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Abstract

Let G be any n-vertex graph whose random walk matrix has its nontrivial eigenvalues
bounded in magnitude by 1/

√
∆ (for example, a random graph G of average degree Θ(∆)

typically has this property). We show that the exp
(
c logn

log ∆

)
-round Sherali–Adams linear pro-

gramming hierarchy certifies that the maximum cut in such a G is at most 50.1% (in fact, at
most 1

2 + 2−Ω(c)). For example, in random graphs with n1.01 edges, O(1) rounds suffice; in

random graphs with n · polylog(n) edges, nO(1/ log logn) = no(1) rounds suffice.
Our results stand in contrast to the conventional beliefs that linear programming hierarchies

perform poorly for max-cut and other CSPs, and that eigenvalue/SDP methods are needed for
effective refutation. Indeed, our results imply that constant-round Sherali–Adams can strongly
refute random Boolean k-CSP instances with ndk/2e+δ constraints; previously this had only been
done with spectral algorithms or the SOS SDP hierarchy.
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1 Introduction

Linear programming (LP) is a fundamental algorithmic primitive, and is the method of choice
for a huge number of optimization and approximation problems. Still, there are some very basic
tasks where it performs poorly. A classic example is the simplest of all constraint satisfaction
problems (CSPs), the max-cut problem: Given a graph G = (V,E), partition V into two parts
so as to maximize the fraction of ‘cut’ (crossing) edges. The standard LP relaxation for this
problem [BM86, Pol92] involves optimizing over the metric polytope. Using “±1 notation”, we have
a variable Yuv for each pair of vertices {u, v} (with Yuv supposed to be −1 if the edge is cut, +1
otherwise); the LP is:

−1 ≤ Yuv ≤ 1 (for all u, v ∈ V )

max-cut(G) ≤ max
1

2
− 1

2
· 1

|E|
∑
uv∈E

Yuv s.t. −Yuv − Yvw − Ywu ≤ 1 (for all u, v, w ∈ V )

−Yuv + Yvw + Ywu ≤ 1 (for all u, v, w ∈ V )

While this LP gives the optimal bound for some graphs (precisely, all graphs not contractible
to K5 [BM86]), it can give a very poor bound in general. Indeed, although there are graphs with
maximum cut arbitrarily close to 1/2 (e.g., Kn), the above LP bound is at least 2/3 for every
graph, since Yuv ≡ −1/3 is always a valid solution. Worse, there are graphs G with max-cut(G)
arbitrarily close to 1/2 but with LP value arbitrarily close to 1 — i.e., graphs where the integrality
ratio is 2− o(1). For example, this is true [PT94] of an Erdős–Rényi G(n,∆/n) random graph with
high probability (whp) when ∆ = ∆(n) satisfies ω(1) < ∆ < no(1).

There have been two main strategies employed for overcoming this deficiency: strengthened
LPs, and eigenvalue methods.

Strengthened LPs. One way to try to improve the performance of LPs on max-cut is to add
more valid inequalities to the LP relaxation, beyond just the “triangle inequalities”. Innumerable
valid inequalities have been considered: (2k + 1)-gonal, hypermetric, negative type, gap, clique-
web, suspended tree, as well as inequalities from the Lovász–Schrijver hierarchy; see Deza and
Laurent [DL97, Ch. 28–30] for a review.

It is now known that the most principled and general form of this strategy is the Sherali–Adams
LP hierarchy [SA90], reviewed in Section 2.4. At a high level, the Sherali–Adams LP hierarchy
gives a standardized way to tighten LP relaxations of Boolean integer programs, by adding variables
and constraints. The number of new variables/constraints is parameterized by a positive integer R,
called the number of “rounds”. Given a Boolean optimization problem with n variables, the R-
round Sherali–Adams LP has variables and constraints corresponding to monomials of degree up
to R, and thus has size O(n)R. A remarkable recent line of work [CLRS16, KMR17] has shown that
for any CSP (such as max-cut), the R-round Sherali–Adams LP relaxation achieves essentially
the tightest integrality ratio among all LPs of its size. Nevertheless, even this most powerful of
LPs arguably struggles to certify good bounds for max-cut. In a line of work [dlVM07, STT07]
concluding in a result of Charikar–Makarychev–Makarychev [CMM09], it was demonstrated that for
any constant ε > 0, there are graphs (random ∆-regular ones, ∆ = O(1)) for which the nΩ(1)-round
Sherali–Adams LP has a max-cut integrality gap of 2− ε. As a consequence, every max-cut LP
relaxation of size up to 2n

Ω(1)
has such an integrality gap.

Eigenvalue and SDP methods. But for max-cut, there is a simple, non-LP, algorithm that
works very well to certify that random graphs have maximum cut close to 1/2: eigenvalue bounds.
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There are two slight variants here (that coincide in the case of regular graphs): Given graph
G = (V,E) with adjacency matrix A and diagonal degree matrix D, the eigenvalue bounds are

max-cut(G) ≤ |V |
4|E|

λmax(D −A) (1)

max-cut(G) ≤ 1

2
+

1

2
λmax(−D−1A). (2)

Here D − A and D−1A are the Laplacian matrix and the random walk matrix, respectively. The
use of eigenvalues to bound various cut values in graphs (problems like max-cut, min-bisection,
2-xor, expansion, etc.) has a long history dating back to Fieldler and Donath–Hoffman [Fie73,
DH03] among others (Inequality (1) is specifically from Mohar–Poljak [MP93]). It was recognized
early on that eigenvalue methods work particularly well for solving planted-random instances (e.g.,
of 2-xor [H̊as84] and min-bisection [Bop87]) and for certifying max-cut values near 1/2 for
truly random instances. Indeed, as soon as one knows (as we now do [TY16, FO05]) that D−1A
has all nontrivial eigenvalues bounded in magnitude by O(1/

√
∆) (whp) for a random ∆-regular

graph (or an Erdős–Rényi G(n,∆/n) graph with ∆ & log n), the eigenvalue bound Inequality (2)
certifies that max-cut(G) ≤ 1/2+O(1/

√
∆). This implies an integrality ratio tending to 1; indeed,

max-cut(G) = 1/2 + Θ(1/
√

∆) in such random graphs (whp).
Furthermore, if one extends the eigenvalue bound Inequality (1) above to

max-cut(G) ≤ min
U diagonal

tr(U)=0

|V |
4|E|

λmax(D −A+ U) (3)

(as suggested by Delorme and Poljak [DP93], following [DH03, Bop87]), one obtains the polynomial-
time computable semidefinite programming (SDP) bound. Goemans and Williamson [GW95]
showed this bound has integrality ratio less than 1.14 ≈ 1/.88 for worst-case G, and it was subse-
quently shown [Zwi99, FL01, CW04] that the SDP bound is 1/2 + o(1) whenever max-cut(G) ≤
1/2 + o(1).

LPs cannot compete with eigenvalues/SDPs? This seemingly striking separation between
the performance of LPs and SDPs in the context of random max-cut instances is now taken as a
matter of course. To quote, e.g., [Tre09],

[E]xcept for semidefinite programming, we know of no technique that can provide,
for every graph of max cut optimum ≤ .501, a certificate that its optimum is ≤ .99.
Indeed, the results of [dlVM07, STT07]1 show that large classes of Linear Programming
relaxations of max cut are unable to distinguish such instances.

Specifically, the last statement here is true for ∆-regular random graphs when ∆ is a certain large
constant. The conventional wisdom is that for such graphs, linear programs cannot compete with
semidefinite programs, and cannot certify even the eigenvalue bound.

Our main result challenges this conception.

1One would also add the subsequently written[CMM09] here.
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1.1 Our results

We show that whenever the eigenvalue bound Inequality (2) certifies the bound max-cut(G) ≤
1/2 + o(1), then no(1)-round Sherali–Adams can certify this as well.2

Theorem 1.1 (Simplified version of Theorem 3.6 and Corollary 3.7). Let G be a simple n-vertex
graph and assume that |λ| < ρ for all eigenvalues λ of G’s random walk matrix D−1A (excluding
the trivial eigenvalue of 1). Then for any 1 ≤ c ≤ Ω(log(1/ρ)), Sherali–Adams with nO(c/ log(1/ρ))

rounds certifies that max-cut(G) ≤ 1/2 + 2−c.

For example, if G’s random walk matrix has its nontrivial eigenvalues bounded in magnitude
by n−.001, as is the case (whp) for random graphs with about n1.002 edges, then Sherali–Adams
can certify max-cut(G) ≤ 50.1% with constantly many rounds. We find this result surprising,
and in defiance of the common belief that polynomial-sized LPs cannot take advantage of spectral
properties of the underlying graph.

Remark 1.2. We wish to emphasize that it is not the resulting nO(1) running time that is surprising;
one can (and should) already achieve this with the eigenvalue bound. What is surprising is the
inherent power of the Sherali–Adams relaxation itself.

Remark 1.3. One might ask whether Theorem 1.1 even requires the assumption of small eigen-
values. That is, perhaps no(1)-round Sherali–Adams can certify max-cut ≤ 1/2 + o(1) whenever
this is true. We speculate that this may in fact be the case. As mentioned earlier, the basic SDP
relaxation Inequality (3) has this property [Zwi99, FL01, CW04], meaning that whenever graph G
has max-cut(G) ≤ 1/2 + o(1), there is a traceless diagonal matrix U such that the eigenvalue
bound applied to A − U certifies the maxcut bound. It seems possible that our proof might be
adapted to work with this A−U rather than A, in which case Sherali–Adams would also have the
property.

We add that the plain eigenvalue bound does not have this property: there exist graphs with
large (nontrivial) eigenvalues even though the maximum cut is close to 1/2.3

1.1.1 Subexponential-sized LPs for max-cut in sparse random graphs

One setting in which the spectral radius ρ is understood concretely is in random regular graphs.
Building upon [FKS89, BFSU99, CGJ18], the following was recently shown:

Theorem ([TY16]). There is a fixed constant C such that for all 3 ≤ ∆ ≤ n/2 with ∆n even, it
holds that a uniformly random n-vertex ∆-regular simple graph G satisfies the following with high
probability: all eigenvalues of G’s normalized adjacency matrix, other than 1, are at most C/

√
∆

in magnitude.

