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Abstract. In many markets, products are highly complex with an extremely large
set of features. In advertising auctions, for example, an impression, i.e., a viewer
on a web page, has numerous features describing the viewer’s demographics,
browsing history, temporal aspects, etc. In these markets, an auctioneer must se-
lect a few key features to signal to bidders. These features should be selected such
that the bidder with the highest value for the product can construct a bid so as to
win the auction. We present an efficient algorithmic solution for this problem in a
setting where the product’s features are drawn independently from a known dis-
tribution, the bidders’ values for a product are additive over their known values
for the features of the product, and the number of features is exponentially larger
than the number of bidders and the number of signals. Our approach involves
solving a novel optimization problem regarding the expectation of a sum of inde-
pendent random vectors that may be of independent interest. We complement our
positive result with a hardness result for the problem when features are arbitrarily
correlated. This result is based on the conjectured hardness of learning k-juntas,
a central open problem in learning theory.

1 Introduction

Much of the computer science literature on auction design assumes bidders have full
knowledge of their own values. However, in many markets, this assumption is quite
unrealistic in part because the item for sale is not fully observable by the bidders. In
used car auctions, for example, the cars for sale are each unique items with a long list of
features – make, model, year, mileage, color, etc. Time and communication constraints
make it impractical for the auctioneer to provide bidders with a full description of each
car. Similarly, in advertising auctions, the impressions for sale correspond to searchers,
again with a long list of features – gender, age, income, zip code, search history, etc.
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Boğaziçi University Computer Engineering Department, supported by Marie Curie Interna-
tional Incoming Fellowship project number 626373.

? ? ? Supported by NSF grants CCF-1115703 and CCF-1319788. Part of this research was done
while visiting Carnegie Mellon University.



Again it is impractical for the auctioneer to communicate all these features for each
search, let alone track them all. This raises a natural question: which features should an
auctioneer signal to bidders?

We study this question in the context of a single item auction. The item is parame-
terized by a large feature vector drawn from some known distribution. A bidder’s value
for an item is a function of its features. The goal is to signal a small subset of fea-
tures to bidders such that the welfare5 generated by the resulting auction is maximized.
Trivial brute-force search can solve this problem in time O(nk · mk) where n is the
number of players, k is the number of allowed signals, and m is the number of fea-
tures. Throughout this paper, we think of the number of bidders and allowable signals
as small, whereas the number of features is exponentially larger, and thus seek running
times at most linear in m.

We wish to focus attention on the algorithmic problem of selecting features, and
so we make several simplifying assumptions. First we assume bidders’ values are ad-
ditively separable across features. This assumption is a reasonable approximation to
valuations in many settings and is also a good first step in understanding general substi-
tutable valuations. Second, as is common in much of the computer science literature on
signaling [2,8,9,15], we assume bidders’ values for features are known to the auction-
eer. This information could be available to the auctioneer through historical data, and is
also a first step in designing systems for the more common Bayesian setting.6

Even with these simplifying assumptions, we obtain strong negative results for the
problem of finding a welfare-maximizing set of signals. We do this by relating the fea-
ture selection problem to the problem of learning k-juntas (i.e. m-variable boolean
functions that depend only on k � m of its coordinates) with respect to the uniform
distribution7. Introduced by Blum in 1994 [3,7], the junta problem is a clean abstrac-
tion of learning in the presence of irrelevant information, and represents a necessary
first step towards the notorious problems of learning polynomial-size decision trees
and DNF formulas. Progress on the problem has been slow despite significant interest
— the current best algorithm is due to G. Valiant and runs in time O(m0.6k) [17], a
polynomial improvement over brute-force search in time O(mk), and it is a generally
accepted assumption that is no mo(k)-time algorithm for the problem. (Indeed, it is
known that the broad class statistical query learning algorithms require both time and
sample complexity mΩ(k) for the junta problem [6]). Assuming that the junta problem
does in fact require timemΩ(k), we show there is nomo(k)-time algorithm that can find
an (1/n+ ε)-approximately optimal set of signals.

