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Abstract

We revisit the basic problem of quantum state certification: given copies of unknown mixed
state ρ ∈ Cd×d and the description of a mixed state σ, decide whether σ = ρ or ‖σ − ρ‖tr ≥ ε.
When σ is maximally mixed, this is mixedness testing, and it is known that Ω(dΘ(1)/ε2) copies
are necessary, where the exact exponent depends on the type of measurements the learner
can make [OW15, BCL20], and in many of these settings there is a matching upper bound
[OW15, BOW19, BCL20].

Can one avoid this dΘ(1) dependence for certain kinds of mixed states σ, e.g. ones which are
approximately low rank? More ambitiously, does there exist a simple functional f : Cd×d → R≥0

for which one can show that Θ(f(σ)/ε2) copies are necessary and sufficient for state certification
with respect to any σ? Such instance-optimal bounds are known in the context of classical
distribution testing, e.g. [VV17].

Here we give the first bounds of this nature for the quantum setting, showing (up to log
factors) that the copy complexity for state certification using nonadaptive incoherent measure-
ments is essentially given by the copy complexity for mixedness testing times the fidelity between
σ and the maximally mixed state. Surprisingly, our bound differs substantially from instance
optimal bounds for the classical problem, demonstrating a qualitative difference between the
two settings.
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1 Introduction

We consider the problem of quantum state certification. We are given a description of a mixed state
σ ∈ Cd×d as well as N copies of a state ρ ∈ Cd×d. We are promised that either ρ = σ, or ρ is ε-far
from σ in trace norm, and our goal is to distinguish between these two cases with high probability.
From a practical perspective, the development of better methods for state certification is motivated
by the need to efficiently verify the output of quantum devices. From a theoretical perspective,
state certification is the natural quantum analogue of the well-studied classical problem of identity
testing : given a description of a probability distribution p and samples from another distribution
q, determine with high probability whether q = p or ‖q − p‖1 ≥ ε.

It is known that for general σ, O(d/ε2) copies of ρ suffice [BOW19]. Notably, this is smaller
than the Θ(d2/ε2) copies needed to learn the state to ε-accuracy in trace norm. Prior work of
[OW15] also demonstrated that when σ is the maximally mixed state, Ω(d/ε2) copies are necessary
[OW15]. While these results settle the copy complexity of this problem for worst-case choices of σ,
they leave a number of interesting questions unanswered:

Using Incoherent Measurements. An important practical drawback of [BOW19] is that it
makes a coherent measurement across the product state ρ⊗N . While such measurements are very
powerful, they require the learner to keep all N copies of ρ in quantum memory without any of
them decohering. In practice, creating such a large amount of quantum memory, even for medium
sized d, has proven to be a difficult task, limiting the near-term viability of coherent measurements.
In contrast, algorithms that make incoherent measurements only need to maintain one copy of ρ at
a time. Additionally, whereas the measurement in [BOW19] takes poly(d,N) time to prepare, the
protocol we present later in this paper can be implemented in N ·poly log d time (see Remark 6.12).
Understanding whether one achieve statistical guarantees similar to that of [BOW19] using only
incoherent measurements is thus a crucial step towards reliable near-term quantum computation.

Recent work of [BCL20] studied this question in the special case where σ is the maximally
mixed state– this special case of state certification is sometimes called mixedness testing. They
showed that the practical viability of incoherent measurements unfortunately comes at a statistical
cost: in this setting Ω(d4/3/ε2) copies are necessary, even if the incoherent measurements are
chosen adaptively as a function of the previous measurement outcomes. When they are chosen
non-adaptively, [BCL20] further showed that Θ(d3/2/ε2) copies are necessary and sufficient.

It is not too hard to modify their upper bound to show that for general σ, O(d3/2/ε2) copies
still suffice for state certification. This settles the copy complexity of state certification with non-
adaptive, incoherent measurements for worst-case choices of σ.

Beyond Worst-Case σ. This raises another important question: for which σ can this O(d3/2/ε2)
upper bound be improved? This bound is certainly not tight for all σ: for instance, if σ is maximally
mixed over a known subspace of dimension r, a simple argument demonstrates that O(r3/2/ε2)
copies suffice. A natural hypothesis might be that some relaxed notion of rank of σ dictates the
true copy complexity of state certification with respect to σ.

This is inspired by a line of work in classical distribution testing on so-called instance-optimal
bounds for identity testing [ADJ+11, ADJ+12, VV17, DK16, BCG19, JHW18]. The flagship result
in this literature, due to [VV17], states that for any distribution p over d elements, the optimal
sample complexity N of identity testing with respect to p is essentially characterized by the `2/3-
quasinorm of p. More formally, N satisfies:

Ω(ε−1 ∨ ε−2‖p−max
−ε/16‖2/3) ≤ N ≤ O(ε−1 ∨ ε−2‖p−max

−ε ‖2/3)

for absolute constants C1, C2 > 0. Here ‖ · ‖2/3 is the `2/3-quasinorm, and p−max
−δ is the vector
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given by zeroing out the largest entry as well as the bottom δ mass from the probability vector for
p. Note that when p is uniform over d elements, this recovers the well-known sample complexity
bound of Θ(

√
d/ε2) for uniformity testing [Pan08].

Together, these two bounds give a striking and more or less tight characterization of the sample
complexity landscape for identity testing: for any instance of the problem, we know the optimal
sample complexity up to constant factors! This begs the natural question:

Can we get a similarly tight characterization for the copy complexity of state certification with
incoherent measurements?

1.1 Our Results

In this work, we answer this in the affirmative by presenting an instance-optimal characterization of
the copy complexity of state certification with non-adaptive incoherent measurements. Surprisingly,
our results demonstrate that the behavior of quantum state certification is qualitatively quite
different from that of classical identity testing. More formally, our main result is the following:

Theorem 1.1 (Informal, see Theorems 5.1 and 6.1). Given any mixed state σ ∈ Cd×d, there
are mixed states σ and σ respectively given by projecting away some eigenvectors with eigenvalues
summing to at most Θ(ε2) and Θ(ε) and normalizing, such that the following holds.

Let deff (resp. deff) be the rank of σ (resp. σ). The optimal copy complexity N of state cert-
ification with respect to σ to trace distance ε using non-adaptive, incoherent measurements satisfies1

Ω̃

(
d · d1/2

eff

ε2
· F (σ, ρmm)

)
≤ N ≤ Õ

(
d · d1/2

eff

ε2
· F (σ, ρmm)

)
,

where ρmm is the maximally mixed state 1
d1 and F denotes the fidelity between two quantum states.

Note that when σ is maximally mixed and 0 < ε < 1 is bounded away from 1, then σ and σ are pro-
jectors to subspaces of dimension Ω(d), so deff , deff = Θ(d) and F (σ, ρmm) = Θ(1), recovering2 the
Θ(d3/2/ε2) bound of [BCL20] for mixedness testing with non-adaptive, incoherent measurements.

Qualitatively, our result says that unless σ puts 1− poly(ε) mass on o(d) dimensions, the copy
complexity of state certification is equal to the worst-case copy complexity of state certification,
times the fidelity between σ and the maximally mixed state. Surprisingly, unlike in the classical case,
our bound demonstrates that there is no clean dimension-independent functional which controls the
complexity of quantum state certification. Rather, there is some inherent “curse of dimensionality”
for this problem. Also note that in the quantum case, unlike in the classical case, we do not remove
the largest element from the spectrum of σ.

Example 1.2. To elaborate on this curse of dimensionality, consider the following example. Let
σ ∈ C(d+1)×(d+1) be the mixed state given by σ = diag(1 − 1/d2, 1/d3, . . . , 1/d3). The classical
analogue of certifying this state is identity testing to the distribution p over d + 1 elements which
has one element with probability 1− 1/d2, and d elements with probability 1/d3.

For the classical case, the bound from [VV17] demonstrates that the sample complexity of identity

testing to p is Θ
(

1
d3/2ε2

)
for sufficiently small ε. In particular, in this regime the sample complexity

actually is decreasing in d. This phenomena is not too surprising—this distribution is very close

1Throughout, we use Ω̃(·) and Õ(·) solely to suppress factors of log(d/ε).
2As our techniques are a strict generalization of those of [BCL20], in this special case where σ is the maximally

mixed state, our analysis does not actually lose log factors.
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to being a point distribution, and the only “interesting” part of it, namely, the tail, only has total
mass 1/d, which vanishes as we increase d.

In contrast, Theorem 1.1 shows that the copy complexity of the quantum version of this problem
using incoherent measurements is Θ̃(d1/2/ε2). Notably, this is increasing in d! At a high level (see
Section 2 for further discussion), it is because the unknown state ρ may share the same diagonal
entries with σ but may not commute with it, so the “interesting” behavior need not be constrained to
the subspace given by the small eigenvalues of σ. In particular, ρ might be far from σ only because
ρ contains nontrivial mass in its off-diagonal entries. This allows us many more degrees of freedom
in constructing the lower bound instance, resulting in a much stronger bound.

It turns out this curse of dimensionality persists even for adaptive, incoherent measurements. For-
mally, we show the following lower bound which is qualitatively similar to that of Theorem 1.1:

Theorem 1.3 (Informal, see Theorem A.1). In the notation of Theorem 1.1,

N ≥ Ω̃

(
d · d1/3

eff

ε2
· F (σ, ρmm)

)
(1)

copies are needed for state certification w.r.t. σ to error ε using adaptive, incoherent measurements.

When σ = ρmm, we recover the best known adaptive lower bound for mixedness testing [BCL20].
Furthermore, since non-adaptive measurements are a subset of adaptive ones, the upper bound in
Theorem 1.1 also provides a per-instance upper bound for this problem which matches (1) up to
the factor of d1/2 versus d1/3. Obtaining tight bounds in this setting is an interesting open question;
however, we note that this is not known even for mixedness testing.

1.2 Related Work

A full survey of the literature on quantum (and classical) testing is beyond the scope of this paper;
we only discuss the most relevant works below. We also note there is a vast literature on related
quantum learning problems such as state tomography, see e.g. [KRT17, GLF+10, FGLE12, Vor13,
HHJ+17, OW16, OW17] and references therein.

Quantum Property Testing. The problem of quantum state certification lies within the broader
field of quantum state property testing. See [MdW16] for a more complete survey. Within this
field, there are two regimes studied. In the asymptotic regime, the goal is to precisely characterize
the rate at which the error converges as n → ∞, and d and ε are fixed. Here quantum state
certification is more commonly known as quantum state discrimination [Che00, BC09, ANSV08].
For a more complete survey of work on this problem, see [BK15]. However, this line of work does
not attempt to characterize the statistical dependence on the dimension.

In contrast, we consider the non-asymptotic regime, where the goal is to characterize the rate
of convergence for quantum state certification as a function of d and ε. As discussed above, recent
work of [OW15, BOW19] has demonstrated that Θ(d/ε2) copies are necessary and sufficient for
quantum state certification over the worst choice of σ, when the measurements are allowed to be
arbitrary. However, the representation theoretic tools used within seem to be quite brittle and
do not easily extend to give instance-optimal rates. Understanding the instance-optimal rate for
quantum state certification using arbitrary measurements is a very interesting open question.

Incoherent Measurements. A number of recent papers on quantum learning and testing have
also considered the power of incoherent measurements, and more generally, other types of restricted
measurements for quantum property testing tasks apart from state certification. Following the
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aforementioned [BCL20], subsequent work of [ACQ21] defined a more general notion of quantum
algorithmic measurement which includes incoherent measurements and proved some incomparable
lower bounds for other problems such as purity testing and channel discrimination under this
model. The recent work of [HKP21] also showed a separation for shadow tomography with Pauli
observables using incoherent versus 2-entangled measurements. Lastly, another very recent work
[CCHL21] refined these two works by showing nearly optimal separations for shadow tomography,
purity testing, and channel discrimination using incoherent versus coherent measurements.

We also note that a number of papers in quantum tomography have considered the power of
incoherent measurements, see e.g. [KRT17, GLF+10, FL11, Vor13, HHJ+17]. Another line of work
considers the complexity of testing using only Pauli measurements [FL11, FGLE12, dSLCP11,
AGKE15]. However, because of the restrictive setting, these latter bounds are typically weaker,
and these papers also do not obtain instance-optimal bounds for this setting.

Classical Distribution Testing. State certification is the quantum version of the well-studied
classical problem of distribution identity testing. A complete survey of this field is also beyond the
scope of this paper. See [Can20, Gol17] and references within for a more detailed discussion. Of
particular interest to us is the line of work on instance-optimal testing, the direct classical analog of
the problem we consider in this paper. The works of [ADJ+11, ADJ+12] consider sample complexity
bounds which improve upon the worst case sample complexity for different choices of probability
distributions. The setting that we consider is most directly inspired by the aforementioned work
of [VV17]. Subsequent work has re-proven and/or derived new instance-optimal bounds for identity
testing and other problems as well, see e.g. [DK16, BCG19, JHW18].

2 Overview of Techniques

As with many other property testing lower bounds, ours is based on showing hardness for dis-
tinguishing between a simple “null hypothesis” and a “mixture of alternatives,” i.e. whether the
unknown state ρ that we get copies of is equal to σ or was randomly sampled at the outset from
some distribution over states ε-far from σ. Throughout, we will assume that σ is a diagonal matrix.
This is without loss of generality since we are given a description of σ and can change basis.

When σ = 1
d1, the standard choice for the mixture (and the one that leads to optimal lower

bounds in this case) is the distribution over mixed states of the form 1
d

(
1 + U†diag(ε, . . . ,−ε, . . .)U

)
where U is sampled from the Haar measure over d× d unitary matrices, and previous works have
shown lower bounds for mixedness testing with entangled measurements [OW15] and incoherent
measurements [BCL20] by analyzing this particular distinguishing task. Indeed, our proof builds
upon the general framework introduced in the latter work (see Section 4 for an exposition of the
main ingredients from [BCL20]) but differs in crucial ways.

To get a sense for what the right distinguishing task(s) to consider for general σ are, it is
instructive to see first how to prove instance-optimal bounds for classical distribution testing.

2.1 Instance-Optimal Lower Bounds for Identity Testing

Here we sketch how to prove the lower bound of [VV17] for identity testing (up to log factors). Recall
this is the setting where one gets access to independent samples from an unknown distribution p
over d elements and would like to test whether p = q or ‖p− q‖1 > ε for a known distribution q.

When q is the uniform distribution over d elements, a classical result of [Pan08] demonstrates
that the fundamental bottleneck is distinguishing whether the samples come from p, or if the samples
come from a version of q where each entry from its vector of probabilities has been perturbed by
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±ε/d. In this setting, the mixture of alternatives consists of all distributions qζ that could have
been obtained in this fashion, where the index ζ indicates the sign pattern of the perturbation
chosen.

The main conceptual challenge to extending this lower bound strategy to more general q is
that the entries of the probability vector for q may take values across many different scales, and
whatever lower bound instance one designs must be sensitive to these scales.

One approach to account for these different scales is to “bucket” the probability vector for q,
where each given bucket contains all entries within a fixed multiplicative factor of one another. It
turns out that Paninski’s analysis works even if q is not exactly uniform as long as its probabilities
are within a multiplicative factor of each other. For this reason, within each bucket we could simply
apply Paninski’s construction and randomly perturb the probabilities by a carefully chosen multiple
of ±ε/d. Combining these constructions across buckets after appropriately scaling them thus gives
a natural mixture of alternatives {qζ} to distinguish from the true distribution q, where again, ζ
denotes the sign pattern of the perturbations chosen.

The main technical challenge then is to upper bound dTV(q⊗N ,Eζ [(qζ)⊗N ]), that is, the total
variation distance between the distribution over N i.i.d. draws from q and the distribution over
N i.i.d. draws from qζ where ζ was sampled uniformly at random from the set of all possible sign
patterns corresponding to perturbations of q.

A common analytical trick for carrying out this bound— and the approach that [VV17] take—
is to first Poissonize, that is, take N to be a Poisson random variable. Unfortunately, Poissonization
does not seem to have any straightforward analogue in the quantum setting, where the choice of
measurement can vary across copies, so we eschew this technique in favor of an alternative approach
that we sketch next.

Ingster-Suslina Method and Moment Bounds. Apart from Poissonization, another way to
bound dTV(q⊗N ,Eζ [(qζ)⊗N ]) is to pass to chi-squared divergence and invoke the Ingster-Suslina
method (see e.g. Section 3.3 of [IS12], or Lemma 22.1 and its application in Section 24.3 in
[Wu17]). At a high level, this approach amounts to bounding higher-order moments of the pairwise
correlation

φζ,ζ
′
, E

i

[
(∆ζ(i)− 1)(∆ζ′(i)− 1)

]
as a random variable in ζ, ζ ′. Here, the expectation is over sample i ∈ [d] drawn from q, and

∆ζ(i) = qζi /qi

is the likelihood ratio between the probability of drawing i when p = qζ versus the probability of
drawing i when p = q. Concretely, if one can show that

E
ζ,ζ′

[(
1 + φζ,ζ

′
)t]

= 1 + o(1)

for some t, this would imply a sample complexity lower bound of t for testing identity to q.
It turns out to be possible to give sufficiently good upper bounds on the moments of φζ,ζ

′
(after

some appropriate preprocessing on q as done in [VV17]) that one can recover the same bound
as [VV17] up to poly-logarithmic factors in d/ε. It is this approach that we will generalize to the
quantum setting.

2.2 Passing to the Quantum Setting

We now describe how to extend some of these ideas to quantum state certification.
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Scale-Sensitive Rotations. Recall from the discussion at the beginning of this section that
in the case where σ = ρmm, the right “mixture of alternatives” to consider is to perturb every
eigenvalue of ρmm and then randomly rotate by a Haar-random unitary over Cd; this is sometimes
called the quantum Paninski instance [OW15] for its resemblance to Paninski’s construction in the
classical setting.

For general σ, we could try the same thing, but motivated by the classical setting, we would
tune how much we perturb each eigenvalue based on its magnitude. Unfortunately, if we then
simply rotate the resulting perturbed state by a Haar-random unitary over Cd, it turns out that
we can’t hope to prove a sufficiently strong lower bound.

To see this, let’s consider the following extreme example. Imagine that σ is nearly a pure state.
A random global rotation of a perturbation of σ, no matter how cleverly we picked the perturbation,
is close to a Haar-random pure state. So its trace inner product with σ will be on the order of
Θ(1/d) with high probability, whereas the trace inner product of σ with itself is on the order of
Θ(1). In particular, just by measuring the observable given by σ, we can easily distinguish whether
ρ = σ or ρ comes from this particular mixture of alternatives using O(1) measurements.

The point is that in the quantum setting, we need to be sensitive to the different scales of σ’s
eigenvalues not only in picking the perturbations to the eigenvalues of σ, but also in picking the
ensemble of rotations!

