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Abstract

We show that distinguishing %—satisﬁable Unique-Games instances from (% + €)-satisfiable
instances is NP-hard (for all € > 0). A consequence is that we match or improve the best known
¢ vs. s NP-hardness result for Unique-Games for all values of ¢ (except for ¢ very close to 0). For
these ¢, ours is the first hardness result showing that it helps to take the alphabet size larger
than 2. Our NP-hardness reductions are quasilinear-size and thus show nearly full exponential
time is required, assuming the ETH.
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1 Introduction

Thanks largely to the groundbreaking work of Hastad [Has01], we have optimal NP-hardness of
approximation results for several constraint satisfaction problems (CSPs), including 3Lin(Z2) and
3Sat. But for many others — including most interesting CSPs with 2-variable constraints — we lack
matching algorithmic and NP-hardness results. Take the 2Lin(Z2) problem for example, in which
there are Boolean variables with constraints of the form “x; = x;” and “z; # x;”7. The largest
approximation ratio known to be achievable in polynomial time is roughly .878 [GW95], whereas it
is only known that achieving ratios above 13 ~ .917 is NP-hard [Has01, TSSW00]. Which of these
two results can be improved?

In the early 2000s there was some sentiment that the .878-ratio approximation algorithm
could be improved [Fei99, Fei02]. However this began to change after Khot’s introduction of the
Unique-Games (UG) Conjecture [Kho02]. In that paper, Khot showed that (1 —€,1 — e'/2+o().
approximating 2Lin(Z3) is “UG-hard” for all e > 0. Assuming the UG Conjecture this would be es-
sentially optimal because the Goemans-Williamson algorithm [GW95] efficiently (1—¢,1—O(e/?))-
approximates 2Lin(Z3). Here we are using the following terminology:

Definition 1.1. A (¢, s)-approzimation algorithm for a maximization CSP is one which satisfies at
least an s-fraction of the constraints on any instance where the optimal solution satisfies at least a
c-fraction of the constraints.

This was subsequently extended [KKMOO07, KO09, OW08] to give matching (¢, s(c))-approximation
algorithms and UG-hardness results for 2Lin(Z,) for every ¢ € [3,1], including UG-hardness of
achieving £ > .878. In light of such sharp UG-hardness results — shown for every CSP by Raghaven-
dra [Rag09] — it seemed in the late ’00s that the boundary of efficient approximability had been
identified.

However the pendulum swung again in 2010 with the Arora-Barak—Steurer subexponential-time
algorithm for Unique-Games [ABS10] (see also the related works [Koll0, Stel0, BRS11, GS11]).
For example, we now know there is a universal constant ¢y > 0 such that in time 20w ™) one
can both (1 — €, 3)-approximate Unique-Games ([ABS10]) and (3, eg)-approximate Unique-Games
(this follows [Stell] from [Stel0, BRS11]). There is also now speculation that approximating
Max-Cut or 2Lin(Z2) to factor .879 may be possible in subexponential time. Yet all of these problems
are predicted to NP-hard by the UG Conjecture.

This raises the question of what meaning an NP-hardness result actually has. For example,
approximating Max-Clique to factor 1/n%% is known to be NP-hard [H&s99], yet it’s trivially
solvable in n™""' 002 time. Such a running time is completely practical for any plausible value
of n. If one could make the above-mentioned 20 "")-time algorithms for Unique-Games similarly
practical, one might argue that this “morally” disproves the conjecture that (1—e, €)-approximating
UG is hard for every € > 0. In any case, these theoretical results correspond well with the observation
that “in practice”, decently approximating Unique-Games does not seem to be very hard. In
particular, there is no known family of very “hard-seeming” instances for the UG Conjecture, as
there is for, say, the 3Sat decision problem.

On the other hand, we do have evidence of extreme hardness for at least some gapped ap-
proximation version of Unique-Games. For example, Hastad’s 1997 work [Has97] implies that
(%, .459)-approximating Unique-Games is NP-hard (here .459 ~ % . %) The proof is a local gadget
reduction from his result on NP-hardness of (1 — ¢€,1/2 + €)-approximating 3Lin(Z2). Furthermore,
Moshkovitz and Raz [MR10] have shown that the 3Lin(Zz) result holds under a quasilinear-size
reduction from 3Sat. Thus assuming the Exponential Time Hypothesis (ETH) [IP01] that decid-
ing 3Sat requires 24 time, it follows that (%, .459)-approximating Unique-Games is truly hard,



requiring essentially full exponential time 97 Even if we don’t assume the ETH, (1 —e¢, % +e€)-
approximating 3Lin(Zs) is a problem for which we can easily generate very hard-in-practice instances
(as cryptographic research on the Learning Parity with Noise problem has shown). Applying the
local gadget reduction to these instances shows that the same is true of (%, .459)-approximating
Unique-Games.

1.1 Owur main result

To recap, for instances of the Unique-Games problem in which the optimal solution satisfies % of
the constraints, we know that satisfying a certain constant ¢y fraction of the constraints is relatively
“casy” (time 20("™")), whereas satisfying the larger constant .459 fraction is “hard” (time gn' o
assuming ETH). Thus, as is often the case in the field of approximation algorithms, we are faced
with the task of pinning down the truth between two constants. The main theorem of this paper

is some progress on the hardness side:

Main Theorem. For any constant label size q, (%, % + q@l(l) )-approximating Unique-Games is NP-

hard under a quasilinear-size reduction; hence the problem requires time on' Y under the ETH.

(In fact, our theorem holds for 2Lin(Z;), ¢ < poly(logloglogn).)

Although we would certainly not want to conjecture it, we have to at least raise the possibility
that the optimal subexponential-time algorithm for %—satisﬁable Unique-Games instances satisfies %
of the constraints.

Considerations of subexponential time vs. full exponential time aside, our result is just the
second improved NP-hardness result for Unique-Games since 1997. Via trivial reductions, our Main
Theorem extends to give NP-hardness of (c, 3¢ + o(1))-approximating Unique-Games (for ¢ < 1)
and also of (¢,1— 2(1—¢)+o(1))-approximating Unique-Games (for ¢ > 3). For all but very small
¢ € (0,1) this subsumes or improves the best previous result, due to Hastad in 1997 [Has97]. This
best previous result involved taking ¢ = 2; our result shows that hardness increases as ¢ increases.

For ¢ < k, where k is a small (inexplicit) positive constant, Feige-Reichman 2004 [FR04] has the
best (¢, s)-inapproximability result for Unique-Games. See Section 2.1 for more detailed comparison
with prior work.

1.2 Our approach, and other contributions

More broadly, this paper focuses on trying to obtain unconditional NP-hardness of approximation
results for 2-variable CSPs such as Unique-Games. With a few exceptions, the best such results
known are derived by gadget reductions from Hastad’s (1 — e, % + ¢)-approximation NP-hardness
for 3Lin(Z2). Indeed, for the well-known Boolean 2-CSPs Max-Cut, 2Lin(Z3), 2Sat, and 2And, the
best gadgets were found via computer solution of large linear programs [TSSWO00]. This state of
affairs is unsatisfactory for a few reasons. First, there is almost no intuition for these computer-
generated gadgets. Second, the doubly-exponential size of the linear programs involved makes it
infeasible to use the computer-search approach even for 2-CSPs over a ternary domain. Third,
since the (1 — ¢, 5 + €)-hardness for 3Lin(Z») is itself a (highly sophisticated) gadget reduction from
Label-Cover, these kinds of results are arguably using an artificial “middleman” that could be cut
out.

It makes sense then to seek direct reductions from Label-Cover to approximation of 2-CSPs.
This has never been done in the “Hastad style” (Long Codes and Fourier analysis) with 2-CSPs



before since it’s unclear how to “get a square into the Fourier analysis”. In fact we managed to re-
produce the (%, %+e)—NP—hardness result for 2Lin(Z3) via a Hastad-style analysis (see Appendix F),
but for the Unique-Games problem we required a more conceptual approach.

This new conceptual approach for reducing Label-Cover to 2-CSPs has three components:

1. Given a Label-Cover instance (V, E), the usual Hastad reduction methodology introduces a
“prover” f, for each vertex u € V' (also known as a table, function, or collection of auxiliary
variables), and replaces each constraint on (u,v) € E with a distribution on “questions”
(constraints) for f, and f,. In our approach we also introduce a prover h,,, for each constraint
(u,v) € E.! From this constraint we propose generating 2-CSP questions as follows: First,
generate question pairs (z,y) from a product distribution. Next, “corrupt” x to = and y to y
in some correlated random way. Finally, send prover h,, the pair (z,y), and test its answer
against a random choice of f,(x) or f,(y).

2. We next develop the Invariance Principle technology [MOO10, DMR09, Mos10, Rag09] to
show that if the “Hastad decoding procedure” applied to f, and f, fails, then the analysis
surrounding fy, fu, and hy, can be performed as though the corruptions x — = and y — ¥y
were independent. This seems to be the first published example of using Invariance to analyze
reductions from Label-Cover, as opposed to from Unique-Games or the d-to-1 Conjecture.”

3. Given the Invariance result, all concerns involving Fourier analysis and computational com-
plexity are eliminated. Analyzing any proposed “test” reduces to analyzing a purely information-
theoretic problem of non-interactive correlation distillation (NICD) type (see, e.g., [Yan07]).
Such a task can still be difficult; e.g., to obtain the best known NP-hardness even for 2Lin(Z2)
we needed to resolve a 2004 NICD conjecture of Yang [Yan04]. Still, the fact that we are
reduced to information-theoretic problems makes things clean enough that we can obtain the
Main Theorem for Unique-Games.

Our new approach lets us recover in a conceptual way the best known NP-hardness results [Has97,
TSSWO00] for Max-Cut, 2Lin(Z3), 2Sat, and 2And.

2 Preliminaries

We consider weighted CSPs. An instance Z consists of a set of variables over a finite domain (of
“labels” ), along with a weighted list of constraints on these variables. We assume the weights are
nonnegative rationals summing to 1, so we can also think of the instance as a probability distribution
on constraints. We usually write n for the number of variables. The size of an instance is the total
number of bits needed to specify the constraint relations and the weights; we will only consider
instances which have size n!+°(1) 3 Given an assignment F to the variables we write Valz(F) for the
total weight of the constraints it satisfies; we also write Opt(Z) = maxp{Valz(F')}. The hardness
of approximation results we prove in this paper will hold even for the problem of (¢, s)-deciding the
CSP; i.e., outputting ‘YES’ when Opt(Z) > ¢ and outputting ‘NO’ when Opt(Z) < s.

1This idea is certainly not new. Indeed, for Long Code-based reductions from Label-Cover with projection con-
straints it is known that such provers never need to be introduced, though conceptually it may help to do so. Our
main reduction from Label-Cover does not actually assume projection constraints, so we do need to add these provers.

It was known to some experts [WZ10] that Invariance techniques can be used to analyze Hastad’s Label-Cover
to 3Lin(Z,) reduction, though the analysis essentially degenerates to the Hastad style used in [OWZ11].

3In this paper we will not concern ourselves with the bit-representation size of the rational numbers giving the
weights; the reader may check that this can be accounted for without changing the statements of our theorems.



CSPs are distinguished by the domain of the variables and the kinds of constraints allowed.
We mostly consider the case when the domain is Z;, the additive group of integers modulo ¢, for
some q.

Definition 2.1. Let ¢ be a predicate on Zé“. Then Max-¢ denotes the CSP where the variables
have domain Z, and the constraints are ¢ applied to various k-tuples of variables. Max-¢ denotes
the generalization where ¢ is applied to k-tuples of literals; by a literal we mean = + ¢ (mod q)
where x is a variable and c is a constant. We also extend the notation to allow collections ® of
predicates.

For q = 2, the familiar CSPs 2Lin(Z5), 2Sat, 2And, Max-Cut are equivalent to Max-=", Max-V ™,
Max-AT, Max-#, respectively. 3Lin(Z) is Max-¢ for ¢(z,y, z) = x +y+ 2. For general ¢, 2Lin(Z,)
is Max-=". A related problem is 2Lin(F,) for ¢ a prime power, in which general 2-variable linear
equations over F, are allowed. The “Unique-Games” 2-CSP UG, has variable domain Z,, with any
bijective constraint being allowed. We remark that 2Lin(Z,) is a special case of UG, and for ¢ = 2
the problems are in fact identical. The Unique-Games Conjecture of Khot [Kho02] states that for
all € > 0 there exists ¢ such that (1 — ¢, €)-deciding UG, is NP-hard. In [KKMOO07] it is shown
that the UG Conjecture implies the stronger statement that (1 — €, ¢~¢/(?~9))-deciding 2Lin(Z,) is
NP-hard for all € > 0 and sufficiently large q.

Finally, we define a (generalization) of the “Label Cover” CSP LCy, g 4,k

Definition 2.2. The input for LCy, k 4,k is a biregular bipartite graph ((U,V), E); the vertices
of U are variables with domain [d; K]; the vertices of V are variables with domain [dyK]. Also,
for each edge e = (u,v) there is given a di-to-1 map m, : [d1K] — [K] and a ds-to-1 map
Tew © [d2K] — [K]. The associated constraints (of equal weight) are that e, (u) = me (V).

The more usual definition of Label Cover is the special case of LCx g (i.e., di = 1). Hardness
results for LCx 4x immediately extend to LCy, g gk by duplication of labels for the U vertices.

Feige—Kilian [FK94] and Raz [Raz95] first proved that for all € > 0 there exists K and d such that
(1, €)-deciding LCg 4k is NP-hard. We will use the following strong form of this result from [MR10]
(see also [DHO09]):

Moshkovitz—Raz Theorem. For any ¢ = e(n) > n=°Y) there exists K,d < 2°°W(1/9) such that
the problem of deciding a 3Sat instance of size n can be Karp-reduced in poly(n) time to the problem
of (1,€)-deciding a LCk qx instance of size plito),

For brevity, we say that (1,€)-deciding LCk gx is NP-hard under quasilinear-size reductions.

2.1 Comparison with prior work
To state inapproximability results for various CSPs, let us make a definition (essentially from [OWO08]):

Definition 2.3. For a given CSP we say that (c, s) is a point of NP-hardness if (c, s + €)-deciding
the CSP is NP-hard for all € > 0. We may also qualify this definition by insisting on quasilinear-size
reductions.

We now state some best known inapproximability results for Boolean 2-CSPs, from [Has01,
TSSWO00]:

Theorem 2.4. We have the following points of NP-hardness, even under quasilinear-size reduc-

tions [MR10]: (%,%) for 2Lin(Z2), (%,%) for 2Sat, (%,%) for 2And, and (%,%) for Max-Cut.



Chlebik and Chlebikova [CCO04] have also shown that (1 — d,1 — 2.8896)-deciding 2Sat (and
even “Non-Mixed-2Sat”) is NP-hard for all 0 < § < &g, where Jy is an unspecified positive constant.
Their reduction is not quasilinear-size, relying as it does on the alternative PCP constructions of
Dinur and Safra [DS05].

Padding. Given a point of NP-hardness (c, s) for some CSP, one can trivially obtain some other
points of NP-hardness by what we’ll call “padding” (see Appendix D). Specifically, one can obtain
any point (¢/,s') on the line segments (in R?) joining (c, s) to (1,1) and to (cg,cp). Here g is a
CSP-specific constant equal to the infimum of Opt(Z) over all instances Z. E.g., ¢g = % for 2Lin(Z,)
because the “least satisfiable instance” (namely {z —y = 0,z —y = 1,...,2 —y = ¢ — 1}) has

Opt = %. So for 2Lin(Z>) we obtain the points of NP-hardness (1 — 6,1 — 24) for each 0 < § < %

and also ( % + %)\, % + %)\) for each 0 < A < 1. Padding preserves quasilinearity of reduction size.

Unique-Games. We now discuss the previous best NP-hardness of approximation for the Unique-
Games problem UG,. For ¢ = 2 we have the (%, %) point of NP-hardness from Theorem 2.4, since
2Lin(Z,) and UGy are identical. For larger ¢ we still have the point (2, 1) for UG, (at least
if ¢ is even), since 2Lin(Z3) can be considered a subproblem of UG, by duplicating labels. By

padding this result we get the points of NP-hardness (1 — ,1 — %5) for 0 < § < i and also

A2+ %, R %) e, (A-3,X- 1}) for 0 < A < 1. Rather surprisingly, no stronger result
was previously known (except for tiny ¢, as we will describe shortly); in particular, the explicit
hardness results in [AEHO1, FR04] for 2Lin(F,) for small ¢ are inferior. In other words, the best
known NP-hardness for UG, involved taking ¢ = 2!

We now state our Main Theorem precisely:

Theorem 2.5 (Main Theorem, precise statement.). There exists € = e(n) = O(1/logloglogn)
such that for each integer 2 < q < (logloglogn)3, there is a quasilinear-size reduction from size-n
instances of 3Sat to the problem of (3 + 71(1,8((]) + €)-deciding 2Lin(Z,), where s(q) = 2 + 8% for
q <7 and in general s(q) = 2 + O(ql%).

(We believe that one can take s(q) = 2 + 8% for all ¢ but we haven’t proved this; see Section 6.) For
q = 2 our theorem matches the previous result; we improve upon the prior work by taking ¢ — oo,
getting a point of NP-hardness for UG, tending to (%, %) By padding, this extends the previous
(1 —6,1— 26) result and also gives the points of hardness (A- 3, 2) for 0 < A < 1.