Combining the above with Theorem 1.1, we have the following consequence for max-cut on
random regular graphs:

Corollary 1.4. Let n, 3 ≤ ∆ ≤ n/2, and 1 ≤ c ≤ Ω(log ∆) be positive integers. Then if G is a
random ∆-regular n-vertex graph, with high probability nO(c/ log ∆)-round Sherali–Adams can certify
that max-cut(G) ≤ 1

2 + 2−c.

2Actually, there is a slight mismatch between our result and Inequality (2): in Theorem 1.1 we need the maximum
eigenvalue in magnitude to be small; i.e., we need λmin(−D−1A) to be not too negative. This may well just be an
artifact of our proof.

3Consider, for example, a graph given by the union of a ∆-regular random graph on n vertices and a ∆-regular
bipartite graph on

√
n vertices. This will have max-cut value close to 1/2, but will also have large negative eigenvalues

coming from the bipartite component.
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For example, if ∆ ≥ C · 106 (for C the constant in the bound on λ(G)), then n1/3-rounds of
Sherali–Adams can certify max-cut(G) ≤ .51. This result serves as a partial converse to [CMM09]:

Theorem. ([CMM09, Theorem 5.3]) For every fixed integer ∆ ≥ 3, with high probability over the
choice of an n-vertex ∆-regular random graph G,4 the nΘ(1/f(∆))-round Sherali–Adams relaxation
for max-cut has value at least max-cut(G) ≥ 0.99, where f(∆) is a function that grows with ∆.

While [CMM09] show that ∆-regular random graphs require Sherali–Adams (and by [KMR17],
any LP) relaxations of at least subexponential size, our result implies that subexponential LPs
are sufficient. Further, though the function f(∆) is not specified in [CMM09], by tracing back
through citations (e.g. [ABLT06, ALN+12, CMM10]) to extract a dependence, it appears we may
take f(∆) = log ∆. So our upper bound is tight as a function of ∆, up to constant factors.

Prior to our result, it was unclear whether even (n/polylogn)-round Sherali–Adams could certify
that the max-cut value was bounded by .99 for sparse random regular graphs. Indeed, it was
equally if not more conceivable that Charikar et al.’s result was not tight, and could be extended to
Ω̃(n)-rounds. In light of our result, we are left to wonder whether there are instances of max-cut
which have truly exponential extension complexity.

1.1.2 Refuting Random CSPs with linear programs

With minor modifications, our argument extends as well to 2-xor. Then, following the framework
in [AOW15], we have the following consequence for certifying bounds on the value of random
k-CSPs:

Theorem 1.5 (Simplified version of Theorem 5.2). Suppose that P : {±1}k → {0, 1} is a k-ary
Boolean predicate, and that δ, ε > 0. Let E[P ] be the probability that a random x ∈ {±1}k satisfies
P . Then for a random instance I of P on n variables with m ≥ ndk/2e+δ expected clauses, with
high probability Sherali–Adams can certify that OBJI(x) ≤ E[P ] + ε using R = Oε,δ,k(1) rounds.

This almost matches the comparable performance of Sum-of-Squares (SOS) and spectral algo-
rithms [AOW15], which are known to require m ≥ nk/2 clauses to certify comparable bounds in
polynomial time [Gri01, Sch08, KMOW17].5 Prior to our work it was known that Sherali–Adams
admits weak refutations (i.e. a certificate that OBJ ≤ 1 − o(1)) when m ≥ nk/2, but it was con-
ceivable (and even conjectured) that O(1)-rounds could not certify OBJ ≤ 1− δ for constant δ at
m = o(nk).

The result above also extends to t-wise independent predicates as in [AOW15] (see Section 5).
Also, one may extract the dependence on the parameters ε, δ to give nontrivial results when these
parameters depend on n.6

1.2 Prior work

It is a folklore result that in random graphs with average degree nδ, 3-round Sherali–Adams certifies
a max-cut value of at most max(1− Ω(δ), 2

3) (observed for the special case of δ > 1
2 in [BHHS11,

4In [CMM09], the graph is actually a pruned random graph, in which o(n) edges are removed; this does not affect
compatibility with our results, as the LP value is Lipschitz and so the pruning changes the LP value by o(1).

5 The expert may notice that we require the number of clauses m � ndk/2e, whereas the best Sum-of-Squares
and spectral algorithms require only m � nk/2. This is because we do not know how to relate the Sherali–Adams
value of the objective function to its square (local versions of the Cauchy-Schwarz argument result in a loss). Such
a relation would allow us to apply our techniques immediately to prove that Sherali–Adams matches the SOS and
spectral performance for odd as well as even k.

6Though for 2-xor and max-cut we have done this explicitly, for higher-arity random CSPs we have left this for
the interested reader.
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PT94]); this is simply because of concentration phenomena, since most edges participate in roughly
the same number of odd cycles of length O(1

δ ) ≥ 3, after which one can apply the triangle inequality.
However this observation does not allow one to take the refutation strength independent of the
average degree.

There are some prior works examining the performance of Sherali–Adams hierarchies on random
(and otherwise “locally dense”) CSPs. Building on works showing a PTAS for fully dense max-
cut [FK96], the work of de la Vega and Mathieu [dlVM07] shows that in graphs with average
degree Ω(n), Sherali–Adams with O(1) rounds certifies tight bounds on max-cut. Subsequent
works extended this to give a density/rounds tradeoff [YZ14, BHHS11]; the best of these shows
that Sherali–Adams accurately estimates the max-cut in graphs of average degree ∆ using O(n/∆)
rounds. One may compare this to our theorem, which uses nO(1/ log ∆) rounds for random graphs
of average degree ∆.

Another relevant line of work is a series of LP hierarchy lower bounds (both for Sherali–Adams
and for the weaker Lovász-Schrijver hierarchy) for problems such as max-cut, Vertex-Cover,
and Sparsest-Cut, including [AAT11, ABLT06, dlVM07, STT07], and culminating in the already
mentioned result of Charikar, Makarychev and Makarychev; in [CMM09], they give subexponential
lower bounds on the number of rounds of Sherali–Adams required to strongly refute max-cut in
random regular graphs. Initially, one might expect that this result could be strengthened to prove
that sparse random graphs require almost-exponential-sized LPs to refute max-cut; our result
demonstrates instead that [CMM09] is almost tight.

We also mention the technique of global correlation rounding in the Sum-of-Squares hierar-
chy, which was used to give subexponential time algorithms for Unique-Games [BRS11] and
polynomial-time approximations to Max-Bisection [RT12]. One philosophical similarity between
these algorithms and ours is that both relate local properties (correlation among edges) to global
properties (correlation of uniformly random pairs). But [BRS11, RT12] use the fact that the re-
laxation is an SDP (whereas our result is interesting because it is in the LP-only setting), and the
“conditioning” steps that drive their algorithm are a fundamentally different approach.

There are many prior works concerned with certifying bounds on random CSPs, and we sur-
vey only some of them here, referring the interested reader to the discussion in [AOW15]. The
sequence of works [Gri01, Sch08, KMOW17] establishes Sum-of-Squares lower bounds for refuting
any random constraint satisfaction problem, and these results are tight via the SOS algorithms
of [AOW15, RRS17]. The upshot is that for k-sat and k-xor,7 ω(1) rounds of SOS are nec-
essary to strongly refute an instance with m = o(nk/2) clauses, and O(1) rounds of SOS suffice
when m = Ω̃(nk/2). Because SOS is a tighter relaxation than Sherali–Adams, the lower bounds
[Gri01, Sch08, KMOW17] apply; our work can be seen to demonstrate that Sherali–Adams does
not lag far behind SOS, strongly refuting with O(1) rounds as soon as m = Ω(ndk/2e+δ) for any
δ > 0.

In a way, our result is part of a trend in anti-separation results for SDPs and simpler methods
for pseudorandom and structured instances. For example, we have for planted clique that the
SOS hierarchy performs no better than the Lovász-Schrijver+ hierarchy [FK03, BHK+16], and
also no better than a more primitive class of estimation methods based on local statistics (see
e.g. [RSS18] for a discussion). Similar results hold for problems relating to estimating the norms
of random tensors [HKP+17]. Further, in [HKP+17] an equivalence is shown between SOS and
spectral algorithms for a large class of average-case problems. Our result shows that for random
CSPs, the guarantees of linear programs are surprisingly not far from the guarantees of SOS.

7This is more generally true for any CSP that supports a k-wise independent distribution over satisfying assign-
ments.
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Finally, we mention related works in extended formulations. The sequence of works [CLRS16,
KMR17] show that Sherali–Adams lower bounds for CSPs imply lower bounds for any LP relax-
ation; the stronger (and later) statement is due to [KMR17], who show that subexponential-round
integrality gaps for CSPs in the Sherali–Adams hierarchy imply subexponential-size lower bounds
for any LP. These works are then applied in conjunction with [Gri01, Sch08, CMM09] to give subex-
ponential lower bounds against CSPs for any LP; our results give an upper limit to the mileage one
can get from these lower bounds in the case of max-cut, as we show that the specific construction
of [CMM09] cannot be strengthened much further.

1.3 Techniques

Our primary insight is that while Sherali–Adams is unable to reason about spectral properties
globally, it does enforce that every set of R variables behave locally according to the marginals of a
valid distribution, which induces local spectral constraints on every subset of up to R variables.

At first, it is unclear how one harnesses such local spectral constraints. But now suppose
that we are in a graph whose adjacency matrix has a small spectral radius (excluding the trivial
eeigenvalue). This implies that random walks mix rapidly, in say t steps, to a close-to-uniform
distribution. Because a typical pair of vertices at distance t is distributed roughly as a uniformly
random pair of vertices, any subset of R vertices which contains a path of length t already allows
us to relate global and local graph properties.

