have shown that this approach controls treiatrof bumping
so that the negotiation is able to terminate in a given amotine, while also
reducing the scheduling failure rate over an alternatiyer@gch that does not
take into account such models. In future work, we are intedeis how an agent
can automatically learn these models from past negotidigtory.
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Abstract. Not every research paper in DisCSP evaluates algorithnieisame
way. Motivated by this fact, we revise some elements of tlea &f distributed
algorithms as well as distributed constraints, which cdp tedevelop a well-
founded methodology for evaluation of DisCSP algorithmkh@ugh prelimi-

nary, we suggest a number of points which should be considesich method-

ology.

1 Introduction

In this paper we aim at collecting a number of thoughts ands@out the task of how
evaluate algorithms for solving DisCSP. As researchersigtniloblted constraint satis-
faction, we often develop new versions of existing proceduwe devise new heuristics
and we produce new solving algorithms. To assess the pabictiportance of these new
developments, their evaluation is a crucial point. Fachig tssue, we often consider
guestions like,

— what is the most adequate environment to test our algorizhms
— on which benchmarks should they been evaluated?
— which are the most adequate parameters to measure alguriffiiency?

Often, different research groups have different answethdse questions. Our goal
is to achieve a consensus in the community of distributedstcaimt satisfaction, in
order to establish a common acceptadthodologyn the way algorithms should be
evaluated. Obviously, this methodology should follow st methods in the area of
distributed algorithmgsee [4] for a comprehensive review of this area). In additio
since constraint solving is NP-complete, many solving atgms have the same worst-
case complexity. To really evaluate these algorithms irctime, we have to identify
some parameters whose measure could give an idea of the hof@asources used in
the algorithm execution. The methodology has to answer ywes of questions. First,
to definewhatparameters should be measured (total CPU time, number lefsgyamn-
current constraint checks, number of messages exchartged Second, to defingow
this can be measured, in a double sewsewhich environmendvaluation is performed
(reality vs. simulation, several computers vs. one compuaedon which benchmarks

* This research is supported by the REPLI project TIC-2002704C03-03.



(distributed random, distributed versions of existing C§#ecific DisCSP appplica-
tions, etc.). As a consequence, we expect that comparisongdifferent approaches
would be facilitated, and the value of scientific communaatvould be promoted.

In the following, we discuss some of these issues (the quresfibenchmarks is not
considered) based on our experience. We strongly beliet®ther research groups can
provide valuable ideas and suggestions, and we urge themdo.d

2 Preliminaries

There are several definitions of distributed constrains&attion problems. Without
trying to be exhaustive, we think that all of them share thiefang idea. Adistributed
constraint satisfaction probleifDisCSP) is a CSP which is distributed among several
agents. Each agent contains a part of the problem, but na agetains the whole
problem. Some overlapping may exist among agents, althoogtwo of them can
contain exactly the same initial information. Because sogasons (privacy, size, etc.),
the information of each agent cannot be transferred inton&raleserver, where the
whole problem could be solved by classical, centralized €8%ing methods. In the
distributed setting, the task is to find a solution of the peab(an assignment of all the
variables satisfying all constraints), by exchanging rages among agents.

Depending on the model that we assume about the timing of®irethe distributed
system, we obtain different types of algorithms. In [4]gatiming models are consid-
ered, which are informally described as follows:

1. The synchronous modéThis is the simplest model to describe, to program and to
reason about. We assume that components (agents) takesstepsneously, that
is, that execution proceeds in synchronous rounds.”

2. The asynchronous mod&iWe assume that separate components (agents) take steps
in arbitrary order, at arbitrary relative speeds.”

3. The partially synchronous modéWe assume some restrictions on the relative tim-
ing of events, but execution is not completely lock-step &sin the synchronous
model.”

These three timing models generate three types of algasiftonDisCSP solving.
Broadly speaking, a synchronous algorithm is based on ttiemof privilege a token
that is passed among agents. Only one agent is active atraayttie one having the
privilege, while the rest of agents are waitihg/Vhen the process in the active agent
terminates, it passes the privilege to another agent, wivehbecomes the active one.
In an asynchronous algorithm every agent is active at ang,tamd it does not have to
wait for any event. A partially synchronous algorithm in ietlveen of these two types.
An agent running a partially syncronous algorithm may regjto wait for some special
event, but not for every event.

To solve a DisCSP instance, the three types of algorithrfexdiif their functionality
and efficiency. Considering functionality, asynchrondgssthms are the most general

1 Except for special topological arrangements of the coimttgaph. See [2] for a synchronous
algorithm where several agents are active concurrently.



and portable, because they impose no assumptions on thgtahcomputation steps.
Usually, they are more robust and offer more privacy tharother two types. Regard-
ing efficiency, as the amount of resources required to coenggblution, there is some
debate on which type of algorithm is more efficient. We comeklzn this issue in the
Section 5.

3 Evaluation

Two complexity measures, on time and on communication, epgsed in [4] for dis-
tributed algorithms that exchange messagdene complexitaims at bounding the time
required to compute a global solution by the whole syst@ammunication complexity
considers the amoung of network resources needed to achanlation.

3.1 Time Complexity

For synchronous algorithms, [4] proposes using the numberumds required to find
a solution as the time complexity measure. For asynchroalyasithms, [4] requires
to have an upper bound on the time between succesive chaheessk to perform
a step. This is called a timed execution. The time of the eigetite supremum of the
times that can be assigned to such an event in all timed égasuSince CSP solving is
NP-complete, this worst-case expression is exponentéhaes not help in clarifying
the relative efficiency of different algorithms.

Alternatively, [3] proposes a new measure of time compyea#t counting the num-
ber of constraint checks that cannot be performed condlynehen solving a DisCSP.
A constraint check occurs when a value tuple is checked afainonstraint. In clas-
sical CSP itis considered an atomic operation, which ha® todsformed for (almost)
all constraint algorithms, so the number of constraint kkes a good estimation of
the search effort. Inspired in the logical clocks of Lampsit in [3] the number of
concurrent constraint ckecks is computed as follows. Egeimtekeeps a counter of its
own performed constraint checks, and every message tlestdsscontains the value of
that counter (when it was sent). When the receiver gets teasage, it updates its own
counter to the maximum between its counter and the counteaiceed in the message.
When the algorithm stops, the maximum of the counters isdta toncurrent con-
straint checks, and approximates the size of the longeseseg of checks that cannot
be done concurrently.