An Attempt: Generalized Quantum Paninski. We now outline an attempt at generalizing
the quantum Paninski construction in a way that is sufficiently sensitive to the different scales
for the eigenvalues of σ. Motivated by the classical construction described above, we can group
the eigenvalues of σ into buckets, where a given bucket contains all eigenvalues within a fixed
multiplicative factor of each other, and consider a mixture of alternatives defined as follows. First,
given any m ∈ N, define the matrix:

Zm ,

{
diag(1, . . . ,−1, . . .) m even

diag(0, 1, . . . ,−1, . . .) m odd,

where Zm consists of bm/2c 1’s and bm/2c −1’s. The mixture of alternatives is given by the
distribution over mixed states of the form σ + U†EU, where now U is a block-diagonal unitary
matrix whose blocks are Haar-random and whose block structure corresponds to the buckets, and
E is a direct sum of scalings of Zm, where the different m’s and scalings correspond to the sizes
and relative magnitudes of the buckets.

For instance, if σ =
(

1
2
√
d
1√d

)
⊕
(

1
2(d−

√
d)
1d−

√
d

)
, we can take U to be distributed as U1⊕U2,

where U1 ∈ U(
√
d) and U2 ∈ U(d−

√
d) are Haar-random, and E =

(
ε1

2
√
d
Z√d

)
⊕
(

ε2
2(d−

√
d)

Zd−
√
d

)
for appropriately chosen ε1, ε2 summing to 2.

Our analysis for this instance follows the Ingster-Suslina method in the nonadaptive case and
the general framework of [BCL20] in the adaptive case (see Section 4 for an exposition of these two
frameworks), and the central object for both proofs is the pairwise correlation

φU,V , E
z
[(∆U(z)− 1)(∆V(z)− 1)].

Analogously to the classical setup described above, here the expectation is over outcomes z if one
makes some quantum measurement on a single copy of the state ρ = σ, and ∆U(z) is the likelihood
ratio between the probability of observing outcome z when ρ = σ + U†EU versus the probability
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of observing the same outcome when ρ = σ under a particular POVM (see Section 4 for formal
definitions). And as in the classical setup, it turns out that we need to show that

E
U,V

[(
1 + φU,V

)t]
= 1 + o(1)

for sufficiently large t, so the primary challenge is to control the moments of φU,V (regarded as a
random variable in U,V), or equivalently to show that it concentrates sufficiently around its mean.

If U,V were Haar-random unitary matrices, one could do this by invoking standard concentra-
tion of measure for Haar-random unitary matrices [AGZ10, MM13]. Indeed, this is the approach
of [BCL20], but for general σ we need to control the tails of φU,V when U,V have the above-
mentioned block structure, for which off-the-shelf tail bounds will not suffice. Instead, we argue
that because we can assume without loss of generality that the optimal measurements to use to
distinguish ρ = σ from ρ = σ + U†EU must respect the block structure, φU,V is a weighted sum
of pairwise correlations φU,Vj for many independent sub-problems, one for each “bucket” j (see
(9)). These are independent random variables, each parametrized by an independent Haar-random
unitary matrix in a lower-dimensional space, so we can show a tail bound for φU,V by combining
the tail bounds for {φU,Vj } (see Section 5.2.1).

In Section 5.2.2, we show how to optimally tune the entries of E . Here however, we finally arrive
at the surprising juncture where instance-optimal state certification deviates significantly from its
classical analogue:

This generalized quantum Paninski construction does not always yield the right lower bound!

It turns out that even with the optimal tuning of E , the approach outlined thus far only achieves a
copy complexity lower bound of roughly Ω̃(‖σ′‖2/5/ε2) (see Lemma 5.5), where σ′ is obtained from
σ by projecting out its largest eigenvalue and some small eigenvalues.

While this recovers the lower bound of [BCL20] when σ = ρmm, in other situations one can
readily see that Ω̃(‖σ′‖2/5/ε2) can be much worse than the lower bound in Theorem 1.1. Consider

σ given by Example 1.2. For that choice of σ = diag(1− 1/d2, 1/d3, . . . , 1/d3), ‖σ′‖2/5 = 1/
√
d, so

we only get a lower bound of Ω
(

1
d1/2ε2

)
. In contrast, as discussed in Example 1.2, the right copy

complexity for this problem turns out to be Θ̃(
√
d/ε2). We now describe a second lower bound

instance that, combined with the generalized quantum Paninski construction, yields an instance
near-optimal lower bound.

Missing Ingredient: Perturbing the Off-Diagonals. For simplicity, consider a mixed state
σ with exactly two buckets, e.g. σ = (λ11d1)⊕ (λ21d2) where d1 ≥ d2. In this case, one can regard
the generalized Paninski instance as a family of perturbations of the two principal submatrices
indexed by the coordinates {1, . . . d1} in bucket 1 and the coordinates {d1 + 1, . . . , d} in bucket 2
respectively. But one could also perturb σ along the off-diagonal blocks, rather than on the principal
blocks, by considering matrices of the form

σ +

(
0d1 (ε/2d2) ·W

(ε/2d2) ·W† 0d2

)
(2)

parametrized by Haar-random W ∈ Cd1×d2 consisting of orthonormal columns. One can show that
as long as ε ≤ dj1 ·

√
λ1λ2, then (2) is a valid density matrix (Lemma 5.18) and is ε-far in trace

distance from σ. In this regime, we show a lower bound of Ω(d1

√
d2/ε

2) for distinguishing whether
ρ = σ or whether ρ is given by a matrix (2) where W is sampled Haar-randomly at the outset.
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For general σ, by carefully choosing which pair of buckets to apply this construction to, we
obtain the lower bound of Theorem 1.1 for very small ε. For larger ε we show that if the lower
bound from the generalized Paninski instance were inferior to that of Theorem 1.1, then this would
contradict the assumption that ε is large (see Section 5.5). Altogether, this completes the proof of
the claimed lower bound in Theorem 1.1, modulo one last corner case that we now discuss.

Handling the Largest Eigenvalue. Indeed, there is one more feature of Theorems 1.1 and
1.3 which is unique to the quantum setting. In the classical setting, the instance-optimal sample

complexity of testing identity to a given distribution p is essentially given by 1
ε ∨

‖p′‖2/3
ε2

, where p′

is derived from p by zeroing out not just the bottom O(ε) mass from p but also the largest entry
of p. To see why the latter, as well as the additional 1

ε term, is necessary, consider a discrete
distribution p which places 1− ε/100 mass on some distinguished element of the domain, call it x∗.

The 1
ε ∨
‖p′‖2/3
ε2

lower bound would yield Ω(1/ε) sample complexity, and an algorithm matching this
bound would simply be to estimate the mass the unknown distribution places on x∗. The reason
is that because p places total mass ε/100 on elements distinct from x∗, any distribution ε-far from
p in `1-distance must place at most 1− ε mass on x∗, which can be detected in O(1/ε) samples.

In stark contrast, in the quantum setting if σ had an eigenvalue of 1 − ε/100, then the copy
complexity of state certification with respect to σ scales with 1/ε2. The reason is that there is
“room in the off-diagonal entries” for a state ρ to be ε-far from σ. Indeed, we can formalize this by
considering a lower bound instance similar to (2). In fact it is even simpler, because for mixed states
whose largest eigenvalue is particularly large, it suffices to randomly perturb a single pair of off-
diagonal entries! To analyze the resulting distinguishing task, we eschew the framework of [BCL20]
and directly bound the likelihood ratio between observing any given sequence of measurement
outcomes under the alternative hypothesis versus under the null hypothesis (see Section 5.4 and
Lemma 5.24 in particular).

Adaptive Lower Bounds. As we discussed following Theorem 1.3, the ideas above can also
be implemented in the setting where one can choose incoherent measurements adaptively (see
Theorem 1.3). The reason the lower bound we obtain is not instance-optimal is the same technical
reason that [BCL20] was not able to obtain an optimal lower bound in the special case of mixedness
testing, namely that there is some lossy balancing step to handle a certain low-probability event
(see the proof of Theorem 4.8 in Appendix B.2).

2.3 Upper Bound

As in our lower bound proof, we will partition the spectrum of σ into buckets. We will also place
all especially small eigenvalues of σ in a single bucket of their own– this latter bucket will contain
the smallest eigenvalues of σ that together sum to O(ε2). For the purposes of discussion in this
section, we will call this the “negligible bucket” and we will call all others “non-negligible buckets.”

For starters, in Section 6.1 we give a simple algorithm (BasicCertify, see Algorithm 1) for
state certification which is already optimal up to constant factors when the eigenvalues of σ all fall
within the same bucket. Similar to the mixedness tester in [BCL20], this algorithm is based on
measuring our copies of unknown state ρ in a Haar-random basis and running a classical identity
tester [DK16]. As the analysis is very similar to that of [BCL20], we defer the details to Section 6.1.

Now consider a general mixed state σ given by an arbitrary diagonal density matrix. Suppose
its diagonal entries fall into m buckets in total; by virtue of the bucketing scheme, m is guaranteed
to be at most logarithmic in d/ε (see Fact 5.3). At a high level, if the state ρ that we get copies
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of is ε-far in trace distance from σ, then by an averaging argument, there should be some pair of
buckets such that the corresponding block submatrix of σ is somewhat far from ρ in trace distance.
Indeed, one of four things could happen (see Figure 1):

(A) There may be a non-negligible bucket for which the corresponding principal submatrix of σ is
Ω(ε/m2)-far from that of ρ, in which case we can detect that ρ is far from σ simply by running
BasicCertify restricted to that bucket (see Lemma 6.10).

(B) There may be two non-negligible buckets for which the corresponding pair of off-diagonal blocks
in σ are Ω(ε/m2)-far from the corresponding submatrix in ρ, in which case we can detect that
ρ is far from σ by running BasicCertify restricted to these two buckets (see Lemma 6.11).

(C) For the negligible bucket, the corresponding principal submatrix of σ is Ω(ε2)-far from that of
ρ, in which case we can measure the observable given by the projector to that submatrix. In
this case, O(1/ε2) copies suffice (see Lemma 6.8).

(D) None of the above three cases hold, and ρ and σ differ primarily in the off-diagonal block with
rows indexed by the negligible bucket and columns indexed by all non-negligible buckets. But
by basic linear algebra (Lemma 3.15) and the fact that the eigenvalues in the negligible bucket
sum to ε2, this would contradict the fact that we are not in case (C) (see Lemma 6.9)!

Figure 1: Partition of σ into blocks cor-
responding to buckets, relevant subma-
trix for each case highlighted in gray.

We remark that the idea of reducing from state certifi-
cation to mixedness testing by performing a case analysis
on buckets of the spectrum is reminiscent of the instance
near-optimal algorithm of [DK16] for classical identity
testing. That said, as is clear in the above proof sketch,
the off-diagonal entries of ρ pose a number of technical
hurdles not present in the classical setting, just as they
did in the proof of the lower bound.

Why Do the Upper and Lower Bounds “Line Up”?
The casework above gives a good sense for why our upper
and lower bounds happen to “line up” up to log factors.
Ignoring the negligible bucket for the time being, recall
that the averaging argument in our upper bound proof
essentially implies that any ρ which is far from σ must be
relatively far either 1) within a principle submatrix corre-
sponding to a single bucket, or 2) within an off-diagonal
submatrix corresponding to a pair of buckets.

This upper bound strategy complements our lower
bound constructions nicely. Indeed, if we ignore the con-
tribution from all other entries apart from the submatrix in question, then we can ask: what
mixture of alternatives is hardest to tell apart from σ if the alternatives all differ from σ only in
that submatrix? Depending on whether that submatrix is principle or off-diagonal, our general-
ized quantum Paninski and off-diagonal lower bound constructions provide essentially the optimal
answer to this question.

Why Truncation? The reader might be wondering why we need to truncate some of the eigen-
values of σ in our bounds in Theorems 1.1 and 1.3. For instance, how are we able to prove an
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upper bound which only depends on σ after we have thrown out O(ε2) of its eigenmass, rather than
on σ itself? As the above description of our algorithm makes clear, the reason is that the copy
complexity of state certification with respect to σ is really dominated by cases (A) and (B), and in
these cases the complexity of running BasicCertify only depends on the non-negligible buckets,
i.e. the buckets containing the eigenvalues corresponding to the truncation σ.

That said, there is a gap between the amount of mass we need to truncate in the definition of
σ in the upper bound versus σ in the lower bound (Θ(ε2) versus Θ(ε)) in our theorems. The latter
level of truncation appears to be an artifact of our techniques, and we conjecture that the lower
bound can be upgraded to hold even if σ is defined by removing only Θ(ε2) mass from σ.

Why Fidelity? Finally, we give some intuition for why fidelity with respect to the maximally
mixed state arises in our copy complexity bounds. To do so, we will go into slightly more detail
about the analysis of the algorithm we sketched above, focusing on cases (A) and (B).

First consider case (A). Suppose for simplicity that ρ was identical to σ except in the principal
submatrix corresponding to the diagonal entries of σ in the interval [2−j−1, 2−j ]. Denote the number
of rows/columns of this submatrix by dj . As we alluded to above, it turns out that mixedness testing
to error ε′ for dj-dimensional mixed states whose eigenvalues are all in the same bucket has copy

complexity Θ(d
3/2
j /ε′2). On the other hand, because the trace of this submatrix is Θ(dj2

−j), we

would need to make Θ(2j/dj) measurements of ρ in expectation to simulate one measurement of
the conditional state given by ρ restricted to this submatrix. But for the same reason, the trace
distance ε′ between the normalized states given by this principal submatrix of ρ and σ is also 2j/dj

times bigger than ε/m2. As m is logarithmic in d/ε, this means that Õ(d
5/2
j 2−j/ε2) copies suffice

to detect that ρ differs noticeably from σ in this submatrix (see Lemma 6.10).
Now consider case (B). Suppose for simplicity that ρ was identical to σ except in the dj×dj′ and

dj′×dj off-diagonal blocks corresponding to two buckets of eigenvalues, namely those in [2−j−1, 2−j ]
and those in [2−j

′−1, 2−j
′
] (here dj , dj′ denote the sizes of these buckets). Also suppose without

loss of generality that dj ≥ dj′ . It turns out that if we ran BasicCertify restricted to the
(dj + dj′)× (dj + dj′) principal submatrix of ρ containing these off-diagonal blocks, then by a more
involved version of the reasoning in the previous paragraph (see Lemma 6.11), we can show that
Õ(
√
djd

2
j′2
−j′/ε2) measurements of ρ suffice to detect that ρ differs noticeably from σ.

Putting everything together, we conclude that our algorithm needs to make, up to log factors,

max
j,j′:dj≥dj′

√
djd

2
j′2
−j′/ε2 =

(
max
j

√
dj

)
·
(

max
j′

d2
j′2
−j′
)
/ε2 (3)

measurements, where j, j′ range over non-negligible buckets, j = j′ corresponds to case (A), and
j 6= j′ corresponds to case (B). As there are logarithmically many nonempty non-negligible buckets

of eigenvalues of σ, it is elementary to check that (3) is, up to log factors, equal to d
1/2
eff · ‖σ‖1/2 (see

Fact 3.18), where ‖·‖1/2 denotes the Schatten 1/2-quasinorm. Finally we can see where the fidelity

term comes from: for any density matrix σ ∈ Cd×d,

d · F (σ,1/d) = d · 1

d
Tr(σ1/2)2 = ‖σ‖1/2,

Thus far we have only provided justification for why fidelity emerges in the upper bound. But
as we mentioned in our discussion for why the upper and lower bounds happen to “line up,” our
generalized quantum Paninski and off-diagonal lower bound constructions closely parallel case (A)
and case (B) in the upper bound analysis. Naturally, we end up seeing the same kinds of terms,
e.g. ‖·‖2/5 and ‖·‖1/2, emerge in the proof of the lower bound for essentially the same reasons.
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Roadmap In Section 3, we review basic notions in quantum property testing and present various
technical tools we will use in our proofs. In Section 4 we describe the general framework introduced
in [BCL20] for proving lower bounds with incoherent measurements. In Section 5, we prove the
lower bound in Theorem 1.1, and in Section 6 we prove the upper bound. In Appendix A we prove
Theorem 1.3. In Appendix B we collect some deferred proofs from the main body.

3 Technical Preliminaries

Notation Let S` denote the symmetric group on ` elements. Given π ∈ S`, let κ(π) denote the
number of cycles in π. Recall from the introduction that we let ρmm , 1

d1 denote the maximally
mixed state. Given a matrix M and p > 0, let ‖M‖p denote the Schatten-p (quasi)norm. Let

M̂ ,M/Tr(M). Let U(d) denote the unitary group of d× d matrices.

3.1 Quantum Property Testing

We will work with the following standard notions, using notation and terminology borrowed from
[BCL20].

Definition 3.1. A positive operator-valued measurement (POVM) M consists of a collection of
psd matrices M1, ...,Mm for which

∑
Mi = 1. We will refer to the set of measurement outcomes

[m] as Ω(M). Given mixed state ρ, the distribution over outcomes from measuring ρ with M is
the distribution over Ω(M) which places mass 〈Mi, ρ〉 on outcome i.

As demonstrated in [BCL20], the techniques in that work and in the present paper generalize
easily to POVMs for which Ω(M) is infinite, so for simplicity we will simply consider the finite case
in this work.

Definition 3.2. Let N ∈ N. A POVM schedule S is a collection of POVMs {Mx<t}t∈[N ],x<t∈Tt,

where each Mx<t is over Cd, T1 , {∅}, and for every t > 1, Tt denotes the set of all possible
transcripts of measurement outcomes x<t for which xi ∈ Ω(Mx<i) for all 1 ≤ i ≤ t− 1 (recall that
x<i , (x1, ..., xi−1)). The schedule works in the natural manner: at time t for t = 1, . . . , N , given
a transcript x<t ∈ Tt, it measures the t-th copy of ρ using the POVM Mx<t.

If in addition every Mx<t only depends on t and not on the specific transcript x<t, we say it is
a nonadaptive POVM schedule and denote it simply by

{
Mt
}
t∈[N ]

.

Definition 3.3 (Quantum property testing task). A quantum property testing task T is specified
by two disjoint sets S0 and S1 of mixed states. For any N ∈ N, we say that task T has copy
complexity N if there exists a POVM schedule S and a (potentially randomized) post-processing
algorithm A so that for any α ∈ {0, 1} and any ρ ∈ Sα, if z≤N is the transcript obtained from
measuring N copies of ρ according to S, then A(z≤N ) = α with probability at least 2/3 over the
randomness of S and A.