To see why this helps, we take for a moment the “pseudoexpectation” view, in which we think
of the R-round Sherali–Adams as providing a proxy for the degree-R moments of a distribution
over max-cut solutions x ∈ {±1}n, with max-cut value

max-cut(G) = 1
2 −

1
2 E

(u,v)∈E(G)
Ẽ[xuxv], (4)

where Ẽ[xuxv] is the “pseudo-correlation” of variables xu, xv. Because there is no globally consistent
assignment, the pseudo-correlation Ẽ[xuxv] for vertices u, v sampled uniformly at random will be
close to 0.8 But in any fixed subgraph of size Ω(t), enforcing Ẽ[xuxv] ≈ 0 for pairs u, v at distance
t has consequences, and limits the magnitude of correlation between pairs of adjacent vertices as
well. In particular, because the pseudo-second moment matrix Ẽ[xSx

>
S ] for xS the restriction of

x to a set S of up to R vertices must be PSD, forcing some entries to 0 gives a constraint on the
magnitude of edge correlations.

For example, suppose for a moment that we are in a graph G with t = 2, and that S is a
star graph in G, given by one “root” vertex r with k ≤ R − 1 children U = {u1, . . . , uk}, and call
X = Ẽ[xSx

>
S ] � 0. Notice that pairs of distinct children ui, uj are at distance t = 2 in S. If we then

require Ẽ[xuixuj ] = 0 for every ui 6= uj , the only nonzero entries of X are the diagonals (which are

all Ẽ[x2
i ] = 1), and the entries corresponding to edges from the root to its children, (r, ui), which

are Ẽ[xrxui ]. Now defining the vector c ∈ RS with a 1 at the root r, cr = 1 and α on each child
u ∈ U , cu = α, we have from the PSDness of X that

0 ≤ c>Xc = ‖c‖22 +
∑
u∈U

2crcu · Ẽ[xrxu] = (1 + α2k) + 2αk E
(u,v)∈E(S)

Ẽ[xuxv].

Choosing α = k−1/2, this implies that within S, the average edge correlation is lower bounded by
E(u,v)∈E[S] Ẽ[xuxv] ≥ −k−1/2. Of course, for a given star S we cannot know that Ẽ[xuixuj ] = 0, but
if we take a well-chosen weighted average over all stars, this will (approximately) hold on average.

8This is implicit in our proof, but intuitively it should be true because e.g. u, v should be connected by equally
many even- and odd-length paths.
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Our strategy is to take a carefully-chosen average over specific subgraphs S of G with |S| =
Ω(t). By our choice of distribution and subgraph, the fact that the subgraphs locally have PSD
pseudocorrelation matrices has consequences for the global average pseudocorrelation across edges,
which in turn gives a bound on the objective value eq. (4). This allows us to show that Sherali–
Adams certifies much better bounds than we previously thought possible, by aggregating local
spectral information across many small subgraphs.

Organization

We begin with technical preliminaries in Section 2. In Section 3 we prove our main result. Section 4
establishes a mild lower bound for arbitrary graphs. Finally, Section 5 applies Theorem 1.1 to the
refutation of arbitrary Boolean CSPs.

2 Setup and preliminaries

We begin by recalling preliminaries and introducing definitions that we will rely upon later.

2.1 Random walks on undirected graphs

Here, we recall some properties of random walks in undirected graphs that will be of use to us.

Definition 2.1. Let G = (V,E) be an undirected finite graph, with parallel edges and self-loops
allowed9, and with no isolated vertices. The standard random walk on G is the Markov chain on V
in which at each step one follows a uniformly random edge out of the current vertex. For u ∈ V ,
we use the notation v ∼ u to denote that v is the result of taking one random step from u.

Definition 2.2. We write K for the transition operator of the standard random walk on G. That is,
K is obtained from the adjacency matrix of G by normalizing the uth row by a factor of 1/ deg(u).

Definition 2.3. We write π for the probability distribution on V defined by π(v) = deg(v)
2|E| . As is

well known, this is an invariant distribution for the standard random walk on G, and this Markov
chain is reversible with respect to π. For u ∼ π and v ∼ u, the distribution of (u,v) is that of a
uniformly random (directed) edge from E. We will also use the notation π∗ = minv∈V {π(v)}.

Definition 2.4. For f, g : V → R we use the notation 〈f, g〉π for Eu∼π[f(u)g(u)]. This is an inner
product on the vector space RV ; in case G is regular and hence π is the uniform distribution, it is
the usual inner product scaled by a factor of 1/|V |. It holds that

〈f,Kg〉π = 〈Kf, g〉π = E
(u,v)∼E

[f(u)g(v)]. (5)

Definition 2.5. A stationary d-step walk is defined to be a sequence (u0,u1, . . . ,ud) formed by
choosing an initial vertex u0 ∼ π, and then taking a standard random walk, with ut ∼ ut−1.
Generalizing Equation (5), it holds in this case that

E[f(u0)g(ud)] = 〈f,Kdg〉π.
9Self-loops count as “half an edge”, and contribute 1 to a vertex’s degree.
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2.2 Tree-indexed random walks

To prove our main theorem we define a class of homomorphisms we call tree-indexed random walks.

Definition 2.6. Suppose we have a finite undirected tree with vertex set T . A stationary T -indexed
random walk in G is a random homomorphism φ : T → V defined as follows: First, root the tree
at an arbitrary vertex i0 ∈ T . Next, define φ(i0) ∼ π. Then, independently for each “child” j of i0
in the tree, define φ(j) ∼ φ(i0); that is, define φ(j) ∈ V to be the result of taking a random walk
step from φ(i0). Recursively repeat this process for all children of i0’s children, etc., until each
vertex k ∈ T has been assigned a vertex φ(k) ∈ V .

We note that the homomorphism φ defining the T -indexed random walk need not be injective.
Consequently, if T is a tree with maximum degree D, we can still have a T -indexed random walk
in a d-regular graph with d < D.

The following fact is simple to prove; see, e.g., [LP17].

Fact 2.7. The definition of φ does not depend on the initially selected root i0 ∈ T . Further, for
any two vertices i, j ∈ T at tree-distance d, if i = i0, i1, . . . , id = j is the unique path in the tree
between them, then the sequence (φ(i0),φ(i1), . . . ,φ(id)) is distributed as a stationary d-step walk
in G.

2.3 2XOR and signed random walks

The 2-xor constraint satisfaction problem is defined by instances of linear equations in Fn2 . For
us it will be convenient to associate with these instances a graph with signed edges, and on such
graphs we perform a slightly modified random walk.

Definition 2.8. We assume that for each vertex pair (u, v) where G has edge, there is an associated
sign ξuv = ξvu ∈ {±1}.10 We arrange these signs into a symmetric matrix Ξ = (ξuv)uv. If G has no
(u, v) edge then the entry Ξuv will not matter; we can take it to be 0.

Definition 2.9. We write K = Ξ ◦ K for the signed transition operator. The operator K is
self-adjoint with respect to 〈·, ·〉π, and hence has real eigenvalues. It also holds that

〈f,Kg〉π = 〈Kf, g〉π = E
(u,v)∼E

[ξuvf(u)g(v)]. (6)

Definition 2.10. We may think of G and Ξ as defining a 2-xor constraint satisfaction problem
(CSP), in which the task is to find a labeling f : V → {±1} so as to maximize the fraction of edges
(u, v) ∈ E for which the constraint f(u)f(v) = ξuv is satisfied. The fraction of satisfied constraints
is

E
(u,v)∼E

[
1
2 + 1

2ξuvf(u)f(v)
]

= 1
2 + 1

2〈f,Kf〉π. (7)

We will typically ignore the 1
2 ’s and think of the 2-xor CSP as maximizing the quadratic form

〈f,Kf〉π. When all signs in the matrix Ξ are −1, we refer to this as the max-cut CSP.

Definition 2.11. We say that a signed stationary d-step walk is a sequence of pairs (ut,σt) ∈
{±1}×V for 0 ≤ t ≤ d, chosen as follows: first, we choose a stationary d-step walk (u0,u1, . . . ,ud)
in G; second, we choose σ0 ∈ {±1} uniformly at random; finally, we define σt = σt−1ξσt−1σt .
Generalizing Equation (6), it holds in this case that

E[σ0f(u0)σdg(ud)] = 〈f,Kd
g〉π.

10If G has multiple (u, v) edges, we think of them as all having the same sign.
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Definition 2.12. We extend the notion from Definition 2.6 to that of a signed stationary T -indexed
random walk in G. Together with the random homomorphism φ : T → V , we also choose a random
signing σ : T → {±1} as follows: for the root i0, the sign σ(i0) ∈ {±1} is chosen uniformly at
random; then, all other signs are deterministically chosen — for each j of i0 we set σ(j) = ξi0jσ(i0),
and in general σ(k) = ξk′kσ(k) where k′ is the parent of k. Again, it is not hard to show that the
definition of (φ,σ) does not depend on the choice of root i0, and that for any path i0, i1, . . . , id
of vertices in the tree, the distribution of (φ(i0),σ(i0)), (φ(i1),σ(i1)), . . . (φ(id),σ(id)) is that of a
signed stationary d-step walk in G.

2.4 Proof systems

Our central object of study is the Sherali–Adams proof system, although our results also apply to
a weaker proof system (see Remark 2.19). We first define Sherali–Adams in this “proof system”
format (as opposed to the original optimization format); see, e.g., [Ber18] for some commentary on
this perspective.

Definition 2.13. Let X1, . . . ,Xn be indeterminates that are supposed to stand for real numbers ±1.
The R-round Sherali–Adams proof system [SA90] may be defined as follows: The “lines” of the proof
are real polynomial inequalities in X1, . . . ,Xn (where the polynomials may as well be multilinear).
The allowed “axioms” are any real inequalities of the form q(Xu1 , . . . ,XuR) ≥ 0, where the inequality
is true for every ±1 assignment to the indeterminates Xui . The “deduction rules” allow one to
derive any nonnegative linear combination of previous lines. This is a sound proof system for
inequalities about ±1 numbers X1, . . . ,Xn.