At the end of the search, the number of concurrent constchietks performed
approximates the runtime of the algorithmif it is assumed the elapsed time between
two constraint checks not performed concurrently is apipnately the same. However,
this assumption does not hold in presence of random deldgs partially synchronous
algorithms with unbounded waiting episodes. In this lasecavaiting episodes can be
counted at agent level. Following a similar approach to comnt constraint checks,
we can assess the longest sequence of waiting episodes edrndlot be performed
concurrently.

Other measures can provide complementary informationiristance, the distribu-
tion of constraint checks really performed by agents in #t&ork gives some idea of
how balanced is search effort among agents.



3.2 Communication Complexity

For the three timing models considered, [4] considers tie tlumber of messages
exchanged as the measure of communication complexity. Hessages are counted
depends on the communication model used, described inc8e28. This is also the
common position of the distributed constraints community.

The size of messages can also be taken into account as sgcaretesure, follow-
ing [4]. The cost of sending a message is the cost of settangdmmunication link plus
the cost of properly sending the message. The cost of seittngommunication link
is paid when the first message is sent through that link. Teeafgroperly sending a
message depends on its length (the message size plus tlee hdddd by the commu-
nication software). So message size has to be considemeLiabdy when comparing
algorithms exchanging messages whose sizes differ in rharea constant.

Assuming the Unicast communication model (see Section &@)idea of con-
current constraint checks can be applied to messages. ach lkeeeps a counter of
the sent messages, and every message contains the valwd obdhter when it was
sent. When the receiver gets that message, it updates itsaurer to the maximum
between its counter and the counter contained in the mesgégeall this value con-
current messages, and gives an idea of the length of thedbegguence of messages
that cannot be done concurrently.

Other measures can provide complementary informationiristance, the distribu-
tion of the number of messages sent/received by agents meth@rk gives some idea
of how balanced is the communication among agents.

3.3 Communication Model

Itis often the case that algorithm description and analysisot consider the underlying
communication model. However, a real-case study shoulgttak into account, as the
communication costs may vary depending on which model id.ugé& analyze two
communication models:

1. Unicast(also calledsend/receiver point-to-pointcommunication). On a unicast
network, messages are sent one by one to each of the resgplams requiring
linear resources on the number of agents. This is the comnoalelmised in exper-
iments and simulations.

2. Multicast On the other hand, advantage could be taken from multiestanks,
such as IP networks, on which agents can subscribe to a gnoup@ssages sent to
that group do not imply any additional cost per agent. Thisehprovides constant
time and resources, irrespective to the number of recepient

Since this is an implementation issue, it makes sense tetreftach of these mod-
els was actually used when presenting experimental restiksiot uncommon to con-
sider “broadcast” communication as a single process, winégct the implementation
means sending one message to each receiver.



4 Simulator

Ideally, to evaluate a new algorithm one should haxadedicated processors connected
to a common network on which tests would be done. Howeves siiiting is often not
available in most of our labs. Even if there is a number of corars available, the
workload of each computer and the load of the communicatework are out of the
control of the experimenter, and these aspects have a samifmpact on the efficiency
of the algorithms. Because of that, we consider that sinaranto a single computer is
a suitable alternative to make the tunning and most of theraxgntation for DisCSP
algorithms. After that, some algorithms can be tested orahsgtting, assuming the
resources needed to perform a field test. In the followingcaomsider the different
options for DisCSP algorithms when are evaluated by sinarain a single computer.

Usually, DisCSP algorithms are described in terms of agékisagent is an au-
tonomous entity that contains a part of the problem, it i dblperform its own rea-
soning process and to communicate with other agents. In #-task computer (for
instance, a desktop with Linux operating system (OS)), actlioption is to imple-
ment each agent as a different task, all having the sameitgribhe OS scheduler is
in charge of activating / desactivating the agents, that tantrol of the CPU as any
other task in the system. Communication among agents isnpeefl using standard
task communication facilities (usually implemented udiiigk storage). This approach
is relatively simple to implement but present some drawbaEkst, it depends on the
OS, so results obtained in computers with different OS coolche directly compara-
ble. Second, even using the same computer and the same iemlgian, it is difficult
to reproduce exactly the same results when repeating the egperiments. There are
some sublte factors (such as the mail server, the netwodk the disk storage) which
change between executions and are out of the control of {heriexenter. Because of
that, exact reproduction of previous results is almost issfiale with this approach.

To overcome this fact, an alternative is to use a simulatat ¢ffers the same fa-
cilities as the OS, but allows one complete control. Thisusator allows agents to
execute, performs the scheduling among agents and prasédesiunication facilities.
With this approach, results are reproducible, the samerigrppt generates the same
results (providing random elements are initialized with $ame seed).

The first simulator of this kind appears in the seminal workokoo [6, 7]. Each
agent keeps its own clock, which is incremented at each @fclmputation. One
cycle for an agent consists of reading all its incoming mgssaprocessing them and
writing all messages generated as answers. It is assunmied thessage sent at time
is available to the receiver at time+ 1. This means a kind of synchronicity in the acti-
vation of agents, which is somehow contradictory with thaleation of asynchronous
procedures. We come back on this point in Section 5.

Another scheduling policy is to activate agents randomlyaradom number be-
tween 1 andh determines the identifier of the agent to activate. Whenabent ter-
minates, the same process selects the next agent to acliiéde@pproach seems to be
more adequate to evaluate asynchronous procedures. @ttezhuiing policies could
offer some interesting alternatives.



5 Discussion

In this Section we contrast some of the criteria presentedieakvith current practices
in the evaluation of DisCSP algorithms. With this exercise identify some aspects
which could be improved in distributed algorithm evaluatio

5.1 Evaluation Parameters

Time and communication.Often we see DisCSP algorithms which are evaluated con-
sidering time or communication, but not both aspects. Ineganwe think that this
approach provides incomplete information and does notvatloe to assess globally
the amount of resources needed for an algorithm. Followiaigdard practice in dis-
tributed algorithms, we propose to use these two measures wbaluating DisCSP
algorithms. Some researchers have suggested to aggreghtenbasures in one (or
translate one measure into another). When possible, thi®aph is attractive because

it allows us to deal with a single number. However, in manyesas cannot be done
without making arbitrary assumptions, difficult to justifg such cases, we suggest to
keep both measures separated.