For a mixed state σ, if we specialize Definition 3.3 to S0 = σ and S1 to all mixed states ε-far in
trace distance from σ, we obtain the following standard task:

Definition 3.4 (State certification). Fix ε > 0. Given an explicit description of a mixed state σ
along with copies of an unknown mixed state ρ, the task of state certification to error ε with respect
to σ is to determine with high probability whether ρ = σ or ‖ρ− σ‖1 > ε by making measurements
on the copies of ρ. When σ = ρmm, this is the task of mixedness testing.
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We will employ the following standard framework for proving testing lower bounds:

Definition 3.5 (Lower Bound Setup: Point vs. Mixture). In the setting of Definition 3.3, a point
vs. mixture task is specified by a null hypothesis ρ ∈ S0, a set of alternatives ρθ ⊆ S1 parametrized
by θ, and a distribution D over θ.

For any POVM schedule S, let p≤N0 (S) be the induced distribution over transcripts from mea-

suring N copies of ρ according to S, and let p≤N1 (S) be the induced distribution over transcripts
from first sampling θ ∼ D and then measuring N copies of ρθ according to S. For instance, if S is
nonadaptive, then p≤N1 is simply a mixture of product distributions.

The following is a standard fact that lets us relate this back to property testing:

Fact 3.6. Given quantum property testing task T specified by sets S0, S1, let N ∈ N, and let F
be a family of measurement schedules using N measurements. Suppose there exists a point vs.
mixture task so that for every S ∈ F , we have that dTV(p≤N0 (S), p≤N1 (S)) ≤ 1/3. Then T has copy
complexity at least N .

For the remainder of the paper, we will fix a measurement schedule S and just write p≤N0 and

p≤N1 . The possible families F we work with in Fact 3.6 are the family of nonadaptive POVM
schedules, and the family of adaptive POVM schedules.

3.2 Tail Bounds

We first collect some elementary facts about sub-exponential random variables.

Definition 3.7. We say that a random variable Z is (σ2, b)-sub-exponential if it has mean zero
and satisfies

Pr[|Z| > s] ≤ exp

(
1

2

{
s2

σ2
∧ s
b

})
for all s > 0.

It is a standard fact that sub-exponential random variables satisfy the following moment bounds:

Lemma 3.8. If Z is (σ2, b)-sub-exponential, then for any t ≥ 1, E[|Z|t] ≤ (t/2)! ·(2σ2)t/2 +t! ·(2b)t.

Proof. We have

E
[
|Z|t

]
=

∫ ∞
0

Pr
[
|Z| > s1/t

]
ds

≤
∫ ∞

0
exp

(
−s

2/t

2σ2

)
ds+

∫ ∞
0

exp

(
−s

1/t

2b

)
ds

= Γ(1 + t/2) · (2σ2)t/2 + Γ(1 + t) · (2b)t

as desired.

It is also standard that sub-exponential random variables have mgf bounded as follows:

Lemma 3.9. If Z is (σ2, b)-sub-exponential, then for any λ ≤ min(1/4b, 1/σ),

E[eλZ ] ≤ exp
(
O(λ2(σ2 + b2))

)
.
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Proof. As E[Z] = 0 by definition, we can expand

E[eλZ ] = 1 +

∞∑
t=2

λt

t!
E[Zt].

By Lemma 3.8,

∞∑
t=2

λt

t!
E[Zt] ≤

∞∑
t=2

(
(t/2)!

t!
(2λ2σ2)t/2 + (2λb)t

)
= 8λ2b2 +

∞∑
t=2

(λ2σ2/2)t/2 ≤ 8λ2b2 + λ2σ2.

The lemma follows from the inequality 1 + x ≤ ex.

We will need the following basic fact about sums of random variables satisfying sub-exponential
moment bounds.

Lemma 3.10. Fix any t ∈ N. Given a collection of independent mean-zero random variables
Z1, . . . , Zm whose odd moments vanish and such that for every i ∈ [m] and even 1 ≤ ` ≤ t,

E[|Zi|`]1/` ≤ ` · σi, we have that for every even 1 ≤ ` ≤ t

E[(Z1 + · · ·+ Zm)`]1/` ≤ `(σ2
1 + · · ·+ σ2

m)1/2

Proof. Using the sub-exponential moment bound, we can expand E[(Z1 + · · ·+ Zm)`] and use the
fact that the Zi’s are independent to get

E[(Z1 + · · ·+ Zm)`] =
∑
α

∏
i

E[Zαi
i ] ≤

∑
α

∏
i

ααi
i σ

αi
i ≤ `

`
∑
α

∏
i

(σ2
i )
αi/2 = ``(σ2

1 + · · ·+ σ2
m)`/2

where α ranges over even monomials of total degree `.

Concentration of measure for Haar-random unitary matrices will also be crucial to our analysis:

Theorem 3.11 ([MM13], Corollary 17, see also [AGZ10], Corollary 4.4.28). Equip M , U(d)k

with the L2-sum of Hilbert-Schmidt metrics. If F : M → R is L-Lipschitz, then for any t > 0:

Pr
(U1,...,Uk)∈M

[|F (U1, ...,Uk)− E[F (U1, ...,Uk)]| ≥ t] ≤ e−dt
2/12L2

,

where U1, ...,Uk are independent unitary matrices drawn from the Haar measure.

3.3 Weingarten Calculus

In this section we recall some standard facts about integrals over the Haar measure on the unitary
group. Given a permutation π ∈ S`, let Wg(π, d) denote the Weingarten function (see e.g. [CŚ06]).
Given a matrix M ∈ Cd×d and permutation π ∈ S`, let 〈M〉π ,

∏
C∈π Tr(M |C|), where C ranges

over the cycles of π and |C| denotes the length of C. Equivalently, if Pπ is the permutation operator
associated to π, then

〈M〉π = Tr(PπM
⊗`). (4)

We will use the following consequence of the Weingarten calculus and Schur-Weyl duality:

Lemma 3.12 (See e.g. Eq 7.32 from [BCHJ+19]). For any matrix M ∈ (Cd×d)⊗`,

E
U

[
U†
⊗`

MU⊗`
]

=
∑
σ,τ∈S`

Wg(σ−1τ, d) Tr(PτM)Pσ,

where the expectation is with respect to the Haar measure on U(d).
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Lemma 3.12 yields the following useful integral:

Lemma 3.13. For d ≥ 2, ` ∈ N, and any A,B ∈ Cd×d, we have that

E
U

[Tr(AU†BU)`] =
∑
π,τ∈S`

Wg(π−1τ, d)〈A〉π〈B〉τ .

In particular, when ` = 1, EU[Tr(AU†BU)] = 1
d Tr(A) Tr(B).

Proof. We can write Tr(AU†BU)` as Tr
(
A⊗`U†

⊗`
B⊗`U⊗`

)
, so by Lemma 3.12, the expecta-

tion of this over U is
∑

σ,τ∈S`
Wg(σ−1τ, d) Tr(PτB

⊗`) Tr(PσA
⊗`), and the first part of the lemma

then follows by (4). The second part of the lemma then follows by the fact that for the identity
permutation e on one element, Wg(e, d) = 1

d .

3.4 Block Matrices

Here we record two basic results about block matrices, beginning with the following standard fact
about Schur complements (see e.g. Theorem 1.12 from [Zha06]):

Lemma 3.14 (Schur complements). For a block matrix ρ =

(
A B
B† C,

)
for which A and C are

positive definite, ρ is positive definite if and only if Schur complement C − B†A−1B is positive
definite.

The second result of this subsection upper bounds the trace norm of the off-diagonal blocks of
a psd block matrix in terms of the traces of the diagonal blocks:

Lemma 3.15. For psd block matrix ρ =

(
A B
B† C,

)
, where A and C are square, we have that

Tr(A) Tr(C) ≥ ‖B‖21. In particular, ‖B‖1 ≤ Tr(ρ)/2.

Proof. Without loss of generality suppose that A has at least as many rows/columns as C. First
note that we may assume B is actually square. Indeed, consider the matrix ρ′ given by padding ρ
with zeros,

ρ′ =

A B 0
B† C 0
0 0 0,


so that A and C′ ,

(
C 0
0 0

)
have the same dimensions. Clearly, ‖

(
B 0

)
‖1 = ‖B‖1, and ‖C′‖1 =

‖C‖1, so to show Lemma 3.15 for ρ it suffices to prove it for ρ′. So henceforth, assume B is square.
We will further assume that B is diagonal. To see why this is without loss of generality, write

the singular value decomposition B = U†ΣV and note that(
U 0
0 V

)
ρ

(
U† 0
0 V†

)
=

(
U†AU Σ

Σ V†CV.

)
If B is diagonal, then for every diagonal entry Bi,i, we have that B2

i,i ≤ Ai,iCi,i, so

‖B‖21 =

(∑
i

Bi,i

)2

≤

(∑
i

A
1/2
i,i B

1/2
i,i

)2

≤ Tr(A) Tr(B),

where the last step is by Cauchy-Schwarz.
The second part of the claim follows by AM-GM.

14



3.5 Instance-Optimal Distribution Testing

Here we record the precise statement of the instance-optimal lower bound from [VV17].

Theorem 3.16 ([VV17], Theorem 1). Given a known distribution p and samples from an unknown
distribution q, any tester that can distinguish between q = p and ‖p− q‖1 ≥ ε with probability 2/3
must draw at least Ω(1/ε ∨ ‖p−max

−ε ‖2/3/ε2) samples.

Note that this immediately implies a lower bound for state certification:

Corollary 3.17. Given a known mixed state ρ and copies of an unknown mixed state σ, any tester
that can distinguish between σ = ρ and ‖ρ − σ‖1 ≥ ε with probability 2/3 using measurements on
the copies of ρ must use at least Ω(‖ρ−max

−ε ‖2/3/ε2) samples.

We will use this corollary in our proof to handle mixed states whose eigenvalues are all pairwise
separated by at least a constant factor. Intuitively, these mixed states are close to being low-rank,
and one would expect that the copy complexity for testing identity to such a state is Θ̃(1/ε2). We
show that this is indeed the case (see Lemma 5.12).

3.6 Miscellaneous Facts

The following elementary facts will be useful:

Fact 3.18. Let S be any set of distinct positive integers. Given a collection of numbers {dj}j∈S
satisfying

∑
j dj2

−j ≤ 2, let p be the vector with dj entries equal to 2−j for every j ∈ S. Then

maxj d
b
j2
−aj ≥ |S|−b‖p‖−aa/b for any a, b > 0.

Proof. Let j∗ be the index attaining the maximum. By maximality we know dj∗2
−aj/b ≥ 1

|S|
∑

j dj ·
2−aj/b. Raising both sides to the b-th power and taking reciprocals, we conclude that 2aj/dbj ≤
|S|b‖p‖aa/b.

Fact 3.19. Let c > 1 and p, q > 0. Given a vector v with entries v1 > · · · > vm > 0 for which
vi ≥ c · vi+1 for every i, we have that ‖v‖p ≥ (1− c−q)1/q · ‖v‖q.

Proof. We have that ‖v‖qq ≤
∑∞

i=1(c−iv1)q =
vq1

1−c−q , so ‖v‖p ≥ v1 ≥ ‖v‖q · (1− c−q)1/q.

We will also need the following when describing the framework of [BCL20] in Section 4:

Fact 3.20 (Integration by parts, see e.g. Fact C.2 in [BCL20]). Let a, b ∈ R. Let Z be a nonnegative
random variable satisfying Z ≤ b and such that for all x ≥ a, Pr[Z > x] ≤ τ(x). Let f : [0, b]→ R≥0

be nondecreasing and differentiable. Then

E[f(Z)] ≤ f(a)(1 + τ(a)) +

∫ b

a
τ(x)f ′(x) d x.

4 General Lower Bound Framework

All of our lower bounds are based on analyzing a suitable point vs. mixture distinguishing problem.
In this section we outline a general framework, implicit in [BCL20], for showing copy complexity
lower bounds for such problems. After outlining some basic objects, in Section 4.1 we describe a set
of conditions (see Assumption 1) that, if true for a particular distinguishing problem, imply by the
machinery of [BCL20] a strong copy complexity lower bound for that problem. We formally state
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these implications in Sections 4.2 and 4.3 and, for the sake of completeness, provide their proofs in
Appendix B.2.3

Concretely, we will lower bound the smallest N for which it is possible to distinguish, using
an unentangled POVM schedule S, between σ⊗N and EU∼D[ρ⊗NU ] for some prior distribution D.

Given schedule S, let p≤N0 (resp. p≤N1 ) denote the distribution over transcripts given by measuring
σ⊗N (resp. EU[ρ⊗NU ]) with S. A key component of our analysis is to bound how well a single step
of S can distinguish between a single copy of σ and a single copy of σU for U ∼ D:

Definition 4.1. A single-copy sub-problem P = (M, σ, {σU}U∼D) consists of the following data:
a POVM M over Cd, a mixed state σ ∈ Cd×d, and a distribution over mixed states σU ∈ Cd×d
where U is drawn from some distribution D.

To quantify how much information a single step of S can reveal about the unknown state, we
introduce the following quantities:

Definition 4.2. Given a single-copy sub-problem P = (M, σ, {σU}U∼D), let p0(M) denote the
distribution over outcomes upon measuring σ using M = {Mz}. Given POVM outcome z, and
U,V ∈ supp(D), define the quantities

gUP (z) ,
〈Mz, σU〉
〈Mz, σ〉

− 1 φU,VP , E
z∼p0(M)

[
gUP (z) · gVP (z)

]
.

We will omit the subscript P when the context is clear.

We can interpret 1 + gUP as the likelihood ratio between the distribution under measuring a
single copy of σU and the distribution under measuring a single copy of σ.

4.1 Sufficient Conditions on gUP (z)

We will design {σU}U∼D in such a way that the following three conditions hold.

Assumption 1. Suppose that gUP satisfies the following three properties for parameters ς, L > 0:

1. First moment bound: For any z ∈ Ω(M), EU[gUP (z)] = 0.

2. Second moment bound: EU∼D[gUP (z)2] ≤ ς2 for all measurement outcomes z.

3. Lipschitzness: Ez∼p0(M)[(g
U
P (z)− gVP (z))2]1/2 ≤ L · ‖U−V‖HS for any U,V ∈ supp(D).

Example 4.3. It was shown in [BCL20] that if σ = ρmm, σU = ρmm + U†diag( εd , . . . ,−
ε
d , . . .)U,

and D is given by the Haar measure over U(d), then Assumption 1 holds for ς, L = O(ε/
√
d) for

any sub-problem P of the form (M, σ, {σU}U∼D).

Here we prove some intuition for these conditions. As we mentioned above, 1 + gUP is simply
the likelihood ratio between the distributions over outcomes under measuring a single copy of σU
versus a single copy of σ. Condition 1 thus ensures that for any POVM element z, the probability
of observing outcome z under σU is in expectation over U equal to the probability of observing z
under σ. By Chebyshev’s, Condition 2 then ensures that the former has some mild concentration
around the latter.

3That said, as our techniques are a generalization of the approach of [BCL20], readers unfamiliar with that work
may find it more convenient to consult it first before proceeding. Either way, here we will try to distill the main
ingredients from [BCL20] in as modular a fashion as possible.
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In other words, because of Conditions 1 and 2, there is no single observable that we can re-
peatedly measure O(1/ς2) times to solve the point vs. mixture distinguishing problem. It turns
out that if gUP additionally satisfies the Lipschitzness constraint of Condition 3, then we can invoke
concentration of Lipschitz functions of Haar-random unitary matrices (recall Theorem 3.11 from
the preliminaries) to get a strong lower bound for the distinguishing problem.

This last point requires some unpacking. For starters, let us spell out what kinds of tail bounds
we leverage. Specifically, using Assumption 1 and concentration of measure, one can show the
following tail bound which is an important starting point for our lower bounds.

Lemma 4.4. Suppose P satisfies Assumption 1 for parameters ς, L > 0. Then for U,V sampled
independently from the Haar measure over U(d), φU,VP is a

(
Θ(ς2L2/d),Θ(L2/d)

)
-sub-exponential

random variable in the randomness of U,V. In particular, by Lemma 3.8,

E
U,V

[∣∣∣φU,VP ∣∣∣t]1/t

≤ O
(
ςL
√
t/d ∨ L2t/d

)
≤ O(t · L · {ς ∨ L}/

√
d) (5)

In the next two sections, we show how to use Lemma 4.4 to derive lower bounds for the
distinguishing problem.

4.2 Non-adaptive Lower Bounds

As discussed in Section 2, our non-adaptive lower bounds are based on the Ingster-Suslina method [IS12].
In [BCL20], the main ingredients of this method are stated in the preceding notation as follows:

Lemma 4.5 ([BCL20], Lemma 2.8). If the unentangled POVM schedule S is non-adaptive and
consists of POVMs M1, ...,MN , then if Pt = (Mt, σ, {σU}U∼D) denotes the t-th single-copy sub-
problem for an arbitrary D, then

χ2
(
p≤N1 ‖p≤N0

)
≤ max

t∈[N ]
E

U,V∼D

[(
1 + φU,VPt

)N]
− 1 (6)

Lemma 4.5 is one reason why we care about tail bounds for φU,VP : with sufficiently good moment
bounds on φ, we can upper bound the right-hand side of (6) and conclude that for N small, the
chi-squared divergence between p≤N1 and p≤N0 is small. By Pinsker’s, this implies that the total

variation distance between p≤N1 and p≤N0 is small, so by Fact 3.6 we get a lower bound on the copy
complexity N of distinguishing σ⊗N and E[σ⊗NU ]. We spell this out explicitly in the next lemma.

Lemma 4.6. Let D be the Haar measure over U(d), and fix σ and {σU}U∼D. Suppose that for
any POVM M, the single-copy sub-problem P = (M, σ, {σU}U∼D) satisfies Assumption 1. Then
distinguishing σ⊗N from EU[ρ⊗NU ] with probability at least 2/3 using an unentangled, non-adaptive

POVM schedule S requires N = Ω
(√

d/(Lς) ∧ d/L2
)

.

Proof. Fix any t ∈ [N ] and note that (1+φU,VPt
)N ≤ exp

(
NφU,VPt

)
. As φU,VPt

is
(
Θ(ς2L2/d),Θ(L2/d)

)
-

sub-exponential, its moment generating function is bounded by Lemma 3.9. In particular, for any
N ≤ O(d/L2),

E
U,V

[
exp

(
NφU,VPt

)]
≤ exp

(
O(N2(ς2L2/d+ L4/d2)

)
,

so for N = o
(√

d/(Lς) ∧ d/L2
)

, the above quantity is 1 + o(1). The lemma then follows from

relating KL to total variation using Pinsker’s and then invoking Fact 3.6.
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Example 4.7. If σ = ρmm, σU = ρmm + U†diag( εd , . . . ,−
ε
d , . . .)U, and D is the Haar measure on

U(d), recall from Example 4.3 that we can take ς, L = O(ε/
√
d). So by Lemma 4.6 we get a lower

bound of N = Ω(d3/2/ε2). This recovers the non-adaptive lower bound for mixedness testing from
[BCL20].