As mentioned, there is one more known NP-hardness result for UG,, due to Feige and Reich-
man [FR04]. For any sufficiently large prime power ¢ they establish that (¢=177 ©(¢™1)) is a point
of NP-hardness for 2Lin(FF;); here n > 0 is an unspecified universal constant. The hardness holds
under quasilinear-size reductions, using [MR10].

We illustrate the new state of (in)approximability for UG, in Figure 1 (with ¢ fixed slightly

superconstant, for simplicity).
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Figure 1: Approximability results for Unique-Games with label size w(1) < ¢ < loglogn

The solid pink regions in Figure 1 are the best previously known points (¢, s) of NP-hardness.
The triangle with vertex (2, 1#) (from [Has01]) is drawn to scale; the bump near ¢ = 0 (from [FR04])
is an “artistic impression”. Our new hardness result is the red-striped region implied by the point
of hardness at (%, %) These NP-hardness results hold under quasilinear-size reductions. In green
we have illustrated (an artistic impression of) points (¢, s) for which there is a subexponential-
time (¢, s)-time approximation algorithm for Unique-Games ([ABS10, Stel0, BRS11]). The true
boundary between what is achievable in subexponential time for Unique-Games and what is not

(assuming ETH) lies somewhere in the white region of the figure.

3 Overview of our method

In this section we introduce our method by showing how we can use it to recover Hastad’s hardness
result for 2Lin(Z3) [Has01]. At the highest level, our method is standard: to prove inapproximability
for 2Lin(Zs), we design a suitable matching dictators test and compose it with a Label Cover
instance. However, the test we design is somewhat nonstandard; in particular, it bears more than
a passing resemblance to a purely information-theoretic problem in mon-interactive correlation
distillation (NICD). In performing the soundness analysis of the test, we make this resemblance
explicit: to upper-bound the soundness value of the test, it turns out to be sufficient to solve the
NICD problem. Thus, we prefer to think of our method as reducing inapproximability to problems
in NICD.

3.1 An example NICD problem

The NICD problem which our 2Lin(Z3) test resembles most is actually the “basic” NICD problem,
which we introduce here. Let f be a party who receives a uniformly random g-ary string « € Z;'.
The string « is sent to a “middleman” h along an erasure channel which erases each symbol



independently with probability 1/2; thus h receives some & € (Z,U{*})". Now f and h have some
correlated information, but they are not allowed to interact further. Nevertheless, they would like
to agree on a common symbol ¢ € Z,. (This setup explains the name “non-interactive correlation
distillation”.) The “strategy” of f is just a function f : Zy — Zg, and similarly the strategy of h is
a function h : (Z,U {x})" — Z,. Thus the party and middleman together succeed with probability
Pr, z(f(x) = h(@))

The NICD problem here is to find functions f and A which maximize this success probability.
Of course, if f and h are (matching) constant functions then the success probability is 1. However
such trivial solutions are disallowed by insisting the function f be (at least) balanced, meaning
Prg[f(x) = (] = % for all £ € Z,,.

This erasure-channel NICD problem was first proposed by Yang [Yan04] in the boolean (¢ = 2)
case. He showed that the success probability is at most % + 2\% ~ .85; he also conjectured that the
best upper bound is in fact %, the success probability achieved when f is a dictator (i.e. f(z) = x;
for some i) and h plays optimally for this dictator. More generally, for the binary erasure channel
with erasure probability 1 — p, Yang bounded the success probability by % + %\/ﬁ but conjectured
that the dictator’s success probability % + % p is optimal (at least for p > %) In Section 5 we prove
this conjecture. Furthermore, in Section 6 we prove an analogous conjecture for the g-ary erasure
channel with erasure probability %

3.2 2Lin(Z;) proof outline

Now we describe how the intuition behind our 2Lin(Z2) test. As a starting point, consider the hard
instances of 2Lin(Zs) produced by Hastad: they begin by taking a d-to-1 Label Cover instance
and replacing each vertex with its corresponding Long Code. Then, 3Lin(Z3) tests (equivalently,
constraints) are placed between appropriately chosen Long Code vertices to produce a hard instance
of the 3Lin(Z2) problem. Finally, the gadget from [TSSWO00] is applied to the 3Lin(Z2) instance,
resulting in a 2Lin(Z3) instance. The gadget works locally: given a 3Lin(Z2) test, it adds new
vertices which are not part of any Long Code and puts in place a set of 2Lin(Z2) tests, each of
which is performed exclusively between one vertex in the original 3Lin(Z3) test—a Long Code
vertex—and one of the newly added vertices. We stress that the newly added vertices are unique to
each 3Lin(Z2) test in the original 3Lin(Z2) instance. The result is that the final 2Lin(Z2) instance
has groups of Long Code vertices along with clouds of vertices which sit between pairs of Long
Codes and to which these Long Code pairs are compared.

Thus, it is sensible for a direct reduction from Label Cover to 2Lin(Z2) to take the following
form: given u and v which are adjacent in the original Label Cover instance and whose Long Codes
are f and g, respectively, there is a “cloud” of vertices which sits between v and v to which f and
g may be compared. We think of this cloud of vertices as being labeled by some function h and
indexed into by strings z from some set. A typical test will select an x for the u side, a y for the v
side, and then to use the chosen x and y to select an appropriate z from the cloud. At this point,
either the test f(x) = h(z) is performed, or the test g(y) = h(z) is performed, each with some
probability. Thus, given an x and a y, the test will select a z and ask that h(z) “predict” the value
of f(x) and g(y). To help it do this, we will choose a z that contains some information about the
strings = and y.

The test: Now, we give a (mostly) complete description of our hard 2Lin(Z2) instance. We begin
with a d-to-1 Label Cover instance over the graph G = (UUV, E). For each u € U and each v € V,
introduce the Long Codes f, : {—1,1}* — {~1,1} and g, : {—1,1}4% — {—1,1}, respectively.
For each edge (u,v) € E, introduce the function hy, : {—1,1, %} x {=1,1,%}9 — {-1,1}. We



think of strings y € {—1, 1} as being formed of K “blocks” of size d each, so that y; through y,
is the first block, yq+1 through ys4 is the second block, and so forth. Denote the ith length-d block
of y by y[i] = (Yai-1)41,- - -»Yd(i—1)+d)- Now, pick an edge (u,v) € E uniformly at random, and
perform the following test on f,, gy, and hy,:

|2Lin(Z,)-Test |

Given functions f : {—1,1}% — {~1,1}, g : {-1,1}9K — {—1,1}, and h : {-1,1,%} x
{_1717*}dK - {_171}:

Draw = € {—1,1}* and y € {~1,1}%% independently and uniformly at random.

e Form “corrupted” versions of « and y as follows: for each block i € [K], with probability 1/2
replace x; with a * and keep y[i] the same, and with probability 1/2 replace y[i] with *¢ and
keep x; the same. Call the corrupted versions x and ¥y, respectively.

Test either f(x) = h(x,y) or g(y) = h(x,y), each with equal probability.

Note that this actually produces a 2Lin(Z2) hardness instance, as equality tests are 2Lin(Z2)
tests. We think of the *’s as the gaps in knowledge h has about « and y. The string & contains
about half of @, and the string y contains about half of y. Moreover this (lack of) information
is correlated: the part of x missing from Z is exactly the part of y not missing from gy, and vice
versa. This test looks like a “two-party” version of the NICD problem given in Section 3.1. One
might hope that the analysis we used on that NICD problem to solve Yang’s conjecture would help
with analyzing this test; at first blush, unfortunately, this doesn’t work because these correlations
are difficult to reason about. Thus, we will need to find a way to “break” the correlations.

It is useful to talk about the probability that f and g pass the test without reference to h.
Since in the 2Lin(Z3) hardness instance, hy, is only ever referenced when tests corresponding to the
edge (u,v) are performed, we may as well assume that h,, is selected to perform optimally with
fu and g,. Thus, by “the probability that f and g pass the test” (and similar phrases) we mean
the probability that f, g, and an optimal A pass the test.

Analyzing the test: The correlation in what information is present or missing is extremely
helpful in the “matching dictators” case, i.e. when f(z) = x; and g(y) = (y[i]);, for i € [K], j € [d].
In this case, h is always given full information about either f(x) or g(y), because exactly one of
x; or y[i] is always kept when forming « and y. As a result, h can always predict one of f(x) or
g(y) with perfect accuracy, whereas against the other one its success is just an unbiased coin flip.
Thus, f and g pass the test with (1 4+ 1/2)/2 = 3/4 probability. Interestingly, when f and g are
dictators, even if h were to be given complete information about f(x) and g(y) (i.e., nothing was
erased when forming @ or y), the test could still only be passed with probability at most 3/4. This
is because f and g are balanced (41 and -1 with equal probability), and thus are opposites of each
other with probability exactly 1/2. When f and g are opposites, no matter what h(x,y) outputs,
it will equal only one of f(x) and g(y). Since this happens half of the time, 1/4 of the tests must
be failed, upper bounding the success probability by 3/4.

The other important case is when f and g are “nonmatching dictators”, i.e. when f(z) = x; and
g(y) = (y[t']);, for i # ¢’ € [K],j € [d]. This case is useless when decoding to a satisfying assignment
to the original Label Cover instance, and so we hope that they succeed less than 3/4 of the time.
In this case, whether h receives full information of f(x) is completely independent of whether it
receives full information of g(y), as the indices the two depend on sit in entirely different blocks.



Indeed, the correlation in the erasures has no effect; the corresponding blocks of  and y could be
erased with half probability independently of each other, and this would not help nor hinder h. A
large fraction of the time (1/4, to be exact), h receives no information about either f(x) or g(y),
as both x; and y[i] are erased when forming & and y with probability 1/4. Thus, h can do nothing
but guess randomly when this happens, which is again a coin flip. When this does not happen,
then as argued earlier, f and g can pass the test with probability no more than 3/4 because they
are balanced. The result is that the success probability in this case is 3/4%3/4+1/4%1/2 = 11/16,
which is less than 12/16 = 3/4.

The intuition behind the performance of matching dictators carries over to more general func-
tions: if f and g are functions which do not share matching “influential coordinates”, then the
fact that the erasures are correlated in the 2Lin(Z;)-TEST doesn’t matter. Indeed, we develop an
Invariance Principle in Appendices A and B that shows that when f and g do not share match-
ing influential coordinates, then the probability they pass the 2Lin(Z2)-TEST is the same as the
probability they pass a modified, uncorrelated version of the test where the erasures of & and y
are performed independently of each other. In fact, this Invariance Principle can be applied to any
“function-in-the-middle” test in the above mold, meaning any test in which f and g are only every
compared to an intermediary function h.

The next step is to upper bound the success probability of any pair of functions in this uncorre-
lated version of the 2Lin(Z3)-TEST. The uncorrelated version of the 2Lin(Z3)-TEST is exactly the
NICD problem stated in Section 3.1, except now the “middleman” function A is playing the game
simultaneously with two functions, both f and g. As a result, we are able to adapt the analysis we
use to prove Yang’s conjecture; the result is Theorem 5.11, which shows that the uncorrelated ver-
sion of the test cannot be passed with probability more than 11/16. Thus, nonmatching dictators
are basically optimal among functions f and g which do not share matching influential coordinates.

Encoding and decoding: It remains to translate these results on the performance of the test to
results on the hardness of the 2Lin(Z2) instance we’ve generated. This part is entirely standard and
follows the basic methodology of Hastad [Has01]. We have shown above that matching dictators
pass the test with probability 3/4. This means that if the starting Label Cover instance was fully
satisfiable, then the 2Lin(Z3) instance is 3/4-satisfiable. On the other hand, if on a significant
fraction of the edges (u,v), the Long Codes f, and g, pass the 2Lin(Z2)-TEST with probability
greater than 11/16, then our Invariance Principle tells us that they must share matching influential
coordinates. Thus, we can decode the Long Codes to an assignment which satisfies a constant
fraction of the Label Cover edges, which concludes our soundness proof. This final part of the
hardness result we present for general function-in-the-middle tests in Section 4. Therein we also
show that the resulting 2Lin(Z2) instance is of quasilinear size, implying that under the Exponential
Time Hypothesis, nearly exponential time is needed to (3/4,11/16 + €)-approximate 2Lin(Z3). One
question remains: why does this exactly match Hastad’s hardness result? We answer this in
Appendix G.

Hardness for other CSPs: A general definition of a function-in-the-middle test is given in Def-
inition 4.7. If such a test T performs its checks using predicates from the set ®, then Theorem 4.19
automatically implies (¢, s)-approximating the Max-® problem under quasilinear reductions, where
c is the probability matching dictators pass T and s is the highest probability with which any
functions can pass test 7”7, the version of test T for which erasures are uncorrelated. The remainder
of the paper constructs tests T using various sets of predicates ®. Our main result, for 2Lin(Z,),
is presented first in Section 6. (The description of the 2Lin(Z,) test is simple: take the above
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2Lin(Z3)-TEST and replace all instances of the set {—1,1} with Z;.) Next, in Section 5, we analyze
the 2Lin(Z3)-TEST (an alternative analysis, using the Fourier transform method, is presented in
Appendix F). Finally, in Section 7, we give our Max-Cut, 2And, and 2Sat tests.

Fixing the 2Lin(Z)-Test: There are a couple of technical details which we omitted in the
above description of the 2Lin(Z2)-TEST for sake of exposition. As it turns out, we can assume
that the initial Label Cover instance is d-to-d rather than d-to-1, and we need not assume it is
necessarily bipartite. This is the version we choose to present in full in Section 5.3. In addition,
when constructing the actual hardness instance, for technical reasons we need to slightly perturb
x and y after forming x and y and use these perturbed versions as the inputs to f and ¢g. These
noisy versions of @ and y are referred to as & and ¥, respectively. Details about this are presented
in Section 4. Finally, we will often reverse the order the strings are selected, as the following is
equivalent method of selecting x, y, &, and y: first select * and y so that they are distributed as
in the 2Lin(Z3)-TEST. Then, “fill in” their *’s with uniformly random elements of {—1,1} to form
x and y.

4 Inapproximability from NICD

In this section we describe our method for proving 2-CSP inapproximability results by reduction
from Label Cover. It is somewhat similar the standard LC- and UG-based approaches (“Long
Codes”, “dictator tests”, etc.) but has some twists. We prefer to think of it as reducing inapprox-
imability to problems in non-interactive correlation distillation (NICD).

4.1 NICD tests

It is natural to allow the functions in NICD problems to be “randomized”. We formalize this as
follows:

Definition 4.1. Let A, denote the set of probability distributions over Z,. Equivalently, A, =
{(pos---,pg—1) €ERL, | po+ -+ +pg—1 = 1}. We often identify an element ¢ € Z, with the constant
probability distribution e, = (0,...,0,1,0,...,0) € A, (with the 1 in coordinate £). We may think
of a function f with range A\, as being a “randomized function” with range Z,.

We will not use the notion of a “randomized function” until Section 6, but it is convenient to
point out that “non-randomized functions”-those whose range is Z,-may be equivalently written
as having range A\,. Such non-randomized functions only ever map to es, for £ € Z,. We now give
the definitions which let us rule out “trivial” solutions to NICD problems:

Definition 4.2. The function f : Z" — A, is balanced if Egozm[f(z)] = (%, ey %) Here and
throughout,  ~ Z/" means that @ is uniformly distributed.

Definition 4.3. The function f : Z" — Ay is folded (a stronger condition than being balanced)
if f(z +0) = rote(f(x)) for all x € Z" and £ € Z;. Here x + £ is shorthand for z + (¢,¢,..., /),
and rote(v) € A, is the “cyclic rotation of v by ¢ places”; i.e., roty(v)i = V(i—fmod ¢)- When
[ Z] = Z; is “non-randomized”, this simply means that f(z +¢) = f(z) + L.

We require a few more definitions:

Definition 4.4. We write uf | for the probability distribution on Z&U {x?} which is uniform on Z¢
with probability p and *® with probability 1 — p. If d =1 or g =2 or p = % we omit writing it.
Note that ui , 1s invariant under permutations of the d coordinates.
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Definition 4.5. Given a string x € Z", an n-noisy copy is defined to be the randomly chosen
string @ in which for each i € [m] independently, &; = z; with probability 1 — n and &; is set
uniformly at random with probability 1. We also define the operator T, on functions f : Z;* — A,
by Ty, f(z) = Ez[f(2)]. We may denote this by & ~, x.

Our main result will concern “correlated information distributions” = on (Z;l1 U{x%}) x (Zg2 U
{x92}). One property we will require of our correlated information distributions is that the only
correlation present between the two coordinates concerns the presence or lack of information. For
example, 7 is allowed to always put *? in exactly one of the two coordinates, so that information
is always available for one of the two sides, but we forbid 7 to always output two matching strings.
This is formalized in the next definition.

Definition 4.6. Given a correlated information distribution 7, consider the “filled in” version of
R

1. Sample (z,y) from 7.

2. Form x and y by replacing each * in  and y by an independent and uniformly random
element of Z,.

Then 7 is pseudo-independent if * and y are independent.

We are now able to define the general class of NICD “tests” which will be useful for our
inapproximability results. Because we are working with Label Cover our tests need to operate on
“blocked” functions; i.e., functions over domains L = (29K, Aside from this generality, we have
chosen to make our definition rather narrow for the sake of simplicity. To attack inapproximability
for more CSPs, one might wish to generalize this definition in several directions; however, such
generalizations would require proving more complicated “Invariance” theorems.

