
The SDP value for random two-eigenvalue CSPs

Sidhanth Mohanty∗ Ryan O’Donnell† Pedro Paredes†

June 18, 2019

Abstract

We precisely determine the SDP value (equivalently, quantum value) of large random in-
stances of certain kinds of constraint satisfaction problems, “two-eigenvalue 2CSPs”. We show
this SDP value coincides with the spectral relaxation value, possibly indicating a computational
threshold. Our analysis extends the previously resolved cases of random regular 2XOR and
NAE-3SAT, and includes new cases such as random Sort4 (equivalently, CHSH) and Forrelation

CSPs. Our techniques include new generalizations of the nonbacktracking operator, the Ihara–
Bass Formula, and the Friedman/Bordenave proof of Alon’s Conjecture.

∗EECS Department, University of California Berkeley. Supported by NSF grant CCF-1718695
†Computer Science Department, Carnegie Mellon University. Supported by NSF grant CCF-1717606. This material

is based upon work supported by the National Science Foundation under grant numbers listed above. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation (NSF).

ar
X

iv
:1

90
6.

06
73

2v
1

 [
cs

.D
S]

 1
6

Ju
n

20
19

Contents

1 Introduction 1
1.1 Our results . 3
1.2 Sketch of our techniques . 4

1.2.1 Friedman/Bordenave Theorems for two-eigenvalue additive lifts 6
1.3 Relationship to the work of Bordenave–Collins . 8

2 Preliminaries 9
2.1 2XOR optimization problems and their relaxations . 9
2.2 Quantum games, and some quantum-relevant constraints 11
2.3 2XOR graphs with only 2 distinct eigenvalues . 12
2.4 Random constraint graphs, instance graphs, and additive products 13
2.5 Nomadic walks operators . 15
2.6 Operator Theory . 16

3 An Ihara–Bass formula for additive lifts of 2-eigenvalue atoms 17

4 Connecting the adjacency and nomadic spectrum 22

5 Additive products of 2-eigenvalue atoms 25
5.1 Enclosing the spectrum . 26
5.2 Construction of Witness Vectors . 28
5.3 SDP solution for random additive lifts . 31

6 Friedman/Bordenave for additive lifts 33
6.1 Trace Method setup, and getting rid of tangles . 34
6.2 Eliminating singletons, and reduction to counting . 36
6.3 Tangle-free, singleton-free linkages are nearly duplicative 38
6.4 The final countdown . 40

7 The SDP value for random two-eigenvalue CSPs 45

1 Introduction

This work is concerned with the average-case complexity of constraint satisfaction problems (CSPs).
In the theory of algorithms and complexity, the most difficult instances of a given CSP are ar-
guably random (sparse) instances. Indeed, the assumed intractability of random CSPs under-
lies various cryptographic proposals for one-way functions [Gol00, JP00], pseudorandom gener-
ators [BFKL93], public key encryption [ABW10], and indistinguishability obfuscation [Lin17], as
well as hardness results for learning [DS16] and optimization [Fei02]. Random CSPs also provide
a rich testbed for algorithmic and lower-bound techniques based on statistical physics [MM09]
and convex relaxation hierarchies [KMOW17, RRS17].

For a random, say, Max-Cut instance average degree d, its optimum value is with high proba-
bility (whp) concentrated around a certain function of d. Similarly, given a random 3SAT instance
where each variable participates in an average of d clauses, the satisfiability status is whp de-
termined by d. However explicitly working out the optimum/satisfiability as a function of d is
usually enormously difficult; see, for example, Ding–Sly–Sun’s landmark verification [DSS15] of
the kSAT threshold for sufficiently large k, or Talagrand’s proof [Tal06] of the Parisi formula for
the Sherrington–Kirkpatrick model (Max-Cut with random Gaussian edge weights). The latter
was consequently used by Dembo–Montanari–Sen [DMS17] (see also [Sen18]) to determine that
the Max-Cut value in a random d-regular graph is a 1

2 + P∗√
d
(1± od(1)) fraction of edges (whp),

where P∗ ≈ .7632 is an analytic constant arising from Parisi’s formula.

Computational gaps for certification. Turning to computational issues, there are two main al-
gorithmic tasks associated with an n-variable CSP: searching for an assignment achieving large
value (hopefully near to the optimum), and certifying (as, e.g., convex relaxations do) that no as-
signment achieves some larger value. Let’s take again the example of random d-regular Max-Cut,
where whp we have OPT ≈ 1

2 + P∗√
d
. It follows from [Lyo17] there is an efficient algorithm that

whp finds a cut of value at least 1
2 +

2/π√
d

. One might say that this provides a 2
πP∗ -approximation

for the search problem,1 where 2
πP∗ ≈ .83. On the other side, the Max-Cut in a d-regular graph

G is always at most 1
2 + −λmin(G)

2d , and Friedman’s proof of Alon’s Conjecture [Fri08] shows that
−λmin(G) 6 2

√
d− 1 + on(1) whp; thus computing the smallest eigenvalue efficiently certifies

OPT / 1
2 +

1√
d
. One might say that this efficient spectral algorithm provides a 1

P∗ -approximation

for the certification problem, where 1
P∗ ≈ 1.31.

It is a very interesting question whether either of these approximation algorithms can be im-
proved. On one hand, it would seem desirable to have efficient algorithms that come arbitrarily
close to matching the “true” answer on random inputs. On the other hand, the nonexistence of
such algorithms would be useful for cryptography and hardness-of-approximation and -learning
results.

Speaking broadly, efficient algorithms for the search problem seem to do better than efficient
algorithms for the certification problem. For example, given a random 3SAT instance with clause
density slightly below the satisfiability threshold of ≈ 4.2667, there are algorithms [MPR16] that
seem to efficiently find satisfying assignments whp. On the other hand, the longstanding Feige

1Depending on one’s taste in normalization; i.e., whether one prefers the objective function avg(u,v)∈E(
1
2 − 1

2 xuxv)

or − avg(u,v)∈E xuxv, for x ∈ {±1}V .

1

Hypothesis [Fei02] is that efficient algorithms cannot certify unsatisfiability at any large constant
clause density, and indeed there is no efficient algorithm that is known to work at density o(

√
n).

Similarly, for the Sherrington–Kirkpatrick model, Montanari [Mon18] has recently given an effi-
cient PTAS for the search problem2, whereas the best known efficient algorithm for the certifica-
tion problem is again only a 1/P∗-approximation. These kinds of gaps seem to be closely related
to “information-computation gaps” and Kesten–Stigum thresholds for information recovery and
planted-CSP problems.

In this work we focus on potential computational thresholds for random CSP certification/refutation
problems in the sparse setting, and in particular how these thresholds depend on the “type” of
the CSP. For CSPs with a predicate supporting a pairwise-uniform distribution — such as kSAT or
kXOR, k > 3 — there is solid evidence that the computational threshold for efficient certification
of unsatisfiability is very far from the actual unsatisfiability threshold. Such CSPs are whp un-
satisfiable at constant constraint density, but any polynomial-time algorithm using the powerful
Sum-of-Squares (SoS) algorithm fails to refute unless the density is Ω(

√
n/ log n) [KMOW17]. But

outside the pairwise-supporting case, and especially for “2XOR-like” CSPs such as Max-Cut and
NAE-3SAT (Not-All-Equal 3SAT), the situation is much more subtle. For one, the potential gaps
are much more narrow; e.g., in random NAE-3SAT, even a simple spectral algorithm efficiently
refutes satisfiability at constant constraint density. Thus one must look into the actual constants to
determine if there may be an “information-computation” gap. Another concern is that evidence
for computational hardness in the form of SoS lower bounds (degree 4 or higher) seems very hard
to come by (see, e.g., [Mon17]).

Prior work. Let us describe two prior efforts towards computational thresholds for upper-bound-
certification in “2XOR-like” random CSPs. Montanari and Sen [MS16] (see also [BKM17]) inves-
tigated the Max-Cut problem in random d-regular graphs, where the optimum value is 1

2 + P∗√
d

whp (ignoring 1± od(1) factors). Friedman’s Theorem implies that the basic eigenvalue bound
efficiently certifies the value is at most 1

2 + 1√
d
. By using a variant of the Gaussian Wave [Elo09,

CGHV15, HV15] construction for the infinite d-ary tree, Montanari and Sen were able to show
that even the Goemans–Williamson semidefinite programming (SDP) relaxation [DP93, GW95] is
still just 1

2 + 1√
d

whp. This may be considered evidence that no polynomial-time algorithm can

certify upper bounds better than 1
2 + 1√

d
, as Goemans–Williamson has seemed to be the optimal

polynomial-time Max-Cut algorithm in all previous circumstances. Of course it would be more
satisfactory to see higher-degree SoS lower bounds, but as mentioned these seem very difficult to
come by.

Recently, Deshpande et al. [DMO+19] have given similar results for random “c-constraint-
regular” NAE-3SAT CSPs; i.e., random instances where each variable participates in exactly c
NAE-3SAT constraints.3 Random c-constraint-regular instances of NAE-3SAT are easily shown
to be unsatisfiable (whp) for c > 8. Deshpande et al. identified an exact threshold result for when
the natural SDP algorithm is able to certify unsatisfiability: it succeeds (whp) if c > 13.5 and
fails (whp) if c < 13.5. Indeed, they show that for c > 14 even the basic spectral algorithm cer-
tifies unsatisfiability, whereas for c 6 13 even the SDP augmented with “triangle inequalities”

2Modulo a widely believed analytic assumption.
3We have changed terminology to avoid a potential future confusion; we will be associating NAE-3SAT constraints

with triangle graphs, so c-constraint-regular NAE-3SAT instances will be associated to 2c-regular graphs.

2

fails to certify unsatisfiability. Again, this gives evidence for a gap between the threshold for
unsatisfiability and the threshold for computationally efficient refutation. The techniques used
by Deshpande et al. are similar to those of Montanari–Sen, except with random (b, c)-biregular
graphs replacing random c-regular graphs. (The reason is that the primal graph of a random
c-constraint-regular NAE-3SAT instance resembles the square of a random (3, c)-biregular graph.)

In fact, the Deshpande et al. result is more refined, being concerned not just with satisfiability of
random NAE-3SAT instances, but their optimal value as maximization problems. Letting f (c) =
9
8 − 3

8 ·
(
√

c−1−
√

2)2

c for c > 3, they determined that in a random c-constraint-regular NAE-3SAT
instance, the SDP value is whp f (c) ± o(1); and furthermore, this is also the basic eigenvalue
bound and the SDP-with-triangle-inequalities bound. (Note that f (13.5) = 1.) Again, this may
suggest that in these instances, computationally efficient algorithms can only certify that at most
an f (c) + o(1) fraction of constraints are simultaneously satisfiable.

1.1 Our results

The goal of the present work is to generalize the preceding Montanari–Sen and Deshpande et al.
results to a broader class of sparse random 2CSPs and 2XOR-like optimization problems, obtaining
precise values for their SDP values. Along the way, we need to come to a deeper understanding
of the combinatorial and analytic tools used (nonbacktracking walks, Ihara–Bass formulas, eigen-
values of random graphs and infinite graphs) and we need to extend these tools to graphs that do
not locally resemble trees (as in Montanari–Sen and Deshpande et al.). We view this aspect of our
work as a main contribution, beyond the mere statement of SDP values for specific CSPs. We defer
to Section 1.2.1 more detailed discussions of the technical conditions under which we can obtain
Ihara–Bass and Friedman-, and Gaussian Wave-type theorems. But roughly speaking, we are able
to analyze the SDP value for random regular instances of optimization problems where each “con-
straint” (not necessarily a predicate) is an edge-signed graph with two eigenvalues. Such constraints
include: a single edge (corresponding to random regular Max-Cut or 2XOR as in Montanari–Sen);
a complete graph (studied by Deshpande et al., with the K3 case corresponding to random regular
NAE-3SAT); the Sort4 (a.k.a. CHSH) predicate; and, Forrelationk constraints. These last two have
motivation from quantum mechanics, and in fact the SDP value of the associated CSPs is precisely
their “quantum value”. We discuss quantum connections further in Section 2.2.