Fact 2.14. There is a poly(nR, L)-time algorithm based on Linear Programming for determining
whether a given polynomial inequality p(X) ≥ 0 of degree at most R (and rational coefficients of
total bit-complexity L) is derivable in the R-round Sherali–Adams proof system.

As mentioned earlier, it will helpful for us to take a “Sum-of-Squares” perspective on Sherali–
Adams. The well-known basic fact here is that a multilinear polynomial q(Xu1 , . . . ,XuR) is non-
negative for all ±1 assignments if and only if it can be represented as the (multilinearization of)
a squared polynomial p2 on R indeterminates. (This p will be the unique “Fourier expansion” for
the function

√
q : {±1}R → R; again, see [Ber18] for some discussion.) Let us now define a proof

system that can encapsulate both Sherali–Adams and SOS:

Definition 2.15. We define the R-local, degree-D (static) Sum-of-Squares (SOS) proof system over
indeterminates X1, . . . ,Xn as follows. The “lines” of the proof are real polynomial inequalities in
X = (X1, . . . ,Xn). The default “axioms” are any real inequalities of the form p(Xu1 , . . . ,XuR)2 ≥ 0,
where p is a polynomial in at most R variables and of degree at most D/2. The “deduction rules”
allow one to derive any nonnegative linear combination of previous lines. This is a sound proof
system for inequalities about n real numbers X1, . . . ,Xn.

In addition to the default axioms, one may also sometimes include problem-specific “equalities”
of the form q(X) = 0. In this case, one is allowed additional axioms of the form q(X)s(X) R 0 the
polynomial q(X)s(X) depends on at most R indeterminates and has degree at most D.

Fact 2.16. The case of R =∞ (equivalently, R = n) corresponds to the well-known degree-D SOS
proof system.

Definition 2.17. Suppose one includes the Boolean equalities, meaning X2
u − 1 = 0 for all 1 ≤ i ≤

n.11 In this case D =∞ is equivalent to D = R, and the corresponding proof system is equivalent
to R-round Sherali–Adams.

11Or alternatively, X2
u − Xu = 0 for all i.
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Fact 2.18. We will often be concerned with the R-local, degree-2 SOS proof system, where all lines
are quadratic inequalities. In this case, we could equivalently state that the default axioms are all
those inequalities of the form

x>P x ≥ 0, (8)

where x = (Xu1 , . . . ,XuR) is a length-R subvector of X, and P is an R × R positive semidefinite
(PSD) matrix.

Remark 2.19. In fact, we will often be concerned with the R-round, degree-2 Sherali–Adams proof
system, which is strictly weaker than the general R-round Sherali–Adams proof system. Despite
this restriction to D = 2, we only know the poly(nR, L)-time algorithm for deciding derivability of
a given quadratic polynomial p(X) ≥ 0 (of bit-complexity L).

3 Proof of Main Theorem (2XOR certifications from “spider walks”)

In this section, we prove our main theorem: given a 2-xor or max-cut instance on a graph G with
small spectral radius, we will show that the R-local degree-2 SOS proof system gives nontrivial
refutations with R not too large.

Our strategy is as follows: we select a specific tree T of size ∝ R, and we consider the distribution
over copies of T in our graph given by the T -indexed stationary random walk. We will use this
distribution to define the coefficients for a degree-2, R-local proof that bounds the objective value
of the CSP. We will do this by exploiting the uniformity of the graph guaranteed by the small
spectral radius, and the fact that degree-2 R-local SOS proofs can certify positivity of quadratic
forms c>X|SX|>S c, where X|S is the restriction of X to a set S of variables with |S| ≤ R and c ∈ R|S|.

Intuitively, in the “pseudoexpectation” view, the idea of our proof is as follows. When there
is no globally consistent assignment, a uniformly random pair of vertices u, v ∈ V will have pseu-
docorrelation close to zero. On the other hand, if t-step random walks mix to a roughly uniform
distribution over vertices in the graph, then pairs of vertices at distance t will also have pseudo-
correlation close to zero. But also, in our proof system the degree-2 pseudomoments of up to R
variables obey a positive-semidefiniteness constraint. By choosing the tree T with diameter at least
t, while also choosing T to propagate the effect of the low-pseudocorrelation at the diameter to
give low-pseudocorrelation on signed edges, we show that the proof system can certify that the
objective value is small. Specifically, we will choose T to be a spider graph:

Definition 3.1. For integers k, ` ∈ N+, we define a (k, `)-spider graph to be the tree formed by
gluing together k paths of length ` at a common endpoint called the root. This spider has k` + 1
vertices and diameter 2`.

While we were not able to formally prove that the spider is the optimal choice of tree, intuitively,
we want to choose a tree that maximizes the ratio of the number of pairs at maximum distance
(since such pairs relate the local properties to the global structure) to the number of vertices in the
tree (because we need to take our number of rounds R to be at least the size of the tree). Among
trees, the spider is the graph that maximizes this ratio.

Let us henceforth fix a (k, `)-spider graph, where the parameters k and ` will be chosen later.
We write S for the vertex set of this tree (and sometimes identify S with the tree itself).

Definition 3.2. For 0 ≤ d ≤ 2`, we define the matrix A(d) ∈ RS×S to be the “distance-d” adjacency

matrix of the spider; i.e., A
(d)
ij is 1 if distS(i, j) = d and is 0 otherwise. (We remark that A(0) is the

identity matrix.)
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The following key technical theorem establishes the existence of a matrix Ψ which will allow us
to define the coefficients in our R-local degree-2 SOS proof. It will be proven in Section 3.2:

Theorem 3.3. For any parameter α ∈ R, there is a PSD matrix Ψ = Ψα ∈ RS×S with the
following properties:

〈Ψ, A(0)〉 = 1 +
1

2k
α2` +

1

k − 1

α2` − α2

α2 − 1
,

〈Ψ, A(1)〉 = α,

〈Ψ, A(d)〉 = 0 for 1 < d < 2`,

〈Ψ, A(2`)〉 =
1− 1/k

2
α2`.

Here we are using the notation 〈B,C〉 for the “matrix (Frobenius) inner product” Tr
(
B>C

)
.

Corollary 3.4. Assuming that k ≥ 3` and taking α = k1/(2`), the PSD matrix Ψ satisfies

3/2 ≤ 〈Ψ, A(0)〉 ≤ 2, 〈Ψ, A(1)〉 = k1/(2`), 〈Ψ, A(d)〉 = 0 for 1 < d < 2`, 〈Ψ, A(2`)〉 = 1
2(k − 1).

We will also use the following small technical lemma:

Lemma 3.5. Let M ∈ RV×V and recall π∗ = minv∈V {π(v)} > 0. Then the 2-local, degree-2 SOS
proof system can derive

E
u∼π

∑
v∈V

MuvXuXv ≤ π−1/2
∗ ‖M‖2 E

u∼π
X2
u.

Proof. The proof system can derive the following inequality for any γ > 0, since the difference of
the two sides is a perfect square:

MuvXuXv ≤
M2
uv

2γπ(v)
X2
u +

γπ(v)

2
X2
v.

Thus it can derive

E
u∼π

∑
v∈V

MuvXuXv ≤ E
u∼π

X2
u

∑
v∈V

M2
uv

2γπ(v)
+
γ

2
E
v∼π

X2
v. (9)

We’ll take γ = π
−1/2
∗ ‖M‖2. Since we can certainly derive aX2

u ≤ bX2
u whenever a ≤ b, we see that

it suffices to establish ∑
v∈V

M2
uv

2γπ(v)
≤ γ

2

for every outcome of u. But this is implied by
∑

vM
2
uv ≤ (π(v)/π∗)‖M‖22 for all v ∈ V , which is

indeed true.

We can now prove the following main theorem:

Theorem 3.6. Given parameters k ≥ 3`, let R = k`+ 1 and define

β =
kπ
−1/2
∗

2k1/(2`)
ρ(K)2` +

2

k1/(2`)
,

where ρ(K) denotes the spectral radius of the signed transition matrix K. Then R-local, degree-2
SOS can deduce the bound “ρ(K) ≤ β”; more precisely, it can deduce the two inequalities

−β〈X,X〉π ≤ 〈X,KX〉π ≤ β〈X,X〉π.
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Before proving this theorem, let us simplify the parameters. For any ε > 0, we can choose ` to

be the smallest integer so that (1
ερ(K))2`π

−1/2
∗ ≤ ε, and k = d(1

ε )
2`e. This gives the corollary:

Corollary 3.7. Suppose we have a graph G = (V,E) with signed transition operator K and π∗ =

minv∈V
deg(v)
2|E| . Given ε > min(π

−1/2
∗ , ρ(K)), take ` =

⌈
1
4

log(ε2π∗)
log(ρ(K)/ε)

⌉
, and take k = d(1

ε )
2`e. Then

for R = k`+ 1, it holds that R-local degree-2 SOS can deduce the bound ρ(K) ≤ 5
2ε. In particular,

if we think of G,Ξ as a 2-xor CSP, it holds that R-round Sherali–Adams can deduce the bound
OBJ ≤ 1

2 + 5
4ε.

Proof. Taking the parameters as above, and using that the constraints X2
u = 1 imply that R-

round Sherali–Adams can deduce that 〈X,X〉π = 1 whenever R ≥ 2, and that as noted in eq. (7),
OBJ(X) = 1

2 + 1
2〈X,KX〉π, so Theorem 3.6 gives the result.

Corollary 3.7 implies the 2-xor version of Theorem 1.1 since in simple graphs, log 1
π∗ = Θ(log n).

Proof of Theorem 3.6. For our (k, `)-spider graph on S, let (φ,σ) be a signed stationary S-indexed
random walk in G. Define x to be the S-indexed vector with xi = σ(i)Xφ(i). Then letting Ψ be the
PSD matrix from Corollary 3.4, the R-local, degree-2 SOS proof system can derive

〈Ψ, xx>〉 = x>Ψx ≥ 0.