Timing model. Evaluating an algorithm should follow methods which arecagee for
the timing model assumed by the algorithm. Synchronousittgos can be evaluated
using the number of rounds as time complexity measure. Hexvagynchronous algo-
rithms should not be evaluated using methods that assumecarenous model (such
as the number of rounds).

An interesting question is the evaluation of partially dyrmmous algorithms, es-
pecially on those parts which require waiting for some ewentsed by other agents.
During a waiting episode, an agent may not use its own ressurat it is causing some
delay to agents which require its input. Waiting episodeshmcounted at agent level.
In addition, following a similar approach to concurrent staint checks, we can assess
the longest sequence of waiting episodes which cannot beucamnt.

Communication model. Most of DisCSP papers does not deal explicitely with the
communication model. It is usually assumed that when antagsmds a message o
other agents, this causgphysical messages in the network. In other words, the unicas
model is implicitely assumed. This is fine, the only conceenehs that the communi-
cation model should be made explicit, so algorithms coulevaduated using different
models. This will bring closer the DisCSP paradigm to reahowinication networks,
which finally could promote the use of DisCSP algorithms fiagtical applications.

Message sizeéWhen messages of different sizes are present in DisCSHtalgst usu-
ally size differences are neglected and the number of messaghe only evaluation
parameter considered. We believe that this is not a faircgmr and the message size
cannot be ignored, especially when message sizes diffeoia than a constant (for in-
stance, in a function that depends on problem dimensiorssuygest to take message
size differences into account, as suggested in the areatofudited algorithms [4].



5.2 Processing Messages: One by One vs Packets

Asynchronous DisCSP algorithms are often described asguthat agents react in-
mediately after receiving a message: they process messagdxy one. However, some
algorithms are evaluated processing messages by packetgeat reads all messages
that are waiting in the input buffer and processes them asaewtt is worth noting
that these two strategies may produce quite differentt®sohsidering the evaluation
parameters described above.

The motivation of asynchronous algorithms for processiregsages by packets,
instead of one by one, is to prevent useless work. A simplmpl@occurs when two
consecutive messages arrive from the same agent, infothrang has taken two differ-
ent values. Obviously, the first message becomes obsolst®asas the second arrives.
All the work generated by processing the first message amd extssages that this
processing might be caused, could be saved if the agent vmauelknown the second
message. Somehow, this idea was mentioned in [7] and [8pmRlg¢cin [1] a formal
protocol for processing messages by packets is proposed.

Informally, when any agent processes messages by pacdkétst reads all mes-
sages that are in its input buffer. Then, it processes all me@ssages as a whole, ignor-
ing those messages that become obsolete by the presenceldramessage. The agent
looks for any consistent value after its agent view and itgonal store are updated with
these incoming messages.

Thus, every outgoing message that an agent will send is qaesee of the previ-
ous incoming messages because all of them update the agenbefore agent checks
consistency. Therefore, before agent looks for a congigtdne, the agent’s concurrent
counter has to be updated to the maximum value between itcoumter before start-
ing to process the packet and the maximum of all concurremttes of all messages
contained in the processed packet.

Empirically, we have tested both types of message proagssimistributed binary
random problems using two algorithms: one asynchronousaagartial synchronous.
The former is the well-knowABT algorithm [6, 7]. The latter i&aBT-HyH1], an novel
ABT-like algorithm which introduces some synchronizationm®ito avoid sending
redundant messages. It can be seen as a patrtially synclsralgmrithm.

In our experiments, we have 16 variables/agents (16) and 8 values per variable
(m = 8). The connectivity of the network is set to 045 €0.5). On Table 1 and Table2
we report results averaged over 100 executions in termsedbtlowing parameters:

— the sum of all constraint checks performed by all ageftp (

— the number of concurrent constraint checks:)

— the total number of messages exchangees(s)

— the number of concurrent messages, computed in the samesway (@mess)
— the total number ofnfo messages exchangea (o)

— the total number oBackmessages exchangéd k)

— the total number oAdd-Linkmessages exchangédén(k)

— the number oBackmessages that are obsolete when are receibed)(

Regarding the communication cost, the number of messagbsueged in both al-
gorithms processing messages by packets is lower thangsingemessages one by



messages processingcc ccc | mess|cmess info | back|link| obso
one byone [92,86(23,14833,1843,63525,4137,733 384,824
by packets  |77,55035,40831,9865,55824,8777,770 39 |2,339

Table 1.Results in the pick of difficulty foABT with both types of messages processing

messages processingcc ccc | mess|cmess info |back|link| obso
one by one 57,36422,72024,1074,25019,7204,437 37 (1,567
by packets  |56,68(22,60323,9634,22919,6604,303 67 |1,525

Table 2. Results in the pick of difficulty foABT-Hybwith both types of messages processing

one. Considering the number of concurrent constraint &)qmlocessing messages by
packets increases the number of concurrent constrainkslveith respect to process-
ing messages one by one. However, the number of obsoletagessdecreases when
agents process messages by packets. This phenomenon ean beter if we compute
the following ratios:

— ratio of concurrency of constraint checks,

rece =1 2% (1)
ce

— ratio of concurrency of messages,

Cmess

rem—=—1— )
mess
— ratio of information quality ofBack messages,
obso

g — 1 — 3

i back 3)

The ratiorcee can give us an idea of how concurrent is our algorithm. Onresit
ratiorcce and ratiorig can help us to measure the use of the resources of the network.
These parameters are easily extended to synchronousthfgseriln themycee = 0,
remess = () andrig = 12,

On Table 3 and Table 4 we show the results of computing theses i the ex-
perimental results reported on Table 1 and Table 2. Regg/AlRT, we can see that it
becomes less concurrent when messages are processed bispaltkough the qual-
ity of the information is higher. RegardildBT-Hybwhen messages are processing by
packets, the concurrency of the algorithm and the qualitshefinformation remains
approximately the same as processing messages one by dadappens because an
ABT-Hybagent can be in avaiting statewithout sending any outgoing message. In
that state, the agent receives &llfo messages updating its agent view accordingly.

2 Except for special arrangements of the constraint graptiessribed in [2]



messages process|ngece [rcmess  rig
one byone |0.75070.89050.3757
by packets |0.54340.82620.6692

Table 3. Ratios forABT algorithm with both types of messages processing.

messages processingece (remess rig
one by one 0.60390.823710.6395
by packets |0.60130.82350.6456

Table 4.Ratios forABT-Hybalgorithm with both types of messages processing.