We state here two theorems that our new techniques allow us to prove. Recall the Sort4 predi-
cate, which is satisfied iff its 4 Boolean inputs x1, x2, x3, x4 satisfy x1 6 x2 6 x3 6 x4 or x1 > x2 >
x3 > x4. We precisely define “random c-constraint-regular CSP instance” in Section 2, but in brief,
we work in the “random lift” model, each variable participates in exactly c constraints, and each
constraint is given random negations.4

Theorem 1.1. For random c-constraint-regular instances of the Sort4-CSP, the SDP-satisfiability threshold
occurs (in a sense) at c = 4 + 2

√
2 ≈ 6.83. Indeed, if c > 7 then even the basic eigenvalue bound certifies

unsatisfiability (whp); and, if c 6 6 then the basic SDP relaxation fails to certify unsatisfiability (whp).

We remark that the trivial first-moment calculation shows that a random c-constraint-regular
Sort4-CSP is already unsatisfiable whp at degree c = 4. Thus we again have evidence for a gap
between the true threshold for unsatisfiability and the efficiently-certifiable threshold.

4Our result holds for either of the following two negation models: (i) each constraint is randomly negated; or, (ii) the
constraints are not negated, but each constraint is applied to random literals rather than random variables.

3

Generalizing this, the Forrelationk constraint is a certain (quantum-inspired) map {±1}2k+2k →
[−1,+1] that measures how correlated one k-bit Boolean function is with the Fourier transform of
a second k-bit Boolean function. We give precise details in Section 2.2; here we just additionally
remark that Forrelation1 corresponds to the “CHSH game”, and that 1

2 + Forrelation1 is equivalent
to the Sort4 predicate.

Theorem 1.2. For random c-constraint-regular instances of the Forrelationk-CSP and any constant ε > 0,
the SDP value is whp in the range 2

√
c−1

c·2k/2 ± ε. This is also true of the eigenvalue bound.

When considering the SDP value for 1
2 + Forrelation1, the formula above crosses the thresh-

old of 1 when c = 4 + 2
√

2, yielding the statement in Theorem 1.1 about the SDP-satisfiability
threshold of random c-constraint-regular Sort4-CSPs.

1.2 Sketch of our techniques

Here we sketch how our results like Theorem 1.1 and Theorem 1.2 are proven, using random Sort4-
CSPs as a running example. A key property of the Sort4 predicate is that it is essentially equivalent
to the following “2XOR” instance:

Figure 1: The Sort4 predicate

More precisely, suppose (x1, x2, x3, x4) ∈ {±1}4 satisfies the Sort4 predicate. Then in the graph
above, exactly 3 out of 4 edges will be “satisfied” — where an edge is considered satisfied when
the product of its endpoint-labels equals the edge’s label. Conversely, if (x1, x2, x3, x4) doesn’t
satisfy Sort4 then exactly 1 out of the 4 edges above will be satisfied. Now suppose we choose a
random n-vertex c-constraint-regular instance I of the Sort4-CSP with, say, c = 2. A small piece of
such an instance might look like the following:5

Figure 2: Piece of Sort4 instance

Up to a trivial affine shift in the objective function, the optimization task is now to label the
variables/vertices of I with ±1 values x1, . . . , xn so as to maximize 1

n ∑ij Aijxixj, where A ∈
5In fact, since we will have random negations in our instances, some 4-cycles will have three edges labeled −1 and

one labeled +1, as opposed to the other way around. This is not an important issue for this proof sketch.

4

{0,±1}n×n is the adjacency matrix of the edge-signed graph partially depicted above. The “eigen-
value upper bound” EIG(I) arises from allowing the xi’s to be arbitrary real numbers, sub-
ject to the constraint ∑i x2

i = n. The “SDP upper bound” SDP(I) (which is at least as tight:
SDP(I) 6 EIG(I)) arises from allowing the xi’s to be arbitrary unit vectors in Rn, with the inner
product 〈xi, xj〉 replacing xixj in the objective function. Our goal is to identify some quantity f (c)

(it will be 1+
√

2
2 in the c = 2 case) such that

EIG(I) . f (c) . SDP(I) (1)

up to 1± o(1) factors, with high probability. This establishes that all three quantities are equal (up
to 1± o(1), whp), since SDP(I) 6 EIG(I) always.

In this section we mainly describe how to obtain the optimal inequality on the left in (1); i.e.,
how to give a tight bound on the eigenvalues of (the edge-signed graph induced by) I . Notice
that if we were studying just random Max-Cut or 2XOR CSPs, we would have to get tight bounds
on the eigenvalues of a standard random c-regular graph.6 Excluding the top eigenvalue of c in
the case of Max-Cut, these eigenvalues are (whp) all at most 2

√
c− 1+ on(1) in magnitude. This is

thanks to Friedman’s (difficult) proof of Alon’s Conjecture [Fri08], made moderately less difficult
by Bordenave [Bor15]. The “magic number” 2

√
c− 1 is precisely the spectral radius of the infinite

c-regular tree — i.e., the infinite graph that random c-regular graphs “locally resemble”.
Returning to random 2-constraint-regular instances of the Sort4-CSP, the (edge-signed) infinite

graph X that they “locally resemble” is the following:

Figure 3: Sort4 infinite graph

Here X := Sort4 + Sort4 is the so-called additive product of 2 copies of the Sort4 graph, a notion
recently introduced in [MO18]. By analogy with Alon’s Conjecture, it’s natural to guess that the
spectral radius of a random 2-constraint-regular Sort4-CSP instance is whp ρ(X) ± on(1), where
ρ(X) denotes the spectral radius of X (which can be shown to be 2

√
2). Indeed, our main effort

is to prove the upper bound of ρ(X) + on(1), thereby establishing the left inequality in (1) with
f (c) = ρ(X). (As for the right inequality, it can proven using the “Gaussian Wave” idea, allowing
one to convert approximate eigenvectors of the infinite graph X to matching SDP solutions on
random finite graphs I . We carry this out in Section 5.)

6More precisely, for random Max-Cut we have to lower-bound the smallest eigenvalue; for random 2XOR — which
includes randomly negating edges — we have to upper-bound the largest eigenvalue. In the Max-Cut version with no
negations, there is the usual annoyance that there is always a first “trivial” eigenvalue of c, and one essentially wants to
bound the second-largest (in magnitude) eigenvalue. The effect of random negations is generally to eliminate the trivial
eigenvalue, allowing one to focus simply on the spectral radius of the adjacency matrix. This technical convenience is
one reason we will always work in a model that includes random negations.

5

1.2.1 Friedman/Bordenave Theorems for two-eigenvalue additive lifts

As stated, our main task in the context of large random 2-constraint-regular Sort4-CSP instances
is to show that their spectral radius is at most ρ(X) + on(1) whp. Incidentally, the lower bound
of ρ(X)− on(1) indeed holds; it follows from a generalization of the “Alon–Boppana Bound” due
to Grigorchuk and Żuk [GZ99]. As for the upper bound, the recent work [MO18] implies the
analogous “Ramanujan graph” statement; namely, that there exist arbitrarily large 2-constraint-
regular Sort4-CSP instances with largest eigenvalue exactly upper-bounded by ρ(X). However we
need the analogue of Friedman/Bordenave’s Theorem. Unlike in [MO18] we are not able to prove
it for arbitrary additive products; we are able to prove it for additive products of “two-eigenvalue”
edge-signed graphs. To explain why, we first have to review the proofs of the Alon Conjecture
(that c-regular random graphs have their nontrivial eigenvalues bounded by 2

√
c− 1 + on(1)).

Both Friedman’s and Bordenave’s proof of the Alon Conjecture rely on very sophisticated uses
of the Trace Method. Roughly speaking, this means counting closed walks of a fixed length k
in random c-regular graphs, and (implicitly) comparing these counts to those in the c-regular
infinite tree. Actually, both works instead count only nonbacktracking walks. The fact that one can
relate nonbacktracking walk counts to general walk counts is thanks to an algebraic tool called
the Ihara–Bass Formula (more on which later); this idea was made more explicit in Bordenave’s
proof. Incidentally, use of the nonbacktracking walk operator has played a major role in recent
algorithmic breakthroughs on community detection and related results (e.g., [KMM+13, MNS18,
Mas14, BLM15]).

A reason for passing to nonbacktracking closed walks is that it greatly simplifies the count-
ing. Actually, in the case of the infinite c-regular tree, it oversimplifies the counting; infinite trees
have no nonbacktracking closed walks at all! However, the correct quantity to look at is “almost”
nonbacktracking walks of length k, meaning ones that are nonbacktracking for the first k/2 steps,
and for the last k/2 steps, but which may backtrack once right in the middle. There are essentially
(c − 1)k/2 of these in the c-regular infinite tree (one may take k/2 arbitrary steps out, but then
one must directly walk back home), yielding a value of ((c− 1)k/2)1/k =

√
c− 1 for the spectral

radius of the nonbacktracking operator of the c-regular infinite tree. Bordenave uses (a very tricky
version of) the Trace Method to analogously show that the spectral radius of the nonbacktracking
operator of a random c-regular graph is

√
c− 1 + on(1) whp. Thanks to the Ihara–Bass Formula,

this translates into a bound of 2
√

c− 1 + on(1) for the spectral radius of the usual adjacency oper-
ator.

Returning now to our scenario of random 2-constraint-regular Sort4-CSP instances (with their
analogous infinite edge-signed graph X), we encounter a severe difficulty. Namely, passing to
nonbacktracking walks no longer creates a drastic simplification in the counting, since there are
nonbacktracking cycles within the constraint graphs themselves (in our example, 4-cycles graphs).7

Thus nonbacktracking closed walks in large random instances can have complicated structures,
with many internal nonbacktracking cycles.

A saving grace in the case of Sort4-CSPs, and also ones based on Forrelationk or complete-
graph constraints for example, is that the adjacency matrices of these graphs have only two distinct
eigenvalues. (We will also use that their edge weights are ±1.) For example, after rearranging the

7In fact, since we have edge weights (signs), we need to look at the weight (not number) of walks, but the point still
stands.

6

variables in the Sort4 predicate, its adjacency matrix is

A =


0 0 +1 +1
0 0 +1 −1
+1 +1 0 0
+1 −1 0 0

 , (2)

which has eigenvalues of ±
√

2 (with multiplicity 2 each). The two-eigenvalue property implies
that A satisfies a quadratic equation, and hence any polynomial in A is equivalent to a polynomial
of degree at most 1. The upshot is that we can relate general walks in Sort4-CSPs (or more generally,
CSPs with two-eigenvalue constraints) to what we call nomadic walks: ones that take at most 1
consecutive step within a single constraint. Let us make an informal definition (see Section 2.4 for
a formal definition):

Definition 1.3. Given a finite CSP graph, the nomadic walk operator B is a matrix indexed by the
directed edges in the graph. Its B[e, e′] entry is equal to the edge-weight of e′ provided:

• (e, e′) forms an oriented length-2 path; and,

• e and e′ come from different constraints.

Otherwise the B[e, e′] entry is 0. This operator generalizes the nonbacktracking walk operator for
Max-Cut/2XOR graphs in which each undirected edge is considered to be a single “constraint”.

The utility of this nomadic walk operator is twofold for us. First, for two-eigenvalue CSPs we
can relate the eigenvalues of the usual adjacency operator to those of the nomadic walk operator
through the following generalization of the Ihara–Bass Formula:

Theorem 1.4 (informal). Let A be the adjacency matrix and B the nomadic walk operator of a finite c-
constraint-regular CSP graph on n vertices, where each predicate has exactly 2 distinct eigenvalues: λ1 and
λ2. Define L(t) := 1− At + (λ1 + λ2)t1+ (c− 1)(−λ1λ2)t2. Then we have

(1 + λ1t)n cλ2
λ2−λ1

−1
(1 + λ2t)n cλ1

λ1−λ2
−1 det L(t) = det(1− Bt).