(This is in the form of Inequality (8) if we take P = diag(σ)Ψ diag(σ).) Furthermore, the proof
system can deduce this inequality in expectation; namely,

〈Ψ,Y〉 ≥ 0, where Y = E[xx>]. (10)

Now by the discussion in Definitions 2.11 and 2.12,

Yij = E[σ(i)Xφ(i)σ(j)Xφ(j)] = 〈X,KdistS(i,j)
X〉π. (11)

Thus recalling the notation A(d) from Definition 3.2,

Y =
2∑̀
d=0

〈X,Kd
X〉πA(d), (12)

and hence from Inequality (10) we get that R-local, degree-2 SOS can deduce

0 ≤
2∑̀
d=0

〈Ψ, A(d)〉〈X,Kd
X〉π = c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1

2(k − 1)〈X,K2`
X〉π, (13)

for some constant 3/2 ≤ c0 ≤ 2 (here we used Corollary 3.4). Regarding the last term, we have:

〈X,K2`
X〉π = E

u∼π

∑
v∈V

(K
2`

)uvXuXv. (14)

If we cared only about the Sherali–Adams proof system with Boolean equalities, we would simply
now deduce

E
u∼π

∑
v∈V

(K
2`

)uvXuXv ≤ E
u∼π

∑
v∈V

∣∣∣(K2`
)uv

∣∣∣ ≤√|V | E
u∼π
‖K2`

u,·‖2 ≤
√
|V |ρ(K

2`
) =

√
|V |ρ(K)2`,
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and later combine this with c0〈X,X〉π = c0. But proceeding more generally, we instead use
Lemma 3.5 to show that our proof system can derive

E
u∼π

∑
v∈V

(K
2`

)uvXuXv ≤ π−1/2
∗ ρ(K)2`〈X,X〉π.

Putting this into Equation (14) and Inequality (13) we get

〈X,KX〉π ≥ −
c0 + 1

2(k − 1)π
−1/2
∗ ρ(K)2`

k1/(2`)
〈X,X〉π ≥ −β〈X,X〉π.

Repeating the derivation with −K in place of K completes the proof.

3.1 Max-Cut

The following theorem is quite similar to Theorem 3.6. In it, we allow K to have the large eigen-
value 1, and only certify that it has no large-magnitude negative eigenvalue. The subsequent
corollary is deduced identically to Corollary 3.7.

Theorem 3.8. Given transition operator K for the standard random walk on G, let K ′ = K − J ,
where J is the all-1’s matrix. For parameters k ≥ 3`, let R = k`+ 1 and define

β =
kπ
−1/2
∗

2k1/(2`)
ρ(K ′)2` +

2

k1/(2`)
.

(Note that ρ(K ′) is equal to maximum-magnitude eigenvalue of K when the trivial 1 eigenvalue is
excluded.) Then 2R-local, degree-2 SOS can deduce the bound “λmin(K) ≥ −β”; more precisely, it
can deduce the inequality

〈X,KX〉π ≥ −β〈X,X〉π.

Corollary 3.9. Suppose we have a graph G = (V,E) with transition operator K and centered

transition operator K ′ = K − J , and π∗ = minv∈V
deg(v)
2|E| . Given ε > min(π

−1/2
∗ , ρ(K ′)), take

` =
⌈

1
4

log(ε2π∗)
log(ρ(K)/ε)

⌉
, and take k = d(1

ε )
2`e. Then for R = k`+ 1, it holds that 2R-local degree-2 SOS

can deduce the bound ρ(K ′) ≤ 5
2ε. In particular, if we think of G as a max-cut CSP, it holds that

R-round Sherali–Adams can deduce the bound OBJ ≤ 1
2 + 5

4ε.

Again, Corollary 3.9 implies Theorem 1.1 since in simple graphs, log 1
π∗ = Θ(log n).

Proof of Theorem 3.8. The proof is a modification of the proof of Theorem 3.6. Letting S be the
(k, `)-spider vertices, instead of taking a signed stationary S-indexed random walk in G, we take
two independent unsigned stationary S-indexed random walks, φ1 and φ2. For j ∈ {1, 2}, define
xj to be the S-indexed vector with ith coordinate equal to Xφj(i), and write ẋ for the concatenated

vector (x1, x2). Also, for 0 < θ < 1 a parameter12 slightly less than 1, let Ψ be the PSD matrix
from Corollary 3.4, and define the PSD block-matrix

Ψ̇ = 1
2

( 1
θΨ −Ψ

−Ψ θΨ

)
.

12This parameter is introduced to fix a small annoyance; the reader might like to imagine θ = 1 at first.
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Then as before, the 2R-local, degree-2 SOS proof system can derive

0 ≤ 〈Ψ̇,E ẋẋ>〉 = ι〈Ψ,Y〉 − 〈Ψ,Z〉, where ι = 1/θ+θ
2 , Y = E[xx>], Z = E[x1x

>
2 ], (15)

and x (which will play the role of x) denotes the common distribution of x1 and x2. Similar to
Equations (11) and (12), we now have

Y =
2∑̀
d=0

〈X,KdX〉πA(d),

and by independence of x1 and x2 we have

Z = 〈1, X〉2π · J = 〈1, X〉2π ·
2∑̀
d=0

A(d).

Thus applying Corollary 3.4 to Inequality (15), our proof system can derive

0 ≤ ι ·
(
c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1

2(k − 1)〈X,K2`X〉π
)
− E
u∼π

[Xu]2 ·
(
c0 + k1/(2`) + 1

2(k − 1)
)
.

(16)
By selecting θ appropriately, we can arrange for the factor c0 + k1/(2`) + 1

2(k − 1) on the right to
equal ι · 1

2(k − 1). Inserting this choice into Inequality (16) and then dividing through by ι, we
conclude that the proof system can derive

0 ≤ c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1
2(k − 1)

(
〈X,K2`X〉π − 〈1, X〉2π

)
,

cf. Inequality (13). Recalling now that K has the constantly-1 function as an eigenvector, with
eigenvalue 1, we have the identity

〈X,K2`X〉π − 〈1, X〉2π = 〈X, (K − J)2`X〉π.

Now the remainder of the proof is just as in Theorem 3.3, with K − J in place of K, except we do
not have the step of repeating the derivation with −K in place of K.

3.2 A technical construction of coefficients on the spider

Proof of Theorem 3.3. We are considering the (k, `)-spider graph on vertex set S. We write Vt for
the set of all vertices at distance t from the root (so |V0| = 1 and |Vt| = k for 1 ≤ t ≤ `). We will
be considering vectors in RS , with coordinates indexed by the vertex set S. For 0 ≤ t ≤ ` define
the vector

µt = avg
i∈Vt
{αtei},

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector with the 1 in the ith position. Further define vectors

χ = µ0 + µ1,

ψt = µt − µt+2 for 0 ≤ t < `,

with the understanding that µ`+1 = 0. Next, define the PSD matrix

Ψ̃ = χχ> +

`−1∑
t=0

ψtψ
>
t .
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This will almost be our desired final matrix Ψ. Let us now compute

〈Ψ̃, A(d)〉 = χ>A(d)χ+

`−1∑
t=0

ψ>t A
(d)ψt.

To do this, we observe that

µ>s A
(d)µt = αs+t Pr

i∼Vs, j∼Vt
[distS(i, j) = d],

and

µ>0 A
(d)µt = µ>t A

(d)µ0 =

{
αt if d = t,

0 else;

and for s, t > 0, µ>s A
(d)µt =


(1/k)αs+t if d = |s− t|,
(1− 1/k)αs+t if d = s+ t,

0 else.

From this we can compute the following (with a bit of effort):

〈Ψ̃, A(0)〉 = 2 + (2/k)α2 + (2/k)α4 + · · ·+ (2/k)α2`−2 + (1/k)α2`

〈Ψ̃, A(1)〉 = 2α

〈Ψ̃, A(2)〉 = −(2/k)α2 − (2/k)α4 − (2/k)α6 − · · · − (2/k)α2`−2

〈Ψ̃, A(2t+1)〉 = 0, 1 ≤ t < `

〈Ψ̃, A(2t)〉 = 0, 1 < t < `

〈Ψ̃, A(2`)〉 = (1− 1/k)α2`

Now, for a parameter η > 0 to be chosen shortly, we finally define the PSD matrix

Ψ =
1

2
Ψ̃ + ηµ1µ

>
1 .

We have

〈ηµ1µ
>
1 , A

(d)〉 =

{
η(1/k)α2 if d = 0,

η(1− 1/k)α2 if d = 2.

Therefore by carefully choosing

η =
1

k − 1

(
α2`−2 − 1

α2 − 1

)
,

we get all of the desired inner products in the theorem statement.

4 Lower Bounds

In this section, we show that degree-R Sherali–Adams cannot refute a random 2-xor or max-cut
instance better than 1

2 + Ω( 1
R). This is a straightforward application of the framework of Charikar,

Makarychev and Makarychev [CMM09]. In that work, the authors show that if every subset of r
points in a metric can be locally embedded into the unit sphere, then Goemans-Williamson rounding
can be used to give a Θ(r)-round Sherali–Adams feasible point. The upshot is the following theorem
appearing in [CMM09] (where it is stated in slightly more generality, for the 0/1 version of the cut
polytope):
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Theorem 4.1 (Theorem 3.1 in [CMM09]). Let (X, ρ) be a metric space, and assume that every
r = 2R + 3 points of (X, ρ) isometrically embed in the Euclidean sphere of radius 1. Then the
following point is feasible for R-rounds of the Sherali–Adams relaxation for the cut polytope:

Ẽ[xixj ] = 1− 2

π
arccos

(
1− 1

2
ρ(i, j)2

)
.

Proposition 4.2. In any 2-xor or max-cut instance, R-rounds of Sherali–Adams cannot certify
that

OBJ(x) <
1

2
+

1

πR
− 1

2R2

Proof. Suppose that we are given a 2-xor (equivalently, max-cut) instance on the graph G, so
that on each edge (i, j) ∈ E(G) we have the constraint xixjbij = 1 for some bij ∈ {±1}. Define the
metric space on (X, ρ) as follows: let X = {x1, . . . , xn} have a point for each vertex of G, and set

ρ(xi, xj) =
√

2
(
1− bij 1

R

)
.