Then, when an agent leaves thaiting stateit will have a better idea of the current
assignments of the other agents.

Finally, it is worth noting that although concurrency dexses when processing
messages by packets, this does not necessarity meansepabtiess is less efficient.
In fact, it saves some useless work. This is reflected in tbeement ofrig (ratio of
information quality) of theBackmessages and in the decrement-af- (ratio of con-
current constraint checks) anedmsg (concurrent messages).

6 Summary

We believe that the evaluation of current DisCSP algoritissot completely estab-
lished, and a common methodology is badly needed. Such ahelitgy should follow
standard evaluation methods in distributed algorithms hafee reviewed some basic
elements of this area, such as the timing model, the comratiorcmodel, time and
communication complexities. We have also considered atialuprocedures suggested
from the distributed constraint community. We have trie@dpply them to the evalua-
tion of DisCSP algorithms. Doing this exercise, we have fified some points which
should be followed in the evaluation of DisCSP algorithmsede results can be seen
as preliminary. More work is needed to achieve a global amé@nt methodology for
the evaluation of DisCSP algorithms.
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Abstract. Due to the distributed nature of the problem, message delay can have
unexpected effects on the behavior of distributed search algorithstibuted
constraint satisfaction problent®:sC'S Ps). This has been recently shownin an
experimental study of two asynchronous DisCSP algorithms [Fernandez et. al.2002].
To evaluate the impact of message delay on the run of DisCSP search algorithms,
an Asynchronous Message Delay SimulatdiV D.S) for DisC'S Ps which in-

cludes the cost of message delays is introduced. The number of steps of computa-
tion calculated by thel M D.S (or number of concurrent constraints checks) can
serve as good performance measures, when messages are delayed.

The performance of three representative algorithms is measured on randomly
generated instances of DisCSPs with several types of delays for messages.

Two measures of performance are used - concurrent computation time and net-
work load. The performance of asynchronous backtracking deteriorates on sys-
tems with random message delays, for both measures. For synchronous algo-
rithms, with delayed messages, time performance becomes worse then asyn-
chronous backtracking, but the network load is not affected. Concurrent search
algorithms, are affected very lightly by message delay with respect to both mea-
sures.

Acknowledgment: Supported by the Lynn and William Frankel center for Com-
puter Sciences.
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1 Introduction

Distributed constraints satisfaction probler®8CSR) are composed of agents, each
holding its local constraints network, that are connected by constraints among vari-
ables of different agents. Agents assign values to their variables, attempting to gener-
ate a locally consistent assignment that is also consistent with all constraints between
agents (cf. [Yokoo2000,Solotorevsky et. al.1996]). To achieve this goal, agents check
the value assignments to their variables for local consistency and exchange messages
among them, to check consistency of their proposed assignments against constraints
with variables that belong to different agents [Yokoo2000,Bessiere et. al.2001].



Search algorithms on DisCSPs are run concurrently by all agents and their per-
formance must be measured in terms of distributed computation. Two measures are
commonly used to evaluate distributed algorithms - time, which is measured in terms of
computational effort and network load [Lynch1997]. The time performance of search
algorithms on DisCSPs has traditionally been measured by the number of computation
cycles or steps (cf. [Yokoo2000]). In order to take into account the effort an agent makes
during its local assignment the computational effort can be measured by the number of
concurrent constraints checks that agents perform ([Meisels et. al.2002,Silaghi2002]).
Measuring the network load poses a much simpler problem. Network load is generally
measured by counting the total number of messages sent during search [Lynch1997].

When instantaneous message arrival is assumed, steps of computation in a stan-
dard simulator can serve to measure the concurrent run-time of a DisCSP algorithm
[Yokoo2000]. For an optimal communication network, in which messages arrive with
no delay, one can also use the number of concurrent constraints checks (CCCs), for an
implementation independent measure of concurrent run time [Meisels et. al.2002]. On
realistic networks, in which there are variant message delays, the time of run cannot
be measured simply by the steps of computation. Take for example Synchronous Back-
tracking [Yokoo2000]. Since all agents are completely synchronized and no two agents
compute concurrently, the number of computational steps is not affected by message
delays. However, the effect on the run time of the algorithm is completely cumulative
(delaying each and every step) and is thus large (see section 6 for details).

In order to evaluate the impact of message delays on DisCSP search algorithms, we
present amisynchronous Message Delay Simulgtéi/ D S) which measures the log-
ical time of the algorithm run in steps of computation or concurrent constraints checks,
and simulates message delays accordingly. AR&D S is described in detail in sec-
tion 3. It can simulate systems with different types of message delays from fixed mes-
sage delays, through random message delays, to systems in which the length of the
delay of each message is dependent on the current load of the network. Since the de-
lay is measured in concurrent computation steps (or concurrent constraints checks), the
final logical time that is reported as the cost of the algorithm run, includes steps of com-
putation which were actually performed by some agent, and computational steps which
were added as message delay simulation while no computation step was performed
concurrently (see section 3).

To demonstrate the behavior of DisCSP search algorithms in the presence of mes-
sage delay, three algorithms are compared. Although the three chosen algorithms are
similar in their run-time results on systems with no message delay they are very different
from one another. The firsgGonflict based Back Jumpirig' B.J) [Zivan and Meisels2003]
is a synchronous algorithm which performs pruning of its search space accor@yg to
namic Backtrackind D B) methods [Ginsberg1993,Zivan and Meisels2003]. The sec-
ond is theAsynchronous Backtrackingl BT') algorithm in which agents perform as-
signments concurrently and asynchronously [Yokoo2000,Bessiere et. al.2001]. The third,
Concurrent BacktrackingZivan and Meisels2004] is a concurrent algorithm in which
a dynamic number of independent search processes explore concurrently and asyn-
chronously, non intersecting parts of theésC'S P search space. The results presented
in section 6 show the different impact of message delays on these three algorithms.



Distributed constraints satisfaction probleni3i§CS Ps) are presented briefly in
section 2. A detailed introduction of the algorithm and method for simulating message
delays inDisC'SP search, and of the method of evaluating the run time of an algo-
rithm, is presented in section 3. A proof of the validity of the simulating algorithm is
presented in section 4. A description of the compared algorithms - synchronous Con-
flict based Backjumping({ B.J), Asynchronous Backtrackingd(BT"), and Concurrent
Backtracking ConcBT), is presented in section 5. Section 6 presents extensive exper-
imental results, comparing all three algorithms on randomly genefated'S Ps with
different types of message delays. A discussion of the new insights of the performance
and on the advantages of these three algorithms, on différés®'S P instances and
communication networks, is presented in section 7.