4.3 Adaptive Lower Bounds

For our adaptive lower bounds, we follow the chain rule-based framework introduced in [BCL20],
the main result of which can be abstracted as follows:

Theorem 4.8 (Implicit in [BCL20]). Let D be the Haar measure over U(d), and fix σ and
{σU}U∼D. Suppose that for any POVM M, the single-copy sub-problem P = (M, σ, {σU}U∼D)
satisfies Assumption 1 and additionally, for all z ∈ Ω(M), |gUP (z)| ≤ 0.99 almost surely. Then for
any τ > 0 and N = o(d/L2),

KL
(
p≤N1 ‖p≤N0

)
≤ Nτ +O(N) · exp

(
−Ω

({
dτ2

L2ς2
∧ dτ
L2

}
−N · ς2

))
. (7)

Like the proof of Theorem 4.6, the proof of Theorem 4.8 also makes crucial use of the fact that
φU,VP is a sub-exponential random variable. As it is somewhat more involved, we defer the proof
to Appendix B.2.

Example 4.9. Take any ε ≤ 0.99. If σ = ρmm and σU = ρmm + U†diag( εd , . . . ,−
ε
d , . . .)U as in

Example 4.3, where recall that U ∼ D for D given by the Haar measure over U(d), then note that

|gUP (z)| ≤ ‖Udiag(ε, . . . ,−ε, . . .)U†‖ = ε ≤ 0.99

for any sub-problem P of the form (M, σ, {σU}U∼D). So by taking τ = ε2/d4/3 in Theorem 4.8,
one gets that for N = o(d4/3/ε2), the KL divergence in (7) is o(1). This recovers the Ω(d4/3/ε2)
adaptive lower bound for mixedness testing from [BCL20].

5 Nonadaptive Lower Bound for State Certification

In this section we will show our instance-near-optimal lower bounds for state certification with
nonadaptive, unentangled measurements.

Theorem 5.1. There is an absolute constant c > 0 for which the following holds for any 0 < ε < c.4

Let σ ∈ Cd×d be a diagonal density matrix. There is a matrix σ∗∗ given by zeroing out at most
O(ε) mass from σ (see Definition 5.2 and Fact 5.3 below), such that the following holds:

Let σ̂∗∗ , σ∗∗/Tr(σ∗∗), and let deff denote the number of nonzero entries of σ∗∗. Then any
algorithm for state certification to error ε with respect to σ using nonadaptive, unentangled mea-
surements has copy complexity at least

Ω
(
d
√
deff · F (σ̂∗∗, ρmm)/(ε2 polylog(d/ε))

)
.

In Section 5.1, we describe a bucketing scheme that will be essential to our analysis. In Sec-
tion 5.2 we describe and analyze the first of our two lower bound instances, a distinguishing problem

4As presented, our analysis yields c within the vicinity of 1/3, but we made no attempt to optimize for this
constant.

18



based on a generalization of the standard quantum Paninski construction. Specifically, in Sec-
tion 5.2.1, we give a generic copy complexity lower bound for this problem, and in Section 5.2.2 we
show how to tune the relevant parameters to obtain a copy complexity lower bound based on the
Schatten 2/5-quasinorm of σ. In Section 5.3, we describe and analyze the second of our two lower
bound instances, a distinguishing problem based on perturbing the off-diagonal entries of an ap-
propriately chosen principal submatrix of σ, obtaining for restricted choices of ε a copy complexity
lower bound based on the effective dimension and Schatten 1/2-quasinorm of σ. In Section 5.5, we
put together the analyses of our two lower bound instances to conclude the proof of Theorem 5.1.

5.1 Bucketing and Mass Removal

We may without loss of generality assume that σ is some diagonal matrix diag(λ1, . . . , λd).
For j ∈ Z≥0, let Sj denote the set of indices i ∈ [d] for which λi ∈ [2−j−1, 2−j ]; denote |Sj |

by dj . Let J denote the set of j for which Sj 6= ∅. We will refer to j ∈ J as buckets. It will be
convenient to refer to the index of the bucket containing a particular index i ∈ [d] as j(i). Also let
Ssing denote the set of i ∈ [d] belonging to a size-1 bucket Sj for some j ∈ J , and let Smany denote
the set of i ∈ [d] which lie in a bucket Sj of size greater than 1 for some j ∈ J .

Our bounds are based on the following modification of σ obtained by zeroing out a small fraction
of its entries:

Definition 5.2 (Removing low-probability elements- nonadaptive lower bound). Without loss of
generality, suppose that λ1, . . . , λd are sorted in ascending order according to λi/d

2
j(i).

5 Let d′ ≤ d

denote the largest index for which
∑d′

i=1 λi ≤ 3ε. Let Stail , [d′], and let Slight be the set of
i ∈ {d′ + 1, . . . , d} for which

∑
i′∈Sj(i)\Stail

λi′ ≤ 2ε/ log(d/ε).

Let imax denote the index of the largest entry of σ. Let σ′ denote the matrix given by zeroing out
the largest entry of σ and the entries indexed by Stail, and let σ∗ denote the matrix given by zeroing
out the entries indexed by Stail ∪ Slight. Finally, let σ∗∗ denote the matrix given by further zeroing
out from σ∗ as many of the smallest entries as possible without removing more than 2ε mass.

Lastly, it will be convenient to define J ′ (resp. J ∗) to be the set of j ∈ J for which Sj has
nonempty intersection with (([d]\{imax}) ∩ Smany)\Stail (resp. [d]\(Stail ∪ Slight)). Note that by
design, J ′ and J ∗ denote the indices of the nonzero diagonal entries of σ′ and σ∗ respectively.

We will use the following basic consequence of bucketing:

Fact 5.3. There are at most O(log(d/ε)) indices j ∈ J for which Sj and Stail are disjoint. As a
consequence, Tr(σ∗∗) ≥ 1−O(ε).

Proof. For any i1 6∈ Stail and i2 ∈ Stail, we have that pi1/d
2
j(i1) ≥ pi2/d

2
j(i2), so pi1 ≥ pi2/d

2.

In particular, summing over i2 ∈ Stail, we conclude that pi1 · |Stail| ≥ ε/d2, so pi1 ≥ ε/d3. By
construction of the buckets Sj , the first part of the claim follows. For the second part, by definition
we have that

∑
i∈[d′] λi ≤ O(ε). Furthermore,

∑
i∈Slight

λi = O(ε) because of the first part of the
claim. The second part of the claim follows by triangle inequality.

Lastly, we will use the following shorthand: for any j ∈ J and any matrix A, we will let
Aj ∈ Rd×d denote the matrix which is zero outside of the principal submatrix indexed by Sj and
which agrees with A within this submatrix.

5The only place where we need this particular choice of sorting is in the proof of Corollary 5.17 below.
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5.2 Lower Bound Instance I: General Quantum Paninski

We will analyze the following distinguishing problem. We will pick a diagonal matrix E as follows:

Definition 5.4 (Perturbation matrix E). For any i 6∈ Smany, we will take the i-th diagonal entry
of E to be zero. For any bucket j of size at least 2, we will take the nonzero diagonal entries of Ej
to be (εj , · · · ,−εj , · · · ) where there are bdj/2c copies of εj and bdj/2c copies of −εj, for εj to be
optimized later.

Given U ∈ U(d), define σU , σ + U†EU.

Throughout this subsection, let D denote the distribution over block-diagonal unitary matrices
U which are zero outside of the principal submatrices indexed by Sj for some j ∈ J with dj > 1,
and which within each submatrix indexed by such an Sj is an independent Haar-random unitary
if dj is even, and otherwise is an independent Haar-random unitary in the submatrix consisting of
the first 2bdj/2c rows/columns. This distinction will not be particularly important in the sequel,
so the reader is encouraged to imagine that dj is always even when dj > 1.

The objective of this subsection is to show the following lower bound:

Lemma 5.5. Fix 0 < ε < c for sufficiently small absolute constant c > 0. Let σ ∈ Cd×d be a
diagonal density matrix. There is a choice of E in Definition 5.4 for which distinguishing between
whether ρ = σ or whether ρ = σ+U†EU for U ∼ D using nonadaptive, unentangled measurements
has copy complexity at least Ω(‖σ′‖2/5/(ε2 log(d/ε))).

By definition of D, ρ is block-diagonal in either scenario, and the block-diagonal structure
depends only on {Sj}. In particular, this implies that we can without loss of generality assume
that the POVMs the tester uses respect this block structure. More precisely:

Lemma 5.6. Let ρ ∈ Cd×d be any density matrix which is zero outside of the principal submatrices
indexed by the subsets {Sj}j∈J . Given an arbitrary POVM M = {Mz}, there is a corresponding
POVM M′ satisfying the following. Let p, p′ be the distributions over measurement outcomes from
measuring ρ with M,M′ respectively. Then:

• For every z ∈ Ω(M′), there exists j ∈ J for which M ′z is zero outside of the principal
submatrix indexed by Sj

• There is a function f : Ω(M′)→ Ω(M) for which the pushforward of p′ under f is p.

Proof. For every z ∈ Ω(M) and every j ∈ J , define a POVM element Mj,z , ΠjMzΠj , where
Πj ∈ Cd×d is the matrix which is equal to the identity in the principal submatrix indexed by Sj
and is zero elsewhere. Clearly {Mj,z}j∈J ,z∈Ω(M) is still a POVM because

∑
Πj = 1; letM′ be this

POVM. Let f be given by f((j, z)) = z. The pushforward of p′ under f places mass

∑
j∈J
〈ρ,ΠjMzΠj〉 =

〈∑
j∈J

ΠjρΠj ,Mz

〉
= 〈ρ,Mz〉

on z ∈ Ω(M) as claimed, where the penultimate step follows by the assumption that ρ is zero
outside of the principal submatrices indexed by the subsets {Sj}.

By Lemma 5.6, we will henceforth only work with POVMs like M′. If Mt is the t-th POVM
used by the tester, we may assume without loss of generality that its outcomes Ω(Mt) consist
of pairs (j, z), where the POVM element corresponding to such a pair has nonzero entries in the
principal submatrix indexed by Sj . Henceforth, fix an arbitrary such POVM M (we will drop
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subscripts accordingly) and denote its elements by {Mj,z} for j ∈ J . We will denote by Ωj the set
of z for which there is an element Mj,z.

Let p denote the distribution over J induced by measuring σ with M and recording which
bucket the outcome belongs to. Concretely, p places mass pj ,

∑
z∈Ωj
〈Mj,z, σj〉 = Tr(σj) on

bucket j ∈ J . Similarly, define qj to be the distribution over Ωj conditioned on the outcome falling

in bucket j, that is, qj places mass qjz , 1
pj
〈Mj,z, σj〉 on z ∈ Ωj .

For every j ∈ J , let Pj denote the single-copy sub-problem in dj dimensions given by restricting
to the coordinates indexed by Sj and using the POVM Mj , {(Mj,z)j}z∈Ωj . Formally, Pj is
specified by the data (Mj , σ̂j , {(σ̂U)j}U∼Dj ), where Dj is the Haar measure over U(dj) if dj is even
and is otherwise the distribution over dj × dj matrices which are Haar-random unitary in the first
2bdj/2c rows/columns and zero elsewhere. Note that the density matrix (σ̂U)j can be written as
σ̂j + U†E ′jU for E ′j , Ej/pj .

For any j ∈ J , z ∈ Ωj , it will be convenient to define M̃j,z , 1
〈Mj,z ,σj〉Mj,z. We can write

g
Uj

Pj
(z) =

〈Mj,z,U
†
jE ′jUj〉

〈Mj,z, σ̂j〉
=
〈Mj,z,U

†
jEjUj〉

〈Mj,z, σj〉
= 〈M̃j,z,U

†
jEjUj〉. (8)

Because Mj,z is zero outside of the principal submatrix indexed by Sj , we thus have

gU(z) =
〈Mj,z,U

†EU〉
〈Mj,z, σ〉

=
〈Mj,z,U

†
jEjUj〉

〈Mj,z, σj〉
= g

Uj

Pj
(z)

and

φU,V = E
j,z

[
〈Mj,z,U

†
jEjUj〉〈Mj,z,V

†
jEjVj〉

〈Mj,z, σj〉2

]
=
∑
j∈J

pj · φ
Uj ,Vj

Pj
. (9)

We now give a generic lower bound for the distinguishing problem in Lemma 5.5 that depends
on the entries of E. After that, we show how to tune the entries of E to complete the proof of
Lemma 5.5.

5.2.1 Bound Under General Perturbations

Our goal is first to show the following generic bound:

Lemma 5.7. Distinguishing σ⊗N from EU[σ⊗NU ] with probability at least 2/3 using an unentangled,
adaptive POVM schedule S requires

N = Ω


∑
j∈J

22jε4
j

dj

−1/2
 (10)

By Lemma 4.5, it suffices to show that for any POVMM, EU,V

[(
1 + φU,VM

)N]
= 1+o(1) for N

smaller than the claimed bound. To do this, we will bound the moments of each φU,VPj
individually.

As the relevant matrices (Mj,z)j are zero outside of the principal submatrix indexed by Sj , we
will abuse notation and refer to them as Mj,z in the sequel whenever the context is clear. Likewise,
we will refer to Uj ∼ Dj as U.

In the next three lemmas, we verify that the three conditions of Assumption 1 are satisfied for
appropriate choices of ς, L by the dj-dimensional single-copy sub-problem Pj . For the proofs of

these lemmas, it will be convenient to define M̃j,z , 1
〈Mj,z ,σj〉Mj,z
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Lemma 5.8. For any z ∈ Ωj, EU[gUPj
(z)] = 0, so Condition 1 of Assumption 1 holds.

Proof. By the second part of Lemma 3.13, EU[gUPj
(z)] = Tr(M̃j,z) · Tr(Ej) = 0.

Lemma 5.9. EU[gUPj
(z)2]1/2 ≤ O(2jεj/

√
dj) for any z ∈ Ωj, so Condition 2 of Assumption 1

holds.

Proof. Let τ∗ ∈ S2 denote transposition. For any z ∈ Ωj , by (8) and Lemma 3.13,

E
U

[gUPj
(z)2] = E

[〈
M̃j,z,U

†EjU
〉2
]

=
∑

π,τ∈S2

〈Ej〉τ 〈M̃j,z〉π Wg(πτ−1, dj)

= 〈Ej〉τ∗
(

Tr(M̃2
j,z) ·Wg(e, dj) + Tr(M̃j,z)

2 ·Wg(τ∗, dj)
)

≤ dj · ε2
j ·

Tr(Mj,z)
2

〈Mj,z, σj〉2

(
1

d2
j − 1

Tr(M̂2
j,z)−

1

dj(d2
j − 1)

· Tr(M̂j,z)
2

)

≤
ε2
j

dj + 1
· Tr(Mj,z)

2

〈Mj,z, σj〉2
≤ 2 · 22jε2

j/dj ,

where in the last step we used the fact that Tr(M̂2) ≤ 1 for any matrix M̂ of trace 1.

Lemma 5.10. Ez∼qj [(gUPj
(z) − gVPj

(z))2]1/2 ≤ O((2j/pj)
1/2εj) · ‖U −V‖HS for any U,V ∈ U(d),

so Condition 3 of Assumption 1 holds.

Proof. The matrix A , U†EjU − U′†EjU′ is Hermitian, so write its eigendecomposition A =
W†ΣW. Define M ′j,z , WMj,zW

† so that
∑

z∈Ωj
M ′j,z = 1dj and

E
z∼qj

[(gUPj
(z)− gVPj

(z))2] = E
z∼qj

 1

〈Mj,z, σj〉

dj∑
i=1

(M ′j,z)iiΣii

2
≤ E

z∼qj

 1

〈Mj,z, σj〉

dj∑
i=1

(M ′j,z)iiΣ
2
ii

 1

〈Mj,z, σj〉

dj∑
i=1

(M ′j,z)ii


≤ 1

pj

∑
z∈Ωj

Tr(Mj,z)

〈Mj,z, σj〉
·
dj∑
i=1

(M ′j,z)iiΣ
2
ii

≤ 1

pj
2j+1 ·

dj∑
i=1

Σ2
ii

∑
z∈Ωj

(M ′j,z)ii =
1

pj
2j+1‖Σ‖2HS

where in the second step we used Cauchy-Schwarz, in the third step we used that Tr(M ′j,z) =
Tr(Mj,z), in the fourth step we used the fact that the entries of diagonal matrix σj are lower
bounded by 2−j−1, and in the fifth step we used that

∑
z Ω′j,z = 1dj . To upper bound ‖Σ‖HS, note

‖Σ‖HS = ‖U†EjU−U′†EjU′‖HS = ‖U†Ej(U−U′) + (U′ −U)†EjU′‖HS ≤ εj‖U−U′‖HS,

from which we conclude that Ez∼qj [(gUPj
(z)− gVPj

(z))2]1/2 ≤ (2j+1/pj)
1/2εj‖U−U′‖HS.
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By applying (5) in Lemma 4.4, we get the following bound:

Lemma 5.11. For any odd t, EU,V∼Dj

[(
φU,VPj

)t]
= 0, and for any even t,

E
U,V∼Dj

[(
φU,VPj

)t]1/t

≤ O
(

22jε2
j/dj ·

{√
t/dj ∨ t/dj

})
≤ O

(
t · 22j · ε2

j/d
3/2
j

)
.

Proof. By Lemma 5.8 and the definition of φU,VPj
, E[φU,VPj

] = 0. By Lemmas 5.9 and 5.10, we

can take ς = O(2jεj/
√
dj) and L = O((2j/pj)

1/2εj) when invoking (5) in Lemma 4.4. Note that
pj ≥ dj2−j−1, so L ≤ O(ς). The claim follows.

Lemma 5.11, Lemma 3.10, and (9) immediately imply Lemma 5.7.

Proof of Lemma 5.7. From Lemma 3.10, Lemma 5.11, and (9), we have that

E
U,V∼D

[(
φU,V

)t]1/t
≤ t

∑
j∈J

p2
j ·O

(
24jε4

j

d3
j

)1/2

≤ t

∑
j∈J

O

(
22jε4

j

dj

)1/2

where in the second step we used that pj ≤ dj2−j . We can thus expand

E
[(

1 + φU,V
)N]

=
∑

2≤t≤N even

(
N

t

)
E[(φU,V)t] ≤

(
e ·N
t

)t
·O

t2 ∑
j∈J

22jε4
j

dj

t/2

,

from which the claim follows by Lemma 4.5.

5.2.2 Tuning the Perturbations

Before we explain how to tune Ej , we address a minor corner case. Recall from Definition 5.4 that
Ej is zero for buckets j for which |Sj | = 1. In the extreme case where all buckets after removal of
Stail are of this type, then E = 0 and the problem of distinguishing between σ and σ+U†EU would
be vacuous. Fortunately, we can show that if the Schatten 2/5-quasinorm of σ′ is dominated by
such buckets, then the resulting state certification problem requires many copies because of existing
classical lower bounds.