On the positive side, we consider a setting where each feature is selected indepen-
dently from a (not necessarily identical) distribution, and takes on only a constant num-
ber of values. In this case, we give an (1 − ε)-approximate algorithm that runs in time
O(m)+2O(k log(k/ε)) for all fixed values of n. This algorithm solves a general optimiza-

5 The welfare of a single item auction is the value of the winning bidder.
6 Clearly, if the auctioneer knowns the values of the bidders, he can maximize welfare by simply

assigning the item to the highest-value bidder, circumventing the auction altogether. We assert
that even if the auctioneer has this information, market constraints require the use of a second-
price auction format as is the case in, e.g., ad auctions.

7 See Section 3 for a definition.



tion problem of potentially independent interest: for any norm ‖·‖ on Rn, given θ ∈ Rn
andm independent mean-zero vector-valued random variables X1, . . . ,Xm, find a sub-
set S ⊆ [m] of cardinality k that approximately maximizes E[‖θ+

∑
i∈SXi‖]. Prior to

our work there were no non-trivial algorithms even when n = 1 — givenm real-valued
random variables X1, . . . ,Xm and θ ∈ R, find a k-subset S ⊆ [m] that approximately
maximizes E[|θ +

∑
i∈SXi|] — and even under the assumption that all the Xi’s are

two-valued.
Related Work. Understanding the structure of optimal signaling schemes is a classical
question in economics [14], and has recently generated great interest within the com-
puter science community [2,8,9,15,13]. One line of prior work [2,9,15] studies uncon-
strained signaling schemes that maximize revenue. In such unconstrained settings, full
information revelation is guaranteed to optimize welfare. Other prior work [8], more
closely related to the current paper, studies constrained signaling schemes and seeks to
maximize welfare. That work considered two settings: one in which goods were repre-
sented by high dimensional feature vectors and one where the goods were arbitrary and
had to be partitioned into classes. The former setting is closely related to ours, but in
the prior work the signaling schemes were arbitrary bounded-length bit strings. In this
paper, we constrain our signaling schemes to announce subsets of features, an arguably
more natural scheme for which the techniques of the prior work cannot be applied. For
an overview of the junta problem and its role in learning theory see [16,4] and the ref-
erences therein. As mentioned above its hardness is a generally accepted assumption in
learning theory, and indeed it is commonly used as hardness primitive to establish the
intractability of various other learning problems (e.g. [1,11,10,12]).

2 Preliminaries

We consider a setting in which there is a set of possible itemsΩ for sale, where each ω ∈
Ω is summarized by an m-dimensional vector of features — formally, Ω =

∏m
j=1Ωj ,

where Ωj is the set of possible values of the j’th feature. We assume that an item
is drawn according to a distribution λ ∈ ∆Ω . There is a set of n players, each of
whom is equipped with a valuation function vi : Ω → R+ mapping items to the real
numbers. We restrict attention to linearly separable valuation functions, of the form
vi(ω) =

∑m
j=1 vij(ωj), for functions vij : Ωj → R+.

We assume that the features of the item being sold are a-priori unknown to the
players, who learn them through a signaling scheme mapping an items to messages,
known as signals. In this paper, we restict attention to signaling schemes which sim-
ply fix a set S ⊆ [m] of feature indices of a given size |S| = k, and announces
ωS = {(j, ωj) : j ∈ S}. After players learn this partial information, some protocol
— typically an auction — is run to assign the item to one of the players. We focus on
auctions, such as the second-price auction, which assign the item to the player with the
highest posterior expected value for the item given the features revealed. In this case the
expected social welfare, i.e. the expected value of the winning player, can be written as
follows.

welfare(S) = E[
n

max
i=1

E[vi(ω)|ωS ]]



Where both expectations are over ω ∼ λ. Using vij as shorthand for the random variable
vij(ωj), we can rewrite the above expression as follows.

welfare(S) = E

 n
max
i=1

∑
j∈S

vij +
∑
j 6∈S

E[vij |ωS ]


In the special case in which the features are independently distributed, this reduces to

welfare(S) = E

 n
max
i=1

∑
j∈S

vij +
∑
j 6∈S

E[vij ]


= E

 n
max
i=1

∑
j∈S

(vij −E[vij ]) +

m∑
j=1

E[vij ]


= E

∥∥∥∥∥∥
∑
j∈S

(vj −E[vj ]) +

m∑
j=1

E[vj ]

∥∥∥∥∥∥
∞


when vj denotes the n-dimensional random vector (v1j , v2j , . . . , vnj). Note that the
vectors v1, . . . ,vm are independent when the features are independently distributed.