Definition 4.7. A 2-party, q-ary, ®-based, (d1,d2)-blocked, n-noise correlated test TEST consists
of two probability distributions:

e A correlated information distribution 7 on (Zgl1 U {x%1}) x (Zg2 U {x?2}). Each marginal 7;

on Zgj U {x%} (for j = 1,2) must be equal to ugfpj for some p; € [0,1]. Further, 7 must be

pseudo-independent.

e A “test distribution” T on ® x {1, 2}, where ® is a fixed collection of predicates ¢ : Z, x Z; —
{0,1}.
Given K € NT, TEST operates on blocked functions f : Z;llK — Zg, g ¢ Z(‘f?K — Z4, and
h: (Zgl1 U {xM})E x (Zg2 U {x2})K — Z, as follows:

1. A pair of strings (z,y) € (Zg{l1 U{xa 1)K x (Zg{2 U{x%}) is chosen randomly from the product

distribution 7®X.

2. String x € ZglK is formed by randomly “filling in” ; i.e., replacing each * by an indepen-
dent uniformly random symbol from Z,. Similarly y € Z;l?K is (independently) formed by
randomly filling in .

3. String « € ZglK is set to be an n-noisy copy of x, and similarly for y.
4. Finally, (¢, 7) is chosen from 7. If j = 1 then one “tests” ¢(f(x), h(x,y)); if 7 = 2 then one
“tests” @d(g9(y), h(x,y)).
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Definition 4.8. The success probability or value of f,g,h on TEST, denoted Valrus:(f,g,h), is
simply the probability that the test is satisfied.

Remark 4.9. Given TEST and functions f, g, the optimal choice (or choices) for h is determined.
We will often just consider varying f and g, and choosing the best h to go along with them. We
therefore introduce the notation Valrgsr(f,g) = maxp{Valresr(f,g,h)}.

Definition 4.10. The optimal success probability or optimal value of TEST, denoted Opt(TEST),
is maxy o{ Valresr(f,g9)}. We also define Optgygeq(TEST) for when the maximization is only over
folded f and g, and also Opty,1anced (TEST) for when the maximization is only over balanced f and

g.

Fact 4.11. Let TEST be a 2-party 0-noise test and let TEST, be its n-noisy version. Then
Opt(TEST) > Opt(TEST,)) and Optiygeq(TEST) > Optiygeq (TEST)).

Proof. This is because Valrgsr, (f,9) = Valtest(Tyf, Tyg), and Ty f, Tyg are folded if f, g are.
However, we must account for the fact that T, f and T,g do not necessarily have the domain Z,,
even if f and g do. Consider selecting z (respectively, w) from a distribution on strings in ZglK
(respectively, ZgZK ) for which each coordinate is independently 0 with probability n and uniform
on Z, otherwise. Then given @, « + z is distributed as &, and given y, y + w is distributed as y.
Thus, in TEST,,, we may use « + 2z and y + w in place of & and y, respectively. By the probabilistic
method, there is a setting to z and w for which, conditioned on z = z and w = w, the test is passed
with probability at least Valrgsr, (f,9). Then define the functions f’ = f(- + z) and ¢’ = g(- + w).
Clearly, Valresr(f,g') > Valrgsr, (f, g). Furthermore, f’ and ¢’ are folded if f and g are. O

4.2 Blocks, influences, Invariance, and uncorrelated tests

As mentioned, our 2-party NICD tests operate on “blocked” functions; e.g., f : ZglK — Zyg, g :
ZgQK — Zg. In fact, for reductions from LCy, g 4,k the “blocks” will not necessarily be contiguous.
Rather, the “blocks” for f will be 7, 1(1),..., 7, (K) for some di-to-1 map =, : [d1 K] — [K], and
similarly for g with a do-to-1 map .

Definition 4.12. Given a 2-party (d;,dz)-blocked test TEST, we introduce the natural notion of
applying it to f, g, h under the “blocking maps” m, and m,. Notice that for this to make sense, it is
crucial that our definition of 2-party tests is insensitive to permutations of coordinates within blocks
and also to permutations of blocks. (Briefly this is because the distributions ,ui p; are permutation-
invariant, the test uses product distributions across the K blocks, and because making n-noisy
copies acts independently on coordinates.)

Often the optimal choice of f and g for a given 2-party NICD test is “matching dictators” (note
that dictators are folded):

Definition 4.13. Suppose that f : ZglK — Zgand g : ZgQK — Zg are dictator functions, meaning
that f(x) = x; for some i € [d1K] and g(y) = y; for some j € [d2K]. We say they are matching
dictators (under the blocking maps m,, m,) if m,(7) = m,(j); otherwise we say they are non-matching
dictators.

As is common in inapproximability, we will be concerned with functions which are “far from”
being dictators in the sense of having “small noisy-influences”. To make this notion precise we recall
the Hoeffding orthogonal decomposition (or Efron—Stein decomposition) for functions f : ¥™ — R?:
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Definition 4.14. For f: ¥™ — R? we define || f||3 = Egz~sm[|f(2)|?]. Here | - | denotes Euclidean
length in R%. Note that if f: X™ — A, then ||f||3 < 1.

Fact 4.15. Fvery function f : 3" — R? can be written as f = ng[m] 1S, where the functions f°
™ — RY have the following properties: f5(x) depends only on (x;)ses; and, B[(f5(x), £ (x))] = 0
for any S # S', where x is uniformly distributed on ™ and (-,-) denotes the usual inner product

on RY. As a consequence,
S
113 = D 17515
SC[m]

In addition, if 8" C [m] does not contain S, then for any assignment xg to the variables in S,
E[f5(x)] = 0, where x is a uniformly random element of £™ conditioned on x; = (xg); fori € S'.

Definition 4.16. The n-noisy influence of B C [m] on f: 3™ — R? is defined to be

e "= > a-n)"ro.

S:SNB#()

Suppose that f : Z;llK — Zgand g : ZgQK — Z, have (roughly speaking) “no influential blocks
in common” (under blocks induced by m, and m,). For example, f and g may be non-matching
dictators. In this case, we might expect that f and g cannot “take advantage” of the correlation
between h’s inputs  and ¥y in test TEST. The key technical result we need for our hardness
reduction is an “Invariance” theorem which formalizes this idea:

Definition 4.17. Given a 2-party correlated test TEST, its uncorrelated version TEST’ is the same
test but with the pair of strings (z,y) drawn independently from 7’s marginal distributions; i.e.,
x ~ m and Yy ~ mo independently.

Theorem 4.18. There is a function k(n,e,q) > 0 with k(n, €,q) = (ne/q)° 18D/ sych that the
following holds:

Let TEST be a 2-party, q-ary, (di,ds)-blocked, n-noise correlated test. Let TEST' denote its
uncorrelated version. Assume we are applying these tests under the blocking maps m, and m,. Let

I Z;llK — Ay and g : ZgQK — [\ satisfy

min(Inf {9 (], Inf{ =7 [g]) < w(n,c,q) Vit € [K].

Then Valrgsr(f, g) < Opt(TEST') + ¢,
and Valrgsr(f, 9) < Optegiqeq (TEST) + € if f, g folded.

We prove Theorem 4.18 in Appendix B. Mostly, our proof follows the general outline of Mossel’s
Invariance theorem [Mos10], with a few differences. In the terminology of [Mosl0], we have a
sequence of K orthonormal ensembles, each of which corresponds to a certain block of  and ¥.
Mossel’s Invariance theorem uses as a parameter for an application of hypercontractivity the least
nonzero probability of an assignment, which in our case is %q_ max{di,d2} ~This is too small for us.
Instead, we are able to maneuver it so that we only need to worry about the hypercontractivity of

Z,.
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4.3 The hardness of approximation reduction

The following theorem shows how to convert a 2-party correlation test to a hardness of approxima-
tion result. The proof is quite standard, and largely follows of Hastad’s methods [Has01] .

Theorem 4.19.

Let TEST be a 2-party, q-ary, ®-based, (dy,ds)-blocked, 0-noise correlated test.

Let TEST be its uncorrelated version.

Suppose that matching dictators achieve success probability at least ¢ for TEST.

Suppose also that Opt(TEST) < s.

Let n,e € Qt and assume 6 < e-n? - k(n,€,q)?, where k is as in Theorem 4.18.

Then there is a reduction from (1,6)-deciding LCy, i 4,50 to (¢ — 1, s + 2€)-deciding Max-®.

If instead we assume Optgygeq(TEST') < s then we get the result for Max-®+.

The reduction maps size-n instances to size-q@ N E+RK) p inctances and runs in time polynomial
in the size of its output.

Proof. Let (U,V), E,(Teu,Tew)) be a given size-n instance of LCy ka,x. For each u € U (re-
spectively, v € V) the reduction introduces a collection of Max-® variables identified with Z;llK
(respectively, Z;l2K ); we think of an assignment to these variables as a function f, : ZglK — Zg
(respectively, g, : ZgQK — Z4). Furthermore, for each edge (u,v) € E the reduction introduces
a collection of Max-® variables identified with (ZJ1 U {x%})5 x (Z& U {+®})%; we think of an
assignment to these variables as a function h,, with range Z,.

Let TEST,, denote the n-noisy version of the test TEST (and TEST;7 its uncorrelated version). For
each edge e = (u,v) € E the reduction introduces a collection of ®-constraints on the assignments
fu, gv, and hy,. These constraints are precisely those given by applying TEST,, under the blocking
maps Tey, Ten (With weights/probabilities scaled down by a factor of |E|). This completes the
description of the reduction.

Completeness. Assume that F' : U — [d1 K],V — [d2K] is an assignment satisfying all con-
straints of the LCy, i 4,k instance. Consider the assignment to the Max-® instance in which for
each u € U and v € V we take fu(7) = Tp(y), 9u(y) = Yp()- For e = (u,v) € E, these are matching
dictators with respect to 7., and ., since I’ satisfies the constraint on e. Therefore there exists
a choice for hy, such that Valpgsr(fu, g, huy) > ¢. Since f, and g, are dictators it is easy to see
that Valresr, (fus gv, huw) is still at least ¢ — 7. Since this holds for each edge (u,v) € E, it follows
that our assignment achieves value at least ¢ — 7 on the Max-® instance.

Soundness. We prove the contrapositive. Suppose there are assignments (fy)uctr, (9v)vev,
(hm,)(W,)E g for the Max-® which collectively achieve value exceeding s + 2¢. Then for at least
an ¢ fraction of edges e = (u,v) € E — call them “good” edges — we have Valrgsr, (fu, v, huv) >
s+e> Opt(TEST;?) + €, the second inequality being Fact 4.11. We may therefore apply Theo-
rem 4.18 to deduce that for each good (u,v),

1- 1-
Jtuy € [K] s.t. Inf' ;{fiw)[ fal, Inffrgizzuv)[gv] > k= K1, €, q). (1)
Consider now the following randomized procedure for generating an assignment F' for the LC
instance. For each u € U, the procedure first chooses S C [d; K] with probability ||fJ|3. (From
Definition 4.14 these numbers sum to at most 1; for any remaining probability, S can be chosen
arbitrarily.) Then F'(u) is set to be a uniformly random element of S (or an arbitrary label if
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S = 0). An identical procedure is used to assign F(v) for v € V, based on g,. Observe that for
any set B C [d1 K] and u € U,

Pr[F(u) € Bl> »  [If713- (1SN BI/IS])

S:SNB#()
> ST 1EIE - n - p)SVISOBL (since r > n(1 - )7, Ve > 0, € [0,1])
S:SNB#()
17
>0 S I3 (1 )l = nInfl (], 2)
S:SNB#£D

and similarly for v € V.
Now for a good edge e = (u,v), let us estimate the probability (over F') that F(u) and F(v)
satisfy the constraint associated with e. It is

P;,r[ﬂe,u(F(u)) = WE,U(F(U))] > Pr[F(u) € W;}L(tuv) & F(v) € 7;3 (tuv)]

= Pr[F(u) € m_,(tw)] - Pr[F(v) € 7} (tu)]
>0’ Inf[f,] - Inf 50 lg)] > 0Pk,

Teu(tuv) Te,v(tuv)

where we used (2) and then (1). It follows that expected fraction of constraints in the LC instance
that F satisfies is at least € - n?x2 > §; hence the optimal value of the LC instance is at least §.

This completes the proof except for the statement about Optgqeq(TEST) and Max-®*. For this
we the standard folding trick: Instead of having the reduction introduce a collection of variables
corresponding to ZglK for each w € U, we only introduce variables for ZglK —1. We think of an
assignment for these variables as the restriction of a function f, : ZglK — Zg4 to inputs of the form
(0,2'), 2’ € ZHEL. We extend f, to a folded function via f,(¢,2') = fu (0,2’ — (£,...,0)) + €. Is
this way, any Max-® constraint involving f,,(z) can be replaced with a Max-®* constraint involving
fu(0,2"). We similarly arrange for folded functions g,. We now proceed through the above proof:
for the completeness we use the fact that dictators are folded; for the soundness we use the folded
versions of Fact 4.11 and Theorem 4.18. O

Corollary 4.20. Let 2 < ¢ = q(n) < (logloglogn)3. Assume that for all do, K € NT there
is a q92K) time algorithm for generating (the description of) a (di,ds)-blocked TEST satisfying
the hypotheses of Theorem /.19, for some di < da. Assume that ¢ < 1. Then for a certain
e =¢(n) = O(1/logloglogn), there is a quasilinear-size reduction from size-n instances of 3Sat to
the problem of (c, s + €)-deciding Max-® (or Max-®*, under the assumption Optqeq(TEST') < ).

Proof. (Sketch.) This follows by combining the Moshkovitz—Raz Theorem with Theorem 4.19.
One takes § = (loglogn)~¢ for a sufficiently small constant ¢ and n = e. With these choices the
conditions of Theorem 4.19 are satisfied and the overall size of the Max-® instance produced is still
n'to(). Using ¢ < 1, we can convert the resulting (¢ — €, s+ 2¢)-hardness into (¢, s+ O(€))-hardness
using padding. O

5 A test for 2Lin(Z,)

In this section we introduce the model of non-interactive correlation distillation (NICD), with
the goal of proving Yang’s conjecture [Yan07]. We then use this proof technique to analyze our
2Lin(Z3) function test, which yields the ¢ = 2 case of Theorem 2.5 and matches the gadget-based

16



hardness result of [Has01, TSSWO00]. The approach to solving NICD problems we develop here is
useful not only for our 2Lin(Z2) result, but also for the hardness of approximation results for the
remaining binary CSPs presented in Section 7. In some sense, the binary NICD model and our
2Lin(Z3) test form the foundation of all our binary correlation tests. Finally, these have natural
g-ary generalizations, and these form the basis of our Unique Games hardness result in Section 6.

5.1 Binary NICD

We begin with the model of NICD over the erasure channel, which considers the following test, for
O<p<l:

| NICD-Tas(p) |

e Given functions f: {—1,1}" — {—1,1} and h: {—1,1,%}" — {—-1,1}:

e Draw x € {—1,1,*}" so that each coordinate is independently a * with probability 1 — p and
a uniformly random element of {—1, 1} otherwise.

e Form x € {—1,1}" by replacing each * in & with an independent uniformly random element
from {—1,1}.

o Test f(x) = h(x).

We call the pair (f, h) a strategy. This is only a 1-party test, but many of the notions we used for
2-party tests transfer over naturally. In particular, if T'is a 1-party test, we may write Valp(f, h) for
the probability the test is satisfied, Valp(f) for max,{Valr(f,h)}, and Opt(T) for max{Valr(f)}.
Furthermore, Optg1geq(7’) and Opty,jancea(Z’) take the optimum over strategies where f (not nec-
essarily h) is folded or balanced, respectively.

It is easy to see that given f, an optimal A is

h@) = sign(E[f(z) | z]),

where we define sign(0) = 1. It is also easy to see that this test can be passed always if f and h
are constant; henceforth, we will only consider balanced f.

Perhaps the most obvious strategy is for f to be a dictator. In this case, the success probability
of fis 1/2 + p/2. Ke Yang [Yan07] conjectured that this was optimal (we assume his conjecture
was for p > 1/2 only), and indeed our Theorem 5.1 confirms this.

Theorem 5.1. For p > 1/2, Optyajancea (NICD-TEST(p)) = 1/2 4 p/2. When p > 1/2, dictators
and negated dictators uniquely achieve this value.

Which function is best for p < 1/2 is less clear, however, but what is clear is that dictators are
no longer optimal. In fact, what is perhaps the only other obvious strategy for NICD—majority—
outperforms dictators for this range of p. For n odd, we define the majority function to be

MAJ, (z) = sign (Z CEZ> :
i=1

It is clear that if f is MAJ,(z), then the optimal strategy for h is

n
h(z) = sign Z zi |,
12 F*
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which is simply the majority over the unerased bits. The exact success probability of MAJ,, for a
specific n is tedious to compute and rather unilluminating, but fortunately one can compute the
limiting success probability as n approaches co. Using the 2-dimensional Central Limit Theorem,
it can be shown that the success probability is 1/2+arcsin(,/p) /7 (see, for example, the analysis in
[0’D02]). For p > 1/2, this is strictly worse than the dictator strategy, but it is better for p < 1/2
and is exactly equal for p = 1/2. In fact, the case of p = 1/2 is especially nice, and the entire class
of linear threshold functions succeeds here with probability exactly 3/4.

In contrast to p > 1/2, what we know about NICD over the erasure channel when p < 1/2 is
fairly limited. What we do know comes mainly from the following theorem of [0’D02, Yan07] (see
also [Mos10]):

Theorem 5.2. For 0 < p <1, Optyapancea (NICD-TEST(p)) < 1/24 /p/2.