We prove Theorem 1.4 in Section 3. In the remaining discussion below, we let B be the nomadic
walk operator of a random c-constraint-regular CSP graph on n vertices, where the precise random
model is given in Definition 2.18. Further, we assume that the predicate of the CSP has two distinct
eigenvalues: λ1 and λ2.

The second utility of nomadic walks is that they provide the key simplification needed to make
closed-walk counting in non-tree-like CSPs tractable. Because of this, we are able to establish the
following modification of Bordenave’s proof of Friedman’s Theorem in Section 6:

Theorem 1.5. With high probability,

ρ(B) 6
√
(c− 1)(−λ1λ2) + on(1).

And we can use our version of Ihara–Bass, Theorem 1.4, to conclude bounds on the spectrum
of the adjacency matrix A from Theorem 1.5, which is worked out in Section 4.

7

Theorem 1.6. With high probability,

Spec(A) ⊆
[

λ1 + λ2 − 2
√
(c− 1)(−λ1λ2)− o(1), λ1 + λ2 + 2

√
(c− 1)(−λ1λ2) + o(1)

]
.

Yet another advantage of using nomadic walks instead of closed walks is that in Theorem 1.6
we are able to bound the left and right spectral edge of A by different values, whereas counting
closed walks would, at best, only give an upper bound on |λ|max(A).

Theorem 1.6 lets us conclude an upper bound on the SDP value, and we complement that with
a lower bound via the construction of an SDP solution that nearly matches the upper bound. In
particular, we prove the following in Section 5.

Theorem 1.7. For every ε > 0, whp there exists a PSD matrix M with an all-ones diagonal such that

〈A, M〉 >
(

λ1 + λ2 + 2
√
(c− 1)(−λ1λ2)− ε

)
n.

As detailed out in Section 7, this lets us conclude the main theorem of this paper:

Theorem 1.8. For random c-constraint-regular instances of a CSP with 2 distinct eigenvalues λ1 and λ2,
the SDP value is in the range

λ1 + λ2 + 2
√
(c− 1)(−λ1λ2)

c(−λ1λ2)
± ε

with high probability, for any ε > 0.

Theorem 1.2 can be viewed as a special case of Theorem 1.8.

1.3 Relationship to the work of Bordenave–Collins

Xinyu Wu has brought to our attention the relevance to our work of a recent paper by Bordenave
and Collins [BC18]. Briefly put, their paper establishes a Friedman/Bordenave theorem for large
random graphs whose adjacency matrices are noncommutative polynomials in a fixed number
of independent random matching matrices and permutation matrices (together with their trans-
poses). As a most basic example, it recovers the following form of Friedman’s Theorem: whp,
the sum of d random perfect matchings has all nontrivial eigenvalues bounded in magnitude by
ρ(Z2 ∗ · · · (d times) · · · ∗ Z2) + on(1) = 2

√
d− 1 + on(1). However, the Bordenave–Collins work

gives much more than this. For example, let G be the n-vertex graph formed as

P + P> + M − PMP>,

where M is a random matching matrix and and P is an independent random permutation matrix.
It is not hard to see that G will essentially “locally resemble” a 2-constraint-regular Sort4-CSP
instance. And, the Bordenave–Collins work implies that the eigenvalues of G are bounded (whp)
by ρ(Sort4 + Sort4). Using the theory of free probability, it is possible to directly compute that
ρ(Sort4 + Sort4) = 2

√
2. In this way, our Theorem 1.6 in the case of 2-constraint-regular Sort4-

CSPs is covered by Bordenave and Collins. Indeed, it is not hard to generalize this example to the
case of c-constraint-regular Sort4-CSPs for any even integer c.

8

Indeed, the Bordenave–Collins work also treats some kinds of graphs that our work cannot;
for example, Wu gave the example when G is the n-vertex graph generated by the polynomial

P1 + P>1 + P2 + P>2 + P3 + P>3 + P4 + P>4 + P1P2P3P4 + P>4 P>3 P>2 P>1 ,

where P1, . . . , P4 are independent uniformly random permutation matrices. This G “locally re-
sembles” the infinite free product graph X = Z4 ∗ Z4 ∗ Z4 ∗ Z4, and the Bordenave–Collins work
implies that whp, G’s nontrivial eigenvalues are bounded in magnitude by ρ(X) + on(1). (We
remark that computing the numeric value of this ρ(X) is difficult, but possible; see, e.g., [Woe00,
Ch. 9C]). Since the 4-cycle graph Z4 has more than two distinct eigenvalues, it is not covered by
our work.

This said, the Bordenave–Collins work does not subsume our Theorem 1.6, as there are plenty
of graph families that our theorem handles but Bordenave–Collins’s does not (seem to). For ex-
ample, Wu has sketched to us a proof that one cannot obtain c-constraint-regular Sort4 instances
for odd c through any straightforward use of [BC18]. Additionally, even in the cases of interest to
us where Bordenave–Collins applies, we can point to some (minor) advantages of our methods.
For one, our model of random graph generation clearly corresponds to precisely-regular CSP in-
stances, whereas in the Bordenave–Collins model there will be (in expectation) a constant number
of local “blemishes” where one cannot interpret a piece of the graph as a constraint. For another,
our work directly yields the numerical values of the appropriate spectral radii ρ(X) (though in the
cases where our results apply, these can be obtained through standard methods in free probabil-
ity).

2 Preliminaries

2.1 2XOR optimization problems and their relaxations

All of the CSPs studied in this work (Max-Cut, NAE-3SAT, Sort4, Forrelationk, etc.) will effectively
reduce to 2XOR optimization problems — equivalently, the problem maximizing a homogeneous
degree-2 polynomial with ±1 coefficients over the Boolean hypercube.

Definition 2.1. (Optimization of 2XOR instances) Let G = (V, E) be an undirected graph (possibly
with parallel edges), with edge-signing wt : E → {±1}. We call the pair I = (G, wt) an instance.
The associated 2XOR optimization problem is to determine the (true) optimum value

OPT(I) = max
x:V→{±1}

avg
e={u,v}∈E

{wt(e)xuxv} ∈ [−1,+1].

The special case in which wt ≡ −1 is referred to as the Max-Cut problem on G, as in this case
1
2 +

1
2 OPT(I) = Max-Cut(G), the maximum fraction of edges that can be cut by a bipartition of V.

Determining OPT(I) is NP-hard in the worst case, leading to the study of computationally
tractable approximations/relaxations. Two such approximations are the eigenvalue bound and the
SDP bound, which we now recall.

Definition 2.2. (Adjacency matrix/operator) The adjacency matrix A of a finite weighted graph
(G, wt) has rows and columns indexed by V; the entry A[u, v] equals the sum of wt(e) over all

9

edges with endpoints {u, v}. In case G is infinite we can more generally define the adjacency
operator A on `2(V) as follows:

for F ∈ `2(V), AF(u) = ∑
e=(u,v)∈E

wt(e)F(v).

Definition 2.3. (Eigenvalue bound) The eigenvalue bound EIG(I) for 2XOR instance I with adja-
cency matrix A is n

2|E|λmax(A), where λmax denotes the maximum eigenvalue. We have OPT(I) 6
EIG(I) always, as the eigenvalue bound captures the relaxation of 2XOR optimization where we
allow any x : V → R satisfying ‖x‖2 = n.

The SDP value provides an even tighter upper bound on OPT(I), and is still efficiently com-
putable.8 The SDP bound dates back to Lovász’s Theta Function in the context of the IndependentSet
problem [Lov79], and was proposed in the context of the Max-Cut problem by Delorme and Pol-
jak [DP93].

Definition 2.4. (SDP bound) The SDP bound SDP(I) for 2XOR instance I is

SDP(I) = max
~x:V→Sm−1

avg
e={u,v}∈E

{wt(e)〈~xu,~xv〉} ∈ [−1,+1],

where Sm−1 refers to the set of unit vectors inRm and the maximum is also over m (though m = n
is sufficient). The following holds for all I :

OPT(I) 6 SDP(I) 6 EIG(I).

The left inequality is obvious. One way to see the right inequality is to use the fact [DP93], based
on SDP duality, that SDP(I) is also equal to the minimum value of the eigenvalue bound applied
to A + Y, where A is the adjacency matrix and Y ranges over all matrices of trace 0.

Goemans and Williamson [GW95] famously showed that

1
2 +

1
2 SDP(I) 6 1.138(1

2 +
1
2 OPT(I))

holds for every 2XOR instance, and Feige–Schechtman [FS02] showed their bound can be tight in
the worst case.9 As for directly comparing SDP(I) and OPT(I), we have the following:

• ([CW04]) SDP(I) 6 O(OPT(I) · log(1/OPT(I))) always holds.

• When G is bipartite (a special case of particular interest, see Section 2.2), it holds that SDP(I) 6
K ·OPT(I) for constant K. This is known as Grothendieck’s inequality [Gro53], and the con-
stant is known [BMMN13] to satisfy K < π/(2 ln(1 +

√
2)) ≈ 1.78.

8More precisely, it can be computed to within ±ε in poly(|I|, log(1/ε)) time using the Ellipsoid Algorithm [GLS88,
DP93].

9The case of Max-Cut on the 5-cycle — i.e., maximizing − 1
5 (x1x2 + x2x3 + x3x4 + x4x5 + x5x1) on {±1}5 — already

has OPT = 3/5 and SDP = (1 +
√

5)/4, showing that 1.138 cannot be improved below 1.131.

10

2.2 Quantum games, and some quantum-relevant constraints

In the case when the underlying graph G is bipartite, SDP(I) has another important interpreta-
tion: it is the true quantum value of the 2-player 1-round “nonlocal game” associated to I . We
give definitions below, but let us mention that the Sort4 (equivalently, CHSH) and Forrelationk con-
straints from Theorem 1.1 and Theorem 1.2 are both: (a) bipartite; (b) directly inspired by quantum
theory. Thus those two theorems can be interpreted as determining the true quantum value of ran-
dom c-constraint-regular nonlocal games based on CHSH and Forrelationk.

Let us now recall the relevant quantum facts.

Definition 2.5 (Nonlocal 2XOR games). Given a 2XOR instance I = (G, wt) with G = (U, V, E) bi-
partite, the associated nonlocal (2XOR) game is the following. There are spatially separated players
Alice and Bob. A referee chooses e = (u, v) ∈ E uniformly at random, tells u to Alice, and tells v
to Bob. Without communicating, Alice and Bob are required to respond with signs xu, yv ∈ {±1}.
The value to the players is the expected value of wt(e)xuyv. It is easy to see that if Alice and Bob
are deterministic, or are allowed classical shared randomness, then the optimum value they can
achieve is precisely OPT(I).
Theorem 2.6. ([CHTW04, Tsi80].) In a nonlocal 2XOR game, if Alice and Bob are allowed to share
unlimited quantumly entangled particles, then the optimal value they can achieve is precisely SDP(I).

The fact that there exist bipartite edge-signed I for which SDP(I) > OPT(I) is foundational
for the experimental verification of quantum mechanics, as the following example attests:

Example 2.7. Consider the 2XOR instance depicted in Figure 4, called CHSH after Clauser, Horne,
Shimony, and Holt [CHSH69]. It has

OPT(CHSH) = 1/2 < 1/
√

2 = SDP(CHSH).

The upper bound 4 ·OPT(CHSH) 6 2 is often called Bell’s inequality [Bel64], and the higher lower

+1

+1
+1−1

x1 x3

x4x2

Figure 4: The CHSH game/CSP

bound 1/
√

2 6 SDP(CHSH) is from [CHSH69] (with SDP(CHSH) 6 1/
√

2 due to Tsirelson [Tsi80]).
Aspect and others [ADR82] famously experimentally realized this gap between what can be achieved
with classical vs. quantum resources.