We adopt the perspective of an auctioneer seeking to optimize his choice of signal-
ing scheme, with the goal of maximizing the expected welfare. This is nontrivial when
0 < k < m, and we focus on the algorithmic question of finding the best set of features
S ∈

(
[m]
k

)
. We consider this question when the distribution λ is represented explicitly.

The sets Ω1, . . . , Ωm are given explicitly, as are the functions {vij}ni=1. In the general
(correlated) case, λ is described explicitly by a list of items Ω′ ⊆ Ω with associated
probabilities {p(ω) : ω ∈ Ω′} summing to 1 — all other items in Ω assumed to have
probability 0. In the independent case, the marginal distribution of each feature j is
given explicitly by the associated probabilities {pj(µ) : µ ∈ Ωj}. We also consider the
oracle model whereby only oracle access is given to λ; however, uniform convergence
arguments reduce the algorithmic task of signaling in the oracle model to that in the
explicit model, up to an arbitrarily small additive error term. In fact, our hardness result
is proved in the oracle model, and thus translates to the explicit model.

3 Hardness for General Distributions

We now prove that, in general, no nontrivial approximation is possible for the feature
signaling problem when the features are arbitrarily correlated. Our starting point is the
conjectured hardness of a special case of the k-junta learning problem. A k-junta on
m variables is a boolean function f : {−1, 1}m → {−1, 1} which depends on only k
bits of its input. When the bits S ⊆ [m] determining f are unknown, and a learner is
given access to sample access to evaluations (x, f(x)) of f on bit strings x ∈ {−1, 1}m
drawn uniformly at random, it is widely believed that no algorithm can recover S in
polynomial time/samples. In fact, this is believed true even for k-junta functions which



compute the majority function on k/2 of the input bits, and the parity function on an-
other k/2 bits, and then xor the results (these are listed explicitly as candidate hard
functions in Blum’s surveys on the junta problem [4,5]) — those functions are “bal-
anced” in the sense we describe below.

Definition 1. A boolean function f : {−1, 1}m → {−1, 1} is c-balanced if the follow-
ing holds for every T ⊆ [m] with |T | ≤ c, and y ∈ {−1, 1}c.

Pr[f(x) = 1|xT = y] =
1

2
,

where xT denotes the projection of x onto the coordinates in T , and the probability is
over x drawn uniformly from {−1, 1}m.

Definition 2. We say a randomized algorithm (ε,δ)-weakly learns a k-junta f if it out-
puts S ⊆ [m] with |S| ≤ k such that, with probability at least 1− δ,

advantage(S) := E
xS

[∣∣∣∣Pr
x
[f(x) = 1|xS ]−

1

2

∣∣∣∣] ≥ ε
where x is uniformly distributed on {−1, 1}m.

We use the following commonly believed conjecture.

Conjecture 1 (see e.g. [4,5]). There are functions k = k(m) = o(m) and c = c(m) =
Θ(k) such that c-balanced k-juntas on m variables can not be (ε,δ)-weakly learned in
time mo(k) under the uniform distribution, for any pair of constants ε, δ > 0.

The above conjecture implies the following corollary.

Corollary 1. Assuming Conjecture 1, there are functions k = k(m) = o(m) and c =
c(m) = Θ(k) such that no poly(mo(k), log 1

δ )-time learning algorithm, given sample
access to a c-balanced k-Junta f on m variables, outputs with probability 1 − δ a set
of variables S of size O(k) intersecting more than c of the relevant variables of f .