The success probability of the best strategy is clearly an increasing function of p, so combining
Theorem 5.1 with Theorem 5.2 gives the best upper bound for Opty,janced(NICD-TEST(p)) as
min(3/4,1/2 + /p/2), when p < 1/2. This bound is tight to within a constant as p approaches
zero, because the success probability of majority is 1/2 4 /p/7 + O(p*/?). Indeed, we believe that
majority is the best strategy for p < 1/2 but are unable to prove it. One piece of evidence for this is
the “Majority is Most Predictable” theorem of Mossel [Mos10], which states, roughly, that among
“low-influence” functions, the success probability of majority is optimal. It seems reasonable that
the best strategy for p < 1/2 would be a low-influence function, as any function which relies heavily
on specific coordinates would be difficult to predict when the values of those coordinates are erased.

We now begin proving our results. First, we give a simple proof of Theorem 5.1 in the case
where p = 1/2. The technique we use here will be reused in several of the later NICD proofs.

Proof. Let (f,h) be a strategy where f is balanced. Consider selecting two strings y,y’ € {—1,1}"
independently and uniformly at random, and forming y as follows:

g =4 Y if y, =y,
' « iy, £ yi.

Then clearly y is distributed as Z is in the test, and y and ¢’ are both randomly “filled-in” versions
of it. Thus,

Pr(f(x) = h(®)] = avg{Pr[f(y) = h(y)], Pr[f(y') = h(¥)]}
E[M(f(y), f(¥)],

<

N |

where M outputs the number of input bits in the majority. This is because whatever f(y) and
f(y') turn out to be, h(y) can only agree with at most M (f(y), f(y’)) of them.

Because y and y’ are independent and f is balanced, f(y) and f(y’) are distributed as inde-
pendent, uniformly-random +1 bits, so M (f(y), f(y')) is either 1 or 2, each with probability 1/2.
Thus, E[M(f(y), f(y'))] = 3/2, and the success probability of f and h is at most 3/4. O

We will extend this proof technique to prove Theorem 5.1 in its entirety. First, we need the
following well-known fact about the noise stability of balanced functions.

Proposition 5.3. For 0 < n <1 and a function f : {—1,1}"* — {—1,1}, the noise stability of f
at n is Sp(f) = Ex[f(2) (T, f)(x)]. If f is balanced, then S,(f) < n. Equality holds if and only if f
s a dictator or a negated dictator.
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Proof. We assume familiarity with Fourier analysis on the Boolean hypercube. Define A € {—1,1}"
to be distributed so that each coordinate \; is independently random subject to E[\;] = 1. Then
y ~p x is identically distributed to A - x, using coordinate-wise multiplication. Thus,

Sy(F) =Ef @) f)@)] = D FFT) E [xs(@)xr(y)]

x S,Tg[n} z,Yy~nT
= Y fOAT) E [s(@)xr(z M. 3)
S,7C[n] '

As xr(z - N) = xr(2)xr(N), we have that

g\[XS(x)XT(x A = Elxs(@)xr (@) Elr(M)] = 1s-r - ',

Substituting this into Equation (3) yields S,(f) = > gcy F(S)25!. 1t is well-known (Parseval’s
theorem) that ng[n] f(S)% =1 when f is {—1,1}-valued. Furthermore, it is easy to see that if f
is balanced, then f(0) = 0. Thus, for a balanced f, S,(f) < 7, with equality in the case that all
of f’s Fourier mass is on sets of size one. The only such functions are dictators and antidictators,
which concludes the proof. O

We can now use this to prove Theorem 5.1.

Proof of Theorem 5.1. Let (f,h) be a strategy where f is balanced. Consider selecting two strings
v,y € {—1,1}", where y is uniformly random and vy’ is a (2p — 1)-correlated copy of y. Form y
as above:

:{ y, ify, =y,
' « if y; # yi.
Clearly, y is distributed as & is in the test, and y and ¥y’ are distributed like randomly “filled-in”
versions of it. Thus,

Pr(f(xz) = h(Z)] = avg{Pr[f(y) = h(y)], Pr[f(y') = h(¥)]}
E[M(f(y), f(y'))],

Q@

<

DN =

where M outputs the number of input bits in the majority. This is because whatever f(y) and
f(¥y’) turn out to be, h(y) can only agree with at most M (f(y), f(y’)) of them.

Unfortunately, y and 3y’ are not independent, so we need a different way of analyzing the
expected size of this majority. We can write out M as M (ui,u2) = 3/2 + ujuz/2. Then

E[3/2+ f(y)f(y')/2]
E[f(y)f(y")]

=2+ ISeen () o

S B (). f()] =

|
+
I

Wk W =
—_

o

The final equality holds because y’ is a (2p — 1)-correlated version of y. By Proposition 5.3, so long
as 2p — 1 > 0, the noise stability term in equation (4) is maximized when f is a dictator, in which
case its noise stability is (2p—1). This means that Pr[f(x) = h(x)] < 1/2+ p/2, which is the upper
bound we wanted. Furthermore, by Proposition 5.3, when 1/2 < p < 1, this value is attained only
by dictators and negated dictators, because they uniquely maximize the noise stability term. [
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5.2 NICD with blocks

In the last section, we talked about the natural NICD test in which the functions do not have
blocks. Unfortunately, due to the hardness of approximation setting, when constructing tests, we
often have no choice but to ensure that the functions and strings used are blocked. This is somewhat
of a pain for the analysis, and it would be nice if we could just ignore the blocks and have our
results go through anyway. In this section, we show that the results from Section 5.1 mostly still
hold if NICD-TEST(p) had incorporated blocks, with one surprising exception.

Recall that a string z € (Zg U {*})¥ is thought of as containing K “blocks” of size d apiece,
where the t-th block corresponds to those indices in the set {(t — 1)d + 1,...,td}.

Notation 5.4. For t € [K] we will write z[t] for the ¢-th block of string z € (Zg U {x K.

Consider, for 0 < p < 1, the NICD test NICD-TEST(p),, which is a blocked version of
NICD-TEST(p). In NICD-TEST(p),, the input strings have K blocks of size d apiece. The
test selects & € ({—1,1}? U {x?})¥ such that each block Z[t] of Z is independently selected to be
+? with probability 1 — p and a uniformly random element of {—1,1}¢ otherwise. Then the *’s of
@ are randomly “filled in” to form x, and the test checks that f(x) = h(x). The following lemma
shows that so long as we consider folded strategies, the two tests are essentially equivalent.

Lemma 5.5. Optfolded(NICD_TEST(p)d) S Optfolded(NICD_TEST(p))

Proof. To avoid confusion, we will refer to the blocked strings selected in the NICD-TEST(p), as
@ and z, and the strings selected in the NICD-TEST(p) as y and y. For this proof we will use the
set Zo in place of {—1,1}. For z € (Z§ U {x?})X and ¢ € (Zy U {x})¥, let z + ¢ denote the string
in (Z¢ U {*}%)X whose t-th block equals z[t] + (ct, ¢ty - .., ¢). (In this proof we interpret [ + % = *
for any [ € Z;.)

Let (f,h) be an optimal strategy for the test NICD-TEST(p), in which f is folded. Draw x
and z as in NICD-TEST(p),. Let w be a uniformly random element of ZJ. Consider the strings
x 4+ w and & + w. It is clear that (x + w,x + w) has the same distribution as (z, ). Thus

Valniep-test(p), (f: ) = Pr[f(z + w) = h(z + w)].
By the probabilistic method, there must exist a setting x to @ for which
Pr[f(z +w) = h(Z + w) | © = x| > Valxicp-Test(p), (f5 1)-

Let us fix this 2. We now define the strategy (fz, hs) for NICD-TEST(p) by setting f.(y) = f(z+y)
and h;(y) = h(z+7y). Note that h, fixes z even though = has no *’s. When y and y are selected as
in NICD-TEST(p),, (v +y,x + ) is distributed exactly as (x + w, + w) conditioned on = = z.
Thus, f, and h, pass the NICD-TEST(p) with probability

Pr(f.(y) = hs(y)] = Pr[f(z + w) = W@ + w) | = 2] > Valxicp-Tesr(p), (f+ 1),

which is equal to Optyajancea (NICD-TEST(p),). It remains to be checked is that f’ is folded, and
this follows from f being folded. O

The balanced case: Crucially, when we end up with f(x + -) in the proof of Lemma 5.5, we
know that it is folded since f is folded. However, this fails when trying to prove a similar result
for Optyajanceds Pecause f(z + -) is not necessarily balanced, even if f is. Somewhat unexpectedly,
this fails for a more fundamental reason, which is that the statement

Optbalanced (NICD'TEST (:0) d) < Optbalanced (NICD'TEST (P) )
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is simply false. There are balanced protocols which pass the NICD-TEST(p), test with much
higher probability than even the best balanced protocol passes the NICD-TEST(p) with.

The example we have of this is the “tribes” function f : {0,1}%% — {0,1} of Ben-Or and Linial
[BOLI0]. For a given block size of d, let K be the nearest integer to (In2)2¢, so that the expectation
of tribes is approximately 1/2. The tribes function is defined so that f(z) is 1 whenever at least
one of x’s blocks is all 1’s, and otherwise f(x) is 0. The optimal predictor & : {0,1,*}9€ — {0,1}
does the same thing: on input z, if one of z’s blocks is all 1’s, then f(z) is certainly 1, so h(z)
outputs 1 as well. Otherwise, it outputs 0. (Strictly speaking, the tribes function as defined here
is not balanced, but it can be made so by changing its values on some 0,4(1) fraction of inputs; this
only changes the success probability by at most 04(1).)

The analysis of the tribes protocol is relatively simple: when f(x) = 0, which happens with
probability 1/2, there are no blocks of 1’s for h to receive, so h(x) will be 0 as well, and the two
will equal. On the other hand, when f(x) = 1, there are some blocks in & which are all 1’s, and
h receives each one independently with probability p. When there’s only one, it outputs h(x) = 1
with probability p, but when there are more than one, which happens with nonzero probability, it
outputs 1 with probability strictly greater than p. Thus, the total success probability is strictly
greater than 1/2 4+ p/2, which is the success probability of the dictator strategy, which is optimal
for NICD-TEST(p). Indeed, it is easy to calculate the exact success probability of tribes.

Proposition 5.6. The tribes strategy passes the NICD-TEST(p), with probability

AN 1\
1-(1-2) +<1—2d> .
As K ~ (In2)2¢, the success probability of tribes in the limit as d approaches infinity is 3/2 —1/2°.

At p = 1/2, the success probability of tribes is about 79.3%. In contrast, dictators succeed at
p = 1/2 with probability exactly 75%. It is interesting to consider whether tribes is optimal in this
setting, or if there is a protocol which does better.

5.3 2Lin(Z2) hardness

In this section, we state and analyze the test which yields our hardness of approximation result for
2Lin(Z2). We will be interested only in folded functions, and thus we can get a hardness result for
2Lin(Z3) by designing a binary =-based test. In fact, our test is just a 2-party blocked version of
the NICD—TEST(%) in which the deletions are correlated across the parties.

Let 7 be the following distribution:

~ uniformly random from {—1,1}¢ x {x?}, with probability %;

(@,b) ~ m means (@, b) = { (5)

uniformly random from {*?} x {—1,1}%, with probability %

Recall from Definition 4.4 the distribution u? on {—1,1}¢ x {*}? which is *? with probability 1/2
and a uniformly random element of {—1,1}? otherwise. Then 7’s marginals are both u?, however
correlated. The test is:

|2Lin(Z,)-Tes |

e Given functions f : {—1,1}9% — {—1,1}, g : {~1,1}9€ — {~1,1}, and h : {-1,1,%}9F x
{—1,1, %} - {11}
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e Draw (z,y) ~ m®K,

e Form = € {—1,1}%K by replacing each * of & with a uniformly random element of {—1,1}.
Form y € {—1,1}%% from gy similarly.

e Test either f(x) = h(x,y) or g(y) = h(x,y), each with equal probability.

Remark 5.7. For this test, the block sizes are unimportant so we have chosen di = dy = d for
simplicity. Thus our NP-hardness result for 2Lin(Z2) does not even need to reduce from Label-Cover
with “projection constraints”; any LCy, i 4, x would suffice.

Observation 5.8. It is helpful to also think about the strings in 2Lin(Z3)-TEST being generated
in the opposite order, as described in Section 1.2. By this we mean the following viewpoint: First,
x,y ~ {—1,1}9 are chosen independently and uniformly at random. Then z,y € ({—1,1}¢ U
{x?})K are formed as follows: independently for each block t € [K], exactly one of x[t], y[t] is
replaced with *¢, with probability % each. For each block ¢ we think of h as “knowing” either x[t]
or y[t], and “knowing that it doesn’t know” the other one.

For the “completeness” part of our hardness result, we compute the success probability of
matching dictators:

Proposition 5.9. Matching dictators achieve success probability % in 2Lin(Z2)-TEST.

Proof. Suppose f,g : {—1,1}4% — {—1,1} are of the form f(z) = z;, g(y) = y;, where i,j are
both in the ¢-th block (i.e., (t —1)d < i,5 < td). Let h(z,y) be the following (optimal) function:
if Z[t] # *? then h outputs Z;; if J[t] # *? then h outputs J; (one of these two always holds). Half
of the time h is tested against the function (f or g) whose output it “knows”; then it succeeds
with probability 1. The other half of the time h is tested against the function whose output it
doesn’t know; in this case it succeeds with probability Prz; = y;| = % Thus the overall success

probability is % -1+ % . % = %. O

Let’s now move on to the “soundness” part of our hardness result. For this Theorem 4.19 tells us
we need to analyze the optimal success probability in the uncorrelated version of 2Lin(Z3)-TEST.
But before we do this, let’s informally think about how well functions f and g with “no influ-
ential coordinates in common” can pass 2Lin(Z2)-TEST. The usual candidates to consider are
non-matching dictators and f = g = Majority. In the latter case, it can be shown that the success
probability is exactly % by a noise stability calculation. As for the former case:

Fact 5.10. Non-matching dictators achieve success probability % in 2Lin(Z3)-TEST.

Proof. Suppose now that f(z) = z;, g(y) = y; where 7 and j are in different blocks. In this case
the optimal h acts as follows: If it knows either x; or y;, it outputs that value. (If it knows both, it
can output either.) This happens with probability %, and when it happens the success probability

is again %. But when h knows neither x; or y;, h can only guess a label. This happens with
probability i, and when it happens the success probability is only % Thus the overall success
probability of nonmatching dictators is % . % + i . % = %. ]

These observations suggest that the hardness reduction for 2Lin(Z3) will achieve soundness %.
Formally, we must proceed using Invariance and Theorem 4.19. To that end, consider 2Lin(Z2)—TEST/7
the uncorrelated version of 2Lin(Z3)-TEST. In 2Lin(Z3)-TEST', (Z,¥) is sampled from (ud x pd)®K
rather than 7®%. If f and g are dictators, they are accepted by 2Lin(Zs)-TEST with probability %.
Our next theorem shows that this is optimal.
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Theorem 5.11. Optgeq(2Lin(Zs)-TEST') = 13

Proof. By an extension of Lemma 5.5, it suffices to consider the case when d = 1. Let (f, g, h) be any
strategy where f and g are folded. Consider selecting two strings x, ' € {—1,1}" independently
and uniformly at random, and forming T as follows:
~ x; if ;=
r; = . /
* if @; # @),

Then clearly Z is distributed according to (1)®" (recall the definition of y from Definition 4.4), and
both x and ' are distributed as random “filled-in” versions of Z. In addition, consider selecting two
more strings y,y’ € {—1,1}" independently and uniformly at random, and forming y analogously
to . It is also clear that g is distributed according to (u)®™, and both y and ¥y’ are distributed as
random “filled-in” versions of w. Thus,

= 1(%,9)], Prlg(y) = h(Z,9)]}

Va12L|n(Z2) TesT’ (f 9, ) - an{Pr[f(w)

Pr(f h ;
— av Pr(f(z ) = (%75)]7 1 - ' /

Prlg(y’) = h(w,y)

where M outputs the number of input bits in the majority. This is because whatever f(x), f(x )
g(y), and g(y’) turn out to be, h(x,y) can only agree with at most M (f(x), f(z'), g(y), 9(y’)) of
them.

By construction, @, ', y, and ¥y’ are all independent of each other. We require f and g to be
folded, so in particular both are balanced. As a result, f(x), f(2'), g(y), and g(y’) are distributed
as independent uniformly random +1 bits. The question remains to ﬁnd the expected size of the
majority of four random +1 bits, and it is easﬂy verified that this is =-. Thus, the probability that
(f,g,h) passes the test is no greater than ﬁ O

We invite the reader to compare this proof with the proof of Theorem 5.1 in the case of p = 1/2.
By using Proposition 5.9 and Theorem 5.11 together with Corollary 4.20, we obtain the ¢ = 2
case of our Main Theorem (Theorem 2.5); in other words, NP-hardness of (%, % + €)-deciding

2LIH(ZQ)

6 A test for 2Lin(Z,)

In this section we state and analyze the test which yields our Main Theorem on the inapproxima-
bility of 2Lin(Z;). At a high level, this section takes everything from Section 5 and replaces every
instance of Zy and {—1,1} with Z,. Many of the intuitions and facts in the binary case—such
as the equivalence of blocked and nonblocked tests for folded functions—carry over to the larger
alphabet case basically verbatim. On the other hand, upper-bounding the value of the new g-ary
tests requires new ideas.