Lemma 5.12. If
∑

i∈Ssing\Stail
λ

2/5
i ≥ 1

2‖σ
′‖2/52/5, then state certification with respect to σ using non-

adaptive, unentangled measurements has copy complexity at least Ω(‖σ′‖2/5/ε2).

Proof. Intuitively in this case, the spectrum of σ is dominated by eigenvalues in geometric pro-
gression, and in fact the instance-optimal lower bound for classical identity testing [VV17] already
implies a good enough copy complexity lower bound (even against entangled measurements).

Formally, Corollary 3.17 implies a copy complexity lower bound of Ω(1/ε∨‖σ−max
−ε ‖2/3/ε2). We

would like to relate this to ∑
i∈Ssing\Stail

λ
2/3
i

3/2

≥ (1− 2−2/5)5/2 ·

 ∑
i∈Ssing\Stail

λ
2/5
i

5/2

≥ Ω(‖σ′‖2/5), (11)

where the first step follows by Fact 3.19, and the last step follows by the hypothesis of the lemma.
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Suppose that there is some i for which dj(i) = 1 and i is not among the indices removed in the

definition of σ−max
−ε . Then we can lower bound ‖σ−max

−ε ‖2/3 by λi, which is at least (1− 2−2/3)3/2 =
Ω(1) times the left-hand side of (11).

On the other hand, suppose that all i for which dj(i) = 1 are removed in the definition of

σ−max
−ε . As long as σ−max

−ε has some nonzero entry, call it λi∗ , then λi∗ ≥ maxi∈Ssing\Stail
λi, so we

can similarly guarantee that ‖σ−max
−ε ‖2/3 ≥ λi∗ is at least (1− 2−2/3)3/2 = Ω(1) times the left-hand

side of (11). Otherwise, we note that σ′ is zero as well, in which case we are also done.

It remains to consider the primary case where the hypothesis of Lemma 5.12 does not hold, and
this is where we will use Lemma 5.7. The following together with Lemma 5.12 will complete the
proof of Lemma 5.5:

Lemma 5.13. If
∑

i∈Ssing\Stail
λ

2/5
i < 1

2‖σ
′‖2/52/5, then state certification with respect to σ using non-

adaptive, unentangled measurements has copy complexity at least Ω(‖σ′‖2/5/(ε2 log(d/ε))).

The proof of Lemma 5.13 requires some setup. First, obviously the hypothesis of the lemma
can equivalently be stated as ∑

i∈Smany\Stail

λ
2/5
i >

1

2
‖σ′‖2/52/5. (12)

Definition 5.14 (Choice of εj). For every i ∈ Smany, for j ∈ J the index of the bucket containing

i, define εj , 2−j−1 ∧ ζ2−2/3(j+1)d
2/3
j for normalizing quantity ζ satisfying∑

j∈J :dj>1

2bdj/2c ·
{

2−j−1 ∧ ζ2−2/3(j+1)d
2/3
j

}
= ε. (13)

Note that by ensuring that εj ≤ 2−j−1, we ensure that σ + U†EU has nonnegative spectrum,
while (13) ζ ensures that for any U in the support of D, ‖E‖1 = ε.

The rest of the proof is devoted to showing that for this choice of {εj}, the lower bound in (10)
is at least the one in Lemma 5.13. The main step is to upper bound the normalizing quantity ζ.

Lemma 5.15. For ζ defined in Definition 5.14,

ζ ≤ O(ε) ·

 ∑
j∈J ′,i∈Sj

λ
2/3
i d

5/3
j

−1

. (14)

We will need the following elementary fact (see Appendix B.3 for a proof).

Fact 5.16. Let u1 < · · · < um and v1 ≤ · · · ≤ vn be numbers for which ui+1 ≥ 2ui for all i. Let
d1, . . . , dn > 1 be arbitrary integers. Let w1 ≤ · · · ≤ wm+n be these numbers in sorted order. For
i ∈ [m+ n], define d∗i to be 1 if wi corresponds to some uj, and dj if wi corresponds to some vj.

Let s be the largest index for which
∑s

i=1wid
∗
i ≤ 3ε. Let a, b be the largest indices for which ua,

vb are present among w1, . . . , ws (if none exists, take it to be 0). Then either b = n or
∑b+1

i=1 vidi > ε.

This allows us to deduce the following bound for buckets not removed in Definition 5.2.

Corollary 5.17. Under the hypothesis of Lemma 5.13, Smany\Stail is nonempty, and there exists

an absolute constant c > 0 such that for any i ∈ Smany\Stail in some bucket j, ζ · 2−2/3(j+1)d
2/3
j ≤

c · 2−j−1.
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Proof. The first part immediately follows from (12). For the second part, take some constant c to
be optimized later and suppose to the contrary that for some i∗ ∈ Smany\Stail, lying in some bucket

j∗, we have that c · 2−j∗−1 < ζ · 2−2/3(j∗+1)d
2/3
j , or equivalently 2−j

∗−1/d2
j < ζ3/c3. Because in the

definition of Stail, we sorted by λi/dj(i)2 , for any i ∈ Stail, and because λi ∈ [2−j(i)−1, 2−j(i)], we also

have that 2−j(i)−1/d2
j(i) < ζ3/c3, or equivalently, c · 2−j(i)−1 < ζ · 2−2/3(j+1)d

2/3
j(i).

So the sum on the left-hand side of (13) is at least∑
j∈J :j≥j∗,dj>1

2bdj/2c · (c · 2−j−1) ≥
∑

j∈J :j≥j∗,dj>1

(2dj/3) · (c · 2−j−1) ≥
∑

i∈Smany,i≤i∗
λi > ε,

where in the first step we used that for dj > 1, 2bdj/2c ≥ 2dj/3, in the second step we took c = 3
and used that λi ≤ 2−j for i ∈ Sj , and in the third step we used Fact 5.16 applied to the numbers
{ui} , {λi}i∈Ssing

, {vi} , {λi/d2
j(i)}i∈Smany and {di} , {d2

j(i)}i∈Smany . This contradicts (13).

We are finally ready to upper bound the normalizing constant ζ.

Proof of Lemma 5.15. We can now upper bound ζ as follows. We have

ε ≥ Ω(ζ) ·
∑
j∈J ′

2bdj/2c · 2−2/3(j+1)d
2/3
j

≥ Ω(ζ)
∑
j∈J ′

2−2j/3d
5/3
j

where in the first step we used (13) and Corollary 5.17, and in the second step we again used the
fact that for dj > 1, 2bdj/2c ≥ 2dj/3. The claimed bound follows.

We are now ready to complete the proof of Lemma 5.13:

Proof. Substituting our choice of {εj} in Definition 5.14 into the lower bound of Lemma 5.7 gives∑
j∈J

22j‖Ej‖4op/dj

−1/2

≥

 ∑
j∈J :dj>1

{
2−2j−4

dj
∧ ζ42−2/3j−8/3d

5/3
j

}−1/2

≥

 ∑
j∈J :dj>1

{
ζ32−j−3dj ∧ ζ42−2/3jd

5/3
j

}−1/2

≥ Ω(ζ−3/2)

 ∑
j∈J :dj>1

2bdj/2c
{

2−j−1 ∧ ζ2−2/3(j+1)d
2/3
j

}−1/2

= Ω(ζ−3/2) · ε−1/2

≥ ε−2 ·

 ∑
j∈J ′,i∈Sj

λ
2/3
i d

5/3
j

3/2

≥ max
j∈J ′,i∈Sj

λid
5/2
j /ε2

≥

 ∑
j∈J ′,i∈Sj

λ
2/5
i dj

5/2

· log(d/ε)−1

≥ ‖σ′‖2/5 · log(d/ε)−1,
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where in the second step we used that the minimum of two nonnegative numbers increases if we
replace one of them by a weighted geometric mean of the two numbers, in the third step we use the
fact that bdj/2c and dj are equivalent up to constant factors if dj > 1, in the fourth step we use
(13), in the fifth step we use (14), in the penultimate step we used Fact 5.3, and in the last step we
used (12) and the fact that for any j, there are at most dj indices i ∈ Smany\Stail within bucket Sj .

With Lemma 5.13 in place, we conclude the proof of the main lemma of this subsection:

Proof of Lemma 5.5. This follows immediately from Lemmas 5.12 and 5.13.

5.3 Lower Bound Instance II: Perturbing Off-Diagonals

In many cases, the following lower bound instance will yield a stronger lower bound than the
preceding argument, at the cost of applying to a limited range of ε. Take any j, j′ ∈ J ∗ for which
dj ≥ dj′ . As we will explain below, if dj > 1, then j and j′ need not be distinct.

If j and j′ are distinct, then given a matrix Wdj×dj′ with orthonormal columns, let σW be the
matrix σ + DW where DW ∈ Cd×d is the matrix which is zero outside of the principal submatrix
indexed by Sj ∪ Sj′ and which is equal to the matrix(

0dj (ε/2dj′) ·W
(ε/2dj′) ·W† 0dj′ .

)
(15)

On the other hand, if j = j′ and dj > 1, then partition Sj into contiguous sets S1
j , S

2
j of size ddj/2e

and bdj/2c, and given a matrix Wddj/2e×bdj/2c with orthonormal columns, define DW ∈ Cd×d to
be the matrix which is zero outside the principal submatrix indexed by S1

j ×S2
j and which is equal

to the matrix (
0ddj/2e (ε/2bdj/2c) ·W

(ε/2bdj/2c) ·W† 0dbdj/2c .

)
(16)

In the rest of this subsection, we will consider the case where j 6= j′, but as will become evident,
all of the following arguments easily extend to the construction for j = j′ when dj > 1 by replacing
Sj and Sj′ with S1

j and S2
j respectively.

Lemma 5.18. If ε ≤ dj′ · 2−j/2−j
′/2, then ‖σ − σW‖1 ≥ ε and σW is a density matrix.

Proof. For the first part, note that

‖σ − σW‖1 = ‖DW‖ = 2 · (ε/2dj′)‖W‖1 = ε,

where in the second equality we used that DW is the Hermitian dilation of (ε/dj′) ·W, and in the
last equality we used the fact that W consists of dj′ orthogonal columns.

For the second part, first note that regardless of the choice of ε, we have that Tr(DW) = 0, so
Tr(σW) = 1. Finally, to verify that σW is positive definite, note that the Schur complement of the
principal submatrix of σW indexed by Sj ∩ Sj′ is given by

σj′ −
ε2

4d2
j′
σ−1
j � 2−j

′−11− ε2

4d2
j′

2j+11,

which is positive definite provided that ε ≤ dj′ · 2−j/2−j
′/2. It follows by Lemma 3.14 that σW is

positive definite as claimed.
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The objective of this subsection is to show the following lower bound:

Lemma 5.19. Fix any j, j′ ∈ J ∗ satisfying dj ≥ dj′. If dj > 1, then we can optionally take j = j′.
Suppose ε ≤ dj′ · 2−j/2−j

′/2. Let σ ∈ Cd×d be a diagonal density matrix. Distinguishing between
whether ρ = σ or ρ = σW for W ∈ Cdj×dj′ consisting of Haar-random orthonormal columns, using
nonadaptive unentangled measurements, has copy complexity at least

Ω

(√
dj · d2

j′ · 2−j
′

ε2

)
.

Note that a random W is equivalent to UΠ for U ∼ D, where D is the Haar measure over
U(dj), and

Π , (1dj′ |0dj−dj′ )
>,

so we can just as well parametrize {σW} as {σU}, which we will do in the sequel.
Take any single-copy sub-problem P = (M, σ, {σU}U∼D) where POVMM consists of elements

{Mz}. Analogously to Lemma 5.6, we may without loss of generality assume that one of the POVM
elements is the projector to the coordinates outside of Sj ∪Sj′ , and the remaining POVM elements

are rank-1 matrices Mz = λzvzv
†
z where the λz ≤ 1 satisfy∑

λz = dj + dj′ < 2dj (17)

and the vectors vz are unit vectors supported on Sj ∩ Sj′ . Let vjz and vj
′
z denote the dj- and

dj′-dimensional components of vz indexed by Sj and Sj′ . Note that for these z,

gUP (z) =
〈Mz, DW〉
〈Mz, σ〉

=
ε

dj′
· Re((vjz)†(UΠ)vj

′
z )

v†zσvz
. (18)

while for the index z corresponding to the projector to (Sj ∪ Sj′)c, gUP (z) = 0.
In the next three lemmas, we verify that P satisfies Assumption 1.

Lemma 5.20. For any z, EU[gUP (z)] = 0, so Condition 1 of Assumption 1 holds.

Proof. Clearly Tr(DW) = 0, so by the second part of Lemma 3.13, EW[gW(z)] = 0.

Lemma 5.21. Ez,U[gUP (z)2] ≤ O
(

ε2

d2
j′2
−j′

)
, where as usual, expectation is with respect to measure-

ment outcomes when measuring the null hypothesis σ with M, so Condition 2 of Assumption 1
holds.

Proof. From (18) we have that

E
z,U

[
gUP (z)2

]
=
ε2

d2
j′
E
U

∑
z

λzv
†
zσvz

(
Re((vjz)†(UΠ)vj

′
z )

v†zσvz

)2


=
ε2

d2
j′

∑
z

λz

v†zσvz
E
U

[(
Re((vjz)

†(UΠ)vj
′
z )
)2
]

=
ε2

d2
j′

∑
z

λz

v†zσvz
· ‖v

j
z‖2‖vj

′
z ‖2

dj
, (19)
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As vz is supported on Sj ∪ Sj′ , the supports of vjz and vj
′
z are disjoint, and the diagonal entries of

σ indexed by Sj′ are at least 2−j−1, we have that v†zσvz ≥ 2−j
′−1‖vj

′
z ‖2 and ‖vjz‖22 ≤ 1, so we can

further bound (19) by

=
ε22j

′+1

d2
j′dj

∑
z

λz ≤ O

(
ε2

d2
j′2
−j′

)
,

where the last step follows by (17).

Lemma 5.22. Ez[(gU1
P (z) − gU2

P (z))2] ≤ O

(
ε2

d2
j′2
−j

)
· ‖U1 −U2‖2HS for any U1,U2 ∈ U(dj), so

Condition 3 of Assumption 1 holds.

Proof. Define the matrix

D =

(
0dj (ε/2dj′) · (U1Π−U2Π)

(ε/2dj′) · (U1Π−U2Π)† 0dj′

)
Note that for any POVM element Mz,

〈Mz,D〉2 =
λ2
zε

2

d2
j′

Re
(

(vjz)
†(U1 −U2)Πvj

′
z

)2
≤ λ2

zε
2

d2
j′
· ‖vjz(U1 −U2)‖2 · ‖vj′z ‖22 (20)

We can then write

E
z
[(gUP (z)− gVP (z))2] =

∑
z

〈Mz,D〉2

〈Mz, σ〉

≤ ε2

d2
j′

∑
z

λz‖vjz(U1 −U2)‖2 · ‖vj
′
z ‖2

2−j′−1‖vj
′
z ‖2

≤ O

(
ε22j

′

d2
j′

)
·
∑
z

λz‖vjz(U1 −U2)‖2

= O

(
ε22j

′

d2
j′

)
·

〈
(U1 −U2)(U1 −U2)†,

∑
z

λzv
j
z(v

j
z)
†

〉

= O

(
ε2

d2
j′2
−j′

)
· ‖U1 −U2‖2HS,

where in the second step we used (20) and the fact that 〈Mz, σ〉 = λzv
†
zσvz ≥ λz2

−j′−1‖vj
′
z ‖2, and

in the fifth step we used that
∑

z λzv
j
z(v

j
z)† = 1dj .

We can finally complete the proof of Lemma 5.19:

Proof of Lemma 5.19. As the mixture of alternatives in P is parametrized by U ∼ D for D the
Haar measure over the unitary group, the lemma immediately follows from Lemma 4.6 with L, ς =

O

(
ε

dj′2
−j′/2

)
.
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5.4 Lower Bound Instance III: Corner Case

We will also need the a lower bound instance that will yield an Ω(1/ε2) lower bound for state
certification with respect to any σ with maximum entry at least 1/2. We will not use anything
about bucketing in this warmup result.

Let i1 be the index of the largest entry of σ, and let i2 be the index of the second-largest (breaking
ties arbitrarily). For any u ∈ {±1}, consider the state σu which agrees with σ everywhere except
in the principal submatrix indexed by {i1, i2}. Within that submatrix, define σui1,i1 = σi − ε2/4,

σui2,i2 = σi2 + ε2/4, and σui1,i2 = σu†i2,i1 = (ε/2)u.

Lemma 5.23. If the maximum entry of σ is at least 3/4, then for any ε ≤ 1/2, ‖σ−σu‖1 ≥ ε and
σu is a density matrix.

Proof. Note that for ε < 1/2,

‖σ − σu‖1 =

∥∥∥∥( −ε2 (ε/2)u
(ε/2)u ε2

)∥∥∥∥
1

= 2
√
ε4/16 + ε2/4 ≥ ε.

For the second part of the lemma, clearly Tr(σu) = 1. To verify that σu is psd, first note that
because σi1,i1 ≥ 3/4 and σi2,i2 ≤ 1/2, and ε2/4 ≤ 1/4, every diagonal entry of σu is nonnegative.
On the other hand, the principal submatrix indexed by {i1, i2} has determinant (σi1,i1−ε2)(σi2,i2 +
ε2)− ε2/4 ≥ (3/4− ε2)ε2 − ε2/4 ≥ 0, so σu is psd as claimed.

The objective of this subsection is to show the following lower bound:

Lemma 5.24. Let ε ≤ 1/2. If the maximum entry of σ is at least 3/4, then distinguishing between
whether ρ = σ or ρ = σu for u ∼ {±1}, using nonadaptive unentangled measurements, has copy
complexity at least Ω(1/ε2). In fact, this holds even for adaptive unentangled measurements.

Because we have no a priori bound on σi2,i2 , the KL divergence between the distribution over
outcomes from measuring N copies of σu for random u ∈ {±1} and the distribution from measuring
N copies of σ may be arbitrarily large, so we cannot implement the strategy in Section 4. Instead,
we will directly upper bound the total variation between these two distributions using the following
basic fact:

Fact 5.25. Given distributions p, q over a discrete domain S, if likelihood ratio p(x)/q(x) ≥ 1− ν,
then dTV(p, q) ≤ ν.

Proof. We can write

dTV(p, q) =
∑

x:p(x)≤q(x)

|p(x)− q(x)| =
∑

x:p(x)≤q(x)

q(x) · |p(x)/q(x)− 1| ≤ ν

as claimed.