Proof. We assume that such an algorithm A, with runtime mo(k) and arbitrarily small
failure probability δ = exp(−Ω(k)), exists. To simplify the proof, we assumeA recov-
ers a set of size 2k which includes k/2 relevant variables of a k/2-balanced Junta f ,
though the choice of constants is unimportant. We now show how to weakly learn f in
time mo(k), and with constant success probability, violating Conjecture 1.

We learn the relevant variables S∗ ∈
(
m
k

)
of f as follows: first, run A to recover

S ⊆ [m] with |S| = 2k and |S ∩ S∗| ≥ k/2. Then, for each possible setting z of the
bits S (of which there are 22k) recurse on the function fS,z — often referred to as a
restriction of f — which simply replaces the portion of its input at indices S with z and
then evaluates f . Note that fS,z remains k/2-balanced, and hence also k/4-balanced,
yet is now a k/2-Junta on m variables. Assuming the recursive calls succeed, between
them they return the set S∗ \S. To complete S∗, it then suffices to try all 22k subsets of
S.

In the event all invokations of A in the recursion tree are successful, correctness
follows by induction. It remains to bound the runtime. Note that each recursive call



halves the number of variables of the Junta. Therefore, the number of recursive calls
equals 22k + 22k · 2k + 22k · 2k · 2k/2 + . . . ≤ log 2k · 24k ≤ 25k = mo(k). By
essentially the same analysis, the runtime of the algorithm is also 25k ≤ mo(k). The
success probability is at least 1− δ raised to a power equal to the number of calls of A,
which is a constant when δ = exp(−Ω(k)) is sufficiently small. ut

3.1 Warmup: Two players

As a warmup, we prove our impossibility result for 2 players assuming Conjecture 1.
Note that we do not need the balance assumption for the 2-player special case.

Theorem 1. Assuming Conjecture 1, there is no mo(k)-time ( 12 + ε)-approximation al-
gorithm for the feature signaling problem with two players in the sample oracle model,
for any constant ε > 0. This holds for Monte Carlo approximation algorithms having a
constant success probability.

Proof. Given sample access to an m-bit k-Junta f , with k = o(m), we construct an
instance of the feature signaling problem in the sample oracle model as follows. We
let Ω = {−1, 0, 1}2m, and consider two players Alice and Bob. Both players have no
value for features 1 through m — i.e. vij(.) = 0 for i ∈ {A,B} and 1 ≤ j ≤ m. For
the remaining features j ∈ [m + 1, 2m], Alice has value 1 if ωj = 1 and 0 otherwise,
and Bob has value 1 if ωj = −1 and 0 otherwise.

The distribution λ is constructed as follows. The first m features of ω ∼ λ, which
we denote by x, are uniformly distributed in {−1, 1}m. The last m features, which we
denote by y, are all set to 0, except for a single feature j∗ chosen uniformly at random,
which is set to f(x).

Note that if f is a k-Junta determined by the bits S∗ ⊆ [m] with |S∗| = k, then
welfare(S∗) = 1 as those bits uniquely determine which of Alice or Bob values the
item being sold. To complete the proof, we now show that if T ⊆ [2m] is a set of k
features satisfying welfare(T ) ≥ 1

2 + ε, then S = T ∩ [m] is a solution to the k-Junta
problem with advantage(S) = Ω(ε). Indeed:

advantage(S) = E
xS

[∣∣∣∣Pr
x
[f(x) = 1|xS ]−

1

2

∣∣∣∣]
= E
xS

[
max

(
Pr
x
[f(x) = 1|xS ],Pr

x
[f(x) = −1|xS ]

)]
− 1

2

≥ E
ωT

[
max

(
Pr
x
[f(x) = 1|ωT ],Pr

x
[f(x) = −1|ωT ]

)]
− |T \ [m]|

m
− 1

2

≥ welfare(T )− k

m
− 1

2

where the next to last inequality is a consequence of the fact that, with probability at
least 1 − |T\[m]|

m , the feature j∗ is not in T and therefore ωT provides no information
on f(x) beyond xS . ut



3.2 n players

Next, we show that the feature signaling problem is hard to approximate to within any
constant independent of the number of players, assuming Conjecture 1. Specifically, for
n players where n is a constant independent ofm, we show that it is hard to approximate
the feature signaling problem to within any constant exceeding 1/n, and this holds for
both the oracle and explicit representation models.