6.1 g¢-ary NICD

Section 5.1 introduced the binary NICD model, in which the strings have characters in Zs U {x}
(equivalently, {—1,1,%}) and the functions output values in Z5. Let ¢-NICD-TEST(p) be the
natural q ary version of NICD-TEST(p). We will mainly analyze ¢-NICD-TEST(p) for the value
of p = ; in this case we write ¢-NICD-TEST for short. It is easy to see that f passes the
g-NICD- TEST with probability % + 2—1(] if it is a dictator. The next theorem shows this is optimal.
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Theorem 6.1. Optg,g.q(¢-NICD-TEST) < % + %,

We will prove Theorem 6.1 shortly; we actually require it later for the soundness part of our
2Lin(Z,) hardness result. As discussed in Sections 3.1 and 5.1, Theorem 6.1 resolves the g-ary
(folded) generalization of Yang’s conjecture on p-erasure NICD for p = % For ¢ > 2 we were
unable to generalize Theorem 6.1 to any other value of p € (0,1). A potentially complicating factor
is the surprising fact that even for ¢ = 3, there are folded functions f : Zf — Z4 which depend on

1

more than one coordinate yet achieve Valy, niop-Tesr(p) (f) = % +p(1— 5)’ the same value achieved

by dictators. For example, the function f : Z2 — Z3 defined by f(a,a) = a, f(a,a — 1) = a,
fla,a +1) = a+ 1 is folded and it is easy to check that it succeeds (using optimal h) with
probability % + %p. More generally, the function f : Zg — Z, defined by “f(a,b) = aif a —b
(mod q) € {0,1,...,[q/2] — 1} else f(a,b) = b” is folded, and it can be checked that it has value
g ol —12).

We now give the proof of Theorem 6.1:

Proof of Theorem 6.1. We will in fact prove something stronger than Theorem 6.1, namely that
Valgnicp-Test(f) < % + qu even in the case when f and h are allowed to be randomized (i.e., map
into A;). The proof is actually somewhat simpler if we disallow randomized f and h, but we will
need the generalization later.

So let f: Zf — A\, be folded. It’s easy to see that it is optimal for h : (Z, U {x})E — A, to
work as follows: on input Z it computes

v=E[f(x)| =] € 4,

and then outputs a uniformly random coordinate ¢ € Z, from among those which maximize v,.
Let us henceforth fix this optimal h, and also observe that it is “folded” in the sense that h(z +
(c,...,c)) =rot.(h(Z)) (where as before x 4+ ¢ = *).

Let us make an aside which will be useful for a future proof. Introducing the short-form notation
f(@) = E[f(x) | € = Z], we have that the success probability conditioned on & = T is precisely
1£(@)lloo. Thus

Valy xtop resr(f,1) = BlILF @) oc) (6)

This proof shows that the above quantity is at most % + qu'
Let us return to the original formulation of value:

Valgxicp-tese(f, h) = Pr(f(x) = h(@)] = E [(f(2), h(z)], (7)

x,x x,x

the latter equality because f and h are in fact randomized (A 4-valued) functions. We now employ
the following trick. Let (2,2') € (Z, U {*})¥ x (Z, U {*})¥ be generated according to 7% where
7 is defined as in (9) (with d = 1). Le., for each coordinate t € [K], one of Z;, 2} is * and the other
is random from Z;. Define the “composite string” denoted z = zoZ € Zf , meaning that z; equals
the non-* value among 2z, z;, for each ¢ € [K]. The key observation is that the pair (z,z) has the
same distribution as (x,x) and that (z,2’) also has the same distribution as («,Z). Thus upon

inserting either pair into (7) we get the same number, and hence the average of the two numbers
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is again the same:

Valgxicn et (f,h) = ave{ B [(/(2),hE)],_B [(f(2),h(Z)]}

z,z .,z z,z ,z

= E [(f(z), MEERED)

=~ =/

z,z 2

E [|MEHE) . (8)

=~ =/
z,z

IN

Here the last step uses the fact that (o, 8) < ||er][1]|B]loc = ||Bloc for o, € A,.
Suppose that in addition to z, 2" we also choose £ ~ Z4 uniformly at random. Even conditioned
on z’, the distributions of Z and zZ + (£, ..., £) are the same. Hence (8) equals

~Ef Hh(z—l—(l’“ée))—i_h(y)Hoo} :~E [Hrote(h(zz))Jrh(z’)Hoo :

z,z L z,z' L

using the foldedness of h. We will bound this by % + Q—Iq for every pair of outcomes h(z) = 7,
h(z') = 4/ in A, The quantity to bound, Ee[||(rote(y) + 7')/2]|c], is a (separately) convex

function of both v and ' (since || - ||oc is a norm). Hence the quantity is maximized when ~
and 7 are extreme points of A,. But for v = e, v = ey, say, one immediately calculates that
Ee[||(rote(y) +7')/2[lcc]) = & + 2—1(1. This completes the proof. O

6.2 2Lin(Z,) hardness

We now state our 2Lin(Z,) test. As before, our hardness results will ensure that the functions
involved are folded, and so we are free to design an =-based test. First, we generalize the distribution
m from Section 5.3 to the larger alphabet size by defining 7, to be the following distribution:

uniformly random from Zg x {¥?}, with probability %;

(a,b) ~ Ty Means (a,b) = { 9)

uniformly random from {*?} x Zg, with probability %
Recall from Definition 4.4 the distribution ,ug on Zg x {*}9 which is *? with probability 1/2 and a

uniformly random element of Z;l otherwise. Then m,’s marginals are both ug, however correlated.
The test is:

2Lin(Z,)-TEST

e Given functions f : ZgK —Zg, g ZgK — Zyg,and h: (Z, U {x})¥E — Z,:

QK

e Draw (z,y) ~

e Form x € ZgK by replacing each * of  with a uniformly random element of Z,. Form
Yy € Z;lK from gy similarly.

e Test either f(x) = h(x,y) or g(y) = h(x,y), each with equal probability.

Many of the statements made in Section 5.3 concerning the 2Lin(Z3)-TEST apply here too. See
Remark 5.7 and Observation 5.8.

For the completeness part of our hardness result, we compute the probability that matching
dictators succeed. This can be seen by a proof analogous to the one used for Proposition 5.9.
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Proposition 6.2. Matching dictators achieve success probability % + 2%; in 2Lin(Z,)-TEST.

The intuition behind the soundness analysis is similar to that for the 2Lin(Z3)-TEST. As
before, let’s consider the canonical examples of functions f and g with “no influential coordinates
in common”: non-matching dictators and f = g = Plurality. The latter case actually has very
low success probability, roughly q_3+2‘/§. As for the former case, an analysis similar to Fact 5.10
shows:

Fact 6.3. Non-matching dictators achieve success probability % + 8% in 2Lin(Z,)-TEST.

These observations suggest that the hardness reduction for 2Lin(Z;) will achieve soundness
% + 8%. Formally, we must proceed using Invariance and Theorem 4.19. To that end, consider
2Lin(Z,)-TEsT’, the uncorrelated version of 2Lin(Z,)-TEST. In 2Lin(Z,)-TEST', (z,y) is sampled

from (pd x pd)®K rather than 7$%. The goal for the remainder of this section is to upper-bound

Optioiged (2Lin(Zy)-TEST'). We believe that dictators are the folded functions with highest success
probability for 2Lin(Z,)-TEST'. An almost identical analysis to Fact 6.3 gives:

Fact 6.4. Dictators achieve success probability 3 + 8% in 2Lin(Z,)-TEST'.

Unfortunately, we are only able to prove that dictators are optimal for ¢ < 7. The ¢ = 2 case
is Theorem 5.11; the cases 3 < g < 6 require computer assistance, see Appendix E. We would not
be surprised if there was a short proof giving the result for all ¢; however for ¢ > 7 we have only
proved an upper bound of % + O(ﬁ)' We now proceed to obtain this bound:

Theorem 6.5. Optggeq(2Lin(Z,)-TEST) < 2 + O(q%).

Proof. By an extension of Lemma 5.5, it suffices to consider the case when d = 1. Again, we prove
this even when f and g are allowed to be randomized. So let f,g : Zg{ — /A4 be optimal folded
functions for 2Lin(Z,)-TEST'. As before it’s easy to see that the optimal h : (Z, U {x})% — A,
works as follows: on input (z,y) it computes

v=3E[f(x)|2=2]+3E[g(y) |§=7] = 3/@) + 39(7)

and then outputs a uniformly random coordinate ¢ € Z, from among those which maximize v,.
With this h the success probability conditioned on * = =,y = y is precisely ||V|/c. Thus

OPtfolded (2Lin(Z,)-TEST') = Valyyin(z,)-Test (f, 9) = Eg[%"f@) + 9(Y) |l o0]-

Note that f(x) and g(y) are independent Ag-valued random variables. Further, by virtue of the
fact that f is folded, f(x) is “cyclically symmetric” in the sense that roty(f(x)) has the same
distribution for each ¢ € Z;. (The same is true of g(y) but we won’t need this.) Thus we may also
write

OPtoided (2Lin(Z)-TEST') = B lave{ sllrote(f(@)) + 9(@) oo }- (10)

Define m(s,t) = s +t — st. The key to our proof is showing that

szg{%\\rote(a) + 7o} < gmlllollse, [I7lloc) + O(i) (11)
q

holds for every o,7 € AA,. From this we can easily complete the proof: applying it to (10) gives

OPtgoigea (2Lin(Zg)-TEST') < 3 E [m(l7@)lloc, llg@)lle)] + O(im)

— i (BIS@ ). Ella@)l]) + O(t5).
z y
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where we were able to pass the expectations inside the m(-, ) using the fact that f(x) and g(y) are
independent. But by virtue of (6) in the proof of Theorem 6.1, and by the theorem’s result itself,
we have Ez || f(Z)[/], Eglllg(@)]so) < 2+ 2%1. Since m(s,t) is an increasing function of s,¢ € [0, 1],
we deduce that
Optfolded(2Lin(Zq)_TEST/) < %m(% + 2171’ % + i) + O(ql%) = % + O(ﬁ)?

as needed.

It remains then to prove (11). Let A s denote the convex set Ay N {0 : [|o]|cc < s}. We will in
fact show

avg{%”rotg(a) + 7)o} < %max(s,t) + O(ql%) forall o € Ags, T € DNy (12)
leZy

this is stronger since max(s,t) < m(s,t) for s,t € [0, 1]. Inequality (12) is obvious if either s or ¢ is
at most ql%; thus we need only be concerned with the case s,t > ql%'

As in the previous proof we observe that avg,. Zq{% |lrots(0)+7||0o } is convex in o and in 7; hence
it suffices to prove (12) when o and 7 are extreme points of A\, s and A\, ;, respectively. Note that
an extreme point for A, ¢ has exactly [1/s]| nonzero coordinates, of which |1/s]| equal s; similarly
for Ay For fixed extreme o and 7, a simple union-bound argument shows that the fraction of
¢ € Z, for which rot,(o) and 7 have a nonzero coordinate in common is at most [1/s][1/t]/q. This
is at most 4/(stq) < O(ql%) since we are assuming s, ¢ > ql%' On the other hand, if roty(c) and 7

do not have a nonzero coordinate in common, %||rot;(c) + 7||oc = 2 max(s, t). Together these facts
justify (12), completing the proof. O

We may now plug our completeness result (Proposition 6.2) and our soundness result (Theo-
rem 6.5 combined with Lemma 5.5) for 2Lin(Z;)-TEST into our hardness reduction (Corollary 4.20)
to obtain our Main Theorem on the NP-hardness of Unique-Games (in its precise form, Theo-
rem 2.5).

7 Other binary CSPs

In this section, we design and analyze binary 2-party tests which allow us to recover the best known
NP-hardness results for Max-Cut, 2Sat, and 2And.

7.1 Max-Cut hardness

Our Max-Cut-TEST is similar to our 2Lin(Z2)-TEST, except it can no longer guarantee that the
functions involved are folded. This presents a problem, as without this guarantee, f and g could
both, for example, be constantly 1, in which case the 2Lin(Z3)-TEST could be passed with proba-
bility 1. To handle this, our Max-Cut-TEST devotes a certain fraction of its tests to ensuring that
f and g “look” folded. This certain fraction is chosen so that the constantly 1 protocol is no better
than the dictator protocol, and it turns out that this is sufficient for making the dictator protocol
optimal. Let 7 be as in the 2Lin(Z2)-TEST. The test is:

| Max-Cut-TEsT |

e Given functions f : {~1,1}4% — {11}, g : {-1,1}9 — {~1,1}, and h : {-1,1,*}9E x
{—1,1,%}9 — {—1,1}, in which f and g are folded:
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e Draw (z,y) ~ m®K,

e Form = € {—1,1}K by replacing each * of  with a uniformly random element of {—1,1}.
Form y € {—1,1}%% from g similarly.

e With probability 16/21, test either f(x) # h(x,y) or g(y) # h(x,y), each with equal proba-
bility.

e With the remaining 5/21 probability, test either that f(x) # f(—x) or g(y) # g(—vy), each
with equal probability.

In other words, the Max-Cut-TEST runs the 2Lin(Z3)-TEST (with inequalities) with probability
16/21, and tests folding with the remaining probability. The Max-Cut-TEST doesn’t fit tidily in
the 2-party correlated test framework we developed in previous sections, because such tests must
only test constraints which involve A. However, a natural modification to this framework, which
we omit for simplicity, does cover the Max-Cut-TEST. Intuitively, the “folding tests” that the
Max-Cut-TEST performs with probability 5/21 don’t involve h or the correlated distribution 7;
thus, when decoupling the correlation in w, we may simply ignore these folding tests. As a result,
Theorem 4.18 still holds for the Max-Cut-TEST.

The following fact is easy to check:

Fact 7.1. Let f and g be matching dictators. Then Valpmaxcut-Tesr(f,9) = 17/21.

This follows from Proposition 5.9: since dictators always pass the folding test, their overall
success probability is 16/21 - 12/16 +5/21 -1 = 17/21.

Consider Max-Cut-TEST’, the uncorrelated version of the Max-Cut-TEST. In Max-Cut-TEST,
(x,7) is sampled from (u? x u?)®K rather than 7®X. If f and g are dictators, they are accepted
by T" with probability 16/21. Our next theorem shows that this is optimal.

Theorem 7.2. Let Max-Cut-TEST' be the uncorrelated version of the Max-Cut-TEST. Then we
have Opt(Max-Cut-TEST’) = 16/21.

Proof. By an argument similar to Lemma 5.5, it suffices to consider the case when d = 1. Let
(f,9,h) be any strategy. Say that § = E[f(x)] and v = E[g(y)]. Consider selecting two strings
x,x’ € {—1,1}" independently and uniformly at random, and forming & as follows:

- x, ifx;=a,
T; = .
! « if @y # ).

Then clearly x is distributed according to (u)®™, and both & and @’ are distributed as random
“filled-in” versions of . In addition, consider selecting two more strings y,y’ € {—1,1}" inde-
pendently and uniformly at random, and forming y analogously to . It is also clear that ¥y is
distributed according to (1)®", and both y and ¥y’ are distributed as random “filled-in” versions of
w. Thus

Valyaxcut- st (f, 9, h) = ave{Pr[f(z) # h(z,y)], Prlg(y) # h(z,y)]}
Ewl) # h(z,y)]

Pr[f J J
e ) PRI £ R@E D) (L :
—avg pet ) e b < TEMU@). S(@).9(w). 0w (13
Prig(y) # (3. 9)
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where M outputs the number of input bits in the majority. This is because whatever f(x), f(x'),
g(y), and g(y’) turn out to be, h(x,y) can only disagree with at most M (f(x), f(2'),9(y),9(y"))
of them.

By construction, @, @', y, and y’ are all independent of each other. Thus, f(x) and f(x') are
distributed as mean-6 +1 bits, g(y) and g(y’) are distributed as mean-v +1 bits, and all four are
independent of each other. The function M can be written as

11 1 1ot
M (u, o, v,0") = E 16(““ +uv+ ...+ uv + o) — uulgv

We can therefore calculate the expectation in Equation (13) as

02 4] 2 02 2
BIM(f(@), /@), g(u), 9] = 16+ 1e + 1+ 1o~ 1

The only term in this expression which depends on the signs of § and v is fv/4, and it is easy to
see that it is maximized when 6 has the same sign as v. Thus, it can only improve the success
probability of a protocol to assume that § and v have the same sign. By symmetry, we may assume
that they are positive.

Given that the mean of f is 0, the highest chance it can pass the folding test is 1 — [f] =1 — 6.
Similarly, the highest chance g can pass the folding test is 1 — v. The overall probability of f and
g passing the entire test is therefore at most

16 (11 6> v v* %7 5 0 v
PO,v): — Z(1-Z_-Z
(6v): = (16+16+ 16 16>+21< 2 2)
16 02 400 2 H%2

T LA
21 42(+)+21+21+21 21

What remains is to show that on [0, 1] x [0, 1], P has maximal value 16/21. As a function of 6,

1 v? 4v ) v?2 v 16
P,O):=POv)==——= )P+ |———) 0+ —— " +—.
(6) := P(9,v) (21 21) + (21 42) HETRRV TR

The coefficient on 62 is always nonnegative, so P,(f) is a convex function of 6, for each fixed v.
Thus, for each fixed v it’s maximized at either # = 0 or # = 1. So it suffices to maximize P(0,v)
and P(1,v). The latter is linear (and increasing) in v, so P(1,1) is a possible maximizer. The
former is a convex parabola, so it’s maximized at ¥ = 0 or v = 1. It remains to check the corners;
indeed, P(0,0) = P(1,1) = 16/21 are the maximizers. O

Inspired by the test presented in this section, it is interesting to consider what happens in the
model of NICD over the erasure channel presented in Section 5.1 if we drop the requirement that
f be balanced and add a folding test to compensate. If one sets the probability of performing the
original test at 4/5 and the probability of performing the folding test at 1/5, then the constant
function protocol will no longer be better than the dictator protocol; both succeed with probability
4/5. And just as in Theorem 7.2, though with different numbers, this sufficient for making the
dictator protocol optimal.