2 Distributed Constraint Satisfaction

A distributed constraints network (or a distributed constraints satisfaction problem -
DisCSBH is composed of a set df agentsA;, Ao, ..., A;. Each agent4; contains

a set of constrained variablés;, , X;,, ..., X;, . Constraints orelations R are sub-

sets of the Cartesian product of the domains of the constrained variables. For a set
of constrained variableX;, , X;,, ..., X;,,,, with domains of values for each variable
D, Dj,, ..., Dy, , the constraint is defined @& C D;, x Dj, x ... X Dy, . A binary
constraint R;; between any two variable¥; and X is a subset of the Cartesian prod-

uct of their domainsR;; C D; x D;. In a distributed constraint satisfaction problem
DisCSR the agents are connected by constraints between variables that belong to dif-
ferent agents (cf. [Yokoo et. al.1998,Solotorevsky et. al.1996]). In addition, each agent
has a set of constrained variables, i.to@al constraint network

An assignment (or a label) is a pair var, val >, wherevar is a variable of some
agent andal is a value fromvar’s domain that is assigned to it. partial assignment
(or a compound label) is a set of assignments of values to a set of varialdekition
to aDisCSPis a partial assignment that includes all variables of all agents, that satisfies
all the constraints. Following all former work dpisCSF, agents check assignments
of values against non-local constraints by communicating with other agents through
sending and receiving messages. An agent can send messages to any one of the other
agents.

The delay in delivering a message is assumed to be finite [Yokoo2000]. One simple
protocol for checking constraints, that appears in many distributed search algorithms,
is to send a proposed assignmentvar, val >, of one agent to another agent. The
receiving agent checks the compatibility of the proposed assignment with its own as-
signments and with the domains of its variables and returns a message that either ac-
knowledges or rejects the proposed assignment. The following assumptions are rou-
tinely made in studies of DistributedSPs and are assumed to hold in the present
study [Yokoo2000,Bessiere et. al.2001].

1. All agents hold exactly one variable.
2. The amount of time that passes between the sending of a message to its reception
is finite.



3. Messages sent by agefif to agent4; are received by, in the order they were
sent.

4. Every agent can access the constraints in which it is involved and check consistency
against assignments of other agents.

3 Simulating search on DisCSPs

The standard model of Distributed Constraints Satisfaction Problems has agents that are
autonomous asynchronous entities. The actions of agents are triggered by messages that
are passed among them. In real world systems, messages do not arrive instantaneously
but are delayed due to networks properties. Delays can vary from network to network
(or with time, in a single network) due to networks topologies, different hardware and
different protocols used. To simulate asynchronous agents, the simulator implements
agents adava ThreadsThreads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on incoming
message queues and become active when messages are received.

Concurrent steps of computation, in systems with no message delay, are counted
by a method similar to that of [Lamport1978,Meisels et. al.2002]. Every agent holds a
counter of computation steps. Every message carries the value of the sending agent’s
counter. When an agent receives a message it updates its counter to the largest value
between its own counter and the counter value carried by the message. By reporting the
cost of the search as the largest counter held by some agent at the end of the search,
we achieve a measure of concurrent search effort that is similar to Lamport’s logical
time [Lamport1978].

On systems with message delays, the situation is more complex. For the simplest
possible algorithm, Synchronous Backtrask31") [Yokoo2000], the effect of message
delay is very clear. The number of computation steps is not affected by message delay
and the delay in every step of computation is the delay on the message that triggered it.
Therefore, the total time of the algorithm run can be calculated as the total computation
time, plus the total delay time of messages. In the presence of concurrent computa-
tion, the time of message delays must be added to the total algorithnotilpéf no
computation was performed concurrentljo achieve this goal, the algorithm of the
Asynchronous Message-Delay Simulatdi/ DS) counts message delays in terms of
computation steps and adds them to the accumulated run-time when no computation is
performed concurrently.

In order to simulate message delays, all messages are passed by a dddicdted
thread. The mailer holds a counter of concurrent computation steps performed by agents
in the system. This counter represents the logical time of the system and we referto it as
the Logical Time Counte(LT'C). Every message delivered by the mailer to an agent,
carries theL’T'C' value of its delivery to the receiving agent. To compute the logical
time that includes message delays, agents perform a similar computation to the one
used when there are no message delays [Meisels et. al.2002]. An agent that receives a
message updates its ouliii’'C' to the largest value between its own and il¥C on the
message received. Then the agent performs the computation step, and sends its outgoing
messages with the value of it&’C incremented by 1.



— upon receiving messagensg:

. LTC « max(LTC, msg.LTC)

. delay«— choose_delay

. msgdelivery_time <+ LTC + delay

. outgoing_queue.add(msg)
5. deliver_messages

— when there are no incoming messages and all agents are idle
1. LTC « outgoing_queue.firstmsg.LTC
2. deliver_messages

— deliver.messages
1. foreach (message m in outgoing queue)
2. if (m.delivery_time < LTC)
3. m.LTC«+— LTC
4. deliver(m)

A

A WN

Fig. 1. The Mailer algorithm

The mailer simulates message delays in terms of concurrent computation steps. To
do so it uses its own (global)T’C', according to the algorithm presented in figure 1. Let
us go over the details of the ailer algorithm, in order to understand the measurements
performed by thed M DS during run time.

When the mailer receives a message, it first checks ifthé€’ value that is car-
ried by the message is larger than its own value. If so, it increments the value of the
LTC (line 1). This generates the value of the global clock (of the Mailer) which is
the largest of all logical times of all agents. In line 2 a delay for the message (in num-
ber of steps) is selected. Here, different types of selection mechanisms can be used,
from fixed delays, through random delays, to delays that depend on the actual load of
the communication network. To achieve delays that simulate dependency on network
load, for example, one can assign message delays that are proportional to the size of
the outgoing message queue. Each message is assighéday_time which is the
sum of the current value of the Mailer8I'C' and the selected delay (in steps), and
placed in theoutgoing_queue (lines 3,4). Theoutgoing_queue is a priority queue
in which the messages are sorted d®yivery_time, so that the first message is the
message with the lowesgklivery_time. In order to preserve the third assumption of
section 2, messages from agehtto agent4; cannot be placed in the outgoing queue
before messages which are already in the outgoing queue, which were send from
to A;. This property is essential to asynchronous algorithms which are not correct
without it (cf. [Bessiere et. al.2001]). The last line of théailer's code calls method
deliver _messages, which delivers all messages witlelivery_time less or equal to
the mailer’s currenLT'C value, to their destination agents.