Theorem 2. Assuming Conjecture 1, there is no mo(k)-time, ( 1n + ε)-approximation
algorithm for the feature signaling problem with n players in the sample oracle model,
for any constant ε > 0. This holds for Monte Carlo approximation algorithms having a
constant success probability.

Proof. Our reduction for n players generalizes that for 2 players. Specifically, Given
sample access to an c-balanced k′-Junta f : {−1, 1}m → {0, 1}, with k′ = k/ log n
and c = θ(k′), we construct an instance of the k-feature signaling problem in the sample
oracle model as follows. We let Ω = {−1, 1}m logn × {0, 1, . . . , n}m, and consider
players [n] = {1, . . . , n}. All players have no value for features 1 through m log n. For
the remaining features j ∈ [m log n + 1,m log n +m], player i has value 1 if ωj = i
and 0 otherwise.

The distribution λ is constructed as follows. The first m log n features of ω ∼ λ,
which we denote by x, are uniformly distributed in {−1, 1}m logn. We partition x into
sub-vectors x1, . . . , xlogn, of length m each. The last m features, which we denote by
y, are all set to 0, except for a single feature i∗ chosen uniformly at random, which is
set to the integer encoded by the bit-string f(x1)f(x2) . . . f(xlogn).

Note that since f is determined by some bits S∗ ⊆ [m] with |S∗| = k′, signaling
the k = k′ log n bits corresponding to the S∗th indices of each sub-vector xi yields
a welfare of 1, since those bits uniquely determine the player who values the item.
We now show that any signaling algorithm with nontrivial performance must violate
Corollary 1.

Indeed, consider any set T of k features computed by some algorithm for the feature
signaling problem which runs in mo(k) = mo(k′) time. By Corollary 1 and the fact that
|T | = k′ log n = O(k′), on some inputs T will not contain more than c relevant features
from any sub-vector among x1, . . . , xlogn. By the balance property, such a set T affords
no information regarding the player who values the item for sale beyond that afforded
by the features T \ [m log n]. A similar analysis to that of Theorem 1 shows that the
advantage of the signaling scheme which reveals T over one which randomly assigns
the item to one of the n players is at most the probability that i∗ ∈ T , which is at most
k logn
m = o(1), as needed. ut

Finally, we note that any Monte Carlo algorithm with constant success probability
can be boosted to one with exponentially small (in k) failure probability, as needed to
violate Corollary 1.

Corollary 2. Assuming Conjecture 1, there is no mo(k)-time ( 1n + ε)-approximation
algorithm for the feature signaling problem with n players in the explicit model, for
any constant ε > 0. This holds for Monte Carlo approximation algorithms having a
constant success probability.



4 An Approximation Algorithm for Independent Distributions

We cast the algorithmic task of feature selection as the following optimization problem.
The inputs are θ ∈ Rn, k ∈ [m], and independent t-valued n-dimensional random
vectors X1, . . . ,Xm with E[Xi] = 0 for all i ∈ [m]. We will assume that each Xi

is specified as {(p1, v1), . . . , (pt, vt)} where Pr[Xi = vj ] = pj and
∑t
j=1 pj = 1,

and that basic arithmetic can be done in constant time (e.g. we can compute pi + pj in
constant time, and ‖vi‖∞ in O(n) time). Given S ⊆ [m] we write

value(S) = E

∥∥∥∥∥∥θ +
∑
j∈S

Xj

∥∥∥∥∥∥
∞

 , (1)

and define
S∗ = argmax

|S|=k
{value(S)} , opt = value(S∗). (2)

For 0 < ε ≤ 1
2 , we say that a subset S ⊆ [m] with |S| ≤ k is ε-optimal if value(S) ≥