By using Fact 7.1 and Theorem 7.2 together with Corollary 4.20, we obtain the Max-Cut case
Theorem 2.4; in other words, NP-hardness of (%, % + €)-deciding Max-Cut.
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7.2 2Sat hardness
The next two tests we present are quite different from the 2Lin(Z2) and Max-Cut NICD tests. For

example, both require starting from d-to-1 projective Label Cover. Even then, our analysis suggests
that there is still an underlying similarity. Let v be the following distribution:

~ uniformly random from {1} x {—1,1}¢, with probability ;

(a,b) ~ v means (a,b) = { (14)

uniformly random from {—1} x %%, with probability %

Note that we have written a rather than a. This is because a is never x. The following is our 2Sat

test:
2Sat-TEST

Given functions f : {—1,1}* — {-1,1}, ¢ : {-1,1}4K — {-1,1}, and h : {-1,1}5 x
{_1717*}dK - {_171}:

Sample (z,y) ~ oK.

e Form y € {—1,1}%F by replacing each * of § with a uniformly random element of {—1,1}.
e With probability 1/3, test f(x) VvV —h(x,y).
e With probability 2/3, test g(y) V h(x, ).

We will be concerned with folded protocols. Note that h is given the entire string «; using the
notation established earlier for 2-party correlation tests, we achieve this by setting x = .
Now, the following is an easy fact:

Fact 7.3. Let f and g be matching dictators. Then Valasar Tesr(f, g) = 11/12.

Proof. When f(x) = —1, h(x,y) can always output —1, satisfying all the constraints and passing
the test with probability 1. Now, condition on f(x) = 1. In this case, because f and g are matching
dictators, h is given the value of g(y). So if g(y) = —1, setting h(x,y) = 1 will satisfy all the

constraints and pass the test with probability 1. Finally, when g(y) = 1, setting h(x,y) = —1
will satisfy the second constraint only, passing the test with probability 2/3. The result is a total
success probability of 3/4-1+41/4-2/3 =11/12. O

Let (f,g,h) be a strategy in which f and g are folded. Consider the test 2Sat-TEST’, the
uncorrelated version of 2Sat-TEST. In 2Sat-TEST', (z,y) is sampled so that x is an independent
uniformly random {—1,1}% string, and g is drawn from (u®)®X. If f and g are dictators, they
pass the 2Sat-TEST with probability 7//8. Our next theorem shows that this is optimal:

Theorem 7.4. Opty,geq(25at-TEST) = 7/8.

Proof. Conditioned on f(x) = —1, an optimal h will always output —1, and will pass the test
with probability 1. On the other hand, when f(x) = 1 the test reduces to testing —h(zx,y) with
probability 1/3 and g(y) V h(x,y) with probability 2/3. The probability of success is therefore

L belh(e. ) 1]+§Pr[g(y)\/h(w,ﬂ)] _lg [MW} L 2E [1_ (1 +g(y)> <1+h(m,ﬂ)>]

3 3 2 3 2 2
111 h(z,7) 1 gly) hzy) g(yh(z,y)
=3E{2+2+2‘2‘ > 2 2 }
5 11 gh(a,y)
_6_3E[2+2], (15)



where we are able to drop the —g(y)/2 term because g is balanced. The expectation is equal to
the probability that g(y) = h(ax,y), which Theorem 5.1 says is no less than 1/4 (it actually says it
is no greater than 3/4, but we may negate h). So when f(x) = 1, we can upper bound the success
probability of the test by

5 1 1 3

15)< 2 _Z.Z -2

) <5-35 171
Since f is balanced, both of these cases happens with the same probability. Thus, we can upper
bound the success probability of the f, g, and h by 1-1/2+3/4-1/2=17/8. O

By using Fact 7.3 and Theorem 7.4 together with Corollary 4.20, we obtain the 2Sat case
Theorem 2.4; in other words, NP-hardness of (%, % + €)-deciding 2Sat.

7.3 2And hardness
Recall the definition of v from Equation (14). The following is our 2And test:

Given functions f : {—1,1}* — {-1,1}, ¢ : {~1,1}45 — {—-1,1}, and h : {-1,1}K x
{—1,1,%}% — {—1,1}, in which f and g are folded:

Sample (z,y) ~ VoK.

Form y € {—1,1}%% by replacing each * of z with a uniformly random element of {—1,1}.

e With probability 1/3, test f(x) A h(x,y).
e With probability 1/3, test g(y) A h(x,y).
e With probability 1/3, test —g(y) A —h(x,y).

We will be concerned with folded protocols. Note that h is again given the entire string x.
Now, the following is an easy fact:

Fact 7.5. Let f and g be matching dictators. Then Valaand-Test(f,g) = 10/24.

Proof. When f(x) = —1, setting h(x,y) = —1 will pass the test with probability 1/3 + Pr[g(y) =
—1]/3 = 1/2 (it can be checked that this is the best of the two settings for h(z,y) in this case).
Otherwise, when f(x) = 1, because f and g are matching dictators, h is given the value of g(y).
No matter what g(y) is, h(x,y) can always be set to satisfy exactly one of the three constraints.
This is an overall success probability of 1/2-1/24+1/2-1/3 =5/12. O

Consider 2And-TEST', the uncorrelated version of the 2And-TEST. In 2And-TEST', (z,¥) is
sampled so that x is an independent uniformly random {—1,1}¥ string, and gy is drawn from
(pH®K, If f and g are dictators, they pass the 2And-TEST with probability 9/24. Our next
theorem shows that this is optimal:

Theorem 7.6. Optygeq(2And-TEST') = 9/24.
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Proof. Conditioned on f(x) = —1, an optimal h will always output —1. The probability that doing
so passes the test is 1/3+1/3-Pr[g(y) = —1]. Because g is balanced, this is 1/2. On the other hand,
when f(x) = 1 the test reduces to testing g(y) A h(z,y) with probability 1/3, =g(y) A —h(x,y)
with probability 1/3, and rejecting outright with the remaining 1/3 probability. This is

Prlg(y) A h(e,§)] + 5 Primg(y) A ~h(a, )

ol (72 () +am () (5

1
E|-
[2—1-

(16)

W= W= Wl

The expectation is equal to the probability that g(y) = h(x,y), which Theorem 5.1 says is no more
than 3/4. So when f(x) = 1, we can upper bound the success probability of the test by

1 3 1

16)<=-—-=-.

(16) < 3 4 4
Since f is balanced, each of these cases happens with equal probability. Thus, we can upper bound
the success probability of the test by 1/2-1/2+1/4-1/2 = 3/8. O

By using Fact 7.5 and Theorem 7.6 together with Corollary 4.20, we obtain the 2And case
Theorem 2.4; in other words, NP-hardness of (%, % + €)-deciding 2And.

8 Future directions

It seems reasonable that our hardness reductions could be converted into n'=°()-round Lasserre
SDP integrality gaps, using the methods of Tulsiani [Tul09]; we have not yet investigated this.
This would give a new barrier for strongly approximating Unique-Games using Lasserre relax-
ations, a topic which has seen recent progress [BHK'11]. Relatedly, we believe our work moti-
vates the problem of making the constants in recent subexponential-time algorithms for Unique-
Games [ABS10, BRS11, GS11] more explicit.

Our new methodology seems to hold promise for improving the best known NP-hardness re-
sults for other notable 2-CSPs. Natural problems to try it on include Max-k-Cut and Khot’s
“2-to-1 problem”. An intriguing further possibility would be to use the framework to improve
the best known NP-hardness result for Metric-TSP, Min-Steiner-Tree, or Max-Acyclic-Subgraph.
For each of these problems, the current best result is by a somewhat intricate gadget reduction
from 3Lin(Z2) [PV06, CC02, New00]. Such was the case previously for Max-Cut, 2Sat, 2And, and
2Lin(Z2); perhaps our new approach could lead to an improved direct reduction from Label-Cover.

Acknowledgments. The first-named author would like to thank Nathanaél Francois and Anu-
pam Gupta for collaboration on some early aspects of this research. The authors also thank Prasad
Raghavendra and Siu On Chan for pointing out errors in an earlier version of the paper.

A An Invariance theorem

A.1 Notation and preliminaries

Let f: Z0E — Agand g @ 282K — Ay Write Bi(t) = {(t — 1)di + 1,...,td1} and By(t) =
{(t—=1)d2+1,...,tdy} for t € [K] for the tth “blocks”. Let 7 be a distribution as in Definition 4.7
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with marginals m; and my. Recall that 7; (for j = 1,2) must equal /,Lgfpj for some p; € [0,1]. Let
p be the distribution on (Z, U {*})% x (Z, U {x})% with independent marginals equal to 71 and
7. As before, we will consider the product distributions p®% and 7®% as distributions on pairs of
strings from (Z, U {*})"5 x (Z, U {*})2X. Note that for u®¥ the two strings are independent.

Denote the random variable distributed as 7®% by z. There are two components to z: the
one used as an input to f and the one used as an input to g. (Ignore the fact that z will most
likely have s in it even though f and g don’t accept ’s as inputs. We will address this shortly.)
Denote the first as « and the second as y, so that z = (x,y). Similarly, denote the random variable
distributed as u®¥ by 2z’ = (z/,4y’). These can be written in vector notation:

x=(x1,...,TK), y= (Y1, -, Yx), etc.

It should be clear that for all ¢, z; = (x¢,y,) is distributed as 7, and 2z} = (x}, y}) is distributed
as . Our Lindeberg-style proof of the Invariance principle uses distributions which are hybrids
of z and z/. For each t = 0,1,...,K, the tth hybrid distribution between z and z’ is 2(!) =
(21528, Zhiqs - 2h). So, 2H) = 2z, and 2(0) = 2/. This extends naturally to () and y®,
where ) = (z1,..., 2,2} 4, ..., 25) and YO = (y1,..., ¥4 Y11, Y)). Note finally that we
are choosing to write strings generated by 7®% as (z,y), even though we have previously written
them as (&, y); this is chosen for this section only to reduce notational clutter.

Identify the erasure symbol % with the point (%, cee %) € A4. (This is sensible since erased
symbols will be equally likely to be any [ € Z,.) We may view points w € A, as a probability
distribution over elements w of Z; in the natural way. Then we may extend f and g to have domain
AglK and AgQK , respectively, by

f(w) = E[f(w) | w],
and similarly for g, recalling that f and g are simplex-valued. We refer to functions extended this
way as multilinearized.

From the perspective of h, given the input = € (Z, U {x})%% the distribution of the output
of f comes from taking the expectation of f’s output over a random “filling in” of x, with 1 noise
added. Write

F(z) = (Ti—yf)(@) = f(1 = n)z + nx) € Ag,
and

G(y) == (T1iqg)(y) = g((1L = n)y +nx) € Ag.
Then if h is given inputs = and y, the distributions of the outputs of f and g are F(z) and G(y),
respectively.

For a multilinearized function f : AglK — /4, we define the operators L; and E; by

Lif= Y. f% and Ef= > f5
S:SNB1(t)#£0 S:SNB1(t)=0

Note that E;f does not depend on the inputs within the ¢th block, whereas L;f does. Intuitively,
E.f represents f “averaged over” the coordinates in its tth block, and L;f is what remains. We
formalize this in the following proposition, which follows easily from Fact 4.15:

Proposition A.1. Given a multilinearized function f : AZIK — Ay and an input x € ZglK, let
1z, denote x with its t-th block replaced with x™, for some t € [K]. Then E4f(x) = f(x.).

We have the following relation between f’s influences and L, f:

mfy D= Y =) = T e 3.
S:SNB1(t)#£0
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A.2 Statement of the theorem

Let ¥ : R% — R be a smooth function with bounded derivatives. Our Invariance principle shows
that if f and g do not share influential coordinates, then the test function ¥ cannot distinguish
between the case when their inputs are correlated, as in @ and y, or uncorrelated, as in ' and y’.
More formally, we prove the following theorem:

Theorem A.2. Let ¥ be a C*° function satisfying
pPvi<or Vgl =1, 0¥ <05 VIBI=3,

where C1 and Cs are constants. Let ¢ > 2 and n > 0 be given, and let f : AglK — Ay and
g: AZM( — Ay be multilinearized functions satisfying

min(Infly P[f], Infly Dig)) <r ¥t € [K],

for k a constant. Then

|E[¥(F(), G(y))] - E[¥(F (@), G(Y))]| < 2C1eqv/ar'* + 2C5¢,q° 4D/,

where ¢, = %ln (%) and c(q,n) = ©(n/logq).

A.3 Invariance

We now begin the proof of Theorem A.2. What follows is highly similar to Mossel’s Invariance
principle [Mos10]. As usual in Invariance proofs, we replace the K coordinates of z with those of 2/,
one at a time. We mainly investigate the magnitude of the error incurred in the tth step; we add up
these K errors at the end. Write F' and G as two coordinates of a single multi-dimensional function
H = (F,G). (Previously, lower-case h has designated the “middleman” function. Upper-case H is
of no relation, and is used out of convenience.) Notationally, F' receives inputs named z, G receives
inputs named y, and H receives inputs named z = (z,y). So in the ¢th step, we incur an error of

erry := | E[W(H (z'"V))] — E[¥(H ("))]|.

Let us write

F = EF(z) G = EGy"Y) H = EH(z(Y)
Fi = LF () Gi1:=LG(y") Hy y:=LH(z"Y)
F;:=LF(z") G: = L:G(y") H, = L,H(z")

Clearly, H = (F, G), Ht—l = (Ft_l, Gt—l); and Ht = (Ft, Gt) Thus,
erry = ‘E[\IJ(H + Htfl)] — E[\IJ(H + Ht)”
Now we apply Taylor’s theorem to W, centered at H, out to the third partial derivatives:

B
U(z+y) — Z v 5'(‘%‘)( Z 5'( )|y]5 for all z,y € RY.
Bl<s |81=3

This gives us the following upper bound on erry:

(@ (8 B
eree < 3 (0 | | | Y ) 4 S D (i + w).
B<3 Al A 18]= 3

Here we have used the upper bound on the third partial derivatives of ¥. We will upper bound
these two terms in the next two sections.

—E
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A.4 The quadratic part

We will now show that the degree-0, degree-1, and degree-2 terms cancel, in expectation. In other
words, for all multi-indices 3 € N?? such that |3| < 2,

First, note that W#(H)/f! is independent of the value of z; or 2. Thus, it is sufficient to show that
when everything is fixed except for z; and z/, then (H;_1)? and (H;)? are distributed identically.
Note also that fixing everything but z; and z; turns H; 1 and H; into functions which depend
only on 2z} and z;, respectively.

When |B| = 0, this statement is trivial. For the other cases, split 8 into its two halves,
B1,B2 € N4 so that 8 = (B1,52). The first of these, 51, covers the output indices of F, and
the second of these, B2, covers the output indices of G. When either |3;| = 0 or |f2| = 0, then
(H;_1)? depends either entirely on F;_; or Gy_1, and similarly (H;)? depends either entirely on
F, or G;. However, the marginial distributions -1 and &® are identical, as are y*~1) and y*,
so the expectations are equal. This covers the case of |3| = 1 and a portion of the case of |5]| = 2.

What remains is when |51]| = |f2| = 1, in which we are trying to verify that

E[Pa(x:)Qa(y,)] = E[Pa(x})Qa(y})]

for some real-valued multilinearized functions Pa : AglK — R and Qa : AgZK — R. Recall
that these functions treat their inputs in A, as probability distributions over Z,, and output the
expected value of some functions P : ZglK — R and Q : ZgQK — R over these distributions. In
other words,
Pa(z) = E[P(a) [ z],  Qaly) =E[Q(b) | y]

where and a; is drawn from z; (independently across i), and b; is drawn from y;. Each input
variable to Pa (and Qa) is either a randomly drawn element of Z, or a *, which is then substituted
by a randomly drawn element of Z,. The result is that, from the perspectives of P and @, the
x’s don’t matter; they are simply being evaluated on uniformly random inputs in ZglK and ZgQK .
More formally,

E[PA(2:)Qa(y,)] = E[E[P(a) | z:] - E[Q(b) | y,]]
= E[E[E[P(a) - Q(b) | z] | y;]] = E[P(w) - Q(v)],

where w and v are distributed as independently uniform elements of Z;". (This is where we use
that 7 is a pseudo-independent distribution.) A similar deduction shows that E[Pa(x})Qa (y})] =
E[P(w) - Q(v)] as well, so the two distributions are equivalent.
A.5 The cubic error term
The previous section shows that
C
erre < 37 2 (1BIH ) + [ BIH).
Bl=3 "

What remains is the cubic error terms. There are ¢3 such terms, one for each of H;_; and H,.
Using |E[H;_1]| < E[|H_1]], we get that

erry < 2C3¢° B, assuming E[|H,; 1|°],E[|H,|’] < B V|| =3. (17)
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We'll focus on B’s for which |51] = 1 and |B2| = 2 (keeping in mind that all other cases can be
handled similarly). When £ is of this form, it selects one component, /1, from the F' side and two
components, lo and I3, from the G side (lo may equal [3). Writing (H); for the [th component of
H,, we have

[IHtIB] E[|(F1), (G)i, (Ge)is]]

E[|(Fo), '] E[(Go)w ) BI(Go)i )2, (18)
using Hélder’s inequality. Let Mg equal max; {E[|(F});|]} and Mg equal max; {E[|(G¢);*]}. Equa-
tion (18) is clearly less than max{Mp, Mg} < Mpr+ Mg. The result of this application of Holder’s
inequality is to break up the dependence between the F' and the G sides. Indeed, doing the same
thing for E[|H;_1|%] shows that it too is < Mg + Mg, since independently of anything else, (=)
and ® are distributed identically, as are y*=1) and y®.