Proof of Lemma 5.24. Let D be the uniform distribution over {±1}, and fix an arbitrary unen-
tangled POVM schedule S. Let p0 denote the distribution over transcripts z≤t of outcomes upon
measuring N copies of σ with S, and let p1 denote the distribution upon measuring N copies of σu,
where u ∼ D. We will lower bound the likelihood ratio p1(z≤N )/p0(z≤N ) for any transcript z≤N .
Let M(1), . . . ,M(N) denote the (possibly adaptively chosen) POVMs that were used in the course
of generating z≤N .
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For any t ∈ [N ], suppose M(t) consists of elements {M (t)
z }. Analogously to Lemma 5.6, we

may without loss of generality assume that one element ofM(t) is the projector to the coordinates

outside of {i1, i2}, and the remaining elements are rank-1 matrices M
(t)
z = λ

(t)
z v

(t)
z (v

(t)
z )† where the

λ
(t)
z ≤ 1 satisfy

∑
λ

(t)
z = 2 and the vectors v

(t)
z are unit vectors supported on {i1, i2}. Let v

(t)
zt,1

and

v
(t)
zt,2

denote the coordinates of v
(t)
z indexed by i1 and i2.

Note that for any u ∈ {±1} and t ∈ [N ], if zt does not correspond to the projector to the
coordinates outside of {i1, i2}, we can write

∆u
t (zt) ,

〈M (t)
zt , σ

u〉
〈M (t)

zt , σ〉
= 1 +

εuRe

(
v

(t)
zt,1

v
(t)
zt,2

)
− ε2

(∣∣∣v(t)
zt,1

∣∣∣2 − ∣∣∣v(t)
zt,2

∣∣∣2)
v

(t)†
zt σv

(t)
zt

and if zt does correspond to the projector, then ∆u
t (zt) = 1.

Denoting the t-th entry of z≤N by zt, we can use AM-GM to bound the likelihood ratio by

p1(z≤N )

p0(z≤N )
= E

u

[
N∏
t=1

∆u
t (zt)

]

≥

(
N∏
t=1

∆+1
t (zt)∆

−1
t (zt)

)1/2

(21)

To prove the lemma, we will lower bound this by 1− o(1). Because ∆u
t (zt) = 1 if zt corresponds to

the projector to the coordinates outside of {i1, i2}, we may assume without loss of generality that
this is not the case for any t ∈ [N ]. We can then further bound (21) by

≥
N∏
t=1


1−

ε2

(∣∣∣v(t)
zt,1

∣∣∣2 − ∣∣∣v(t)
zt,2

∣∣∣2)
v

(t)†
zt σv

(t)
zt


2

−
ε2 Re

(
v

(t)
zt,1

v
(t)
zt,2

)2

(
v

(t)†
zt σv

(t)
zt

)2


1/2

. (22)

For any v ∈ Cd which has entries v1 and v2 in coordinates i1 and i2 and is zero elsewhere, we have
that

|v1|2 − |v2|2

v†σv
≤ |v1|2

σi1,i1 |v1|2
≤ 4/3

Re(v1v2)2

v†σv
≤ Re(v1v2)2

σi1,i1 |v1|2
≤ 4/3,

where the last step for both estimates follows by the assumed lower bound on σi1,i1 . By (22) we
have that

p1(z≤N )

p0(z≤N )
≥ ((1− 4ε2/3)2 − 4ε2/3)N/2 ≥ (1− 32ε2/9)N/2.

In particular, for N = o(1/ε2), the likelihood ratio is at least 1− o(1) as desired.

5.5 Putting Everything Together

We are now ready to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. We proceed by casework depending on whether or not dj = 1 for all j ∈ J ∗.

Case 1. dj = 1 for all j ∈ J ∗.
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There are two possibilities. If there is a single bucket j = j(i) for which i 6∈ Stail ∪ Slight, then
deff = 1 and ‖σ∗∗‖1/2 = O(1). For ε smaller than some absolute constant, we know that σi,i ≥ 3/4
and can apply Lemma 5.24 to conclude a lower bound of Ω(1/ε2) as desired. Otherwise, let j′ be
the smallest index for which j′ = j(i′) for some i′ ∈ J ∗, and let j > j′ be the next smallest index
for which j = j(i) for some i ∈ J ∗. Consider the lower bound instance in Section 5.3 applied to
this choice of j, j′. Provided that ε ≤ 2−j/2−j

′/2, we would obtain a copy complexity lower bound of
Ω(2−j

′
/ε2) ≥ Ω(‖σ∗‖1/2/(ε2 log(d/ε))), where the inequality is by Fact 3.18, and we would be done.

On the other hand, if ε ≥ 2−j/2−j
′/2, then because 2−j

′
> 2−j , we would conclude that 2−j ≤ ε. In

particular, this implies that
∑

j′′∈J ∗,i∈Sj′′ :j
′′ 6=j′ λi ≤ 2ε, so after removing at most an additional 2ε

mass from σ∗, we get a matrix σ∗∗ (see Definition 5.2) with a single nonzero entry. Again, deff = 1
and ‖σ∗∗‖1/2 = O(1), and if ε is smaller than some absolute constant, we conclude that that single
nonzero entry is at least 3/4 and can apply Lemma 5.24 to conclude a lower bound of Ω(1/ε2) as
desired.

Case 2. dj > 1 for some j ∈ J ∗.

Let j∗ , arg maxj∈J ∗ dj and j′∗ , arg maxj∈J ∗ d
2
j2
−j . By Lemma 5.19, we have a lower bound

of Ω
(√

dj∗ · d2
j′∗
· 2−j′∗/ε2

)
as long as ε satisfies the bound

ε ≤ dj′∗ · 2
−j∗/2−j′∗/2. (23)

Note that because dj∗ > 1 as we are in Case 2, we do not constrain j∗, j
′
∗ to be distinct necessarily.

We would now like to argue that this lower bound, up to log factors, holds even if the bound on ε
in (23) does not hold. In the following, assume that (23) does not hold.

To this end, we will also use the lower bound from Lemma 5.5 of Ω(‖σ′‖2/5/(ε2 log(d/ε))). We
would first like to relate ‖σ′‖2/5 to ‖σ∗‖2/5.

Lemma 5.26. Either ‖σ′‖2/5 ≥ Ω(‖σ∗‖2/5), or the following holds. Let j◦ be the index maximizing

d
5/2
j 2−j. Then 1) j◦ = minj∈J ∗ j, 2) dj◦ = 1, and 3) j◦ = 0.

Proof. We will assume that ‖σ′‖2/5 = o(‖σ∗‖2/5) and show that 1), 2), and 3) must hold. Let j◦ be

the index maximizing d
5/2
j 2−j , and let imax be the index of the top entry of σ∗. Let σ′′ denote the

matrix obtained by zeroing out the top entry of σ∗. Note that the nonzero entries of σ′ comprise
a superset of those of σ′′, so

‖σ∗‖2/52/5

‖σ′‖2/52/5

≤
‖σ∗‖2/52/5

‖σ′′‖2/52/5

=

∑
i∈J ∗ σ

2/5
i∑

i∈J ∗\{imax} σ
2/5
i

.

Suppose 1) does not hold. Then∑
i∈J ∗ σ

2/5
i∑

i∈J ∗\{imax} σ
2/5
i

≤
σ

2/5
imax

+
∑

i∈Sj◦
σ

2/5
i∑

i∈Sj◦
σ

2/5
i

≤ 2,

where the first inequality follows by the elementary fact that for positive integers a ≥ b and c,
a+c
b+c ≤

a
b , and the second inequality follows by the definition of j◦.

Next, suppose 1) holds but 2) does not hold. Then∑
i∈J ∗ λ

2/5
i∑

i∈J ∗\{imax} λ
2/5
i

≤

∑
i∈Sj◦

λ
2/5
i∑

i∈Sj◦\{imax} λ
2/5
i

≤ O(1),
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where the first inequality again uses the above elementary fact, the second inequality follows by
our assumption that 2) does not hold. This yields a contradiction.

Finally suppose 1) and 2) hold, but 3) does not, so that ‖σ∗‖∞ ≤ 1/2. Let σ′′ denote the matrix
obtained by zeroing out the top entry of σ∗. We would have

‖σ′′‖2/5 ≥ ‖σ′′‖ ≥ 1/2−O(ε),

so for ε smaller than a sufficiently large absolute constant, we would have that ‖σ′′‖2/52/5 ≥ Ω(‖σ∗‖2/5∞ )

and therefore ‖σ′‖2/5 ≥ ‖σ′′‖2/5 ≥ Ω(‖σ∗‖2/5), a contradiction.

Suppose the latter scenario in Lemma 5.26 happens but the former does not. In this case,
because dj◦ = 1, we also have that j′∗ = arg maxj∈J ∗ d

2
j2
−j , i.e. j′∗ = j◦. In particular,

1 ≥ d2
j′∗

2−j
′
∗ ≥ d2

j∗2
−j∗ ≥ Ω(d

3/2
j∗
ε/ log(d/ε)), (24)

where the last inequality follows by the fact that dj2
−j ≥ Ω(ε/ log(d/ε)) for all j ∈ J ∗ by design.

We conclude that ε ≤ O(d
−3/2
j∗

log(d/ε)). But recall that we are assuming that (23) is violated, i.e.
that

ε > dj′∗ · 2
−j∗/2−j′∗/2 = 2−j∗/2−j

′
∗/2 ≥ Ω(ε/(dj∗ log(d/ε)))1/2, (25)

where the last step is by 3) in Lemma 5.26 and the fact that dj2
−j ≥ Ω(ε/ log(d/ε)) for all j ∈ J ∗.

Combining (24) and (25), we get a contradiction of the assumption that the former scenario in
Lemma 5.26 does not hold, unless dj∗ ≤ polylog(d/ε). But if dj∗ ≤ polylog(d/ε), then the lower
bound claimed in Theorem 5.1 still holds as deff ≤ O(log(d/ε) · dj∗) ≤ polylog(d/ε).

Finally, suppose instead that the former scenario in Lemma 5.26 happens, so that Lemma 5.5
gives a lower bound of Ω(‖σ∗‖2/5/(ε2 log(d/ε))). Let j◦ still be as defined in Lemma 5.26.

Now we would certainly be done if this lower bound were, up to log factors, larger than the one
guaranteed by Lemma 5.19 to begin with. So suppose to the contrary. We would get that

d
5/2
j∗

2−j∗ ≤ d5/2
j◦ 2−j

◦ ≤ 1

log2(d/ε)

√
dj∗d

2
j′∗
· 2−j′∗ ,

implying that

d2
j2
−j∗ ≤ 1

log2(d/ε)
d2
j′∗

2−j
′
∗ . (26)

If (23) does not hold, then

1

log(d/ε)
· dj′∗ · 2

−j∗/2−j′∗/2 ≤ ε

log(d/ε)
≤ dj2−j ,

where in the last step we again used the fact that dj2
−j > ε/ log(d/ε) for all j ∈ J ∗, yielding the

desired contradiction with (26) upon rearranging.
Having lifted the constraint (23), we finally note that by Fact 3.18,

Ω
(√

dj∗ · d2
j′∗
· 2−j′∗/ε2

)
≥ Ω

(√
deff · ‖σ∗‖1/2/(ε2 polylog(d/ε))

)
.

The proof is complete upon invoking Fact 5.27 below.

Fact 5.27. Given psd matrix σ ∈ Cd×d, let σ̂ , σ/Tr(σ). Then ‖σ‖1/2 = dTr(σ)2 · F (σ̂, ρmm).

Proof. We may assumed without loss of generality that σ is diagonal. By definition

F (σ̂, ρmm) =

(
Tr

√√
σ̂(1/d)

√
σ̂

)2

=

(
1√

dTr(σ)
· Tr(
√
σ)

)2

=
1

dTr(σ)2
· ‖σ‖1/2,

from which the claim follows.
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6 State Certification Algorithm

In this section we prove the following upper bound on state certification that nearly matches the
lower bound proven in Section 5:

Theorem 6.1. Fix ε, δ > 0. Let ρ ∈ Cd×d be an unknown mixed state, and let σ ∈ Cd×d be a
diagonal density matrix. Let σ′ be the matrix given by zeroing out the bottom O(ε2) mass in σ (see
Definition 6.5 below). Let σ̂′ , σ′/Tr(σ′) and let deff be the number of nonzero entries of σ′.

Given an explicit description of σ and copy access to ρ, Certify takes

N = O(d
√
deff · F (σ̂′, ρmm) polylog(d/ε) log(1/δ)/ε2)

copies of ρ and, using unentangled nonadaptive measurements, distinguishes between ρ = σ and
‖ρ− σ‖1 > ε with probability at least 1− δ.

First, in Section 6.1 we give a generic algorithm for state certification based on measuring in a
Haar-random basis and applying classical identity testing. In Section 6.2, we describe a bucketing
scheme that will be essential to the core of our analysis in Section 6.3, where we use this tool to
obtain the algorithm in Theorem 6.1.

6.1 Simple Subroutine

The main result of this section is a basic state certification algorithm that will be invoked as a
subroutine in our instance-near-optimal certification algorithm:

Lemma 6.2. Fix ε, δ > 0. Let ρ, σ ∈ Cd×d be two mixed states. Given access to an explicit
description of σ and copy access to ρ, BasicCertify takes N = O(

√
d log(1/δ)/ε2) copies of ρ

and, using unentangled nonadaptive measurements, distinguishes between ρ = σ and ‖ρ−σ‖HS > ε
with probability at least 1− δ.

Algorithm 1: BasicCertify(ρ, σ, ε, δ)

Input: Copy access to ρ, diagonal density matrix σ, error ε, failure probability δ
Output: YES if ρ = σ, NO if ‖ρ− σ‖HS > ε, with probability 1− δ

1 N ← O(
√
d/ε2).

2 for T = 1, . . . , O(log(1/δ)) do
3 Sample a Haar-random unitary matrix U.
4 Form the POVM M consisting of {|U1〉 〈U1| , . . . , |Ud〉 〈Ud|}.
5 Measure each copy of ρ with M, yielding outcomes z1, . . . , zN .

6 Let q ∈ ∆d denote the distribution over outcomes from measuring σ with M.
7 Draw i.i.d. samples z′1, . . . , z

′
N from q.

8 bi ←L2Tester({zi}, {z′i}).
9 return majority among b1, . . . , bT .

To prove Lemma 6.2, we will need the following result from classical distribution testing.

Lemma 6.3 (Lemma 2.3 from [DK16]). Let p, q be two unknown distributions on [d] for which ‖p‖2∧
‖q‖2 ≤ b for some b > 0. There exists an algorithm L2Tester that takes N = O(b log(1/δ)/ε2)
samples from each of p and q and distinguishes between p = q and ‖p− q‖2 > ε with probability at
least 1− δ.6

6Note that Lemma 2.3 in [DK16] only gives a constant probability guarantee, but the version we state follows by
a standard amplification argument.
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We will also need the following moment calculations:

Lemma 6.4. For any Hermitian M ∈ Cd×d and Haar-random U ∈ U(d), let Z denote the random

variable
∑d

i=1

(
U†iMUi

)2
. Then

E[Z] =
1

d+ 1

(
Tr(M)2 + ‖M‖2HS

)
.

If in addition we have that Tr(M) = 0, then

E[Z2] ≤ 1 + o(1)

d2
‖M‖4HS.

Proof. By symmetry E[Z] = dE[(U1MU1)2], and by Lemma 3.13, if Π denotes the projector to
the first coordinate,

E[(U1MU1)2] =
∑

π,τ∈S2

Wg(πτ−1, d)〈Π〉π〈M〉τ =
1

d(d+ 1)
(Tr(M)2 + Tr(M2)),

from which the first part of the lemma follows.
For the second part, let S∗4 ⊂ S4 denote the set of permutations π for which π(1), π(2) ∈ {1, 2}

and π(3), π(4) ∈ {3, 4}. Note that

E[Z2] = d · E
[
(U†1MU1)4

]
+ (d2 − d) · E

[
(U†1MU1)2(U†2MU2)2

]
. (27)

For the first term, by Lemma 3.13 we have

E[(U†1MU1)4] =
∑

π,τ∈S4

Wg(πτ−1, d)〈M〉τ

=
1

d(d+ 1)(d+ 2)(d+ 3)

∑
τ

〈M〉τ

=
1

d(d+ 1)(d+ 2)(d+ 3)

∑
τ derangement

〈M〉τ

≤
O(‖M‖4HS)

d(d+ 1)(d+ 2)(d+ 3)
,

where the third step follows by the fact that Tr(M) = 0, and the fourth by the fact that for any
derangement τ ∈ S4, either 〈M〉τ = Tr(M2)2 = ‖M‖4HS, or 〈M〉τ = Tr(M4) ≤ ‖M‖4HS. Similarly,

E[(U†1MU1)2(U†2MU2)2] =
∑

π∈S∗4 ,τ∈S4

Wg(πτ−1, d)〈M〉τ

=
∑
τ∈S∗4

Wg(e, d)〈M〉τ +
∑

π∈S∗4 ,τ∈S4:τ 6=π
Wg(πτ−1, d)〈M〉τ

= Wg(e, d)‖M‖4HS +
∑

π∈S∗4 ,τ∈S4:τ 6=π
Wg(πτ−1, d)〈M〉τ

≤ d4 − 8d2 + 6

d2(d6 − 14d4 + 49d2 − 36)
‖M‖4HS +O(1/d5) · ‖M‖4HS

=
1 + o(1)

d4
‖M‖4HS,
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where in the second step Wg(e, d) denotes the Weingarten function corresponding to the identity
permutation, in the third step we used the fact that the only τ ∈ S∗4 which is a derangement is the
permutation that interchanges 1 with 2, and 3 with 4, and in the fourth step we used the form of
Wg(e, d), the fact that |Wg(πτ−1, d)| = O(1/d5) for π 6= τ , and the fact that 〈M〉τ ≤ ‖M‖4HS. The
second part of the lemma follows from (27).

We can now complete the proof of Lemma 6.2.

Proof of Lemma 6.2. Let p and q be the distribution over d outcomes when measuring ρ and σ
respectively using the POVM defined in a single iteration of the main loop of BasicCertify.
Applying both parts of Lemma 6.4 to M = ρ− σ, for which the random variable Z is ‖p− q‖22, we
conclude that for some sufficiently small absolute constant c > 0, Pr[‖p−q‖2 ≥ c‖M‖HS/

√
d] ≥ 5/6.

Applying the first part of Lemma 6.4 to M = ρ and M = σ, for which the random variable Z is
‖p‖22 and ‖q‖22 respectively, we have that E[‖p‖22],E[‖q‖22] ≤ 2/d, so by Markov’s, for some absolute
constant c′ > 0, ‖p‖, ‖q‖2 ≤ c′/

√
d with probability at least 5/6. We can substitute these bounds

for ‖p‖2, ‖q‖2, ‖p − q‖2 into Lemma 6.3 to conclude that the output of L2Tester is correct with
some constant advantage. Repeating this O(log(1/δ)) times and taking the majority among all the
outputs from L2Tester gives the desired high-probability guarantee.

6.2 Bucketing and Mass Removal

We may without loss of generality assume that σ is the diagonal matrix diag(λ1, . . . , λd), where
λ1 ≤ · · · ≤ λd.