(1− ε)opt; the algorithmic task is to find an ε-optimal k-subset S ⊆ [m] efficiently.
To see that this does in fact capture the feature selection problem where each feature

is selected independently, we recall the expression for welfare(S) given in (1). Setting

Xj := vj −E[vj ] ∀j ∈ [m] and θ :=

m∑
j=1

E[vj ],

and noting that the Xj’s do indeed satisfy E[Xj ] = 0, we have that for all S ⊆ [m],

value(S) = E

∥∥∥∥∥∥θ +
∑
j∈S

Xj

∥∥∥∥∥∥
∞

 = E

∥∥∥∥∥∥
∑
j∈S

(vj −E[vj ]) +

m∑
j=1

E[vj ]

∥∥∥∥∥∥
∞


= welfare(S).

Note that for any S ⊆ [m] of cardinality k, the quantity value(S) can be computed ex-
actly in timeO(nk·tk). Hence the naive algorithm which computes value(S) for all

(
m
k

)
possible k-subsets S runs in time O(nk · (mt)k) and finds S∗ achieving value(S∗) =
opt. As mentioned in the introduction, we will be primarily interested in the setting
where the number of players n is constant, as is the number of values each feature
takes, and so this runtime can be written as mO(k). To the best of our knowledge, prior
to our work there were no known improvements to this trivial algorithm even when
n = 1 — given m real-valued random variables X1, . . . ,Xm and θ ∈ R, find a k-
subset S ⊆ [m] that approximately maximizes E[|θ+

∑
i∈SXi|] — and even under the

assumption that all the Xi’s are two-valued (i.e. t = 2).
We give an algorithm that finds an ε-optimal set S of cardinality k, running in time

O(m) + 2O(k log(k/ε)) for all fixed values of n and t. (In particular, this is poly(m) for
all ε ≥ 1/polylog(m) and k � logm

log logm .)

Theorem 3. There is an algorithm A which, given as input 0 < ε ≤ 1
2 , k ∈ [m],

θ ∈ Rn, and independent t-valued d-dimensional random vectors X1, . . . ,Xm with



E[Xi] = 0 for all i ∈ [m], runs in time O(mnt) + poly(kt/ε)knt and outputs a k-
subset S ⊆ [m] satisfying value(S) ≥ (1− ε)opt.

The techniques we develop to establish Theorem 3 are fairly general and robust.
Indeed, we obtain Theorem 3 as a special case of our most general result which we now
state. Given an arbitrary norm ‖ · ‖ on Rn, we may define value(·) and opt with respect
to ‖ · ‖ instead of ‖ · ‖∞, and hence also an analogous optimization problem of finding
an ε-optimal k-subset. Our most general result is an efficient algorithm for this abstract
optimization problem for any norm ‖ · ‖ on Rn:

Theorem 4. Fix a norm ‖ · ‖ on Rn. Given ε > 0 and k ∈ [m], let N = N (ε, k)
be an (ε/k)-net within the ball {v ∈ Rn : ‖v‖ ≤ k2/ε} with the property that for
every vector v in the ball, its closest point in N can be found in time r. There is an
algorithm A which, given as input ε > 0, k ∈ [m], θ ∈ Rn, and independent t-valued
n-dimensional random vectors X1, . . . ,Xm with E[Xi] = 0 for all i ∈ [m], runs in
time O(mt(r + n) + nk · (4`t)k) where ` = (|N |k3t/ε)O(t), and outputs a k-subset
S ⊆ [m] satisfying value(S) ≥ (1 − ε)opt, where value(·) and opt are defined with
respect to ‖ · ‖.

To see that Theorem 3 does in fact follow from Theorem 4, we note that for all
B, δ > 0, the grid points N =

{
(λ1δ, . . . , λnδ) : λi ∈ {0, 1, . . . , bB/δc}

}
is a δ-net

of size (bB/δc + 1)n within the ball {v ∈ Rn : ‖v‖∞ ≤ B}. Furthermore, it is clear
that given any vector v in the ball, its closest vector within N can be computed in
time O(n). The remainder of this section will be devoted to proving Theorem 4. The
following simple fact will be useful for us:

Fact 1 Let X1 and X2 be independent random vectors where E[X1] = 0. Then E[‖X1+
X2‖] ≥ E[‖X2‖]. Consequently, if S′ ⊇ S then value(S′) ≥ value(S) (and in partic-
ular, it is equivalent to maximize over all |S| ≤ k in the definition of opt in (2)).