We claim that any r = 2R + 3 points of X embed isometrically into the Euclidean sphere of
radius 1. To see this, fix a set S ⊂ X, and define the |S| × |S| matrix BS so that

(BS)ij =

{
bij
r if (i, j) ∈ E(G),

0 otherwise.

So long as |S| ≤ r, the matrix MS = 1 + BS is diagonally dominant, and therefore positive
semidefinite, so from the Cholesky decomposition of MS we assign to each xi ∈ S a vector vi so
that ‖vi‖2 = 1, and so that for every pair xi, xj ∈ S, ‖vi − vj‖2 = 2− 2bij

1
r = ρ(i, j)2.

Applying Theorem 4.1, we have that the solution

Ẽ[xixj ] = 1− 2

π
arccos

(
1− 1

2
· 2
(

1− bij
1

r

))
= 1− 2

π
arccos

(
bij

1

r

)
is feasible. For convenience, let f(z) = 1− 2

π arccos(z). We use the following properties of f :

Claim 4.3. The function f(z) = 1− 2
π arccos(z) exhibits the rotational symmetry f(z) = −f(−z),

and further f(z) ≥ 2
πz for z ∈ [0, 1].

We give the proof of the claim (using straightforward calculus) below. Now, because f(z) =
−f(−z), we have that

bij · Ẽ[xixj ] = bij · f
(
bij

1

r

)
= f

(
1

r

)
,

and using that for z ∈ [0, 1], f(z) ≥ 2
πz ≥ 0,

≥ 2

π
· 1

r
.

We conclude that R = 1
2(r − 3) rounds of Sherali–Adams are unable to certify that OBJ <

1
2 + 2

π
1

2R+3 , as desired.

Proof of Claim 4.3. The rotational symmetry follows from simple manipulations:

f(z)− (−f(−z)) = 2− 2

π
(arccos(z) + arccos(−z)) = 2− 2

π
arccos(−1) = 0.
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For the second claim, we use that the derivative of f(z)− 2
πz is positive in the interval [0, 1

2 ]:

∂

∂z
f(z)− 2

π
z =

2

π

1√
1− z2

− 1

2
> 0 for |z| < 1,

and that at z = 0, f(z)− 2
πz = 0.

5 Refutation for any Boolean CSP

In this section, we argue that R-round Sherali–Adams can also refute any non-trivial Boolean CSP.
First, for any predicate P : {±1}k → {0, 1} we define a parameterized distribution over the CSP
with constraints from P :

Definition 5.1. Let P : {±1}k → {0, 1} be a predicate. Then we define a random instance of P
on n vertices with m expected clauses to be an instance sampled as follows: define p = m

nk
, and

for each ordered multiset S ⊂ [n] with |S| = k, independently with probability p we sample a
uniformly random string ζS ∈ {±1}k and add the constraint that P (xS � ζS) = 1, where � denotes
the entry-wise (or Hadamard) product.

This is one of several popular models, and in our case it is the most convenient to work with.
By employing some manipulations, results from this model transfer readily to the others (see for
example Appendix D of [AOW15] for details).

Our result is as follows:

Theorem 5.2. Suppose that P : {±1}k → {0, 1} and that δ, ε > 0 are fixed constants. Let E[P ]
be the probability that a random x ∈ {±1}k satisfies P . Then with high probability, for a random
instance I of P on n variables with m ≥ ndk/2e+δ expected clauses, the R-round Sherali–Adams
proof system can certify that OBJI(x) ≤ E[P ] + ε when R = Oε,δ,k(1) rounds. More specifically,

R = k`
(

3·2k/2−1

ε

)2`
+ k for ` = ddk2e

1
2δ e.

We can also prove a more fine-grained result, to obtain strong refutation at lower clause densities
when the predicate has certain properties.

Definition 5.3. We say that a predicate P : {±1}k → {0, 1} is η-far from t-wise supporting if every
t-wise uniform distribution has probability mass at least η on the set of unsatisfying assignments
P−1(0).

Theorem 5.4. Suppose that P : {±1}k → {0, 1} is η-far from t-wise supporting, and that δ, ε > 0.
Then with high probability, for a random instance I of P on n variables and m ≥ ndt/2e+δ expected
clauses, the R-round Sherali–Adams proof system can certify that OBJI(x) ≤ 1 − η + ε with R =

Oε,δ,t(1) rounds. More specifically, R = t`
(

3·2t/2−1

ε

)2`
+ t for ` = dd t2e

1
2δ e.

Following the strategy introduced in [AOW15], we will do this by first refuting weighted random
instances of k-xor for k ≥ 1. After this, any predicate P : {±1}k → {0, 1} can be decomposed
according to its Fourier decomposition, which will yield a weighted sum of t-xor instances for
t ≤ k, and our proof system will refute each individually.
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5.1 Higher-arity XOR

Ultimately, we will reduce each k-CSP to a sum over weighted t-xor instances with t ≤ k:

Definition 5.5. Let W be a distribution over signed integers. We say that I is a random k-xor
instance weighted according to W if it is sampled as follows: for each ordered multiset S ⊂ [n]
with |S| = k, we take a bS to be equal to a uniformly random sample from W, and finally set the
objective function to be

∑
S bS · xS .

Following the standard strategy introduced by [GK01, FGK05] and subsequently honed in many
works, we will reduce refuting these t-xor instances to refuting 2-xor instances.

5.1.1 Even k-XOR

In this case, we perform a standard transformation to view the k-xor instance as a 2-xor instance
on super-vertices given by subsets of vertices of size k/2.

Definition 5.6. Suppose k > 1 is an integer and I is a 2k-xor instance on n variables x1, . . . , xn,
with objective

∑
U∈[n]2k bU ·xU where the sum is over ordered multisets U ⊂ [n], |U | = 2k. Then we

let its flattening, Iflat, be the 2-xor instance on nk variables given by associating a new variable
yS for each ordered multiset S ⊂ [n], |S| = k, and for each U ⊂ [n] with |U | = 2k, choosing
the partition of U into the ordered multisets S, T with S containing the first k elements and T
containing the last k, taking the objective function

∑
S,T bU · ySyT .

Lemma 5.7. Suppose that I is a 2k-xor instance, and let Iflat be the 2-xor instance given by its
flattening. Then if the R-round Sherali–Adams proof system can certify that OBJIflat(x) ≤ c, then
the k ·R-round Sherali–Adams proof system can certify that OBJI(x) ≤ c.

Proof. Every degree-R Sherali–Adams proof for Iflat can be transformed into a Sherali–Adams
proof of degree at most kR for I by applying the transformation yS =

∏
i∈S xi = xS . Further, this

transformation exactly relates the objective functions of Iflat and I. This proves the claim.

If the 2k-xor instances that we start with are random weighted instances, then their flattenings
are also random weighted 2-xor instances.

Claim 5.8. Suppose that I is a random 2k-xor instance on n vertices weighted according to W.
Then the flattening Iflat is a random 2-xor instance on nk vertices weighted according to W.

Proof. This fact is immediate, since the ordered multisets U ⊂ [n], |U | = 2k are in bijection with
ordered pairs of multisets S, T ⊂ [n], |S| = |T | = k.

We will require the following proposition, which applies our main theorem in the context of
random k-xor instances with random weights from well-behaved distributions.

Proposition 5.9. Suppose that W is a distribution over integers which is symmetric about the
origin, and let n, k ≥ 1 be positive integers. Let E denote the expectation under the measure W,
and let σ2 ≥ Ew2 be a bound on the variance. Furthermore, suppose that

� The expected absolute value is at least E |w| � σ
√

logn
nk

,

� With high probability over n2k i.i.d. samples w1, . . . , wn2k ∼ W, maxi∈[n2k] |wi| ≤M � σ2nk.

18



Now, define

ρ = O

(
σ logN

E |w|
√
nk
·max(1, M√

nk
)

)
.

Then if I is a random 2k-xor instance on n variables weighted according toW, with high probability
I has E |w| · n2k ± O(σnk

√
log n) constraints. Further, choosing ` ∈ N+ large enough so that

nk/4`ρ ≤ 1
2ε

2` and setting R = 2k · ` ·
(

1
ε

)2`
, R rounds of Sherali–Adams can deduce the bound

OBJI(x) ≤ 1
2 + 3

2ε.

To prove the above, we require the following standard matrix Bernstein inequality:

Theorem 5.10 (Theorem 6.6.1 in [Tro15]). Let A1, . . . , Am ∈ R
N×N be independent random

matrices, with EAi = 0 for all i ∈ [m] and ‖Ai‖ ≤ M for all i ∈ [m]. Let A =
∑

i∈[m]Ai denote

their sum, and suppose that ‖EAA>‖, ‖EA>A‖ ≤ σ2. Then

Pr (‖A‖ ≥ t) ≤ N · exp

(
1

2

−t2

σ2 + 1
3Mt

)
.

Proof of Proposition 5.9. Given a weighted 2k-xor instance on n variables with weights from W,
we consider its flattening Iflat with objective function OBJ(x) = 1

m

∑
i,j∈[N ]

1
2(1 + bijxixj) for m

the absolute sum of weights, we construct its signed adjacency matrix as follows: first take the
matrix W defined so that Wi,j = bij , and obtain a new matrix B = 1

2(W + W>). For any x,
applying Lemma 5.7 we have that 1

2 + 1
2mx

>Bx = OBJI(x).
SinceW is a distribution over integers, 2B has signed integer entries. We think of 2B as defining

a multigraph G on nk vertices with signed edges, so that there are 2 · |Bij | multiedges between
i, j ∈ [nk], each with sign sgn(Bij). Let 2·D be the degree matrix ofG, let A = |2B| be the adjacency
matrix of G, let Ξ = sgn(B) be the matrix of signs of B, and let K = (2D−1)A = D−1B ⊗ Ξ be
the transition matrix for the random walk on G.