We will use the bucketing procedure outlined in Section 5.1. The way that we remove a small
amount of mass from the spectrum of σ slightly differs from that outlined in Definition 5.2 for our
lower bound. Our bucketing and mass removal procedure is as follows:

Definition 6.5 (Removing low-probability elements- upper bound). Let d′ ≤ d denote the largest

index for which
∑d′

i=1 λ
′
i ≤ ε2/20,7 and let Stail , [d′]. Let σ′ denote the matrix given by zeroing

out the diagonal entries of σ indexed by Stail. For j ∈ Z≥0, let Sj denote the indices i 6∈ Stail for
which λi ∈ [2−j−1, 2−j ], and denote |Sj | by dj. Let J denote the set of j for which Sj 6= ∅.

As in the proofs of our lower bounds, we use the following basic consequence of bucketing:

Fact 6.6. There are at most log(10d/ε2) indices j ∈ J .

Proof. The largest element among {λi}i∈Stail
is at least ε2/10d, from which the claim follows.

We now introduce some notation. Let m , log(10d/ε2) denote this upper bound on the number
of buckets in J . For j ∈ J , let ρ[j, j], σ[j, j] ∈ Cd×d denote the Hermitian matrices given by
zeroing out entries of ρ, σ outside of the principal submatrix indexed by Sj . For distinct j, j′ ∈ J ,
let ρ[j, j′] ∈ Cd×d denote the Hermitian matrix given by zeroing out entries of ρ outside of the two
non-principal submatrices with rows and columns indexed by Si and Sj , and by Sj and Si. Lastly,
let ρ̂[j, j], σ̂[j, j], ρ̂[j, j′], σ̂[j, j′] denote these same matrices but with trace normalized to 1.

Let ρdiag
junk ∈ Cd×d be the principal submatrix of ρ indexed by Stail, and let ρoff

junk ∈ Cd×d be the
matrix given by zeroing out the principal submatrices indexed by Stail and by [d]\Stail.

Lastly, we will need the following basic fact:

7We made no effort to optimize this constant factor.
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Fact 6.7. Given two psd matrices ρ, σ, if |Tr(ρ)− Tr(σ)| ≤ ε/2 and ‖ρ− σ‖ ≥ ε, then

‖ρ/Tr(ρ)− σ/Tr(σ)‖1 ≥ ε/2 Tr(ρ).

Proof. Note that

‖σ/Tr(ρ)− σ/Tr(σ)‖1 =

∣∣∣∣Tr(σ)

Tr(ρ)
− 1

∣∣∣∣ ≤ ε

2 Tr(ρ)
,

so by triangle inequality,

‖ρ/Tr(ρ)− σ/Tr(σ)‖1 ≥
1

Tr(ρ)
‖ρ− σ‖1 − ‖σ/Tr(ρ)− σ/Tr(σ)‖1 ≥

ε

2 Tr(ρ)
.

6.3 Instance-Near-Optimal Certification

We are ready to prove Theorem 6.1.

Proof of Theorem 6.1. We have that

ρ =
∑
j∈J

ρ[j, j] +
∑

j∈J :j 6=j′
ρ[j, j′] + ρdiag

junk + ρoff
junk σ′ =

∑
j∈J

σ[j, j]

If ‖ρ− σ‖1 > ε, then by triangle inequality,∥∥∥∥∥∥
∑
j∈J

(ρ[j, j]− σ[j, j]) +
∑

j,j′∈J :j 6=j′
ρ[j, j′] + ρdiag

junk + ρoff
junk

∥∥∥∥∥∥
1

= ‖ρ− σ′‖1 ≥ ε− ε2/20 ≥ 9ε/10

and one of four things can happen:

1. ‖ρdiag
junk‖1 ≥ ε

2/8.

2. ‖ρoff
junk‖1 ≥ ε/2,

3. There exists j ∈ J for which ‖ρ[j, j]− σ[j, j]‖1 ≥ ε/(10m2)

4. There exist distinct j, j′ ∈ J for which ‖ρ[j, j′]‖1 ≥ ε/(5m2).

Otherwise we would have

‖ρ− σ′‖1 ≤ m ·
ε

10m2
+

(
m

2

)
· ε

5m2
+
ε2

8
+
ε

2
=

ε

10m
+
ε(m− 1)

10m
+

3ε

4
< 9ε/10,

a contradiction.
It remains to demonstrate how to test whether we are in any of Scenarios 1 to 4.

Lemma 6.8. O(log(1/δ)/ε2) copies suffice to test whether ρ = σ or whether Scenario 1 holds, with
probability 1−O(δ).

Proof. We can use the POVM consisting of the projector Π to the principal submatrix indexed by
Stail, together with 1−Π, to distinguish between whether Tr(ρdiag

junk) ≥ ε2/8 or whether Tr(ρdiag
junk) ≤

ε2/10, the latter of which holds if ρ = σ by definition of Stail. For this distinguishing task,
O(log(1/δ)/ε2) copies suffice.
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Lemma 6.9. If Scenario 1 does not hold, then Scenario 2 cannot hold.

Proof. Suppose Scenario 1 does not hold so that ‖ρdiag
junk‖1 < ε2/4. Then by the first part of

Lemma 3.15, ‖ρoff
junk‖21 < (1− ε2/4) · ε2/4 < ε2/4, a contradiction.

Lemma 6.10. O
(
‖σ′‖2/5 polylog(d/ε) log(m/δ)/ε2

)
copies suffice to test whether ρ = σ or whether

Scenario 3 holds, with probability 1−O(δ).

Proof. If Tr(σ[j, j]) < ε/(10m2), then to test whether ρ = σ or Scenario 3 holds, it suffices to
decide whether Tr(ρ[j, j]) ≥ Tr(σ[j, j]) + ε/(10m2). We can do this by measuring ρ using the
POVM consisting of the projection Πj to the principal submatrix indexed by Sj , together with
1−Πj , for which O(m4 log2(1/δ)/ε2) copies suffice to determine this with probability 1−O(δ).

Suppose now that Tr(σ[j, j]) ≥ ε/(10m2). We can use O(log4(d/ε) · log(1/δ)/ε2) copies to
approximate Tr(ρ[j, j]) to additive error ε/(40m2) with probability 1−O(δ) using the same POVM.

If our estimate for Tr(ρ[j, j]) is greater than ε/(40m2) away from Tr(σ[j, j]), then ρ 6= σ.
Otherwise, |Tr(ρ[j, j])− Tr(σ[j, j])| ≤ ε/(20m2). Then by Fact 6.7, to determine whether we

are in Scenario 3, it suffices to design a tester to distinguish whether the mixed states ρ̂[j, j] and
σ̂[j, j] are equal or ε′-far in trace distance for

ε′ ,
ε

20m2 Tr(σ[j, j])
= Θ

(
ε

20m2dj2−j

)
. (28)

Note that if ρ̂[j, j] and σ̂[j, j] are ε′-far in trace distance, they are at least ε′/
√
dj-far in Hilbert-

Schmidt. We conclude from Lemma 6.2 that we can distinguish with probability 1 − O(δ) be-

tween whether ρ̂[j, j] and σ̂[j, j] are equal or ε′-far in trace distance using O(d
3/2
j log(1/δ)/ε′2) =

O(d
7/2
j 2−2j log4(d/ε) log(1/δ)/ε2) measurements on the conditional state ρ̂[j, j]. Note that Tr(ρ[j, j]) ≥

Ω(Tr(σ[j, j])) because Tr(σ[j, j]) ≥ ε/(10m2) by assumption, so Tr(σ[j, j]) ≥ Ω(dj2
−j). As a re-

sult, this tester can make the desired number of measurements on the conditional state by using

O(d
5/2
j 2−j log4(d/ε) log(1/δ)/ε2) copies of ρ and rejection sampling.
By a union bound over distinct pairs j, j′, it therefore takes O(log(m/δ)) times∑
j∈J

O
(
d

5/2
j 2−j log4(d/ε)/ε2

)
≤
∑
j∈J

O
(
d

5/2
j λj log4(d/ε)/ε2

)
≤ O

(
‖σ′‖2/5 polylog(d/ε)/ε2)

)
,

copies to test whether Scenario 3 holds, where the last step above follows by Fact 3.18.

Lemma 6.11. If Scenario 3 does not hold, then O
(√
d− d′‖σ′‖1/2 log(m/δ) polylog(d/ε)/ε2

)
copies

suffice to test whether ρ = σ or whether Scenario 4 holds, with probability 1−O(δ).

Proof. Fix any j 6= j′ ∈ J and suppose without loss of generality that dj ≥ dj′ . Let ρ∗ and σ∗

denote the matrices obtained by zeroing out all entries of ρ and σ except those in the principal
submatrix indexed by Sj ∪Sj′ . Let ρ̂∗j,j′ and σ̂∗j,j′ denote these same matrices with trace normalized
to 1. For brevity, we will freely omit subscripts.

If Tr(σ∗) < ε/(5m2), then ‖σ[j, j′]‖1 ≤ ε/(10m2) by the second part of Lemma 3.15. If Scenario
2 holds, then ‖ρ[j, j′]‖1 ≥ ε/(5m2), so by another application of the second part of Lemma 3.15,
we would get that Tr(ρ∗) ≥ 2ε/(5m2), contradicting the fact that Scenario 1 does not hold.

Suppose now that Tr(σ∗) ≥ ε/(5m2). As in the proof of Lemma 6.10, we can use O(log4(d/ε) ·
log(1/δ)/ε2) copies to approximate Tr(ρ∗) to within additive error ε/(20m2) with probability 1 −
O(δ).
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If our estimate is greater than ε/(20m2) away from Tr(σ[j, j]) then we know that ρ 6= σ.
Otherwise, |Tr(ρ∗)− Tr(σ∗)| ≤ ε/(10m2), and in particular Tr(ρ∗) ≥ Ω(Tr(σ∗)) as a result. If

Scenario 3 holds but Scenario 4 does not, then ‖ρ∗ − σ∗‖ ≥ ε/(5m2). So by Fact 6.7, to determine
whether we are in Scenario 2, it suffices to design a tester to distinguish whether the mixed states
ρ̂∗ and σ̂∗ are equal or ε′′-far in trace distance, where

ε′′ ,
ε

10m2 Tr(σ∗)
= Θ

( ε

10m2
· (dj2−j + dj′2

−j′)−1
)

(29)

Note that if ρ∗ and σ∗ are ε′′-far in trace distance, they are at least ε′′/
√
dj-far in Hilbert-Schmidt,

by the assumption that dj ≥ dj′ . We conclude from Lemma 6.2 that we can distinguish these two
cases using

O(
√
djdj′ log(1/δ)/ε′2) = O

(√
djdj′(dj2

−j + dj′2
−j′)2 log4(d/ε) log(1/δ)/ε2

)
measurements on the conditional state ρ̂∗. Because Tr(ρ∗) ≥ Ω(Tr(σ∗)) ≥ Ω(dj2

−j + dj′2
−j′),

this tester can make the desired number of measurements on the conditional state by using

O
(√

djdj′(dj2
−j + dj′2

−j′) log4(d/ε) log(1/δ)/ε2
)

copies of ρ and rejection sampling.

Summing over j 6= j′ ∈ J for which dj ≥ dj′ , we conclude that it takes O(log(1/δ)) times∑
j 6=j′∈J :dj≥dj′

√
djdj′(dj2

−j + dj′2
−j′) ≤

∑
j,j′∈J :dj≥dj′

d
3/2
j dj′2

−j +
∑

j,j′∈J :dj≥dj′

√
djd

2
j′2
−j′

≤ |J | ·
∑
j∈J

d
5/2
j 2−j +

∑
j∈J

√
dj

∑
j∈J

d2
j2
−j


≤ polylog(d/ε) ·

(
‖σ′‖2/5 +

√
d− d′ · ‖σ′‖1/2

)
,

copies to test whether Scenario 4 holds, where the last step above uses Fact 3.18.
We claim that the above bound is dominated by O(log(m/δ) polylog(d/ε))

√
d− d′‖σ′‖1/2. In-

deed, note that for any vector v ∈ Rm,

‖v‖2/52/5 =
∑
i

v
2/5
i ≤

(∑
i

(v
2/5
i )5/4

)4/5

·

(∑
i

15

)1/5

≤ ‖v‖2/51/2 ·
√
m

2/5
,

as desired.

Altogether, Lemmas 6.8 to 6.11 allow us to conclude correctness of the algorithm Certify
whose pseudocode is provided in Algorithm 2 below. The copy complexity guarantee follows from
these lemmas together with Fact 5.27.

Remark 6.12. As stated, we are performing measurements in Haar-random bases at various points
in Certify and in particular the subroutine BasicCertify. As Lemma 6.4 and Lemma 6.2 make
clear however, we only exploit the first four moments of the Haar measure over the unitary group.
As a result, if we were interested in implementing a gate-efficient protocol for state certification, we
could have replaced the Haar measure with an approximate 4-design, for which there are a variety
of gate-efficient constructions, e.g. [HMMH+20].
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Algorithm 2: Certify(ρ, σ, ε, δ)

Input: Copy access to ρ, diagonal density matrix σ, error ε, failure probability δ
Output: YES if ρ = σ, NO if ‖ρ− σ‖HS > ε, with probability 1− δ.

1 m← log(10d/ε2).
2 Let Π be the projector to the principal submatrix indexed by Stail. // Scenario 1

3 M← {Π,1−Π}.
4 Measure O(log(1/δ)/ε2) copies of ρ with the POVM M.
5 if ≥ (ε2/5) fraction of outcomes observed correspond to Π then
6 return NO.

7 for j ∈ J do // Scenario 3

8 Let Πj denote the projection to the principal submatrix indexed by Sj .
9 Mj ← {Πj ,1−Πj}.

10 Measure O(polylog(d/ε) log(1/δ)/ε2) copies of ρ with the POVM Mj .
11 if ≥ (Tr(σ[j, j]) + ε/(40m2)) fraction of outcomes observed correspond to Πj then
12 return NO.

13 else
14 Define ε′ according to (28).
15 bj ←BasicCertify(ρ̂[j, j], σ̂[j, j], ε′, O(δ/m)).
16 if bj = NO then
17 return NO.

18 for j, j′ ∈ J distinct and satisfying dj ≥ dj′ do // Scenario 4

19 Let Πj,j′ denote the projection to the principal submatrix indexed by Sj ∪ Sj′ .
20 Mj,j′ ← {Πj,j′ ,1−Πj,j′}.
21 Measure O(polylog(d/ε) log(1/δ)/ε2) copies of ρ with the POVM Mj,j′ .
22 if ≥ (Tr(σ∗j,j′) + ε/(20m2)) fraction of outcomes observed correspond to Πj,j′ then

23 return NO.

24 else
25 Define ε′′ according to (29).
26 bj,j′ ←BasicCertify(ρ̂∗j,j′ , σ̂

∗
j,j′ , ε

′′, O(δ/m2)).

27 if bj,j′ = NO then
28 return NO.

29 return YES.
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A Adaptive Lower Bound

In this section we prove a lower bound against state certification algorithms that use adaptive,
unentangled measurements.

Theorem A.1. There is an absolute constant c > 0 for which the following holds for any 0 < ε < c.8

Let σ ∈ Cd×d be a diagonal density matrix. There is a matrix σ∗ given by zeroing out the largest
entry of σ and at most O(ε log(d/ε)) additional mass from σ (see Definition A.2 below), such that
the following holds:

Any algorithm for state certification to error ε with respect to σ using adaptive, unentangled
measurements has copy complexity at least

Ω
(
d · d1/3

eff · F (σ̂∗, ρmm)/(ε2 log(d/ε))
)
.

The outline follows that of Section 5. In Section A.1, we describe the procedure by which we
remove mass from σ, which will be more aggressive than the one used for our nonadaptive lower
bound. As a result, it will suffice to analyze the lower bound instance given in Section 5.3, which
we do in Section A.2. For our analysis, we need to check some additional conditions hold for the
adaptive lower bound framework of Section 4.3 to apply.

8As presented, our analysis yields c within the vicinity of 1/3, but we made no attempt to optimize for this
constant.
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A.1 Bucketing and Mass Removal

Define {Sj},J , Ssing, Smany in the same way as in Section 5.1. The way in which we remove mass
from σ will be more aggressive than in the nonadaptive setting. We will end up removing up to
O(ε log(d/ε)) mass (see Fact A.3) as follows:

Definition A.2 (Removing low-probability elements- adaptive lower bound). Without loss of gen-
erality, suppose that λ1, . . . , λd are sorted in ascending order according to λi. Let d′ ≤ d denote the
largest index for which

∑d′

i=1 λ
′
i ≤ 4ε. Let Stail , [d′].

Let σ∗ denote the matrix given by zeroing out the largest entry of σ and the entries indexed by
Stail. It will be convenient to define J ∗ to be the buckets for the nonzero entries of σ∗, i.e. the set
of j ∈ J for which Sj has nonempty intersection with [d]\Stail.

Fact A.3. There are at most O(log(d/ε)) indices j ∈ J ∗. As a consequence, Tr(σ∗) ≥ 1 −
O(ε log(d/ε)).

Proof. For any i1 6∈ Stail and i2 ∈ Stail, we have that pi1 > pi2 . In particular, summing over
i2 ∈ Stail, we conclude that pi1 · |Stail| > 4ε, so pi1 > 4ε/d. By construction of the buckets Sj , the
first part of the claim follows. As in the proof of Fact 5.3, the second part of the claim follows by
definition of Slight.

A.2 Analyzing Lower Bound II

We will analyze the sub-problem defined in Section 5.3 and prove the following lower bound:

Lemma A.4. Fix any j, j′ ∈ J ∗ satisfying dj ≥ dj′. If dj > 1, then we can optionally take j = j′.
Suppose ε ≤ dj′ · 2−j/2−j

′/2−1. Distinguishing between whether ρ = σ or ρ = σW for W ∈ Cdj×dj′
consisting of Haar-random orthonormal columns (see (15) and (16)), using adaptive unentangled
measurements, has copy complexity at least

Ω

d1/3
j · d2

j′ · 2−j
′

ε2

 .

Proof. As in Section 5.3, we will focus on the case where j 6= j′, but at the cost of some factors of
two, the following arguments easily extend to the construction for j = j′ when dj > 1 by replacing
Sj and Sj′ with S1

j , S
2
j defined immediately before (16).

We have already verified in Section 5.3 that Conditions 1, 2, and (3) of Assumption 1 are

satisfied by P for L, ς = O

(
ε

dj′2
−j′/2

)
.