When there are no incoming messages, and all agents are idleyifttheéng_queue
is not empty (otherwise the system is idle and a solution has been foundlj diver
increases the value of tHel'C' to the value of thelelivery_time of the first message
in the outgoing queue and calisliver_messages. This is a crucial step of the simu-
lation algorithm. Consider the run of a synchronous search algorithngyrarhronous



Backtracking(SBT') [Yokoo2000], every delay needs the mechanism of updating the
Mailer's LTC (line 1 of the second function of the code in figure 1). This is because
only one agent is computing at any given instance, in synchronous backtrack search.
The concurrent run time reported by the algorithm, is the larg@&t held by some
agent at the end of the algorithm run. By incrementing #i& only when messages
carry LT'C's with values larger than the maile?sd"C value, steps that were performed
concurrently are not counted twice. This is an extension of Lamport’s logical clocks
algorithm [Lamport1978], as proposed for DisCSPs by [Meisels et. al.2002], and ex-
tended here for message delays.
A similar description holds for evaluating the algorithm run in logical concurrent
constraints checks. In this case the agents would extend the value oL #i€is in
each step, not by one, but by the number of constraints checks they actually performed.
This enables a concurrent performance measure that incorporates the computational
cost of the local step, which might be different in different algorithms. Furthermore, it
also enables to evaluate algorithms in which agents perform computation which is not
triggered or followed by a message.

4 Correctness of theAM DS

In order to prove the validity of the proposed measure simulation, its correspondence
to runs of aSynchronous Cycles Simulatigrpresented. In &ynchronous Cycle Sim-
ulator [Yoko02000], in every cycle each agent can read all messages that were sent to
it in the previous cycle and perform a single computation step which can be followed
by the sending of messages (which will be received in the next cycle). Agents can be
idle in some cycles, if they do not receive a message which triggers a computation step.
The cost of the algorithm run, is the number of synchronous cycles performed until a
solution is found or a non solution is declared (see [Yokoo2000]). Message delay can
be simulated in such a synchronous simulator by delivering messages to agents some
cycles after they were sent.

Theorem 1. Any run of AM DS can be simulated by 8ynchronous Cycle Simulator
(SCS), in which cycler; of theSC'S corresponds to al.7'C' value ofAM DS.

The proof of the theorem is immediate. Every messaggent by an agenti; to
agentd; can be assigned a valdavhich is the largest value between th&'C' carried
by m in the AM DS run and the value of th&T'C' held by A; when it receivedn.
Running aSynchronous Cycle Simulat¢fC'S) and assigning each messagewith
the valued calculated as described above, the message can be delivetgdntaycle
d. The outcome of the specidlC'S is that every agent in every cycte will have the
same knowledge about the other agents as the agents performing the matching steps
in the AM DS run. Assuming the algorithm is deterministic, the agent will perform
the same computation and send the same messages. If the algorithm includes random
choices the run can be simulated by recorditty D.S choices and forcing the same
choice in the synchronous simulator run. To complete the proof of the theorem one
needs to show the following Lemma.



Lemma 1. At any cycle; of the synchronous simulator, tH&'C' values of all agents
performing the matching steps in theV/ DS are equal toi.

Proof: We prove Lemma 1 by induction. After performing step number one, all agents
in AM DS advance theil.T'C' to one. Assuming the Lemma holds for— 1 cycles, all
agents that are about to perform theh step, hold counters with values less or equal

to N — 1. The messages they will receive will carry thdivery_time LTC which is

N — 1. Since the agent'€T'C's are updated to the largest between the receiVed’

and their own, after receiving the message and performing the next step of computation,
their LT'C value will be equal tav. O

The theorem demonstrates that for computing steps of computation, the asynchronous
simulator is equivalent to a standa¥d’ S that does not wait for all agente complete
their computation in a given cycle, in order to move to the next cycle.

The most important advantage of the asynchronous simulator can now be described.
When computational effort is computed, in terms of constraints checks for example, the
SCS becomes useless. This is because at each cycle agents perform different amounts
of computation, depending on the algorithm, on arrival of messages, etc. The simulator
does not “know” the amount of computation performed by each agent and, therefore,
cannot move the resulting message in the correct cycle (one that matches the correct
amount of computation and waiting). The natural way to compute concutreistis
by using an asynchronous simulator, thé/ DS as proposed in section 3

5 The tested algorithms

In order to check the behavior of distributed search algorithms under message delays,
the AM DS is used to compare the run of three algorithms for solingC'S Ps.
These algorithms represent three different families of algorithms:

— Synchronous algorithms represented by synchronous Conflict based Backjumping
(CBJ) [Zivan and Meisels2003].

— Asynchronous Backtracking algorithms represented ByI" [Bessiere et. al.2001].

— Concurrent search algorithms represented by Concurrent Backtrackimng 1)
[Zivan and Meisels2004].

In the following subsections the three representative algorithms are described. The
performance of the algorithms is evaluated in section 6 and the impact of delayed mes-
sages on their performance is described. The relation of the impact of delayed messages
on each of the algorithms and the properties of the algorithm’s family, is discussed in
section 7.

5.1 Conflict based Backjumping

The Synchronous Backtrack algorithi$i87") [Yokoo2000], is a distributed version of
chronological backtrack [Prosser19938BT has a total order among all agents. Agents



exchange a partial solution that we te@uarrent Partial Assignmer(C P A) which car-
ries a consistent tuple of the assignments of the agents it passed so far. The first agent
initializes the search by creatingld” A and assigning its variables on it. Every agent
that receives th€’' P A tries to assign its variable without violating constraints with the
assignments on th@ P A. If the agent succeeds to find such an assignment to its vari-
able, it appends the assignment to the tuple or(tied and sends it to the next agent.
Agents that cannot extend the consistent assignment afi th¢, send the” P A back
to the previous agent to change its assignment, thus perform a chronological backtrack.
An agent that receives @P A in a backtrack message removes the assignment of its
variable and tries to reassign it with a consistent value. The algorithm ends successfully
if the last agent manages to find a consistent assignment for its variable. The algorithm
ends unsuccessfully if the first agent encounters an empty domain.