In fact, the CHSH instance is nothing more than the Sort4 predicate in disguise! More precisely
(cf. (2)),

CHSH(x1, x2, x3, x4) =
1
4 (x1x3 + x2x3 + x1x4 − x2x4) = Sort4(x2, x3, x1, x4)− 1

2 .

Thanks to its degree-2 Fourier expansion, CSPs based on the Sort4/CHSH constraint have been
studied in a variety of contexts, including concrete complexity [Amb06, APV16, OST+14] and
fixed parameter algorithms [Wil07].

11

Though Sort4 is a “predicate”, in the sense that it takes 0/1 (unsat/sat) values, there’s nothing
necessary about basing a large CSP on predicates. An interesting family of constraints that can be
modeled by 2XOR optimization, originally arising in quantum complexity theory [AA15], is the
family of “Forrelation” functions. For any k ∈ N, the Forrelationk function is defined by

Forrelationk : {±1}2k × {±1}2k → [−1,+1], Forrelationk(x1, . . . , x2k , y1, . . . , y2k) = 2−2kx>Hky,

where Hk =

(
+1 +1
+1 −1

)⊗k

is the kth Walsh–Hadamard matrix. Note that Forrelation0 corresponds

to the single-(positive-)edge 2XOR CSP, and Forrelation1 is CHSH.

2.3 2XOR graphs with only 2 distinct eigenvalues

As mentioned, the class of constraints that we treat in this work are those that can be modeled as
2XOR instances with 2 distinct eigenvalues. The Forrelationk constraint is a prime example; when
viewed as an edge-signed graph (i.e., ignoring the 2−2k scaling factors), its eigenvalues are all
±2k/2. Another example is the complete graph constraint on r variables, which has eigenvalues
of r− 1 and −1 (the latter with multiplicity r− 1). The r = 3 complete-graph case, after a trivial
affine shift, also corresponds to a Boolean predicate that is well known in the context of CSPs: the
NAE-3SAT predicate, as studied in [DMO+19]. This is because

NAE-3SAT(x1, x2, x3) =
3
4
− 3

4
(x1x2 + x2x3 + x3x1).

Let us make some definitions we will use throughout the paper.

Definition 2.8 (2-eigenvalue graphs). We call an undirected, edge-weighted simple graph I a 2-
eigenvalue graph if there are two real numbers λ1 and λ2 such that each eigenvalue of I ’s (signed)
adjacency matrix A is equal to either λ1 or λ2.

See, e.g., [Ram15] for a paper studying such graphs. In this section, let us use the notation from
Definition 2.8 and prove some properties that will be used throughout the paper.

First, since A is symmetric, its eigenvectors are spanning and therefore every vector can be
written as the sum of a vector in ker(A− λ11) and one in ker(A− λ21). Thus:

Proposition 2.9. (A− λ11)(A− λ21) = 0, where 1 denotes the identity matrix.

This proposition implies that A2 = (λ1 + λ2)A− λ1λ21. Thus we can deduce the following
two facts:

Fact 2.10. For any v ∈ V(G), ∑
u∈V(G)

A[u, v]2 = A2[v, v] = −λ1λ2.

Fact 2.11. For any pair of distinct vertices u, v ∈ V(G),

∑
w∈V(G)

A[u, w]A[w, v] = A2[u, v] = (λ1 + λ2)A[u, v].

12

2.4 Random constraint graphs, instance graphs, and additive products

Definition 2.12 (Constraint graphs). An r-ary, c-atom constraint graph is any n-fold lift H of the
complete bipartite graph Kr,c. Each vertex on the c-regular side is called a variable vertex, and is
typically depicted by a circle. The variable vertices are partitioned into r variable groups each of
size n, called the 1st variable group, the 2nd variable group, etc. Each vertex on the r-regular side
is called a constraint (or atom) vertex, and is typically depicted by a square. Again, the constraint
vertices are partitioned into c constraint (or atom) groups of size n, called the 1st constraint/atom
group, 2nd constraint/atom group, etc. When n = 1, we call H a base constraint graph. We also allow
“n = ∞”: this means we take the infinite (r, c)-biregular tree and partition its variable vertices
into r groups and its constraint variables into c groups in such a way that every variable vertex in
the ith group has exactly one neighbor from each of the c constraint groups, and similarly every
constraint vertex in the jth group has exactly one neighbor from each of the r variable groups. An
example of a constraint graph is shown in Figure 6. 10

Figure 5: The complete K4,3 graph

Definition 2.13 (Instance graphs). Let A = (A1, . . . , Ac) be a sequence of atoms, meaning edge-
weighted undirected graphs on a common vertex set [r]. (In this paper, the edge-weights will
usually be ±1.) We also think of each atom as a collection of “2XOR-constraints” on variable set r.
Now given an r-ary, c-atom constraint graph H, we can combine it with the atom specification A
to form the instance graph I := A(H). This edge-weighted undirected graph I has as its vertex set
all the variable vertices ofH. The edges of I are formed as follows: We iterate through each j ∈ [c]
and each constraint vertex f in the jth constraint group of H. Given f , with variables neighbors
v1, . . . , vr in H, we place a copy of atom Aj onto these vertices in I . (I may end up with parallel
edges.) We refer to the graph obtained by placing a copy of Aj on vertices v1, . . . , vr as A f , and for
any edge e in I that came from placing Aj, we define Atom(e) := A f . We use v ∼ A f to denote
that v is one of v1, . . . , vr. For u, v ∈ {v1, . . . , vr}, A f (u, v) denotes the edge in A f between u and
v. And finally, denote the set {A f : f constraint vertex in H} with Atoms(I). An example of an
instance graph and corresponding constraint graph is shown in Figure 6.

Remark 2.14. Forming I fromH is somewhat similar to squaringH (in the graph-theoretic sense)
and then restricting to the variable vertices. With this in mind, here is an alternate way to describe
the edges of I : For each pair of distinct vertices v, v′ in I (in variable groups i and i′, respectively)

10This can be done in an arbitrary “greedy” way, fixing any, say, constraint vertex to be in “group 1”, fixing its
variables neighbors to be in groups 1 . . . r in an arbitrary way, fixing their constraint neighbors to be in groups 2 . . . c in
an arbitrary way, etc.

13

we consider all length-2 paths joining v and v′ in H. For each such path passing through a con-
straint vertex in constraint group j, we add the edge (v, v′) into I with edge-weight Aj[i, i′] (which
may be 0).

Remark 2.15. We treat atoms as edge-weighted, undirected, complete graphs. Thus, for a con-
straint vertex f in constraint-graph H, if there is an edge between vertices u and v, and an edge
between vertices v and w in the atom A f , then there is an edge between u and w in A f . This view
is significant in light of the proof of Theorem 3.1.

Figure 6: The figure on the left shows an example of a 4-ary, 2-atom 3-fold lift constraint graph,
with the left bipartition color coded by constraint/atom groups. The figure on the right is the
corresponding instance graph on (C4, C4), two four-cycle graphs, where each atom is color coded
to match the figure on the left.

The following notions of additive lifts and additive products were introduced in [MO18]:

Definition 2.16 (Random additive lifts). In the context of r-ary, c-atom constraint graphs, a random
n-lifted constraint graph simply means a usual random n-lift H (see, e.g., [BL06]) of the base con-
straint graph. Given atoms A = (A1, . . . , Ac), the resulting instance graph I = A(H) is called a
random additive lift of A.

Definition 2.17 (Additive products). If instead H is the “∞-lift” of Kr,c, the resulting infinite in-
stance graph I = A(H) is called the additive product of A1, . . . , Ac, denoted A1 + A2 + · · · + Ac.

We will also extend Definition 2.13 to allow random additive lifts with negations. Eventually
we will define a general notion of “1-wise uniform negations”, but let us begin with two special
cases. In the “constraint negation” model, we assign to each constraint vertex f inH (from group j)
an independent uniformly random sign ξ f . Then, when the instance graph I is formed from H,
each edge engendered by the constraint f has its weight multiplied by ξ f . (Thus the edges in
this copy of the atom Aj are either all left alone or they are simultaneously negated, with equal
probability.) In the “variable negation” model, for each group-j constraint vertex f , adjacent to
variable vertices v1, . . . , vr, we assign independent and uniformly random signs (ξ

f
i)i∈[r] to the

variables. Then when the copy of Aj is added into I , the {i, i′}-edge has its weight multiplied by

ξ
f
i ξ

f
i′ . This corresponds to the constraint being applied to random literals, rather than variables.
Notice that in both of these negation models, every time a copy of atom Aj is placed into I , its

edges are multiplied by a collection of random signs (ξ
f
ij)i,j∈[r] which are “1-wise uniform”. This

is the only property we will require of a negation model.

14

Definition 2.18 (Random additive lifts with negations). A random additive lift with 1-wise uniform
negations is a variant of Definition 2.13 where, for each constraint vertex f there are associated
random signs ξ

(f)
i ∈ {±1}, where i ∈ [r]. For each fixed f , the random variables ξ

(f)
i are required

to be ±1 with probability 1/2 each, but they may be arbitrarily correlated; across different f ’s, the
collections (ξ(f)

i)i∈[r] must be independent. When the instance graph I is formed as A(H), and a
copy of Aj placed into I thanks to constraint vertex f , each new edge {i, i′} has its weight Aj[i, i′]

multiplied by ξ
(f)
ii′ := ξ

(f)
i ξ

(f)
i′ .

Remark 2.19. For a given constraint-vertex f of an instance graph I obtained via a random addi-
tive lift with negations, the matrix Adj(A f) has the same spectrum as Adj(A f) where A f denotes
the subgraph prior to applying random negations, since there is a sign diagonal matrix D such
that Adj(A f) = D ·Adj(A f) · D†.

2.5 Nomadic walks operators

Definition 2.20 (Nomadic walks). Let H be a constraint graph, A = (A1, . . . , Ac) a sequence of
atoms, and I = A(H) the associated instance graph. For initial simplicity, assume the atoms are
unweighted (i.e., all edge weights are +1). A nomadic walk in I is a walk where consecutive steps
are prohibited from “being in the same atom”. Note that if r = 2 and the atoms are single edges,
a nomadic walk in I is equivalent to a nonbacktracking walk.

To make the definition completely precise requires “remembering” the constraint graph struc-
ture H. Each step along an edge of I corresponds to taking two consecutive steps in H (starting
and ending at a variable vertex). The walk in I is said to be nomadic precisely when the associated
walk inH is nonbacktracking.

Finally, in the general case when the atoms Aj have weights, each walk in I gets a weight equal
to the product of the edge-weights used along the walk.

Figure 7: The figure on the left shows a nonbacktracking walk on a subset of a 3-ary constraint
graph and the one on the right the same nomadic walk on the corresponding instance graph.

Definition 2.21 (Nomadic walk operator). In the setting of the previous definition, the nomadic
walk operator B for I is defined as follows. Each edge e = {u, v} in I is regarded as two opposing
directed edges ~e = (u, v) and ~e−1 = (v, u), each having the same edge-weight as e; i.e., wt(~e) =

wt(~e−1) = wt(e). Let ~E denote the collection of all directed edges. Now B is defined to be the

15

following linear operator on `2(~E):

for F ∈ `2(~E), BF(~e) = ∑
~e′

wt(~e′)F(~e′),

where the sum is over all directed edges~e′ such that the pair (~e,~e′) forms a nomadic walk of length-
2. In the finite-graph case we also think of B as a matrix; the entry B[~e,~e′] = wt(~e′) whenever (~e,~e′)
is a length-2 nomadic walk. Again, in the case where r = 2 and all atoms are single edges, the
nomadic walk operator B coincides with the nonbacktracking walk operator. (See, e.g., [AFH15]
for more on nonbacktracking walks operators.)

2.6 Operator Theory

The results in this section can be found in a standard textbook on functional analysis or operator
theory (see, for e.g. [Kub12]).

Let V be an some countable set and let T : `2(V) → `2(V) be a bounded, self-adjoint linear
operator.

Definition 2.22. We refer to the spectrum of T, Spec(T), as the set of all complex λ such that λ1− T
is not invertible. Spec(T) is a nonempty, compact set.