For an arbitrary [, let’s now look at

E[|(Fo)il’] = E[(LeF (2))*] = E[ (LeF ()]

We claim that
E[|(LiF(z))i’] < E[|[LiF (w1, ..., wk)i|%,

where w; is independently distributed as a uniform element of Z" for each ¢. In fact, this holds for a
generic multilinearized function ¢. To prove this, introduce the random variable v = (v1,...,vk)
which is drawn from x. Then,

E[|¢(z)|’] = E[| E[¢(v)|2]"] < E[E[|¢(v)P|z]] = E[|¢(w)[’].
As a result, we now consider E[|(L;F(w));|?]. Recall that F = T;_,f, so
E[|(LeF (w))i’] = B[|(LeT1—y f (w)i’] = E[[(T1—yLef (w))i]?],

because Ti_, and L; commute. The function (T1—,L;f); takes values in [0, 1], so we have

E[|T1—yLef(w)i’] = BT 1= T i Lef (w)i’] < E[|IT 1= T jr=Lef (w)]"]

for r = 2+2c, where ¢ = ¢(gq, 1) > 0is a small number chosen so that T ;— is (2, 7)-hypercontractive
on Zy'. (By [LO00, Ole03, Wol07] one may take ¢ = ©(n/logq).) Thus we may upper-bound the
above by

T 1- C 1- C
E[|T 1= Lef (w)i[?]"/? = nfly D[] < Infl P

So plugging all of these deductions (and the identical ones for g) back into (18), we get

1— c 1— c
E[|H,|?) < Infly 7[f]'" + Infl P[g)' .

For brevity, let’s write Inf§3 ( t)) [f] as I[f] and Inf g;(?)) [g] as I;[g]. Then this upper bound is

LA + L[g] ) < (L[f] + Lg)) - max(L[£], I [g))". (19)
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A.6 Influences
Now, recall our assumption on influences, which is that

min ([ f], It[g]) <e.

Define t € [K] to be half-influential if max(I;[f], It[g]) > €0, where €y > € is a parameter to be set
later. Assume for the moment that ¢ is not half-influential. Then we may upper bound (19) by
(I1 + I2) - €, and hence (recall (17))

erry < O(Caq®) - (L[f] + Iilg)) - €5,
We need the following fact:
1—
Fact A.3. Take ¢, = %ln (%) Then K Infsgl(g)[f] < ¢y
Proof. For all x > 0 we can bound x(1 —7)* by ¢,. Thus,

K
St i = S0 el SnBit) # 03— n)S1r5)3
t=1

SCld1K]
< 0 SIa=nEoIE < DY allfBIE = el flI5 = e O
SCld1 K] SCld1 K]

An identical deduction holds for g. Using this, we may now sum this bound over all non-half-
influential ¢ and get that the bulk of the overall error (the non-half-influential part) is at most

K
205¢% - €™ -y " (Infl)

DI+ Infl
t=1

B_(Z)) [g]) < QCgcnqg . 68(‘1777)’ (20)

It remains to deal with the error from the half-influential blocks ¢.

A.7 Half-influences

Now we handle the half-influential ¢t. The good thing about the half-influential ¢ is that there are
not too many of them. Specifically, if ¢ is half-influential we have that a (1 — n)-noisy influence
exceeds €p; again, by Fact A.3, we deduce that there are at most ¢,/eg half-influential coordinates
total.

Now assume t is a half-influential coordinate. We still know that one of the two noisy-influences
5911 ('757))
To this end, define the random variables sz‘l) = (wg_l),y(t*n) and sz) = (wgf), y(t)) where sz)
has the same distribution as 2, only the ¢-th block of azg) is always set to *%. Note in fact that
z,(f_l) and zgf) are distributed identically to each other, as the only difference between z(~1) and
2z is in the correlation of their t-th blocks, and we have removed that correlation by fixing the

t-th blocks of me”) and asgf). Thus,

is at most €; say without loss of generality that Inf [f] < e. We again want to bound err;.



Let us focus here on the second error term. An analogous argument will give the same bound for
the first term. Using the first-derivative bounds on ¥, (i.e., its C;-Lipschitzness in each coordinate)

(t) (i

and also the fact that the second coordinates of z® and zi"” (i.e., y(t)) are identical, the first error

is at most
B H!F =) —F<w5f’ I,

o B [Fe) - Fel)|

m-Eww»— o[

IA

IN

where the two inequalities are by Cauchy-Schwarz. Consider the function ¢ = F' — F, where F
is F' with % hard-wired into the input coordinates of its t-th block. Then ¢ is a multilinearized
function, and a similar argument as before shows that E[[|¢(z®)|3] < E[||¢(w )|| |, where w is a
uniformly random element of ZdlK Let w, be w with its t-th block fixed to x%. This shows that

B |r) - ]| < B [irw) - ] = B[],

where the last step is by Proposition A.1. But here we are done, as

1/2 - 11/2
E [[LeF(w)[3] " = E[ILTif(w)]3]
- 57172
=E[|T1Lif ()|

- 1/2
<E HTmLtf(wM
= Infly P[f]"/?,

which by assumption is at most €/2. Now, by the sum-of-influences lemma, there are at most cn/€o

such t. Hence the overall contribution to the error from the half-influential ¢ is at most

2. C1v/ge'? - ¢, Jeq < 2Chep/qet?, taking €y = e'/%.

A.8 Conclusion

Combining the non-half-influential and the half-influential errors, we get a final overall error bound
for [E[M (H(z))] — E[M(H(2))]| of

2C1 ¢y \/661/4 + 203qu360(q’n)/4.

Again, ¢, = %10g (%) and c(q,n) = O(n/log(q)). This completes the theorem.

B The probability the tests pass

Let T be a 2-party, g-ary, (c,d)-blocked, n-noise correlated test using the correlated distribution =
with marginals p and v. We now apply Theorem A.2 to show that when performing the soundness
analysis of T', we may decouple the correlation between 7’s marginals without paying too high a
price. We restate Theorem 4.18:
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Theorem 4.18 restated. Let T be a 2-party, q-ary, (di,ds)-blocked, n-noise correlated test. Let
T’ denote its uncorrelated version. Assume we are applying these test under the blocking maps m,
and m,. Let f: ZglK — Ay and g : Z;l?K — [\ satisfy

(1=n) (1=n)
min(Inf ol )[f],Infm,l(t)

l9]) < v VielK].
Then Valr(f,g) < Opt(T') + e(n, k),

and ValT(f: g) < Optfolded(T/) + 6(777 ﬁ) /Lf f; g fOZdEd
Here e(n, k) < (q/n)°W) . x¥0/1089) - in particular, for each fired n >0, e(n, k) — 0 as k — 0.

Proof. We will show that [Valy(f, g)—Valy (f, g)| < e(n, ). This shows the theorem by Valp(f,g) <
Valp (f,g) + €(n,x) < Opt(T”) + €(n, k). When f and g are folded, Valy/ (f,g) < Optegea(T”), so
we may instead write Valp(f, g) < Opteqeq(T”) + €(n, k).

Extend f and g to functions f : AglK — Ay and g : AgQK — /4. The outputs of f and g,
conditioned on (Z,y) ~ , are distributed as

F(@) = (Tipf)(@) and  G(Y) = (T1-49)(9),

respectively.

Let (¢,j) be a test drawn from T. Without loss of generality, assume that j = 1. Write
op(a) == ¢(a,b). Say that (x,y) is drawn from m, and that h(x,y) = b. The only values that f
can output which will satisfy ¢ are those in (Z)I]_l(l). Indeed, the probability that ¢ is satisfied is
D ac o (1) F,(Z), the probability that the output of f(&) falls in ¢, '(1). A similar argument holds

for tests involving g. Write

Qpb(SQ,...,Sq_l,to,.. Z ‘T(ﬁ, Z 8a+ Z 7¢, Z ta.

($,1)€T ace; (1) (,2)€T ace, (1)

Then the probability the test is passed, conditioned on (x,y) ~ m and h(x,y) = b, is precisely
Yp(F(x),G(y)). Note that 1y is a linear function of its inputs, all of which have coefficients between
0 and 1, inclusive.

An optimal h for f and g will simply output the element b which maximizes this probability. If
we write

M(F(z), G(y)) := Maxy(to(F (), G(Y)), - - -, g1 (F(Z), G(Y))),

then an optimal h passes the test with probability E z).[M(F(z),G(y))] = Valr(f,g). Note
that E g)~ux [M(F(2),G(y))] = Valr/(f, g). Thus, we are seeking to upper bound the expression

Valr(f,9) = Valr(f,9)| = | _E [M(F(z),G(y))] - __E [M(F(i),G@))]'- (21)

(@,9)~7 (@,9)~puxv

To apply Theorem A.2 to this expression, we need to replace M with a smooth approximation.
Theorem C.1 provides a function ¥, s such that ||Max, — ¥, s|| < 40 logg, and

1
0,5 <O) WBI=1 0wl <0 (a) vl =3
where a7 and ag are absolute constants. Now, define

V(F(7),G(Y)) = Vau($o(F(T), G(Y)); - - - Yg-1(F(T), G(Y)))-
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It is clear that [|[M — ¥||» < 4dlogq. Furthermore, because for all b, ¢ is a linear function whose
coefficients lie between 0 and 1,

’8(5)\1/’ <0 (qa1+1) v‘m =1, ‘3(/3)\11’ <0 ((Slzqa3+3) V‘ﬁ‘ =3,

By the triangle inequality, Equation (21) is at most

LB MFG@).GE) - B [\1/(F<a~c>,a@>>1\ (22)

T, y)~m (z,y)~m

| B wer@.cw- [w<F<oz>,G<y>>1] (23)
z,y)~m (2,9)~uxv

| B wr@.ce)- | E [M(F(%),G@))]’- (24)
Z,Y) XV (,y)~pxv

We may upper bound lines (22) and (24) by 4dlogq each. It remains to apply Theorem A.2 to
line (23), which gives a total bound of

8dlogg+2-0 (g™™) 2 <1> VaEt+2.0 (;qaﬁ?’) 2 <1) ¢ kO1/ loga)/4 (25)
no\n no\n

Note that the second and third terms are bounded from above by

o(1)
L (a7 ewm/ozq)
0% \n ’

17\ O
80logg+ — | = KO/ log )
62 \n

By selecting § to make these terms equal, we may set

o(1) 1/3 o(1)
)= 1 (q> HG(W/ log q) — <q> H@(n/ logq).
logg \n n

Because § was selected to make both terms equal, the total bound on |Valr(f, g) — Valp/(f, g)]| is
e(n, k) := (q/m)OW KO/ loga), i

so Equation 25 is at most

C Max approximator

Define Max,, : R" — R as
Maxy, (z1,...,2Tn) = max |z

We can approximate Max,, with a smooth function:

Theorem C.1. For n > 2 and 0 < § < 1/2, there exists a function ¥, s such that ||V, s —
Maxy||oo < 46logn. In addition, ¥, s has bounded derivatives:

1
09®, 5] <O ™) VBl =1, and 0PT, 5| <O <52n0‘3) v|8| = 3,
where oy and oz are absolute constants.

40



Proof. More explicitly, we will first prove the following bounds on the derivatives of ¥, s for values
of n which are powers of two:

C.
00w, 5] < nlos2C v|g| =1, 109w, 5| < TQanogQ Cllogyn V|8 =2,

10w, 5 < 305 2Cs n3log:

“login V|A| =3,

where C1, Co, and (5 are absolute constants. Note that these bounds are all polynomial in n. To do
this, we will construct an approximating function for the case of n = 2, and will apply this function
recursively for the case when n is a power of two, using the fact that Maxg, (21, 2, . .., Ton—1, Ton) =
Max,, (Maxa (21, x2), . . ., Maxa(z2n—1,2,)). The general case for Max, comes from taking the
approximator for Maxy,,,,,, where npe, is the smallest power of two larger than n, and hardwiring
Npow — N of the inputs to 0. As 1,0, < 2n, the bounds on the derivatives of ¥, s are still polynomial
in n, implying the theorem in full generality.

The base case. We can write

|z1 + x2| + |21 — 562|
2

Define abs(z) = |z|. By Lemma 3.21 of [MOO10], for all 0 < § < 1/2 there is a C*° function abss
which satisfies

MaxQ (a:l, 1’2)

|abss — abs||es < 26; and, [|(abss)™]lee < O(6'T).
Let Cy, Cy, and C3 be constants greater than or equal to 1 such that ||(abs;)™||le < C.60~7) for
all r € {1,2,3}. Set Uy := abs(;(ml + 2)/2 + abss(x1 — x2)/2. It is an easy exercise to check that
[Maxz — Wy 5|00 < 20, and Haqf oo < Cg10* 181, for all 8 with || € {1,2,3}.

The inductive step. Let n = 2™ for some integer m > 2. By induction, there exists a function
W, /2,6 for which [[W,, 5 5 — M, 5l0 < 26 log(n/2), and

1
0D Dol < ol VB =1, 0P, /25|<% n?l%8 Clogy(n/2) V|B| =2,
1
30203 310g2
62C3

0@, 5 5] < “log3(n/2) V|B|=3.

Construct
U, 5(z1,. . 2p) = ‘I/n/gyg(\IJQ,g(.’El, 22), ..., Yo 5(Tn_1,Zn)).

Because Max,, 5 is 1-Lipschitz,

H\Iln,é - Maanoo < ||‘I’n/2,6 - MaXn/QHOO + ”‘Ij2,5 — Maxa||oo
< 2dlog(n/2) + 2§ = 25logn.

For all k, let |0 W} 5|0 denote the maximum over all 8 with |8] = 1 of |0 Wy 5]|ls. The
remainder of this proof makes liberal use of the chain rule. We may bound the first derivatives of

\Pn,é by 1
L A R L
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where the second inequality uses the inductive hypothesis and the base case.
We may next bound the second derivatives of ¥, 5 by

10T, slloe < 100 5lloc - 10 Wa5]12 + 1005 5lloc - 10 2,5

Co  alog, 0 o, b g C2
S@TL 082 110g2(n/2)-01—|—an0g2 1'7

< %nQ 1082 C1 (Jogy (n/2) + 1) < %nQ 1082 C1 1o g, n.

Finally, we may bound the third derivatives of ¥,, 5 by

10D W 5l00 < 10D W9 5100 - 10D Wagl13, + B0 W slloc - 105100 - 02,6100
+ 09 5l - 102,51 o

< 7520% n g2 =1 log2(n/2) . Cl + 3676'1271 82 &1 logz(n/Z) . ? . Cl + an 82 &1, 572
3C2¢C 302¢C 302¢C
7522 3 p3logs 1 log2(n/2) + 7522 3 p3logs 1 logyn < 7522 3 p3logs C1 log2 n.
D Padding

We show here that a (¢, s) point of NP-hardness for a CSP immediately yields other related points
of NP-hardness.

Lemma D.1. For a given CSP T, let ¢y be the infimum of Opt(Z) over all instances Z of I'. Then
if (¢, s) is a point of NP-hardness for T, so is any convexr combination of (c,s), (co,co), and (1,1).

Proof. Consider any convex combination Ai(c, s) + A2(co,co) + A3(1,1), where A\; >= 0, for all 4,
and \1 + Ao + A3 = 1. For 0 < a < 1, we will show a simple method of mapping a-satisfiable
instances of I' into (A a4+ Aaco + A3 )-satisfiable instances of I". This is enough to prove the lemma.
Let Z be the cop-satisfiable instance of ', and let ¢ be a (satisfiable) predicate in T.

Let J be an instance of I with optimum «. Consider the I" instance J’ constructed as follows:
copy over J into J’, but multiply all of its weights by A;. Next, copy over Z into J’ (with a set
of variables disjoint to J), but multiply all of its weights by A2. Finally, introduce the constraint
¢ over k new variables, and give it weight \3. As the three parts of J’ contain disjoint variables,
the optimum assignment to J’ just assigns the variables to each part optimally. This means that
Opt(j/) = AMa+ Aacy + 3. J

E Upper Bound

Let 2Lin(Z,)-TEST’ denote the uncorrelated version 2Lin(Z,)-TEST. We derived the upper bound
on the optimum value of 2Lin(Z,)-TEST for 2 < ¢ < 7 by analyzing the following test:

2Lin(Z,)-UPPER-TEST
e Given functions f,g: Z7 = Z, and h: (Z, U {x})* = Z:
e Pick z1, 22, y1, and y2 uniformly at random from Z,,.

e Give h either:
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($17*7y17
(xla* Y2
(* T2,Y1,*

(* T2, %, Y2

*)
y2)
)
)

[l R

e Test h against either f(z1,z2) or g(y1,y2), each with equal probability.

We claim the following:
Theorem E.1. Opty,g.q(2Lin(Z;)-UPPER-TEST) > Opty.iqeq(2Lin(Z,)-TEST).