To apply Corollary 3.7, we must upper bound the spectral radius of Ξ ◦K = D−1B, as well as
bound the minimum degree of G and the total number of edges. We will use the bound

‖D−1B‖op ≤ ‖D−1‖op · ‖B‖op ≤
1

π∗
‖B‖op.

First, we bound ‖B‖op. Take B′ to be the truncated version of B, so that B′i,j = sgn(Bi,j) ·
max(|Bi,j |,M). Thinking of the matrix B′ as the sum of

(
nk

2

)
+ nk symmetric matrices, one for

each pair i, j ∈ [nk], satisfies the requirements of Theorem 5.10. We have that E[B′B′>] � nkσ2 ·1,
so applying Theorem 5.10 with t = Omax(

√
σ2nk log n,M log n) we get that with high probability,

‖B‖op ≤ O
(

max
(√

σ2nk log n,M log n
))

,

where we have also used that with high probability B = B′ by the properties of W.
Now, we bound the sum of degrees 2m and the minimum degree dmin. We have that the total

sum of the degrees is given by 2m =
∑

i,j∈[nk] |bij | with bij ∼ W. By a Bernstein inequality,

Pr
(∣∣∣2m− n2k E |w|

∣∣∣ ≥ s) ≤ 2 exp

(
−1

2

s2

n2k ·Ew2 + 1
3Ms

)
,

so since by assumption σ2n2k �M , setting s = O(σnk
√

log n) we have that with high probability

2m = n2k E |w| ±O(σnk
√

log n). (17)
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By our assumptions on W we have that for every i ∈ [nk], E degG(i) = nk E |w|. Applying a
Bernstein inequality gives that

Pr[degG(i) ≤ nk E |w| − t] ≤ exp

(
−1

2
· t2

nkσ2 + 1
3Mt

)
,

so using that M ≤ nkσ2 and taking t = O
(√

nkσ2 log n
)

we get that dmin = nk · E |w| ±

O(
√
nkσ2 log n) with high probability. This gives that with high probability,

π∗ =
dmin

2m
≥ nk ·E |w| −O(σ

√
nk log n)

n2k ·E |w|+O(σnk
√

log n)
≥ 1

nk
· (1− o(1))

‖Ξ ◦K‖op ≤
‖B‖op
dmin

≤
O(σ
√
nk log n) ·max(1, M√

nk
)

nk ·E |w| −O(σ
√
nk log n)

≤ O

(
σ log n

E |w|
√
nk

)
·max(1, M√

nk
)

where we have used that σ
√

log n�
√
nk E |w|.

Now, the result follows by applying Corollary 3.7 and Lemma 5.7.

5.1.2 Odd k-XOR

For odd integers k, k-xor instances do not have the same natural, symmetric flattenings. Instead,
we define what we call a lift:

Definition 5.11. Suppose k ≥ 1 is an integer and I is a (2k + 1)-xor instance on n variables
x1, . . . , xn, with objective

∑
U∈[n]2k+1 bU · xU . Then we let its lift, Ilift, be the bipartite 2-xor

instance on parts each containing nk+1 variables created as follows:

� Create new variables w1, . . . , wn

� For each U ∈ [n]2k+1, choose a random index iU ∈ [n] and add modify the objective to∑
U∈[n]2k+1 bU · xU · wiU

� For each ordered multiset S associate a new variable yS , and for each ordered multiset T ∈ [n]k

and index i ∈ [n] associate a new variable zT,i We understand yS =
∏
i∈S xi, and zT,i =(∏

j∈T xj

)
· wi.

� For each U ∈ [n]2k+1, we take the ordered multiset V = (U, iU ) and assign it a new coefficient
b′V = bU . For the remaining b′V , we set b′V = 0.

Finally, Ilift is the instance with the objective function
∑

S∈[n]k+1,T∈[n]k,i∈[n] b
′
S∪T∪i · ySzT,i.

We obtain a statement analogous to Lemma 5.7 for odd k-xor:

Lemma 5.12. Suppose that I is a weighted (2k + 1)-xor instance, and let Iflat be the bipartite
2-xor instance given by its flattening. Then if the R-round Sherali–Adams proof system can certify
that OBJIflat(x) ≤ c, then the (k + 1) · R-round Sherali–Adams proof system can certify that
OBJI(x) ≤ c.

Proof. The only modification to the proof of Lemma 5.12 is that for zT,i we substitute zT,i = xT

(where we have implicitly substituted wi = 1 for all i ∈ [n]).
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However, the lifting procedure does not preserve the weighting distribution W, because of the
step in which a random index iU is chosen to lift U . For this reason, we prove an analog of
Proposition 5.9:

Proposition 5.13. Suppose that W is a distribution over integers which is symmetric about the
origin, and let n, k ≥ 1 be integers. Let E denote the expectation under the measure W, and let
σ2 ≥ Ew2 be a bound on the variance. Furthermore, suppose that

� The expected absolute value is at least E |w| � σ
√

logn
nk

,

� With high probability over n2k+1 i.i.d. samples w1, . . . , wn2k+1 ∼ W, maxi∈[n2k+1] |wi| ≤M �
σ2nk.

Now, define

ρ = O

(
σ log n

E |w|
√
nk
·max(1, M√

nk
)

)
.

Then if I is a random (2k + 1)-xor instance on n variables weighted according to W, with high
probability it has E |w| · n2k+1 ± O(σnk

√
log n) constraints. Furthermore, choosing ` ∈ N+ large

enough so that n(k+1)/4`ρ ≤ 1
2ε

2` and setting R = (2k+ 2)` ·
(

1
ε

)2`
, R rounds of Sherali–Adams can

deduce the bound OBJI(x) ≤ 1
2 + 3

2ε.

Proof. The thread of the proof is the same as that of Proposition 5.9. We will refute Ilift, since
by Lemma 5.12 this is sufficient. We begin by associating with Ilift a multigraph G (which we
may do because W is a distribution over integers). The multigraph G is a bipartite graph, with
one bipartition corresponding to variables yS for S ∈ [n]k+1, and one bipartition corresponding to
variables zT,i for T ∈ [n]k and i ∈ [n]. We let the block matrix B be (the 1

2 -scaled) signed adjacency
matrix of G, let Ξ be the matrix of signs, D be the diagonal degree matrix, and K ◦ Ξ = D−1B
be the signed transition matrix of the random walk on G. In order to apply Corollary 3.7 we must
bound ‖K ◦ Ξ‖ and π∗ = dmin(G)/2m.

First, we bound the vertex degrees. For a vertex of the form (T, i), the expected value of the
incident edge (S, T ∪ i) is bS,T · 1

n , where bS,T . The degree of T ∪ i is simply the sum

degG(T ∪ i) =
∑

S∈[n]k+1

|bS,T∪i|,

a sum of independent random variables with expectation 1
n E |w| and variances 1

nσ
2. Applying a

Bernstein inequality, we have that

Pr

(∣∣∣∣degG(T ∪ i)− 1

n
· nk+1 E[|w|]

∣∣∣∣ ≥ t) ≤ 2 exp

(
1

2

−t2

nkσ2 + 1
3Mt

)
,

so taking t = O(
√
σ2nk log n) (and using that M � nkσ2), we have that the degree of T ∪ i vertices

is degG(T ∪ i) = nk E |w| ±O(
√
σ2nk log n) with high probability.

A similar argument applies to the S vertices; the total degree of such a vertex is

degG(S) =
∑
T∈[n]k

|
∑
i∈[n]

bS,T∪i|,
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since only one of the bS,T∪i will be nonzero. The inner sums are independent random variables
with mean E |w| and variance σ2, therefore

Pr
(∣∣∣degG(S)− nk E |w|

∣∣∣ ≥ t) ≤ 2 exp

(
1

2

−t2

nkσ2 + 1
3Mt

)
,

so taking t = O(
√
σ2nk log n) (and using that M � nkσ2), we have that the degree of S vertices

is also degG(S) = nk E |w| ±O(
√
σ2nk log n) with high probability.

We finally bound ‖K ◦ Ξ‖ ≤ ‖D−1‖ · ‖B‖. As before, B is a sum of independent symmetric
matrices, one for each coefficient bU from I. That is, we can define matrices BU for each U ∈ [n]2k+1

with U = S, T for S ∈ [n]k+1, T ∈ [n]k where BU has a number bU ∼ W in one off-diagonal block
entry (S, T ∪ i) and the other off-diagonal block entry (T ∪ i, S) for a randomly chosen i ∈ [n].
Thus, EBUB

>
U is a diagonal matrix with 1

nσ
2 on each diagonal of the form (T ∪ i, T ∪ i) and σ2 on

each block diagonal of the form (S, S). We then have that EBB> � nkσ2
1, since for each S there

is a sum over nk matrices BU and for each T ∪ i there is a sum over nk+1 matrices BU . Applying
Theorem 5.10 by using the same truncation trick again, we have that

‖B‖ ≤ O
(

max
(√

σ2nk log n,M log n
))

,

and from this we have that with high probability,

‖K ◦ Ξ‖ ≤ 1

degmin(G)
≤ O

(
σ log n

E |w|
√
nk

)
·max(1, M√

nk
), (18)

π∗ =
degmin(G)

2m
=

1

nk+1
· (1± o(1)) (19)

After which we can apply Corollary 3.7.

5.2 From Boolean CSPs to k-XOR

Following [AOW15], we prove Theorem 5.2 via reduction to XOR.

Proof of Theorem 5.2. Given a random instance of the CSP defined by the predicate P , and p =
n−bk/2c+δ, a Bernstein inequality gives us that the number of constraints m is with high probability
given by m = ndk/2e+δ ± 10

√
ndk/2e+δ log n. Set ` = d 1

2δ e.
Since P is a Boolean predicate, we can write P in its Fourier expansion:

P (z) =
∑
α⊆[k]

P̂ (α)
∏
i∈α

zi.