It remains to check that |gUP (z)| ≤ 0.99 for all z. To this end, recall (18). As the diagonal
entries of ρ indexed by Sj (resp. Sj′) are at least 2−j−1 (resp. 2−j

′−1),

v†zρvz ≥ 2−j−1‖vjz‖2 + 2−j
′−1‖vj′z ‖2 ≥ 2−j/2−j

′/2‖vjz‖‖vj
′
z ‖,

so

gUP (z) ≤ ε

dj′
· ‖vjz‖‖vj

′
z ‖

2−j/2−j′/2‖vjz‖‖vj
′
z ‖
≤ ε

dj′2−j/2−j
′/2
.

In particular, as long as ε ≤ dj′2−j/2−j
′/2−1, we have the bound |gUP (z)| ≤ 1/2.
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We can now apply Theorem 4.8 with τ = O

(
ε2

d
1/3
j d2

j′2
−j′

)
, noting that

exp

(
−Ω

({
djτ

2

L2ς2
∧ dτ
L2

}))
= exp

(
−Ω

(
d

1/3
j

))
,

to get that for any adaptive unentangled POVM schedule S, if p≤N0 is the distribution over outcomes

from measuring N copies of σ with S and p≤N1 is the distribution from measuring N copies of σU,
then

KL
(
p≤N1 ‖p≤N0

)
≤ Nε2

d
1/3
j d2

j′2
−j′

+O(N) · exp

(
−Ω

(
d

1/3
j − Nε2

d2
j′2
−j′

))
.

In particular, if N = o

(
d
1/3
j d2

j′2
−j′

ε2 log(d/ε)

)
, then KL

(
p≤N1 ‖p≤N0

)
= o(1) and we get the desired lower

bound.

A.3 Putting Everything Together

Proof of Theorem A.1. As in the proof of Theorem 5.1, we proceed by casework depending on
whether dj = 1 for all j ∈ J ∗.

Case 1. dj = 1 for all j ∈ J ∗.

The analysis for this case in the nonadaptive setting completely carries over to this setting,
because the lower bound from Lemma 5.24 holds even against adaptive POVM schedules. There are
two possibilities. If there is a single bucket j = j(i) for which i 6∈ Stail, then deff = 1 and ‖σ∗‖1/2 =
O(1); for ε smaller than some absolute constant, we have that σi,i ≥ 3/4 and Lemma 5.24 gives an
Ω(1/ε2) lower bound as desired. Otherwise, let j′ be the smallest index for which j′ = j(i′) for some
i′ ∈ J ∗, and let j > j′ be the next smallest index for which j = j(i) for some i ∈ J ∗. Consider the
lower bound instance in Section A.2 applied to this choice of j, j′. Provided that ε ≤ 2−j/2−j

′/2−1,
we would obtain a copy complexity lower bound of Ω(2−j

′
/ε2) ≥ Ω(‖σ∗‖1/2/(ε2 log(d/ε))), where

the inequality is by Fact 3.18, and we would be done. On the other hand, if ε ≥ 2−j/2−j
′/2−1,

then because 2−j
′
> 2−j , we would conclude that 2−j ≤ 2ε. In particular, this implies that∑

j′′∈J ∗,i∈Sj′′ :j
′′ 6=j′ λi ≤ 4ε, contradicting the fact that we have removed all buckets of total mass

at most 4ε in defining Stail.

Case 2. dj > 1 for some j ∈ J ∗.

Let j∗ , arg maxj∈J ∗ dj and j′∗ , arg maxj∈J ∗ d
2
j2
−j . By Lemma 5.19, as long as ε satisfies the

bound
ε ≤ dj′∗ · 2

−j∗/2−j′∗/2−1, (30)

we have a lower bound of

Ω
(
d

1/3
j∗
· d2

j′∗
· 2−j′∗/ε2

)
≥ Ω

(
d · d1/3

eff · F (σ∗, ρmm)/(ε2 log(d/ε))
)
,

where the second step follows by Fact 3.18 and Fact 5.27. Note that because dj∗ > 1 as we are in
Case 2, we do not constrain j∗, j

′
∗ to be distinct necessarily.

But under our assumptions on j, j′ and on J ∗, (30) must hold:

dj′2
−j/2−j′/2−1 ≥ dj2−j−1 ≥ ε

where the first step follows by the assumption that j′ , arg maxj∈J ∗ d
2
j2
−j , and the second by the

assumption that every bucket indexed by J ∗ has total mass at least 4ε.
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B Deferred Proofs

B.1 Proof of Lemma 4.4

Fix an arbitrary single-copy subproblem P = (M, σ, {σU}U∼D) for D the Haar measure over U(d).
For any V ∈ U(d), define the functions FV : U(d)→ R and G(U) by

FV(U) , φU,VM G(U) , E
z∼p0(M)

[gUP (z)2]1/2.

We first show that Condition 1 and 3 from Assumption 1 imply that FV is mean zero and
Lipschitz:

Lemma B.1. If P satisfies Assumption 1, then for any V ∈ U(d), FV is G(V) · L-Lipschitz and
satisfies EU[FV(U)] = 0.

Proof. For any U,U′ ∈ U(d), we have that

FV(U)− FV(U′) = E
z∼p0(M)

[gV(z) · (gU(z)− gU′(z))]

≤ E
z
[gV(z)2]1/2 · E

z
[(gU(z)− gU′(z))2]1/2 ≤ G(V) · L · ‖U−U′‖HS,

where the first inequality is by Cauchy-Schwarz, and the second is by Condition 3 of Assumption 1.
The second part of the lemma immediately follows from Condition 1 of Assumption 1.

Next, we use Conditions 2 and 3 of Assumption 1 to bound the expectation and Lipschitzness
of G which, combined with Theorem 3.11, implies the following sub-Gaussian tail bound for G:

Lemma B.2. If P satisfies Assumption 1, then for any s > 0,

Pr
U

[G(U) > ς + s] ≤ exp(−Ω(ds2/L2)).

Proof. The function G is L-Lipschitz. To see this, note that for any U,V ∈ U(d),

G(U)−G(V) ≤ E
z∼p0(M)

[(gUP (z)− gVP (z))2]1/2 ≤ L · ‖U−V‖HS,

where the first step is triangle inequality and the second is by Condition 3 of Assumption 1.
By Condition 2 and Jensen’s, E[G(U)] ≤ E[gU(z)2]1/2 ≤ ς. The claim then follows by Theo-

rem 3.11.

We can finally prove Lemma 4.4:

Proof of Lemma 4.4. Note that E[φU,V] = 0 by the second part of Lemma B.1. By the first of
Lemma B.1 and Theorem 3.11,

Pr
U

[|φU,V| > s] ≤ exp

(
−Ω

(
ds2

L2G(V)2

))
. (31)

We can apply Fact 3.20 to the random variable Y , G(V) by taking the parameters as follows.
Set a , 2ς, τ(x) , exp(−cd(x − ς)2/L2), and f(x) , exp(−c′ds2/L2x2) for appropriate constants
c, c′ > 0. By (31), PrU,V[|φU,V| > s] ≤ E[f(Y )], and by Fact 3.20 and Lemma B.2,

E[f(Y )] ≤ 2 exp

(
−c
′ds2

L2ς2

)
+

∫ ∞
2ς

2c′ds2

L2x3
· exp

(
− d

L2

(
c(x− ς)2 + c′s2/x2

))
dx
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Note that for x ≥ 2ς, by AM-GM,

c(x− ς)2 + c′s2/x2 ≥ Ω(s(1− ς/x)) ≥ Ω(s),

so we can bound

E[f(Y )] ≤ 2 exp

(
−c
′ds2

L2ς2

)
+ Ω

(
ds2

L2ς2

)
· exp(−Ω(ds/L2)) ≤ exp

(
−Ω

(
ds2

L2ς2
∧ ds
L2

))
as claimed.

B.2 Proof of Theorem 4.8

Here we prove Theorem 4.8 which gives an adaptive lower bound for distinguishing between a state
σ and a mixture of alternatives {σU}U∼D under Assumption 1 when D is the Haar measure over
U(d).

In this section, let D denote the Haar measure over U(d), and suppose that for any POVMM,
the single-copy sub-problem P = (M, σ, {σU}U∼D) satisfies Assumption 1.

B.2.1 Additional Notation

We first introduce some notation. Fix an unentangled, adaptive POVM schedule S. Given a
transcript of measurement outcomes z<t up to time t, if Mz<t is the POVM used in time step t,
then for convenience we will denote gUP and φU,VP by gUz<t

and φU,Vz<t , KU,V
z<t .

Let p≤t0 (resp. p≤t1 ) denote the distribution over transcripts z≤t of outcomes up to and including
time t under measuring σ (resp. σU for U ∼ D) with the first t steps of S, and define the quantities

∆(z≤t) ,
dp≤t1

dp≤t0

(z≤t) ΨU,V
z<t

,
t−1∏
i=1

(1 + gUz<i
)(1 + gVz<i

),

where ∆(·) is given by the Radon-Nikodym derivative.

B.2.2 Helper Lemmas

We will need the following helper lemmas. The first gives a lower bound on the likelihood ratio
between p≤t1 and p≤t0 .

Lemma B.3 (Implicit in Lemma 6.2 of [BCL20]). Under the hypotheses of Theorem 4.8, for any
transcript z≤t, ∆(z≤t) ≥ exp(−4ς2t).

Proof. By convexity of the exponential function and the fact that 1 + gUz<t
(zt) > 0 for all U, t, zt,

∆(z<t) ≥
t−1∏
i=1

exp

(
E

U∼D
[ln(1 + gUz<i

(zi))]

)
.

For any i < t we have that

exp

(
E

U∼D
[ln(1 + gUz<i

(zi))]

)
≥ exp

(
E
U

[gUz<i
(zi)− 4gUz<i

(zi)
2]

)
≥ exp

(
−4ς2

)
,

where the first step follows by the elementary inequality ln(x) ≥ x − 4x2 for all x ∈ [−0.99, 0.99]
and the fact that |gUz<t

(zt)| ≤ 0.99 by hypothesis, and the second step follows by Conditions 1 and
2 of Assumption 1.
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The next lemma gives a bound on the expectation of (ΨU,V
z<t )2.

Lemma B.4. Under the hypotheses of Theorem 4.8, Ez<t,U,V

[
(ΨU,V

z<t )2
]
≤ exp(O(tς2)).

To prove this, it will be convenient to define the following for any `-copy sub-problem corre-
sponding to POVM M

KU,V
P , E

z∼p0(M)

[(
gUP (z) + gVP (z)

)2]
and first show the following:

Lemma B.5. Under the hypothesis of Theorem 4.8, EU,V

[(
1 + γKU,V

P

)t]
≤ exp(O(γtς2)) for

any absolute constant γ > 0 and any t = o(d/L2).

Proof. By the elementary inequality (a+b)2 ≤ 2a2 +2b2, we have that KU,V
P ≤ G(U)2 +G(V)2. By

Lemma B.2, we immediately get that PrU

[
KU,V
P > (E[G(U)] + s)2

]
≤ exp(−ds2/L2). Applying

the inequality again allows us to lower bound the left-hand side by PrU

[
KU,V
P > 2E[G(U)]2 + 2s2

]
,

so we conclude that
Pr
U

[
KU,V
P > 2E[G(U)]2 + s

]
≤ exp(−ds/2L2).

We can apply Fact 3.20 to the random variable Z , KU,V
P and the function f(Z) , (1 + γZ)t to

conclude that

E
U,V

[(
1 + γ ·KU,V

P

)t]
≤ 2(1 + 2γ E[G(U)]2)t +

∫ ∞
0

γt(1 + γx)t−1 · e−x·d/2L2
dx

≤ 2(1 + 2γ E[G(U)]2)t + γt

∫ ∞
0

e−x(d/2L2−γ(t−1)) dx

≤ 2(1 + 2γ E[G(U)]2)t +
γt

d/2L2 − γ(t− 1)
≤ exp(O(tγ E[G(U)]2)),

where in the last two steps we used that t = o(d/L2) to ensure that the integral is bounded and
that the second term in the final expression is negligible.

We can now prove Lemma B.4:

Proof of Lemma B.4. As gVz<t−1
(z) ≤ O(1), we know that for any constant a, b ≥ 2,

E
z∼Ω(Mz<t−1 )

[
gUz<t−1

(z)a · gVz<t−1
(zt)

b
]
≤ 1

4
E
z
[gUz<t−1

(z)2],

so we conclude that

E
z∼p0(Mz<t−1 )

[
(1 + gUz<t−1

(z))c(1 + gVz<t−1
(z))c

]
≤ 1 +Oc

(
E
z
[gUz<t−1

(z)2]

)
+Oc

(
E
z
[gVz<t−1

(z)2]

)
+Oc

(
φU,Vz<t−1

)
≤ 1 + C(c) ·KU,V

z<t−1
(32)
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for some absolute constant C(c) > 0, where the last step follows by AM-GM. For αi , 2 ·
(
t−1
t−2

)i
,

we have that

E
z<t,U,V

[(
ΨU,V
z<t

)αi
]

≤ E
z<t−1,U,V

[(
ΨU,V
z<t−1

)αi

·
(

1 + C(αi) ·KU,V
z<t−1

)]
(33)

≤ E
z<t−1,U,V

[(
ΨU,V
z<t−1

)αi(t−1)/(t−2)
](t−2)/(t−1)

· E
z<t−1,U,V

[(
1 + C(αi) ·KU,V

z<t−1

)t−1
]1/(t−1)

(34)

≤ E
z<t−1,U,V

[(
ΨU,V
z<t−1

)αi+1(t−1)/(t−2)
]
· E
z<t−1,U,V

[(
1 + C(αi) ·KU,V

z<t−1

)t−1
]1/(t−1)

.

where (33) follows by (32), and (34) follows by Holder’s. Unrolling this recurrence, we conclude
that

E
z<t,U,V

[(
ΨU,V
z<t

)2] ≤ t−1∏
i=1

E
z<i,U,V

[(
1 + C(αt−1−i) ·KU,V

z<i

)t−1
]1/(t−1)

≤
t−1∏
i=1

E
z<i,U,V

[(
1 + C(2e) ·KU,V

z<i

)t−1
]1/(t−1)

, (35)

≤ sup
M

E
U,V

[(
1 +O(KU,V

M )
)t−1

]

where (35) follows by the fact that for 1 ≤ i ≤ t − 1, αt−1−i ≤ 2
(

1 + 1
t−2

)t−2
≤ 2e, and the

supremum in the last step is over all POVMs M. The lemma then follows from Lemma B.5.

B.2.3 Putting Everything Together

The key inequality used in [BCL20] is the following consequence of the chain rule for KL:

Lemma B.6 (Lemma 6.1, [BCL20]).

KL
(
p≤N1 ‖p≤N0

)
≤

N∑
t=1

Zt for Zt , E
z<t∼p≤t−1

0

[
1

∆(z<t)
E

U,V

[
ΨU,V
z<t
· φU,Vz<t

]]
.

We now have all the ingredients to complete the proof of Theorem 4.8.

Proof of Theorem 4.8. Given transcript z<t and U,V ∼ D, let 1
[
EU,Vz<t (τ)

]
denote the indicator of

whether
∣∣∣φU,Vz<t

∣∣∣ > τ ; note that by Lemma 4.4, this event happens with probability at most ξ(τ),

where

ξ(s) , exp

(
−Ω

(
ds2

L2ς2
∧ ds
L2

))
.
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We have that

E
U,V

[
ΨU,V
z<t
· φU,Vz<t

]
= E

U,V

[
ΨU,V
z<t
· φU,Vz<t

·
(
1[EU,Vz<t

(τ)] + 1[EU,Vz<t
(τ)c]

)]
≤ E

U,V

[
ΨU,V
z<t
· 1[EU,Vz<t

(τ)]
]

+ τ · E
U,V

[
ΨU,V
z<t
· 1[EU,Vz<t

(τ)c]
]

≤ · E
U,V

[
ΨU,V
z<t
· 1[EU,Vz<t

(τ)]
]

︸ ︷︷ ︸
B

z<t

+τ · E
U,V

[
ΨU,V
z<t

]
︸ ︷︷ ︸

G
z<t

,

where in the second step we used the assumption that |gUz<t
(zt)| ≤ 0.99 for all zt to conclude that

φU,Vz<t ≤ 1. Note that for any transcript z<t, ∆(z<t)
2 = EU,V[ΨU,V

z<t ] = G
z<t

, so by this and the
fact that the likelihood ratio between two distributions always integrates to 1,

E
z<t∼p≤t−1

0

[
1

∆(t−1)(z<t)
· G

z<t

]
= E

z<t∼p≤t−1
0

[∆(t−1)(z<t)] = 1. (36)

Recalling the definition of Zt in Lemma B.6, we conclude that

Zt ≤ E
z<t∼p≤t−1

0

[
1

∆(t−1)(z<t)
· B z<t

]
+ τ · E

z<t∼p≤t−1
0

[
1

∆(t−1)(z<t)
· G

z<t

]
≤ exp(4tς2) E

z<t∼p≤t−1
0

[
B z<t

]
+ τ,

where the second step follows by Lemma B.3 and (36).
To upper bound Ez<t∼p≤t−1

0
[ B z<t

], apply Cauchy-Schwarz to get

E
z<t∼p≤t−1

0

[
B z<t

]
≤ E

z<t∼p≤t−1
0 ,U,V

[(
ΨU,V
z<t

)2]1/2
· Pr
z<t∼p≤t−1

0 ,U,V

[
EU,Vz<t

(τ)
]1/2

≤ exp(O(tς2)) · ξ(τ),

where the second step follows by Lemma 4.4 and Lemma B.4. Invoking Lemma B.6 concludes the
proof.

B.3 Proof of Fact 5.16

Proof. We may assume s < m + n (otherwise obviously b = n). Assume to the contrary that∑b+1
i=1 vidi ≤ ε. We proceed by casework based on whether ws′+1 = ua+1 or ws′+1 = vb+1.
If ws′+1 = ua+1, then

3ε <
s+1∑
i=1

wid
∗
i =

a+1∑
i=1

ui +
b∑
i=1

vidi ≤
a+1∑
i=1

vb+1 · 21−i +
b∑
i=1

vi ≤ 2ε+
b∑
i=1

vidi,

where in the first step we used maximality of s, in the third step we used that ua+1 ≤ vb+1 and
that ui+1 ≥ 2ui for all i, and in the last step we used that vb+1 ≤

∑b+1
i=1 vidi ≤ ε. From this we

conclude that
∑b

i=1 vidi > ε, a contradiction.
If ws′+1 = vb+1, the argument is nearly identical. We have

3ε <

s+1∑
i=1

wid
∗
i =

a∑
i=1

ui +
b+1∑
i=1

vidi ≤
a∑
i=1

vb+1 · 21−i +
b+1∑
i=1

vidi ≤ 2ε+
b+1∑
i=1

vi,
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where in the first step we again used maximality of s, in the third step we used that ua ≤ vb+1 and
ui+1 ≥ 2ui for all i, and in the last step we used that vb+1 ≤

∑b+1
i=1 vidi ≤ ε. From this we conclude

that
∑b

i=1 vidi > ε, a contradiction.
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