Definition 2.23. We call λ an approximate eigenvalue of T if for every ε > 0, there is unit x in X such
that ‖Tx− λx‖ 6 ε. We call such an x an ε-approximate eigenvector or ε-approximate eigenfunction.

Theorem 2.24. If T is a self-adjoint operator, then every λ ∈ Spec(T) is an approximate eigenvalue.

Theorem 2.25. [Consequence of Proposition 4.L of [Kub12]] If λ is an isolated point in Spec(T), then it
is an eigenvalue of T, i.e., it is a 0-approximate eigenvalue.

Corollary 2.26. λmin := min{Spec(T)} and λmax := max{Spec(T)} are both approximate eigenvalues
of T.

Fact 2.27. Additionally,

λmin(T) = inf
‖x‖=1

〈x, Tx〉,

λmax(T) = sup
‖x‖=1

〈x, Tx〉.

Definition 2.28. The spectral radius ρ(T) is defined as maxσ∈Spec(T) |σ|.

Definition 2.29. The operator norm of T, denoted ‖T‖op, is defined as

sup
‖x‖=1,‖y‖=1

〈y, Tx〉 = sup
‖x‖=1

‖Tx‖.

Fact 2.30. ρ(T) = lim
k→∞
‖Tk‖1/k

op .

16

3 An Ihara–Bass formula for additive lifts of 2-eigenvalue atoms

Let A be a sequence of atoms such that every atom has the same pair of exactly two distinct
eigenvalues, λ1 and λ2, and let H be a constraint graph on variable set V. Let I = A(H) be the
corresponding instance graph. In this section, we use A and B to refer to the adjacency matrix and
nomadic walk matrix respectively of I . The vertex set of I is V. This section is devoted to proving
our generalization of the Ihara–Bass formula, stated below.

Theorem 3.1. Let L(t) := 1− At + (λ1 + λ2)t1+ (c− 1)(−λ1λ2)t2. Then we have

(1 + λ1t)|V|
cλ2

λ2−λ1
−1
(1 + λ2t)|V|

cλ1
λ1−λ2

−1 det L(t) = det(1− Bt).

Our proof is a modification of one of the proofs of the Ihara–Bass formula from [Nor97].

Nomadic Polynomials. Our first step is to define the following sequence of polynomials.

p0(x) = 1

p1(x) = x

p2(x) = x2 − (λ1 + λ2)x− c(−λ1λ2)

pk(x) = xpk−1(x)− (λ1 + λ2)pk−1(x)− (c− 1)(−λ1λ2)pk−2(x) for k > 3

and introduce the key player in the proof: the matrix of generating functions F(t) defined by

F(t)u,v = ∑
k>0

pk(A)tk.

We use wt(e) to denote the weight on edge e, and define the weight of a walk W = e1e2 . . . e` as

wt(W) :=
`

∏
i=1

wt(ei).

We first establish combinatorial meaning for the polynomials pk(A).

Claim 3.2. pk(A)uv is equal to the total weight of nomadic walks of length k from u to v.

Proof. When k = 0 and 1, the claim is clear. We proceed by induction.
Supposing the claim is indeed true for ps(A) when s 6 k − 1, then Apk−1(A)uv is the total

weight of length-k walks from u to v whose first k − 1 steps are nomadic and whose last step is
arbitrary. Call the collection of these walksWuv. For W ∈ Wuv, let Wi denote the edge walked on
by the i-th step of W and let W(i) denote the length-i walk obtained by taking the length-i prefix
of W. We use lowercase wi to denote the vertex visited by the ith step of the walk. Each W ∈ Wuv

falls into one of the following three categories.

1. W is a nomadic walk. Call the collection of these walksW (1)
uv .

2. Wk = W−1
k−1. Call the collection of these walksW (2)

uv .

3. Wk−1 and Wk are in the same atom but Wk 6= W−1
k−1. Call the collection of these walksW (3)

uv .

17

Suppose k > 3.

∑
W∈W (2)

uv

wt(W) = ∑
W∈W (2)

uv

wt(Wk−1)wt(W−1
k−1)wt(W(k−2))

= ∑
W∈W (2)

uv

wt(Wk−1)
2wt(W(k−2))

= ∑
W ′ (k− 2)-length nomadic walk

from u to v

wt(W ′) ∑
e/∈Atom(W ′k−2)

wt(e)2

We apply Fact 2.10 and get

= ∑
W ′ (k− 2)-length nomadic walk

from u to v

wt(W ′)(c− 1)(−λ1λ2)

= (c− 1)(−λ1λ2)pk−2(A)uv.

An identical argument shows that when k = 2,

∑
W∈W (2)

uv

wt(W) = c(−λ1λ2)

We do a similar calculation for W (3)
uv for k > 2. Observe that Wk−1 and Wk have to be in

the same atom, which we denote Atom(Wk−1). Thus, there is an edge e∗ between wk−2 and v in
Atom(Wk−1) too (see Remark 2.15).

∑
W∈W (3)

uv

wt(W) = ∑
W∈W (3)

uv

wt(Wk−1)wt(Wk)wt(W(k−2))

= ∑
W ′ length-(k− 2) nomadic walk

W ′0=u,
e∗ s.t. (e∗)1 = wk−2, (e∗)2 = v

Atom(W ′k−2) 6=Atom(e∗)

∑
e(1),e(2) :

Atom(e(1))=Atom(e(2))=Atom(e∗)
(e(1))1=wk−2,(e(1))2=(e(2))1,(e(2))2=v

wt(e(1))wt(e(2))wt(W ′)

By applying Fact 2.11, we get

= ∑
W ′ length-(k− 2) nomadic walk

W ′0=u,
e∗ s.t. (e∗)1 = wk−2, (e∗)2 = v

Atom(W ′k−2) 6=Atom(e∗)

(λ1 + λ2)wt(e∗)wt(W ′)

= (λ1 + λ2) ∑
W ′ length-(k− 1) nomadic walk from u to v

wt(W ′)

= (λ1 + λ2)pk−1(A)uv.

Now, we have for k > 3,

∑
W∈Wuv

wt(W) = ∑
W∈W (1)

uv

wt(W) + ∑
W∈W (2)

uv

wt(W) + ∑
W∈W (3)

uv

wt(W)

Apk−1(A)uv = ∑
W∈W (1)

uv

wt(W) + (c− 1)(−λ1λ2)pk−2(A)uv + (λ1 + λ2)pk−1(A)uv

18

∑
W∈W (1)

uv

wt(W) = Apk−1(A)uv − ((c− 1)(−λ1λ2)pk−2(A)uv + (λ1 + λ2)pk−1(A)uv)

∑
W∈W (1)

uv

wt(W) = pk(A)uv.

For the case of k = 2, we carry out the above calculation by replacing (c − 1)(−λ1λ2) with
c(−λ1λ2), thus completing the inductive step.

Generic generating functions facts. Before returning to the specifics of our problem, we give
some “standard” generating function facts. These are extensions of the following simple idea: if
f (t) is a polynomial, then d

dt log f (t) = f ′(t) · f (t)−1 is (up to minor manipulations) the generating
function for the power sum polynomials of its roots. We start with a general matrix version of this,
which is sometimes called Jacobi’s formula (after minor manipulations):

Proposition 3.3. Let M(t) be a square matrix polynomial of t. Then

d
dt

log det M(t) = tr
(

M′(t)M(t)−1
)

for all t ∈ R such that M(t) is invertible.

Corollary 3.4. Taking M(t) = 1− Ht for a fixed square matrix H yields

d
dt

log det(1− Ht) = tr
(
−H(1− Ht)−1

)
=⇒ −t

d
dt

log det(1− Ht) = ∑
k>1

tr(Hk)tk.

Regarding this corollary, we can derive the statement about the power sums of the roots of a
polynomial f (t) by taking H = diag(λ1, . . . , λn) where the λi’s are the roots of f . On the other
hand, it actually suffices to prove Corollary 3.4 in the case of diagonal H, since det(1 − Ht) is
invariant to unitary conjugation.

Growth Rate. A key term that shows up in our Ihara–Bass formula is the “growth rate” of the
additive product of A. Suppose we take t-step nomadic walk starting at a vertex v in the additive
product graph, take a t-step nomadic walk back to v, and then sum over the total weight of such
walks. What we get is ((c− 1)(−λ1λ2))

t (see Lemma 5.3 for a proof). Thus, the total weight of
aforementioned walks grows exponentially in t at a rate of (c− 1)(−λ1λ2), which in this section
we will refer to as αgr.

The fundamental recurrence. We now relate the generating function matrix F(t) to A. Using the
recurrence used to generated the polynomials pk(x), one can conclude

Lemma 3.5. F(t) = AF(t)t− (λ1 + λ2)F(t)t− αgrF(t)t2 + (1 + tλ1)(1 + tλ2)1.

From this recurrence one may express the inverse of F(t) in terms of A and c:

Corollary 3.6. (1 + λ1t)−1(1 + λ2t)−1 · (1− At + (λ1 + λ2)t1+ αgrt2
1)F(t) = 1. In other words,

F(t) = (1 + λ1t)(1 + λ2t)1 · L(t)−1, where L(t) := 1− At + (λ1 + λ2)t1+ αgrt2
1 is the “deformed

Laplacian” appearing in the statement of our Ihara–Bass theorem.

19

Strategy for the rest of the proof. The strategy will be to apply Proposition 3.3 with the de-
formed Laplacian L(t). On the left side we’ll get a determinant involving A. On the right side
we’ll get a trace involving L(t)−1, which is essentially F(t). In turn, tr(F(t)) is a generating func-
tion for nomadic closed walks, which we can hope to relate to B (although there will be an edge
case to deal with).

Let’s begin executing this strategy. By Proposition 3.3 we have

−t
d
dt

log det L(t) = −t · tr
(

L′(t)L(t)−1
)

= −t · tr
(
(1(λ1 + λ2)− A + 2αgrt1) · ((1 + λ1t)(1 + λ2t))−1F(t)

)
=

1
(1 + λ1t)(1 + λ2t)

tr
(
−(λ1 + λ2)F(t)t + AF(t)t− 2αgrF(t)t2)

where we used Corollary 3.6. Now using Lemma 3.5 again we may infer

−(λ1 + λ2)F(t)t + AF(t)t− 2αgrF(t)t2 = (1− αgrt2)F(t)− (1 + λ1t)(1 + λ2t)1;

combining the previous two identities yields

− t
d
dt

log det L(t) = tr

(
1− αgrt2

(1 + λ1t)(1 + λ2t)
F(t)− 1

)
. (3)

Nomadic walks. The right side above is tr(F(t)) up to some scaling/translating. By definition,
tr(F(t)) is the generating function for nomadic circuits (closed walks) with any starting point. A
first instinct is therefore to expect that

tr(F(t)) ?
= ∑

k>0
tr(Bk)tk, (4)

as tr(Bk) is the weight of closed length-k circuits of direct edges in the nomadic world. However
this is not quite right: tr(Bk) only weighs the nomadic circuits whose first and last edge are not in
the same atom. The nomadic circuits that are not weighed can be identified either as (i) “tailed”
nomadic circuits, i.e., those where the last directed edge is the reverse of the first directed edge;
(ii) “stretched” nomadic circuits, i.e., those where the last directed edge is distinct from but in the
same atom as the first directed edge. E.g., tr(Bk) would fail to count the following:

u

Figure 8: A length-9 nomadic walk from u to u with a tail of length 2

Thus we need to correct (4).

20

Definition 3.7. With the −1 taking care of the omission of k = 0, we define

Tails(t) = ∑
k>1

(weight of nomadic circuits of length k)tk = tr(F(t)− 1). (5)

We also define

NoTails(t) = ∑
k>1

(weight of tail-less nomadic circuits of length k)tk

and

Simple(t) = ∑
k>1

(weight of non-stretched, tail-less nomadic circuits of length k)tk

= ∑
k>1

tr(Bk)tk = −t
d
dt

log det(1− Bt), (6)

where the last equality used Corollary 3.4.