Using this expansion, we re-write the objective function. Recall that [n]k is the set of all ordered
multisets of k elements of [n]. For each S ∈ [n]k, let bS be the 0/1 indicator that there is a constraint
on S. Then, if the total number of constraints is m,

OBJI(x) =
1

m

∑
S∈[n]k

bS · P (xS � ζS)

=
1

m

∑
S={i1,...,ik}∈[n]k

∑
α⊆[k]

bS · P̂ (α)
∏
a∈α

xia(ζS)ia

=
1

m

∑
α⊆[k]

P̂ (α) ·
∑

T∈[n]|α|

 ∑
S∈[n]k,S|α=T

bS ·
∏
a∈α

(ζS)ia

 · xT . (20)
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Now, define for each α ⊆ [k] with |α| = t > 0 the t-xor instance

Iα(x) =
1

m

∑
T∈[n]t

 ∑
S∈[n]k,S|α=T

bS ·
∏
a∈α

(ζS)ia

 · xT =
1

m

∑
T∈[n]t

wT · xT ,

where we have taken wT =
∑

S∈[n]k,S|α=T bS ·
∏
a∈α(ζS)ia . So that from Equation (20),

OBJI(x) =
∑
α⊆[k]

P̂ (α) · Iα(x). (21)

Let Wnk−t be the distribution defined so that w ∼ Wt is a sum of nk−t independent variables
taking value {±1} with probability p and value 0 otherwise. Since for each S ⊇ T , the quantity∏
a∈α(ζS)ia is an independent uniform sign in {±1} and bS is an independent Bernoulli-p variable,

we have that the coefficients wT in Iα are i.i.d. fromWnk−t . The following lemma establishes some
properties of WN (we will prove the lemma in Appendix A):

Lemma 5.14. Let WN (p) be the distribution defined so that X ∼ WN is given by X =
∑N

t=1 Yt ·Zt,
where the {Yt}t, {Zt}t are i.i.d with Yt ∼ Ber(p) and Zt ∼ {±1}. Then for X ∼ WN (p), EX = 0
and EX2 = pN . Further, so long as pN ≥ 1, E |X| ≥ 2

e3/2

√
pN , and Pr(|X| > 2t

√
pN) ≤

2 exp
(
−t2
)
. Otherwise, if pN ≤ 1, E |X| ≥ 1

2e log 1
1−pN , and Pr(|X| ≥ 1 + t) ≤ exp

(
−1

2 t
)
.

From Lemma 5.14, we have that Ew2
T = pnk−t, and by Cauchy-Schwarz E |wT | ≤

√
Ew2

T . Let

mα be the total absolute weight of constraints in Iα,

mα =
∑
T

|wT |.

Notice that in all cases, mα ≤ m.
Now, we show that SA can certify upper bounds on |Iα(x)| for every α. First, consider α with

|α| = t = 1. In this case, Sherali–Adams with R = 1 can certify that

Iα(x) =
1

m

∑
i∈[n]

wi · xi ≤
1

m

∑
i∈[n]

|wi| =
mα

m
,

From an application of Bernstein’s inequality (the same as in the proof of Proposition 5.9), mα ≤
n ·
√

Ew2
T +

√
pnk log n with high probability whenever pnk �

√
pnk−1, and applying our bound

on m we conclude that with high probability SA will certify that

Iα(x) ≤ n ·
√
pnk−1(1 + o(1))

pnk(1± o(1))
≤ 2√

pnk−1

The lower bound on Iα(x) follows from identical reasoning with its negation, so we can conclude
that with high probability SA can certify that

|Iα(x)| ≤ 2√
pnk−1

= o(1).

Now, we tackle α with |α| = t for 2 ≤ t ≤ k. We will verify that the conditions of Propositions 5.9
and 5.13 hold. First, consider the α with |α| = t for pnk−t ≥ 1. From Lemma 5.14, in this case we
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have that E |wT | ≥ 2
e3/2

√
pnk−t, and with high probability, |wT | ≤ O(

√
tpnk−t log n) for all T ∈ [n]t.

Letting M = O(
√
tpnk−t log n), and σ2 = pnk−t, we meet the conditions for Proposition 5.9:

M ≤ O(
√
pnk−t)� pnk−t · nbt/2c = σ2nbt/2c

E |wT | ≥
2

e3/2

√
pnk−t �

√
pnk−t log n

nbt/2c
=

√
σ2 log n

nbt/2c

so long as pnk−t ≥ 1, which we have assumed. So applying Propositions 5.9 and 5.13 to both m
mα
Iα

and − m
mα
Iα, we have

ρ = O

(
σ log n

E |wT |
√
nbt/2c

)
·max(1, M√

nbt/2c
) ≤ O

(
log n√
nbt/2c

)
·max

(
1,

√
pnk−t

nbt/2c

)

and so long as mα
m ·n

dt/2e/4`ρ ≤ 1
2ε

2`, with high probability over Iα, t(`r+1) rounds of Sherali–Adams
certify that |Iα(x)| ≤ 3

2ε. We confirm that

mα

m
· ndt/2e/4` · ρ =

√
pnk−t · nt

pnk
· ndt/2e/4` · ρ� o(1),

whenever t ≥ 1 and ` ≥ 1.
Finally, we handle α with |α| = t for 2 ≤ t and pnk−t < 1. From Lemma 5.14 we have E |wT | ≥

1
e log 1

1−pnk−t , and with high probability, |wT | ≤ 4 log n for all T ∈ [n]t. Taking M = 4 log n, we
have that we meet the conditions of Propositions 5.9 and 5.13

M ≤ 4 log n� ndk/2e−dt/2e+δ = pnk−tnbt/2c = σ2nbt/2c,

E |wT | ≥
1

e
log

1

1− pnk−t
≥ 1

e
pnk−t �

√
pnk−t log n

nbt/2c
=

√
σ2 log n

nbt/2c
,

where the last inequality is true whenever pnk−t+bt/2c = ndk/2e−dt/2e+δ � log n, which we have by
assumption. So applying Propositions 5.9 and 5.13 to both m

mα
Iα and − m

mα
Iα, we have that for

ρ = O

(√
pnk−t log n

pnk−t
√
nbt/2c

)
= O(log n) ·

√
1

pnk−dt/2e
= O

(
log n√

ndk/2e−dt/2e+δ

)
,

so long as mα
m ndt/2e/4`ρ ≤ 1

2ε
2`, R = t(`r + 1) rounds of Sherali–Adams certify that |Iα(x)| ≤ 3

2ε
with high probability. Verifying,

mα

m
· ndt/2e/4` ·O

(
log n√

ndk/2e−dt/2e+δ

)
=

1√
pnk−t

· ndt/2e/4` ·O
(

log n√
ndk/2e−dt/2e+δ

)
,

which is maximized at t = k. By our choice of `, the condition holds.
We therefore have (using Parseval’s identity and ‖x‖1 ≤

√
k‖x‖2 for x ∈ Rk to simplify Equa-

tion (21)) that the same number of rounds certifies that

OBJI(x) ≤
∑
α⊂[k]

P̂ (α) · Iα(x) ≤ P̂ (∅) +
√

2k
3

2
ε,

as desired.

Using arguments analogous to the above along with the reasoning outlined in Theorem 4.9,
proof 2 and Claim 6.7 from [AOW15], we can also prove Theorem 5.4.
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A Characteristics of distributions of XOR-subformula coefficients

We now prove Lemma 5.14. We will use the following estimate for the mean absolte deviation of a
binomial random variable.

Lemma A.1 (e.g. [Bly80]). If X is distributed according to the binomial distribution X ∼ Bin(n, p),

then E |X −EX| =
√

2
πnp(1− p) +O( 1√

n
).

Proof of lemma 5.14. We calculate the absolute value directly. Given that there are exactly k
nonzero Yt, the absolute value of X is distributed according to |Bin(k, 1

2)− 1
2k|. Using the method

of conditional expectations,

E |X| =
N∑
k=0

Pr I[k nonzero Yt’s] ·E |Bin(k, t2)− 1
2k| ≥

N∑
k=0

(
N

k

)
pk(1− p)N−k ·

√
1

2π
k,

where we have applied the estimate from Lemma A.1. Letting D(a‖b) = a ln a
b + (1− a) ln 1−a

1−b be
the relative entropy, we then have from Stirling’s inequality that

E |X| ≥
N∑
k=1

√
2π

e2

N

k(N − k)
· exp

(
−N ·D

(
k
N ‖p

))
·
√

1

2π
k ≥ 1

e

N∑
k=1

exp
(
−N ·D

(
k
N ‖p

))
, (22)

Now, if pN < 1, we take

eq. (22) ≥ 1

e

N∑
k=1

exp

(
k log

(
pN

k

))
=

1

e

N∑
k=1

(
pN

k

)k
≥ −1

e
log(1− pN)−O(pN ) (23)

as desired.
If pN ≥ 1, applying the change of variables ` = k − bpNc and δ = `

N ,

eq. (22) ≥ 1

e

b(1−p)Nc∑
`=1−bpNc
δ= `

N

exp (−N ·D (p+ δ‖p)) (24)

Now using the Taylor expansion for log(1− x) to simplify and restricting the sum over the range
` = [−b

√
pNc, b

√
pNc], we get the bound

eq. (24) ≥ 1

e

b
√
pNc∑

`=−b
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δ= `
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exp
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−N δ2

2

)
≥ 1

e
· 2
√
pN · exp

(
−p

2

)
≥ 2

e3/2

√
pN, (25)
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as desired.
The first and second moment we can also obtain by calculation; the Zt ensure that the summands

have mean 0, and the Yt give that the variance of the summands is p, which gives the result.
The tail bound Pr(|X| ≥ (1 + 2t)

√
pN) ≤ 2 exp

(
−t2
)

comes from an application of Bernstein’s
inequality if pN ≥ 1; when pN < 1, we again apply Bernstein’s inequality, in which case we have

Pr (|X| −E |X| ≥ s) ≤ exp

(
−1

2

s2

pN + 1
3s

)
,

and choosing s = 1 + t gives the result.
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