Proof. The inequality holds pointwise for every possible outcome θ ∈ Rd of X2 since
‖θ‖ = ‖E[X1 + θ]‖ ≤ E[‖X1 + θ‖]. ut

Overview of proof. We assume for the sake of scaling that max(‖θ‖,maxiE[‖Xi‖]) =
1, and hence opt ≥ 1 by Fact 1. Thus to find an ε-optimal set S, it suffices to find one
achieving value at least opt− ε; for notational simplicity, we will only achieve value at
least opt − O(ε). The main idea is to modify the random vectors X1, . . . ,Xm in such
a way that changes value(S) by at most an additive ±O(ε) for all k-subsets S ⊆ [m],
and yet results in a total of only ` distinct random variables Y1, . . . ,Y` where ` is
independent of m (i.e. many Xi’s are modified to become the same Yj). If for each
j ∈ [`] we let Mj denote the number of Xi’s that are modified to become Yj , this
reduces the problem of finding an O(ε)-optimal k-subset S ⊆ [m] to that of finding
λ ∈ Z` that maximizes

E

[∥∥∥∥∥θ + ∑̀
i=1

λiYi

∥∥∥∥∥
]

(3)

subject to λi ∈ {0, 1, . . . ,Mi} and
∑̀
i=1

λi = k. (4)



Since there are at most 4k
(
`
k

)
many λ ∈ Z

` satisfying (4), and for each such λ the
quantity (3) can be computed in time O(nk · tk), the optimal λ can be found in time
O(nk · (4`t)k).

4.1 Transforming the Xi’s

Given numbers a, b ∈ R and ε > 0, we write a
ε
≈ b as shorthand for |a− b| ≤ ε. By the

triangle inequality, if a
ε1≈ b and b

ε2≈ c then a
ε1+ε2≈ c.

Definition 3. Given a parameter B > 1 we say that an n-dimensional random vector
Xi is B-bounded if ‖Xi‖ ≤ B with probability 1.

We begin with the following proposition which states that the Xi’s can be modified
so that all of them are B-bounded; we defer its proof to the full version of this paper.

Proposition 1. Fix a parameter B > 1 and assume Xi is not B-bounded. Then there
is a B-bounded random vector X′i such that

E[‖X′i +Y‖]
4(k+1)/B
≈ E[‖Xi +Y‖]

for all random vectors Y that are independent of Xi, X′i and satisfy E[‖Y‖] ≤ k.
Furthermore, X′i can be defined from Xi in time O(nt).

As a corollary of Proposition 1, for all k-subsets S ⊆ [m] containing i we have

value(S)
4(k+1)/B
≈ E

∥∥∥∥∥∥θ +X′i +
∑

j∈S\{i}

Xj

∥∥∥∥∥∥
 .

In words, replacing Xi by X′i in X1, . . . ,Xn changes value(S) by at most an additive
±O(k/B) for all k-subsets S ⊆ [m]. Consequently, by the union bound, we may make
all of X1, . . . ,Xn B-bounded and change value(S) by at most an additive±O(k2/B).

We will need a simple numerical lemma for our next modification; we defer its
proof to the full version of this paper.

Lemma 2. Let p1, . . . , pt ∈ (0, 1) where
∑t
j=1 pi = 1, and 0 < η ≤ 1 where 1/η ∈

Z. There exist nonnegative integer multiples p′1, . . . , p
′
t of η also summing to 1 and

satisfying |p′j − pj | < η for all j.