Tails vs. no tails vs. simple: more generating functions. We finish by relating Tails(t), NoTails(t)
and Simple(t). This is the recipe:

A general nomadic circuit of length k is constructed from a tail-less nomadic circuit
of length k− 2` with a tail of length-` attached to one of its vertices.

Tail-less nomadic circuits can be classified as (i) non-stretched tail-less nomadic circuits, and (ii) stretched,
tail-less nomadic circuits, for which,

NoTails(t)− Simple(t) = ∑
k>1

(weight of stretched, tail-less nomadic walks of length k)tk.

Consider a stretched, tail-less nomadic walk of length k that starts at vertex v, takes the edge e
from v to u, goes on a nomadic walk W from u to w, and finally takes edge e′ from w to v to end
the walk at v. Note that e and e′ are part of the same atom Ai. Summing over all v in atom Ai and
applying Fact 2.11 gives

∑
v∼Ai

wt(Ai(v, u))wt(Ai(w, v))wt(W) = (λ1 + λ2)wt(Ai(w, u))wt(W) = (λ1 + λ2)wt(W ′)

where W ′ is a nomadic circuit of length k− 1 that starts at w, takes edge Ai(w, u) in the first step,
and then takes walk W. From this, we derive

NoTails(t)− Simple(t) = (λ1 + λ2)t · Simple(t).

It’s easy to count the total weight of tails of length ` one can attach to a given vertex of a tail-less
nomadic circuit: if the tail-less nomadic circuit is non-stretched, the first edge can be chosen by
picking any edge in (c− 2) atoms and each of the remaining `− 1 edges can be chosen by picking
any edge (c− 1) atoms; and if the tail-less nomadic circuit is stretched, each edge (including the
first one) can be chosen anywhere from (c− 1) atoms. From this it’s easy to derive

21

Tails(t) =
(

1 + (−λ1λ2)(c− 2)t2 + (−λ1λ2)
2(c− 2)(c− 1)t4 + · · ·

)
Simple(t)

+
(

1 + (−λ1λ2)(c− 1)t2 + (−λ1λ2)
2(c− 1)2t4 + · · ·

)
(NoTails(t)− Simple(t))

=
1− (−λ1λ2)t2

1− (c− 1)(−λ1λ2)t2 Simple(t) +
(λ1 + λ2)t

1− (c− 1)(−λ1λ2)t2 Simple(t)

⇐⇒ Simple(t) =
1− αgrt2

(1 + λ1t)(1 + λ2t)
Tails(t). (7)

Using Tails(t) = tr(F(t)− 1) (i.e., (5)), we obtain:

Corollary 3.8. Simple(t) = tr

(
1− αgrt2

(1 + λ1t)(1 + λ2t)
(F(t)− 1)

)
.

But this is almost the same as (3). The difference is

tr

(
1− 1− αgrt2

(1 + λ1t)(1 + λ2t)
1

)
= tr

(
(λ1 + λ2)t + (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
1

)
= |V| · (λ1 + λ2)t + (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
.

Combining the above with (3), Corollary 3.8, and (6), we finally conclude

−t
d
dt

log det L(t) + |V| · (λ1 + λ2)t + (c− 2)(−λ1λ2)t2

(1 + λ1t)(1 + λ2t)
= −t

d
dt

log det(1− Bt).

Finally, dividing by−t, integrating (which leaves an unspecified additive constant), and exponen-
tiating (now there is an unspecified multiplicative constant) yields

(const.) · (1 + λ1t)|V|
cλ2

λ2−λ1
−1
(1 + λ2t)|V|

cλ1
λ1−λ2

−1 det L(t) = det(1− Bt).

By consideration of t = 0 we see that the constant must be 1.

4 Connecting the adjacency and nomadic spectrum

Let A = (A1, . . . , Ac) be a sequence of atoms with two distinct eigenvalues λ1 and λ2, let H be an
r-ary, c-atom constraint graph, and let I = A(H) be the corresponding instance graph. We use A
for the adjacency matrix of I , B for its nomadic walk matrix, V for its vertex set, and E for its edge
set. Recall that αgr is defined as (c− 1)(−λ1λ2).

We want to use Theorem 3.1 to describe the spectrum of B with respect to that of A. We will
refer to eigenvalues of B with the letter µ and eigenvalues of A with the letter ν.

First, notice that if t is such that det(1− Bt) = 0, then µ = 1/t has det(µ1− B) = 0, meaning
µ is an eigenvalue of B. Thus we want to find for which values of t does the left-hand side of the
expression in Theorem 1.4 become 0 in order to deduce the spectrum of B.

It is easy to see that when t = −1/λ1 and t = −1/λ2 the left-hand side is always 0, so −λ1

is an eigenvalue of B with multiplicity |V|(cλ2
λ2−λ1

− 1) and −λ2 is an eigenvalue with multiplicity

|V|(cλ1
λ1−λ2

− 1). The remaining eigenvalues are given by the values of t for which det(L(t)) = 0.

22

Let t be such that det(L(t)) = 0; then we have that L(t) is non-invertible, which means there is
some vector v in the nullspace of L(t). By rearranging the equality L(t)v = 0 we get:

Av =
1 + (λ1 + λ2)t + αgrt2

t
v.

This implies that 1+(λ1+λ2)t+αgrt2

t is an eigenvalue of A. Let ν be some eigenvalue of A; then

we have that ν =
1+(λ1+λ2)t+αgrt2

t for some t. If we rearrange the previous expression we get the
following quadratic equation in t:

1 + (λ1 + λ2 − ν)t + αgrt2 = 0.

By solving this expression for t and then using the fact that µ = 1/t we get (notice that c > 1
and λ1λ2 6= 0):

µ =
−2αgr

λ1 + λ2 − ν±
√
(λ1 + λ2 − ν)2 − 4αgr

.

To analyze the previous we look at three cases:

1. ν > λ1 + λ2 + 2√αgr. In this case the discriminant is always positive. If we look at the −
branch of the ± we further get that the denominator of the previous formula is always less
than −2√αgr which means we have that µ is real and µ >

√
αgr. Additionally, we have that

in this interval µ is an increasing function of ν.

2. ν < λ1 + λ2 − 2√αgr. This is analogous to the previous case; if we look at the + branch
we have that µ is real and µ < −√αgr. Additionally, we have that in this interval µ is a
decreasing function of ν.

3. ν ∈ [λ1 + λ2 − 2√αgr, λ1 + λ2 + 2√αgr], for each such ν we get a pair of anti-conjugate
complex numbers, meaning a pair x, x̄ such that xx̄ = −1.

Finally, the spectrum of B also contains 0 with multiplicity 2|E|− |V|
(

2 + (cλ1
λ1−λ2

− 1) + (cλ2
λ2−λ1

− 1)
)

,
which we get because the degrees of the polynomials in the left-hand side and right-hand do not
match; the right-hand side has degree 2|E| but we only described |V|

(
2 + (cλ1

λ1−λ2
− 1) + (cλ2

λ2−λ1
− 1)

)
roots.

We can now summarize the eigenvalues of B in the following way:

• −λ1 with multiplicity |V|(cλ2
λ2−λ1

− 1);

• −λ2 with multiplicity |V|(cλ1
λ1−λ2

− 1);

• for each eigenvalue ν of A we get two eigenvalues that are solutions to the previous quadratic
equation;

• 0 with multiplicity 2|E| − |V|
(

2 + (cλ1
λ1−λ2

− 1) + (cλ2
λ2−λ1

− 1)
)

;

23

4 3 2 1 0 1 2 3 4
Real part

4

3

2

1

0

1

2

3

4

Im
ag

in
ar

y
pa

rt

Spectrum of B

Figure 9: The spectrum of B for a additive 15-lift of 6 copies of a Sort4 graph. The blue dots are
eigenvalues that come from eigenvalues of A, the red dots are either−λ1,−λ2 or 0 and the yellow
line is the limit √αgr.

1 2 3 4 5 6 7 8 9
c

0

2

4

6

8

10

(A
)

Distribution of (A)

1 2 3 4 5 6 7 8 9
c

0

2

4

6

8

10

(B
)

Distribution of (B)

Figure 10: A box plot of ρ(A) and ρ(B) of 100 samples of random instance graphs as a function
of c with n = 15, r = 4 and all atoms are the Sort4 graph. The dashed line shows the theoretical
bound prediction of 2√αgr for A and √αgr for B.

The distribution of the eigenvalues that come from A forms a sort of semicircle. To showcase
this behavior we display an example of the spectrum of typical lifted instance in Figure 9.

We can now prove the central theorem of this section:

Theorem 4.1. Let In be a random additive n-lift of A with adjacency matrix AIn , and let ε > 0. Then:

Pr
[
ρ(AIn) ∈ [λ1 + λ2 − 2

√
αgr − ε, λ1 + λ2 + 2

√
αgr + ε

]
= 1− on(1)

24

Proof. First recall Theorem 1.6 (for fully formal statement, see Theorem 6.20) and notice that
ρ(|B|) = αgr, which follows by using the trivial upper bound of α2k

gr on tr
(
|B|k (|B|∗)k

)
. From cases

1 and 2 in the previous analysis we get that if ρ(AIn) /∈ [λ1 + λ2− 2√αgr− ε, λ1 + λ2 + 2√αgr + ε]

there is some constant δ such that ρ(Bn) >
√

αgr + δ, which happens with on→∞(1) probability by
Theorem 6.20.

Also, we note that even though throughout our proof we hide various constant factors, the
bounds obtained in Theorem 4.1 and Theorem 6.20 are empirically visible for very small values of
n and c. To justify this claim we show in Figure 10 a plot of samples of random instance graphs
for different values of c with a fixed small n.

5 Additive products of 2-eigenvalue atoms

In this section, we let A = (A1, . . . , Ac) be a sequence of {±1}-weighted atoms with the same pair
of exactly two distinct eigenvalues, λ1 and λ2. We also let X := A1 + · · · + Ac be the additive
product graph. We use AX to denote the adjacency operator of X. In this section, In is the instance
graph of a random additive n-lift of A with negations, and we use AIn to denote its adjacency
matrix. Finally, we recall αgr := (c− 1)(−λ1λ2) and define the quantity rX := 2√αgr.

The main results that this section is dedicated to proving are:

Theorem 5.1. The following are true about the spectrum of X:

1. Spec(AX) ⊆ [λ1 + λ2 − rX, λ1 + λ2 + rX];

2. λ1 + λ2 − rX and λ1 + λ2 + rX are both in Spec(AX).

Theorem 5.2. For every ε > 0, for large enough n, there are |V(In)| × |V(In)| positive semidefinite
matrices M+ and M− with all-ones diagonals such that

〈AIn , M+〉 > (λ1 + λ2 + rX − ε)n

〈AIn , M−〉 6 (λ1 + λ2 − rX + ε)n.

with probability 1− on(1).

In this section, when we measure the distance between vertices u and v in an instance graph
In, we look at the corresponding vertices in the constraint graph H, and define d(u, v) := dK(u,v)

2 .
We use Puv to refer to the collection of edges comprising the shortest path between u and v. We
begin with a statement about the ‘growth rate’ of X.

Lemma 5.3. For all vertices v in V(X), for t > 1 we have

∑
u:d(u,v)=t

∏
{i,j}∈Puv

(AX)
2
ij = c(c− 1)t−1(−λ1λ2)

t.

Proof. We proceed by induction. When t = 1, the statement immediately follows from Fact 2.10.
Suppose the equality is true for some t = `− 1, we will show how statement follows for t = `.