Proof. Let (f,g,h) be a folded strategy for 2Lin(Z,)-TEsT. We will construct a folded strategy
(f';g', 1) for which Valyyin(z,)-Upper-Test (f', 9's B') > Val.(f,g,h). Consider selecting  and y
independently from (1, /2)®” and forming x (respectively, y) from & (respectively, y) by filling in
the *’s with uniformly random elements of Z,. Now, let ' be the unique element of (Z, U x)" for
which Z o 2’ = x, and similarly for §’. Then 2’ and 3y are also distributed as strings drawn from
(g1 /2)®"; furthermore, & and ' each are independent of both of 3 and %', and vice versa.

Next, pick a, b, ¢, and d independently and uniformly at random from Z;. Then

Ty
r[f((z+a)o(Z +b) =h(Z+ay +d),
Vilatiz tu (-0:1) =9 By (5 1) (5 + ) = h(& + .5 +)).

Prly(§+ )0 (' +d) = (' +5.5' + )]

By the probabilistic method, there must exist strings z, 2/, 7, and ¥’ for which, conditioned on
these strings, the average of the four probabilities, «, is at least Val.(f, g, h). (The randomness is
now only over the choice of a, b, ¢, and d.) Now, set

F(ab) = f(G+a)o @ +b), gled) = g(G+)o G +d),
and define b/ as follows:
h'(a,*,c,%) := h(Z +a,§+c), h'(a,* %,d):=h(Z+a,§ +d),
B (%,b,¢,%) == h(Z +b,5+¢c), and h'(x,b,%,d) :=h(Z +b,§ +d).

Because f and g are folded, so are f’ and ¢'. Furthermore, it is easy to see that Valaiin(z,)-Upper-Trsr(f's 9's B') =
a. By the definition of «, this is at least Valy in(z,)-Tesr (f; 95 1), which concludes the proof. O

This dramatically simplifies our problem: to prove an upper bound for the optimum of 2Lin(Z,)-TEST’,
we need only show one for the optimum of 2Lin(Z,)-UpPPER-TEST. As f and g are folded and only
have two inputs apiece in 2Lin(Z,)-UPPER-TEST, this problem becomes feasible, at least for small
values of ¢. There are ¢?? total choices for f and g. For any fixed f and g, we may find and evaluate
the optimal A in time O(g3) as follows: there are 4¢? possible inputs to h. For each input, there
are g possible inputs for the remaining coordinate of f, and ¢ possible inputs for the remaining
coordinate of g. The optimal h will simply output the value which occurs most frequently among
the outputs of f and g, and it succeeds with probability the number of times this value occurs
divided by 2¢. This gives an O(¢g3¢??) algorithm for determining Opt(2Lin(Z,)-UPPER-TEST). We
coded a Java implementation, wh1ch ran quickly (enough) when ¢ < 7, and found the following;:

Theorem E.2. Opt(2Lin(Z,)-UpPPER-TEST) = 3/8 + 5/8¢ when q < 7. Thus, for these values of
q, Opt(2Lin(Z,)-TEST') is at most 3/8 +5/8q as well.
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F A Fourier-based proof of 2Lin(Z;) hardness

In this section, we give a Fourier-analytic proof of Theorem 2.4 for 2Lin(Z3). We assume familiarity
with Fourier analysis over Z;. We are interested in showing that it is hard to (¢ — 2e, s + 2¢)-decide
the 2Lin(Z2) problem. Consider the 2Lin(Z2) instance produced by running the e-noisy version of
the 2Lin(Z)-TEST, through Theorem 4.19. We have already covered the completeness case, and
we will jump into the soundness case at the point where we have found the “good” edges — those

edges (u,v) € E for which Valyiin(z,)-Test, (fus Gvs Puw) > % + €. Let (u,v) be such a good edge,

and set f := fu, 9 := gv, and h := hy,. We will now sketch how to complete the proof, showing
how we can use Fourier analysis to decode the functions into a good assignment.

Proof sketch of Theorem 2. for 2Lin(Z3). Generate x, T, &, y, y, and ¢y as in 2Lin(Z;)-TEST.
Define ' € {—1,1}4K to be «'[t] = x[t] if Z[t] # *¢ and x'[t] = —z[t] otherwise. Let @’ be a (1 —¢)-
correlated copy of ’. Define y’ and ¥’ similarly. Note that (z/, (%,¥)) has the same distribution
as (x, (z,9)), and (¥, (,y)) has the same distribution as (y, (,y)).

mssen |

—avg{ oY @) # h(@ )], — E[mixed(f(x), f(z' !

= ave Prlg(y) # h(z,9)], > 4 E| d(f(x), f(z'),9(9),9(¥"))], (26)
Prlg(y’) # h(z,y)

where

0 if all four inputs are the same,
mixed(cy, c2,c3,¢4) = ¢ 1 if exactly three inputs are the same and one is different,
2 if exactly two of the inputs are the same and two are different.

This is because whatever f(x), f(2'), g(y), and g(¢') turn out to be, h(Z,y) must differ from at
least mixed(f(x), f(2),9(¥),g(¥’)) of them.

Next, let A1, A2, A3, Ay € {—1,1} be chosen uniformly at random conditioned on AjAgAsAy = 1.
There are eight such possibilities. It is the case that (@,%’,¥,%’) has the same distribution as
(A1, Xo¥’, A3y, Aa¥’). To see this, it suffices to show that (x,z’,y,y’) has the same distribution
as (A1, Ao, A3y, A4y’). This holds because for each block ¢, it is either the case that

xft] = «'[t] and y[t] = —y'[]

zlt] = —a[t] and y[t] = y'[t],

each with equal probability. Flipping an even number of signs maintains this.

Note that for fixed ¢, co,c3,c4 € {—1, 1}, if mixed(cy, ¢, c3,¢4) = 1 (i.e., c1coc3cy = —1), then
mixed(c1 A1, caAg, c3A3, c4Ag) = 1 always. On the other hand, if mixed(cy,co,c3,¢4) = 0 or 2 (i.e.,
cicacscq = 1), then there are two settings of the four N’s for which mixed(c1 A1, cae, c3A3, cgAy) =
0 and six settings for which mixed(ciA1, caAg, c3A3,caAg) = 2. In other words, in this case,
E[mixed(c1 A1, caAe, c3As3, c4Ay)] = 3/2, where the expectation is taken over the choice of A’s. There-
fore,
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| Blmixed(£(#), 7(&), 9(3), 9(3)

:iE[mixed( FOu@), f(Rai'), g(Asdr), 9(Aads))]

:iE [1 1[f (&) f(&)g(@)g(i) = —1] + % 1[f (@) f(&)g(9)9(Y') = 1]
. [5 + o F@) )9 ()
=+ 1o BU@)/(#)g(@)9(3)]

By the assumption of the lemma, the probability that f, g, and A fail this test is at most
5/16 — e. Thus,

E[f(2)f(2")g(5)9(y)] < —16e. (27)

We now complete the proof using Fourier analysis. The first step is to show the following claim via
a standard computation:

Claim F.1. E[f(&)f(&)9(#)9(§)] = X srciar) (1-€)**1F(5)?(1=e)*T1g(T)* TT;Z, same(|S[K]l, T [K])),

where
1 if ¢ and d are both even,
same(c, d) —1 if ¢ and d are both odd,
0 otherwise.
Proof.

Elf(@)f(&)g@e@) = > FSOFDa0)d(V)Elxs(@)xr(@)xo@)xv (@)

S,T,U,VC[dK]
For a set S C [dK], write S(t) := S N B(t). The expectation on the far right is

K

E[XS@)XT(?'B/)XU(?'J)XV(?'/)]:HE[XS(t)(ﬂb)XT(t)( &) xuw ([ @)xve (@)
t=1

If for any t it is the case that S(¢) # T'(t), then the expectation will be 0. The same holds for U
and V. Thus, we need only concern ourselves with the case when S =T and U = V, meaning that

K

E[f(®)f(2)g(¥ = > FPT)? T Elxsw @)xso @ xrm @xrn @) (28)
S, TC[dK] t=1

To understand the expectation for the tth block, let’s first consider it in its noiseless form,
E[XS(t) (w)XS(t)(wl)XT(t) (y)XT(t) (y’)]. (29)

With probability 1/2, Z[t] # *? and y[t] = *?, and with probability 1/2, Z[t] = *? and y[t] # **.

*
Let’s focus on the first case. Whenever Z[t] # *¢, x[t] = «'[t] and y[t] = —y[t]. The conclusion is
that xg¢)(2)xsw (®') = 1 and X (Y)xre (Y') = (=1)IT®! meaning that the entire expectation
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equals (—1)T®! Similarly, when g[t] # %, the expectation equals (—1)5®|. Thus, the quantity

n (29) reduces to

%((—1)'3“)‘ + (=T = same(|S (1)1, 1T(2))).

From here, adding the noise back in is simple. Let 21 € {—1,1}%% be a randomly chosen string with
E[(z1)i] = 1 — €. Then & is distributed as z; o @, where o denotes coordinate-wise multiplication.
We can define z9, z3, and z4 identically and note that @’ is distributed as zo o &', 9, is distributed
as zz oy, and 9 is distributed as z4 o y’. Then

[XS(t) (m)XS (“f'/) (t)(y)XT(t)(y,)]
=E[xs0) () xs@) (@) xre @)xre @) xsw (z1)xsw (22)XT0) (23) x10) (24)]
= same(|S(t)|, [T (t)]) - (1 — €)25D(1 — )T,

This means that we can write equation (28) as

E[f(f)f(fb’)g(y)g(:i/)]
Z f 2Hsame IS, 1T@)]) - (1 — )21 — )T
TC[d k=1
K
Z = e)P1f(8)*(1 = )*Tlg(T)* [ [ same(|S (1), IT (1)), (30)
TCld i=k
exactly as claimed. O

Note that the product on the right is nonzero exactly when |S(¢)| = |T'(¢)| (mod 2) for all ¢.
We now find it convenient to state the following definition: for two sets S, T' C [dK], we write
S=4Tif |S(t)] =|T(t)] (mod 2) for all t. Plugging this into (30) yields:

K
E[f(@)f(@)g@)g@)] = > (1—e?5f($)°(1 - e)*My(T)* ][ same(|S()], IT(2)])

S,TC[dK] i—k
=YD SIS =TI - A
S,TCldK]
Combining this with (27),
16e < Z f 2 1[S dT] ( 6)2‘S‘+2‘T|.
S, TC[dK]

Finally, since f and g are folded we may equivalently write

6e< S F(S)2(T)2 1S = 1] - (1— ST,
IS|=[T|=1 (mod 2)

Note that when both |S| = |T| = 1 (mod 2) and S =4 T, there must exist some t such that
|S(t)| = |T(t)| =1 (mod 2); in particular, both S(¢) and T'(t) are nonempty. It is therefore easy to
check that the “Hastad-style decoding” procedure from [Has01] succeeds on f and g, completing
the proof (sketch). O
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G Constructing the 2Lin(Z;)-Test

In this section, we show how the 2Lin(Z2)-TEST can be viewed as a composition of Hastad’s two-
function linearity tests [Has01] with the gadget of [TSSWO00]. Interestingly, we could find no similar
interpretation for our 2Lin(Z,)-TEST, which suggests that the function-in-the-middle approach may
be necessary for deriving it. The particular linearity test of Hastad we will use as a starting point
is the 4Lin(Z2) test (a natural extension of his 3Lin(Z3) test), which we state below without noise:

|4Lin(Z,)-TesT |

Given functions f : {0, 1} — {0,1} and g : {0, 1}9K — {0, 1}:

Choose x1,x2 € {0,1}% and y, € {0,1}?X independently and uniformly at random.

Form y, € {0,1}X by setting yy := 1+ (21)x + (x2)x + Y1

Test f(1) + f(w2) +9(y1) +9(y2) =1 (mod 2).

The 4Lin(Z2)-to-2Lin(Z;) gadget: Now, we will extrapolate from [TSSWO00] the 4Lin(Zs3)-to-
2Lin(Z2) gadget. We're given the 4Lin(Z3) equation

1 +x2+ax3+x4=0b (mod 2),

where z;,b € {0,1}. Pick random y1,y2,ys3,ys € {0, 1} satisfying y1 +y2+ys+y4 =1—> (mod 2).
Note that

o If 1 +xo+ax3+24 =0 (mod 3), then (z14+y1)+ (x2+y2)+ (z3+y3)+ (x4+ys) =1 (mod 2).
o Ifzy+xo+ax3+wg #Zb (mod 3), then (z14+y1)+ (x2+y2)+ (z3+ys3) + (x4+y4) =0 (mod 2).

In the first case, the string (z1 + y1, z2 + y2, 3 + y3, x4 + ya) is distributed like a randomly chosen
string of four bits which sums to 1. Such a string will always have three entries the same and one
entry which is different. In the second case, the string is distributed like a randomly chosen string
of four bits which sum to zero. Such a string will with probability 3/4 have two 0’s and two 1s and
will with probability 1/4 be either all 0’s or all 1’s. So, introduce a new variable m, and generate
the set of 2Lin(Z3) equations

(zi+y;)) —m=0 (mod 3),i € [4].

Clearly, the m which maximizes the number of these 2Lin(Z;) equations is the majority bit of
(z1+y1,22 + Y2, T3 + Y3, x4 + y4). In the first case, this m will satisfy 3/4 of the equations. In the
second case, it will satisfy 3/4%1/2+41/4*1 = 5/8 of the equations. Because 4Lin(Z2) is NP-hard

to (1 — €, § + €)-approximate, this gives NP-hardness of (2, 1t + ¢)-approximating 2Lin(Z3).

Composing the two: Let us begin by considering the case in the 4Lin(Z3)-TEST when f and g
are matching dictators, though we don’t necessarily know which ones. How can we determine the
majority bit of (f(x1), f(2),9(y1),9(ys))? Set m € {0, 1}9E to be the bitwise majority of =1, x2,
Yy, and y,. Then the majority bit we’re looking for is simply the corresponding dictator bit of m.
Thus, as a preliminary composition step, consider the following test, where we have added a new
function h:
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‘ Preliminary 2Lin(Z3)-TEST ‘

e Given functions f : {0, 1}* — {0,1} and g, h : {0,1}9% — {0,1}:

Choose x1, x5 € {0,1}% and y,; € {0,1}?K independently and uniformly at random.

Form y, € {0,1}" by setting ys := 1+ (1) + (z2)x + 1.

Set m € {0,1}%% to be the bitwise majority of &1, z2, ¥;, and y,.

Test either f(x1) = h(m), f(x2) = h(m), g(y,) = h(m), or g(yy) = h(m), each with equal
probability.

Note that in relation to everything else, 1 and xo are identically distributed. This means, for
instance, that the f(x2) = h(m) test can be replaced with a second f(x;) = h(m) test. Similarly,
in relation to everything else ¥y, and y, are identically distributed. As a result, we need only test
9(y;) = h(m). The result of these two simplifications is that the test in the last step is equivalent
to testing f(x1) = h(m) or g(y;) = h(m), each with probability 1/2.

Next, condition the test on some values for 1 and y;, and consider the distribution on m that
this induces. For any block ¢ € [K], whenever (z1); = (22);, which happens with 1/2 probability,
then ys[i] = 1+y;[i]. In other words, y,[i] and y,[i] are exact opposites, so m[i] is uniquely defined
to be ((z1);)?. On the other hand, when (z1); = 1 + (2);, which happens with the remaining 1/2
probability, then y,[i] = y;[i]. As (x1); and (x2); are exact opposities, m[i] is uniquely defined
to be y,[i]. Thus, conditioned on x; and y,, m[i] is always either ((z1);)¢ or y,[i], each with
probability 1/2. Although for each block h is not “told” which event occurred, it is easy for it to
“figure out” (with high probability) which of x; or y; a given block in m came from: if m/[i] is all
0’s or 1’s, then it very likely came from a;. Otherwise, it must have come from y;.

At this point, as we no longer compare f(x2) with h(m) or g(y,) with h(m), and we have
found how to generate m directly from «; and y;, we no longer need any reference to 2 or y,.
Furthermore, as h is effectively given the information about which blocks of m came from where
because constantly 0 or 1 blocks so conclusively point to x; as the source, we might as well give it
this information explicitly. With these changes and simplifications, it is clear that we have derived
the 2Lin(Z3)-TEST as stated previously in the paper.

Going backwards: We have now shown a (somewhat inexact) methodology for composing a
test with a gadget to get a function-in-the-middle test. It is natural to ask whether this process
can be reversed: if one is given a function-in-the-middle test which can be naturally viewed as the
composition of a test with a gadget, is it possible to recover the test and the gadget? In fact,
although this is not an exact science, it turns out that it is indeed possible: consider the Fourier
analytic proof of 2Lin(Z3) hardness given in Appendix F. The proof begins by taking the & and
y defined in the 2Lin(Z;)-TEST and generating from them the strings @’ and y’, which seemingly
exist only to help the proof. It can be checked that these strings are distributed identically to the
strings @1, ®2, y;, and y, from the above 4Lin(Z2)-TEST (accounting for the {—1,1} «+ {0,1}
switch). This suggests that underlying the 2Lin(Z3)-TEST is another test 7" which checks some
constraint involving f(x), f(2'), g(y), and g(y').

Next, Equation 26 indicates that the test T" probably uses a four bit predicate whose satisfying
assignments tend to have larger majorities than the unsatisfying assignments do. The 4Lin(Z2)
predicate is a natural choice which satisfies this condition.
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