Proposition 2. Fix parameters B > 1, δ > 0, and 0 < η ≤ 1, where 1/η ∈ Z. Let N
denote a δ-net within the ball {v ∈ Rn : ‖v‖ ≤ B}, and assume that for every vector
v in the ball, its closest vector in the δ-net N can be computed in time r. Then for any
B-bounded n-dimensional random vector Xi, there is a random vector X′i, dependent
on Xi, such that:

1. all outcomes for X′i are in N ;
2. all outcomes for X′i occur with probability equal to an integer multiple of η;
3. E[‖X′i −Xi‖] ≤ δ + 2Btη.



Furthermore, X′i can be defined from Xi in time O(rt).

Proof. Let Xi ≡ {(p1, v1), . . . , (pt, vt)} (i.e. Pr[Xi = vj ] = pj and
∑t
j=1 pj = 1).

We first consider X∗i = {(p1, v∗1), . . . , (pt, v∗t )}, where v∗j is the vector in N closest to
vj , coupled to Xi in such a way that Pr[X∗i = v∗j | Xi = vj ] = 1. Since

E[‖X∗i −Xi‖] =
t∑

j=1

pj · ‖v∗j − vj‖ ≤ δ

and all outcomes of X∗i are inN (i.e. satisfying (1)), it remains to show how to achieve (2)
while incurring error at most 2Btη in (3). By Lemma 2 there exist nonnegative integer
multiples p′1, . . . , p

′
t of η, summing to 1 and satisfying |p′j − pj | < η for all j (and it is

straightforward to verify that p′1, . . . , p
′
t can be computed from p1, . . . , pt and η in time

O(t)). We can then define X′i by Pr[X′i = v∗j ] = p′j , coupled to X∗ in such a way that
Pr[X∗i = X′i = v∗j ] = min(pj , p

′
j) for all j ∈ [t]. It is clear then that

Pr[X′i 6= X∗i ] ≤
t∑

j=1

|p′j − pj | ≤ tη,

and that whenever X′i 6= X∗i we at least have ‖X′i −X∗i ‖ ≤ 2B by the B-boundedness
of X∗i and Xi. The lemma follows.

Proof of Theorem 4 Applying Proposition 1 with B := k2/ε, we may assume that
X1, . . . ,Xm are allB-bounded — this modification can be carried out in timeO(mnt),
and changes value(S) by at most an additive ±O(ε) for all k-subsets S ⊆ [m]. Next,
applying Proposition 2 with δ := ε/k and η any number in [ε/(2kBt), ε/(kBt)] such
that 1/η ∈ Z, there is an algorithm which runs in time O(mrt) (i.e. O(rt) for each Xi)
and outputs X′1, . . . ,X

′
m satisfying∣∣∣∣value(S)−E

[∥∥∥∥θ +∑
i∈S

X′i

∥∥∥∥
∞

]∣∣∣∣ ≤ E

[∥∥∥∥∥∑
i∈S

X′i −Xi

∥∥∥∥∥
]

≤
∑
i∈S

E[‖X′i −Xi‖] ≤ k(δ + 2Btη) = O(ε)

for all k-subsets S ⊆ [m]. Furthermore, by Proposition 2 each X′i is of the form
{(p1, v1), . . . , (pt, vt)} where every pi is an integer multiple of η, and every vi is in
N . It follows that there are in fact at most

` ≤
(
|N | · η−1

t

)
= (|N |k3t/ε)O(t)

many distinct random variables Y1, . . . ,Y` in the multiset {X′1, . . . ,X′m}. Letting Mi

denote the multiplicity of Yi in {X′1, . . . ,X′n}, we have reduced the problem of finding
an O(ε)-optimal k-subset S ⊆ [m] to that of finding λ ∈ Z` that maximizes

E

[∥∥∥∥∥θ + ∑̀
i=1

λiYi

∥∥∥∥∥
]

(5)



subject to λi ∈ {0, 1, . . . ,Mi} and
∑̀
i=1

λi = k. (6)

Since there are at most 4k
(
`
k

)
many λ ∈ Z

` satisfying (6), and for each such λ the
quantity (5) can be computed in time O(nk · tk), the optimal λ can be found in time
O(nk · (4`t)k).
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