∑
u:d(u,v)=`

∏
{i,j}∈Puv

(AX)
2
ij = ∑

u:d(u,v)=`−1

 ∏
{i,j}∈Puv

(AX)
2
ij

 ·
 ∑

u′∈N(u)
d(u′,v)=`

(AX)
2
uu′


25

From Fact 2.10, ∑
u′∼u

d(u′,v)=t

(AX)
2
uu′ is equal to (c− 1)(−λ1λ2), which means the above is equal to

= ∑
u:d(u,v)=`−1

 ∏
{i,j}∈Puv

(AX)
2
ij

 (c− 1)(−λ1λ2)

= (c− 1)`−2c(−λ1λ2)
`−1(c− 1)(−λ1λ2)

= c(c− 1)`−1(−λ1λ2)
`.

Corollary 5.4. Since all the weights of X are {±1}-valued, the degree of every vertex in X equals c(−λ1λ2).

5.1 Enclosing the spectrum

Let BX denote the nomadic walk operator of X. In this section, we show

Spec(AX) ⊆ [λ1 + λ2 − rX, λ1 + λ2 + rX] .

The first part of the proof will involve showing that the spectral radius of BX is bounded by√αgr,
and the second part translates this bound to the desired one on Spec(AX). Both these components
closely follow proofs from the work of Angel et al.; the former after [AFH15, Theorem 4.2] and the
latter after [AFH15, Theorem 1.5].

Lemma 5.5. Spec(BX) ⊆
[
−√αgr,

√
αgr
]
.

Proof. Arbitrarily fix a root r of X. Recall that the spectral radius of BX is equal to lim
(
‖Bk

X‖op
)1/k,

and hence it suffices to bound
∣∣〈g, Bk

X f 〉
∣∣ for arbitrary f and g with ‖ f ‖ = ‖g‖ = 1.

We can decompose every nomadic walk of length k into two segments, a segment of i steps
towards r followed by a sequence of k− i steps away from r; henceforth, we call length-k nomadic
walks with such a decomposition (i, k)-nomadic walks. For every pair of directed edges e and
e′ such that e, e1, . . . , ek−1, e′ is an (i, k)-nomadic walk, let a(e, e′) := αk/2−i

gr . From Lemma 5.3, the
number of (i, k)-nomadic walks starting at a fixed e is at most c

c−1 αk−i
gr . Similarly, the number of

(i, k)-nomadic walks ending at fixed e′ is at most c
c−1 αi

gr. Now, we are ready to bound
∣∣〈g, Bk

X f 〉
∣∣

by imitating the proof of [AFH15, Theorem 4.2].

∣∣∣〈g, Bk
X f 〉

∣∣∣ 6 ∣∣∣∣∣ ∑
e,e1,...,ek−1,e′ nomadic

f (e′)g(e)

∣∣∣∣∣
6 ∑

e,e1,...,ek−1,e′ nomadic
| f (e′)g(e)|

6 ∑
e,e1,...,ek−1,e′ nomadic

a(e, e′) f (e′)2 +
1

a(e, e′)
g(e)2

6 sup
e′

(
∑

e,e1,...,ek−1,e′ nomadic
a(e, e′)

)
‖ f ‖2

2 + sup
e

(
∑

e,e1,...,ek−1,e′ nomadic

1
a(e, e′)

)
‖g‖2

2

6
k

∑
i=0

sup
e′

 ∑
(i,k)-nomadic walks ending at e′

a(e, e′)

+ sup
e

 ∑
(i,k)-nomadic walks starting at e

1
a(e, e′)


26

6
k

∑
i=0

αk/2−i
gr · c

c− 1
αi

gr +
k

∑
i=0

αi−k/2
gr · c

c− 1
αk−i

gr

=
2kc

c− 1
αk/2

gr

Thus, we have

‖Bk
X‖op 6

2kc
c− 1

αk/2
gr

and taking the limit of ‖Bk
X‖1/k

op for k approaching infinity yields the desired statement.

Lemma 5.6. If 0 is an approximate eigenvalue of Qt := (t2 + (c− 1)(−λ1λ2))1− AXt + (λ1 + λ2)1t,
then it is also an approximate eigenvalue of BX − t1 as long as t 6= −λ1,−λ2.

Proof. Let f be an ε-approximate eigenfunction of unit norm of Qt, then we construct a Cε-approximate
eigenfunction g of BX − t1 defined on pairs uv such that u and v are incident to a common atom
for an absolute constant C > 0 as follows,

guv :=

(
∑

w:{v,w}∈Atom({u,v})
(AX)vw fw

)
− (λ1 + λ2 + t) fv

for every edge {u, v} of X.

((BX − t1)g)uv =

 ∑
w:

{v,w}/∈Atom({u,v})

(BX)uv,vwgvw

− tguv

=

 ∑
w:

{v,w}/∈Atom({u,v)}

(AX)vw

 ∑
x:

{w,x}∈Atom({v,w})

(AX)wx fx − (λ1 + λ2 + t) fw


− tguv

=

 ∑
w:

{v,w}/∈Atom({u,v)}
∑
x:

{w,x}∈Atom({v,w})

(AX)vw(AX)wx fx

−
 ∑

w:
{v,w}/∈Atom({u,v)}

(λ1 + λ2 + t)(AX)vw fw

− tguv

Using Fact 2.10 and Fact 2.11, the first term of the three above can be rewritten as

(c− 1)(−λ1λ2) fv + (λ1 + λ2) ∑
w:{v,w}/∈Atom({u,v})

(AX)vw fw

which lets us continue the chain of equalities

= (c− 1)(−λ1λ2) fv − t ∑
w:

{v,w}/∈Atom({u,v)}

(AX)vw fw

− t

(
∑

w:{v,w}∈Atom({u,v})
(AX)vw fw

)
+ t(λ1 + λ2 + t) fv

27

= (c− 1)(−λ1λ2) fv − t(A f)v + t(λ1 + λ2 + t) fv

= (Qt f)v.

Thus,

‖(BX − t1)g‖2
2 = ∑

{u,v}∈E(X)

((BX − t1)g)2
uv + ((BX − t1)g)2

vu = d ∑
v∈V

(Qt f)2
v 6 dε2

It remains to show that the norm of g is bounded from above and below. Fix a vertex u and
an atom Ã incident to u. Consider g(u,Ã), the restriction of g to entries uv such that the edge
{u, v} is in Ã, and f (Ã), the restriction of f to vertices v such that Ã is incident to v. Observe that
g(u,Ã) = (AÃ − (λ1 + λ2 + t)1) f (Ã). Since the min eigenvalue of AÃ − (λ1 + λ2 + t)1 is nonzero
as long as t 6= −λ1,−λ2, the `2 norm of g is bounded from below. To prove that the `2 norm of g
is bounded from above, observe that

‖g‖2
2 = ∑

Ã∈Atoms(X)

∑
(u,v):{u,v}∈Ã

 ∑
w:{v,w}∈Ã

(AX)vw fw

− (λ1 + λ2 + t) fv

2

6 2 ∑
Ã∈Atoms(X)

∑
(u,v):{u,v}∈Ã

 ∑
{v,w}∈Ã

(AX)
2
vw f 2

w + (λ1 + λ2 + t)2 f 2
v



There is some coefficient α such that the weight on f 2
v for each v in the above sum is bounded by

α, thereby giving a bound of
2 ∑

v∈V
α f 2

v 6 2α‖ f ‖2
2 6 2α.

Proof of Item 1 in Theorem 5.1. Let Qt be as defined in the statement of Lemma 5.6. It can be verified
that 0 is an approximate eigenvalue of either Q−λ1 or Q−λ2 if and only if dX := c(−λ1λ2), which
we recall from Corollary 5.4 is the degree of every vertex in X, is in the spectrum of AX. Let
µ+ := λ1 + λ2 + rX + η be in spectrum of AX. If µ+ 6= dX, then we can conclude from Lemma 5.6
that

αgr + η +
√

ηαgr + η2/4

is an approximate eigenvalue of BX. Since Spec(BX) is contained in [−√αgr,
√

gr], η cannot be
positive. A similar argument applied to µ− := λ1 + λ2 − rX − η precludes η from being positive
as long as µ− 6= dX. As a result, we can conclude that Spec(AX) is contained in [µ−, µ+] ∪ {dX}.
If dX is in the interval [µ−, µ+], then we are done. If not, then it remains to show that dX is
not in Spec(AX). Since X is {±1}-weighted and the degree of each vertex is dX, any nonzero x
satisfying AXx = dXx must have the same nonzero magnitude in all its entries. However, such x
has unbounded `2 norm, and hence AX has no eigenvectors with eigenvalue dX in `2(V). If dX is
in Spec(AX), it is an isolated point in the spectrum, and hence, by Theorem 2.25, is an eigenvalue
of AX, which means dX cannot be in Spec(AX).

5.2 Construction of Witness Vectors

Lemma 5.7 (Item 2 of Theorem 5.1 restated). There exists λ− 6 λ1 + λ2− rX and λ+ > λ1 + λ2 + rX

in the spectrum of AX.

28

Proof. Let δ > 0 be a parameter to be chosen later. First define ρ as

ρ(s) :=
s(1− δ)√

(c− 1)(−λ1λ2)

Then, for vertex v and define f (s)v in the following way.

f (s)v (u) := ρ(s)d(u,v) ∏
{i,j}∈Puv

(AX)ij where Puv is the unique nomadic walk between u and v (8)

To show the lemma, it suffices to prove the claim that for every ε > 0, there is suitable choice of δ

so that
〈 f (−1)

v , AX f (−1)
v 〉

〈 f (−1)
v , f (−1)

v 〉
< λ1 + λ2 − rX + ε

and
〈 f (1)v , AX f (1)v 〉
〈 f (1)v , f (1)v 〉

> λ1 + λ2 + rX − ε

We proceed by analyzing the expression 〈 f (s)v , AX f (s)v 〉.

〈 f (s)v , AX f (s)v 〉 = ∑
u∈V

f (s)v (u)AX f (s)v (u)

= f (s)v (v) ∑
w∈N(v)

(AX)vw f (s)v (w) + ∑
u∈V,u 6=v

f (s)v (u) ∑
w∈N(u)

(AX)uw f (s)v (w)

= ∑
w∈N(v)

(AX)
2
vwρ(s) + ∑

u∈V,u 6=v
f (s)v (u) ∑

w∈N(u)
(AX)uw f (s)v (w) (9)

Let w0, w1, . . . wT−1, wT be the sequence of vertices from the unique nomadic walk between u and
v where w0 = u and wT = v. Now, let u∗ = w1. Recall the notation Pu,v used to denote the unique
nomadic walk between u and v as a sequence of edges. Let Wu,v := ρ(s)d(u,v) ∏

{i,j}∈Pu,v

(AX)ij. Using

the notation we just developed, along with applying Fact 2.10 on the first term of the above, we
get

(9) = c(−λ1λ2)ρ(s) + ∑
u∈V,u 6=v

ρ(s)Wu∗v(AX)uu∗ ·(AX)uu∗Wu∗v + ∑
w∈Atom({u∗,u})

ρ(s)(AX)u∗w(AX)wuWu∗v + ∑
w/∈Atom({u,u∗})

w∈N(u)

ρ(s)2(AX)u∗u(AX)
2
uwWu∗v


= c(−λ1λ2)ρ(s) + ∑

u∈V,u 6=v
ρ(s)W2

u∗v(AX)
2
uu∗ ·1 +

∑
w∈Atom({u∗,u})

ρ(s)(AX)u∗w(AX)wu

Auu∗
+ ∑

w/∈Atom({u,u∗})
w∈N(u)

(AX)
2
uwρ(s)2



29

Now we apply Fact 2.10 and Fact 2.11 and get

= c(−λ1λ2)ρ(s) + ∑
u∈V,u 6=v

ρ(s)W2
u∗v(AX)

2
uu∗ ·

(
1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2)

= c(−λ1λ2)ρ(s) + ∑
u∈V,u 6=v

W2
uv ·

1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2

ρ(s)

= c(−λ1λ2)ρ(s) +
(
‖ f (s)v ‖2 − 1

)
· 1 + ρ(s)(λ1 + λ2) + (c− 1)(−λ1λ2)ρ(s)2

ρ(s)

= c(−λ1λ2)ρ(s) +
(
‖ f (s)v ‖2 − 1

)
·
(

1 + s2(1− δ)2

ρ(s)
+ (λ1 + λ2)

)
When s = ±1, the above quantity is equal to

c(−λ1λ2)ρ(s) +
(
‖ f (s)v ‖2 − 1

)
·
(

1 + (1− δ)2

ρ(s)
+ (λ1 + λ2)

)
Now, note that

〈 f (s)v , AX f (s)v 〉
〈 f (s)v , f (s)v 〉

=
c(−λ1λ2)ρ(s)

‖ f (s)v ‖2
+

(
1− 1

‖ f (s)v ‖2

)
·
(

1 + (1− δ)2

ρ(s)
+ (λ1 + λ2)

)
(10)

We now compute ‖ f (s)v ‖2, and we assume s is either +1 or −1.