The version of Conflict based Backjumpir@B.J) [Prosser1993] improves on sim-
ple synchronous backtraclé BT") by using a method based on dynamic backtrack-
ing [Ginsberg1993,Bessiere et. al.2001]. In the distributd8./, when an agent re-
moves a value from its variable’s domain, it stores the eliminating explanatiogdod),
i.e. the subset of th€'P A that caused the removal. As in the corresponding version
of asynchronous backtrack [Bessiere et. al.2001], when a backtrack operation is per-
formed the agent resolves togoods creating a conflict set which is used to determine
the culprit agent to which the backtrack message will be sent. The resulting synchronous
algorithm has the backjumping property (i@B.J) [Ginsberg1993]. When th€' P A
is received again, values whose eliminatiliggoods are no longer consistent with the
partial assignment on thi@ P A are returned to the agents’ domain.

5.2 Asynchronous Backtracking

The Asynchronous Backtrack algorithm (ABT) was presented in several versions
over the last decade and is described here in accordance with the more recent pa-
pers [Yokoo2000,Bessiere et. al.2001]. In the ABT algorithm, agents hold an assign-
ment for their variables at all times, which is consistent with their view of the state of
the system (i.e. theidgent_view). When the agent cannot find an assignment consis-
tent with its Agent_view, it changes its view by eliminating a conflicting assignment
from its Agent_view data structure and sends bacKagood.

The Asynchronous Backtrack algorithdBT' [Yokoo2000], has a total order of pri-
orities among agents. Agents hold a data structure callgtht_view which contains
the most recent assignments received from agents with higher priority. The algorithm
starts by each agent assigning its variable, and sending the assignment to neighboring
agents with lower priority. When an agent receives a message containing an assign-
ment (anok? message [Yokoo2000]), it updates Hgent _view with the received as-
signment and if needed replaces its own assignment, to achieve consistency. Agents
that reassign their variable, inform their lower priority neighbors by sending #iem
messages. Agents that cannot find a consistent assignment, send the inconsistent tuple
in their Agent_view in a backtrack message (@ogood message [Yokoo2000]). The
Nogood is sent to the lowest priority agent in the inconsistent tuple, and its assignment
is removed from theidgent_view. Every agent that sendsMogood message, makes



another attempt to assign its variable with an assignment consistent with its updated
Agent_view.

Agents that receive & ogood, check its relevance against the content of their
Agent_view. If the Nogood is relevant, the agent stores it and tries to find a con-
sistent assignment. In any case, if the agent receivingMbgood keeps its assign-
ment, it informs theN ogood sender by re-sending it ark? message with its assign-
ment [Bessiere et. al.2001]. An ageff which receives avogood containing an as-
signment of agentl; which is not included in itslgent_view, adds the assignment of
Aj toit's Agent_view and sends a messageAg asking it to add a link between them.

In other words A, is requested to inform; about all assignment changes it performs
in the future [Yokoo2000].

The performance afi BT can be strongly improved by requiring agents to read all
messages they receive before performing computation [Yokoo2000]. A formal protocol
for such an algorithm was not published. The idea is not to reassign the variable until
all the messages in the agent’s 'mailbox’ are read andiijwent_view is updated. This
technique was found to improve the performanced@T on the harder instances of
randomly generated DisCSPs by a factor of 4 [Zivan and Meisels2003]. However, this
property makes the efficiency df BT dependent on the contents of the agent’s mailbox
in each step, i.e. on message delays (see section 6). The consistency géitheview
held by an agent, with the actual state of the system before it begins the assignment
attempt is affected directly by the number and relevance of the messages it received up
to this step.

Another improvement to the performance 487 can be achieved by using the
method for resolving inconsistent subsets of thent_view, based on methods of dy-
namic backtracking [Ginsberg1993]. A version4ABT that uses this method was pre-
sented in [Bessiere et. al.2001]. In [Zivan and Meisels2003] the improvemehB&f
using this method oved BT sending its fullAgent_view as aNogood was found to
be minor. In all the experiments in this paper a versiom&fT" which includes both
of the above improvements is used. Agents read all incoming messages that were re-
ceived before performing computation anbgoods are resolved, using the dynamic
backtracking method.

5.3 Concurrent Backtracking

The ConcBT algorithm [Zivan and Meisels2004] performs multiple concurrent back-
track searches on disjoint parts of thessCSPsearch-space. Each agent holds the data
relevant to its state on each sub-search-space in a separate data structure which is termed
Search Process (SPAgents in theC'oncBT algorithm pass their assignments to other
agents on £PA(Current Partial Assignment) data structure. EEEA represents one
search process, and holds the agents current assignments in the corresponding search
process. An agent that receive€RA tries to assign its local variable with values that
are not conflicting with the assignments on @A using the current domain in tt&P
related to the receive@PA The uniqueness of tHePAfor every search space ensures
that assignments are not done concurrently in a single sub-search-space.

Exhaustive search processes which scan heavily backtracked search-spaces, can be
split dynamically. Each agent can generate a sétBfAs that split the search space of a
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Fig. 2. ConcBT with two CPAs

C P A that passed through that agent, by splitting the domain of its variable. Agents can
perform splits independently and keep the resulting data structBrs} frivately. All

other agents need not be aware of the split, they proceé&alls in exactly the same
manner (see [Zivan and Meisels2004] for a detailed explanatitiPds are created ei-

ther by the Initializing Agentl@) at the beginning of the algorithm run, or dynamically

by any agent that splits an active search-space during the algorithm run. A heuristic
of counting the number of times agents pass@r& in a sub-search-space (without
finding a solution), is used to determine the need for re-splitting of that sub-search-
space. This generates a mechanism of load balancing, creating more search processes
on heavily backtracked search spaces.

A backtrack operation is performed by an agent which fails to find a consistent
assignment in the search-space corresponding to the partial assignment@PAthe
Agents that have performed dynamic splitting, have to collect all of the retuéhings,
of the relevantS P, before performing a backtrack operation.

Figure 2 presents an example of a DisCSP, searched concurrently by two syn-
chronous processes represented by two CIPABA; and CPA,. Each of the four
agentsA; to Ay, holds twoSPs. Only the current domains of the SPs are shown in
Figure 2. The domains on the left represent the state after 3 assignméhtsdtn The
domains on the right of figure 2 represent the state after the first assignn@ft4e.

AgentA; has assigned the value 1 6P A; and the value 3 o6’ PA,. The values
that are left in each of its domains are 28 and 4 inSP,. The two CPAs are
traversing non intersecting sub search spaces in whifti; is exploring all tuples
beginning with 1 or 2 for agem, andC P A, all tuples beginning with 3 or 4P A,
is depicted on the LHS of figure 2 aridP A, is on the top RHS. Each CPA has its ID
on its right.
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Fig. 3. Concurrent steps of computation with no message delays

6 Experimental evaluation

The network of constraints, in each of the experiments, is generated randomly by select-
ing the probabilityp, of a constraint among any pair of variables and the probality

for the occurrence of a violation among two assignments of values to a constrained pair
of variables. Such uniform random constraints networks edriablesk values in each
domain, a constraints density pf and tightnesg,, are commonly used in experimen-

tal evaluations of CSP algorithms (cf. [Prosser1996]). Experiments were conducted on
networks with 10 variablesy= 10) and 10 valuesi = 10). All instances were created

with density parametes; = 0.7. The value ofp, was varied betweef.1 to 0.9. This
creates problems that cover a wide range of difficulty, from easy problem instances to
instances that take several CPU minutes to solve.

In order to evaluate the algorithms, two measures of search effort are used. One
counts the number of concurrent steps of computation [Lynch1997,Yokoo2000], to
measure computational cost. The other measures communication load in the form of
the total number of messages sent [Lynch1997]. Concurrent steps of computation are
counted by a method similar to that of [Lamport1978,Meisels et. al.2002]. In order to
evaluate the logical time (including message delays) of the algorithm, in steps of com-
putation, we use the simulator as described in section 3.

In the first set of experiments the three algorithms are compared without any mes-
sage delay. The results presented in figure 3 show that the numbers of steps of compu-
tation that the three algorithms perform are very similar, on systems with no message
delays.ABT performs slightly less steps th&nB.J and ConcBT performs slightly
better thanA BT. However, when it comes to network load, the results in figure 4 show
that for the harder problem instances, agent$ Bil" sendsix times more messagisn
sent by agents i’ BJ and more than twice the number of messages sent by agents in
ConcBT.
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Fig. 5. Logical number of concurrent steps with random message delays

In the second set of experiments, the simulatdrfailer delayed messages ran-
domly for 5-10 steps (as described in section 3).

Figure 5 presents the results of logical time, counted in concurrent steps, for random
message delays. It is clear in figure 5 that even though message delays do not affect the
number of concurrent steps performed by agents B, when message delay is cor-
rectly counted(’' B/J is affected the most. The number of steps performed B in
the presence of delays, grows by a large factor. This is expected, since agents are more
likely to respond to a single message, instead of all the messages sent in the former
(ideal) cycle of computation. Messages in asynchronous backtracking are many times
conflicting. As a result, agents perform more unnecessary computation steps when re-
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sponding to fewer messages in each cycle.This can explain a similar resdlBfby

on a different set of problems [Fernandez et. al.2002]. The logical time performance
of concurrent search process algorithms, is not strongly affected by message delay. For
the harder problemSoncBT performs less than half the steps of computatioA 8"

(see figure 5). Network load, for the same (delayed messages) experiments is presented
in Figure 6. BothC'BJ andConcBT send the same number of messages as in the case

of no message delays. The number of messages sent by asynchronous backtracking in-
creases dramaticalll BT sends almost twice as much messages in the presence of ran-
dom message delays, than it sends in the case of no message delays (figure 6). Figure 7



16000

14000 ——CBJ
12000
- - -ABT

10000 A
2
& 3000 --w-- ConcBT
w

6000

4000

2000 4

0 T T T T T 1

Msg Delay

Fig. 8. Logical number of steps with different random message delays

presents the results for logical time that is counted in units of concurrent constraints
checks. In this experiment the local computation is taken in to account. The delay for
every message is chosen a random value between 50 to 150 constraints checks.

The last set of experiments tests the dependence of algorithm performance on the
amount of delay of messagéesl algorithms are run on the hardest problem instances
(p2 = 0.5) with an increasing amount of message delay. The different impact of random
delays on the different algorithms is presented in figure 8. The number of steps of
synchronous and of asynchronous backtracking grows with the size of message delay.
In contrast, larger delays do not have an impact on the number of steps of concurrent
search (Figure 8).

7 Discussion

A study of the impact of message delays on the behaviariet’ S P search algorithms

has been presented. Use was made of an asynchronous simulator that iigtiie?
algorithms with different types of message delays and measures performance in con-
current steps of computation. The logical number of steps/constraints-checks takes into
account the impact of message delays on the actual runtini& «f'S P algorithms.

Three different algorithms for solvingisC'S Ps were investigated.

In asynchronous backtracking, agents perform assignments asynchronously. As a
result of message delay, some of their computation can be irrelevant (due to inconsistent
Agent_views while the updating message is delayed). This can explain the large impact
of message delays on the computation performed BY" (cf. [Fernandez et. al.2002]).

The results presented in section 6 strengthen the results reported by Fernandez et.
al. [Fernandez et. al.2002], and do so for a larger family of random problems.

The impact of message delays on concurrent search algorithms is minor. This is
very apparent in Figure 8, where the number of steps of computation is independent of
the size of message delay ©vncBT.



To understand the robustness(@ncBT to message delay imagine the following
example. Consider the case whéfencBT splits the search space multiple times and
the number of” P As is larger than the number of agents. In systems with no message
delays this would mean that some of i’ As are waiting in incoming queues, to be
processed by the agents. This delays the search on the sub-search-spaces they represent.
In systems with message delays, these queues are shortened due to later arrivals of
CPAs. The net result is that agents are kept busy at all times, performing computation
against consistent partial assignments. The results in section 6 demonstrate that the
above possible description can be achieved.

In terms of network load, the results of the experimental investigation show that
asynchronous backtrack puts a heavy load on the network, which doubles in the case
of message delays. The number of messages sent, in both synchronous and concurrent
algorithms, is much smaller than the load of asynchronous backtracking and is not
affected by message delays.
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