‖ f (s)v ‖2 =
∞

∑
t=0

ρ(s)2t ∑
u:d(u,v)=t

∏
{i,j}∈Puv

(AX)
2
ij

=
∞

∑
t=0

ρ(s)2tc(c− 1)t−1(−λ1λ2)
t (by Lemma 5.3)

=
c

c− 1

∞

∑
t=0

(
(1− δ)2t

(c− 1)t(−λ1λ2)t

)
(c− 1)t(−λ1λ2)

t

=
c

c− 1

∞

∑
t=0

(1− δ)2t

=
c

c− 1
· 1

δ(2− δ)

Plugging this back in to (10) gives

(10) = δ(2− δ)(c− 1)(−λ1λ2)ρ(s) +
(

1 + (1− δ)2

ρ(s)
+ (λ1 + λ2)

)
·
(

1− (c− 1)δ(2− δ)

c

)
= δ(2− δ)s(1− δ)

√
(c− 1)(−λ1λ2)+(

(1 + (1− δ)2)
√
(c− 1)(−λ1λ2)

1
s(1− δ)

+ (λ1 + λ2)

)
·
(

1− (c− 1)δ(2− δ)

c

)
For any ε > 0, we can choose δ small enough so that the above quantity is at least

λ1 + λ2 + 2
√
(c− 1)(−λ1λ2)− ε

when s = 1 and at most
λ1 + λ2 − 2

√
(c− 1)(−λ1λ2) + ε

when s = −1.

30

5.3 SDP solution for random additive lifts

For ε > 0, consider f (1)v constructed in the proof of Lemma 5.7, for which

〈 f (1)v , AX f (1)v 〉 > (λ1 + λ2 + rX − ε)‖ f (1)v ‖2/

Let Lε be an integer chosen such that the total `2 mass of f (1)v

‖ f (1)v ‖
on vertices at distance greater than L

from v is at most ε. Define gv as the vector obtained by zeroing out f (1)v

‖ f (1)v ‖
on vertices outside B(v, L)

and normalizing to make its norm 1, where B(v, L) is the collection of vertices within distance L
of v.

For any ε′ > 0, we can choose ε so that

〈gv, AXgv〉 > λ1 + λ2 + rX − ε′ (11)

gv enjoys the property of being determined by a constant number of vertices, Lε′ . For any instance
graph G such that there is a unique shortest nomadic walk between any pair of vertices u and v,
we can explicitly define

gv(u) =


0 if d(u, v) > Lε′

C ∏
{i,j}∈Puv

(1−δ)(AX)ij√
(c−1)(−λ1λ2)

Puv unique shortest nomadic walk from u to v

where C is a constant chosen so that gv has unit norm.
Recall that In is a random signed additive n-lift obtained from a sequence of atoms A.

Definition 5.8. Let G be a graph and let φ : E(G) → {±1} be a signing of the edges. We
call a signing φ balanced if for any cycle given by sequence of edges e1, . . . , ek in E(H), we have
φ(e1) · · · φ(ek) = 1.

We use Aφ(G) to denote the adjacency operator of G signed with respect to φ — i.e. (Aφ(G))uv =

φ({u, v}) if {u, v} is an edge and 0 otherwise.

Lemma 5.9. Suppose φ is a balanced signing of G. Then there exists a diagonal sign operator D such that
Aφ(G) = DAGD†.

Proof. Without loss of generality, assume G is connected. Take a spanning tree of G and root it at
some arbitrary vertex r. Let Drr = 1 and for Px a path from r to x let Dxx = ∏e∈Px

φ(e).
It remains to verify that DAGD† = Aφ(G). Let P be the path between x and y in the spanning

tree. By virtue of φ being balanced, we have φ({x, y})∏e∈P φ(e) = 1, which means φ({x, y}) =

∏e∈P φ(e). Also, note that ∏e∈P φ(e) is equal to ∏e∈Px
φ(e)∏e∈Py

φ(e), which is equal to DxxDyy.
Thus,

(Aφ(G))ij = φ({i, j})(AG)ij = DiiDjj(AG)ij =
(

DAGD†
)

ij

which proves the claim.

Lemma 5.10. Let XD be the graph with the adjacency operator DAXD† where D is a diagonal sign matrix.
There exists D such that XD covers In.

31

Proof. When In is generated, (i) the sequence of atoms A first undergoes an additive n-lift, and
then, (ii) the atoms in the lifted graph are given a random balanced signing. The intermediate
graph Ĩn between (i) and (ii) is covered by X via a map π : V(X)→ V(Ĩn). Once (ii) is performed,
construct X′ by taking X and setting the signs on all edges in π−1(e) to the sign on e for each
e ∈ E(In). X′ can be seen as a balanced signing applied on X, and hence there exists such a D by
Lemma 5.9.

Definition 5.11. Let π be a covering map from appropriate XD to In. Call a vertex v ∈ V(In)

L-bad if B(v, L) is not isomorphic to B(v∗, L) where v∗ ∈ V(XD) is such that π(v∗) = v.

Remark 5.12. The condition of a vertex v in V(In) being L-bad according to Definition 5.11 is
equivalent to the corresponding variable v′ in the constraint graph having a cycle in its distance
2L-neighborhood.

With the observation of Remark 5.12 in hand, we can extract the following as a consequence of
[DMO+19].

Lemma 5.13. The number of K-bad vertices in graph In for constant K is bounded by O(log n) with
probability 1− on(1).

Construct a vector g̃v for each vertex v of In.

g̃v =

{
ev if v is Lε′-bad

gv otherwise

We are finally ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let
M+ := ∑

v∈V(In)

g̃v g̃†
v

Writing out (M+)uu for arbitrary u

(M+)uu = ∑
v∈V(In)

g̃v(u)g̃v(u)

= ∑
v∈V(In)

g̃u(v)2

= ‖g̃u‖2 = 1

and writing out 〈AIn , M+〉 gives the following with probability 1− on(1).

〈AIn , M+〉 = ∑
v∈V(In)

〈g̃v, AIn g̃v〉

= ∑
v∈V(In)

v is not (Lε + 1)-bad

〈g̃v, AIn g̃v〉+ ∑
v∈V(In)

v is (Lε + 1)-bad

〈g̃v, AIn g̃v〉

> ∑
v∈V(In)

v is not (Lε + 1)-bad

λ1 + λ2 + rX − ε′ + ∑
v∈V(In)

v is (Lε + 1)-bad

c(λ1λ2) (by (11))

> (n−O(log n))(λ1 + λ2 + rX − ε′)−O(log n) (by Lemma 5.13)

32

= (1− on(1))(λ1 + λ2 + rX − ε′)n

The desired inequality on 〈AIn , M+〉 can be obtained by choosing ε′ small enough and n large
enough. The inequality on 〈AIn , M−〉 can be proved by repeating the whole section and proof by
constructing vectors g̃v from f (−1)

v .

6 Friedman/Bordenave for additive lifts

Theorem 6.1. Let A = (A1, . . . , Ac) be a sequence of r-vertex atoms with edges weights ±1. Let |I1|
denote the instance graph A(Kr,c) associated to the base constraint graph when the edge-signs are deleted
(i.e., converted to +1), and let |B1| denote the associated nomadic walk matrix. Also, let Hn denote a
random n-lifted constraint graph and In = A(Hn) an associated instance graph with 1-wise uniform
negations (ξ f

ii′). Finally, let Bn denote the nomadic walk matrix for In. Then for every constant ε > 0,

Pr[ρ(Bn) >
√

ρ(|B1|) + ε] 6 δ,

where δ = δ(n) is on→∞(1).

Remark 6.2. It might seem that our bound involving |B1| may be poor, given that it ignores sign
information from the atoms. However, it is in fact sharp, and the reason is that the main contribu-
tion to ρ(Bn) when using the Trace Method is from walks in which almost all edges are traversed
twice. And if an edge is traversed twice, it of course does not matter if its sign is −1 or +1.

Remark 6.3. In fact, it is evident from the theorem statement that without loss of generality we
may assume that the atoms are unweighted — i.e., that all weights are +1. The reason is that
for each constraint f in group j, if we multiply ξ

f
ii′ by the fixed value Aj[i, i′], the resulting signs

remain 1-wise uniform — and this has the effect of eliminating all signs from the atoms. Thus
henceforth we will indeed assume that the original atoms are all unweighted.

The idea of Friedman/Bordenave proofs. The standard method for trying to prove a theorem
such as Theorem 6.1 involves applying the Trace Method to Bn. Since Bn is not a self-adjoint op-
erator, a natural way to do this is to consider tr(B`

nB∗n
`) for some large `. Roughly speaking, this

counts the number of closed walks that walk nomadically in In for the first ` steps, and then
walk nomadically in the reverse of In for the next ` steps. A major difficulty is the following: the
Trace Method naturally incurs an “extra” factor of n, and to overcome this one wants to choose
` � log n. However, Θ(log n) is precisely the radius at which random constraint graphs become
dramatically non-tree-like; i.e., they are likely to encounter nontrivial cycles. Based on Friedman’s
work, Bordenave overcomes this difficulty as follows: First, ` is set to c log n for some small pos-
itive constant c > 0. Nomadic walks of this length may well encounter cycles, but one can show
that with high probability, they will not encounter tangles — meaning, more than one cycle in a ra-
dius of `. (This crucial concept of “tangles” was isolated by Friedman and refined by Bordenave.)
Now we set k = ωn(1) to be a slowly growing quantity and consider length-2k` walks formed by
doing ` nomadic steps, then ` nomadic reverse-steps, all k times in succession. In other words, we
consider tr((B`

nB∗n
`)k). On one hand, since 2k` � log n, bounding this quantity will be sufficient

to overcome the n-factor inherent in the Trace Method. On the other hand, using tangle-freeness at

33

radius ` along with very careful combinatorial counting allows us to bound the number of closed
length-2k` walks.

Our proof follows this methodology and draws ideas from Bordenave’s original proof from
[Bor15] as well as [DMO+19] and [BDH18]. However, our main technical lemma, Lemma 6.24,
uses a new tool that takes advantage of the random negations our model employs that simplifies
the equivalent proofs in the three mentioned papers and also allows us to generalize it to our
model.

6.1 Trace Method setup, and getting rid of tangles

To begin carrying out this proof strategy, we first define tangle-freeness.

Definition 6.4 (Tangles-free). Let G be an undirected graph. A vertex v is said to be `-tangle-
free within G if the subgraph of G induced by v’s distance-4` neighborhood contains at most one
cycle.11

It is straightforward to show that random lifts have all vertices Θ(log n)-tangle-free; we can
quote the relevant result directly from Bordenave (Lemma 27 from [Bor15]):

Proposition 6.5. There is a universal constant κ > 0 depending only on r, c such that, for ` = κ log n, a
random n-lift H of Kr,c has all vertices `-tangle free, except with probability O(1/n.99).

We now begin the application of the Trace Method. We have:

tr((B`
nB∗n

`)k) = ∑
~e0,...,~e2k`−1,~e2k`=~e0

Bn[~e0,~e1] · · · Bn[~e`−1,~e`]B∗n[~e`,~e`+1] · · · B∗n[~e2`−1,~e2`] · · · B∗n[~e2k`−1,~e2k`]

= ∑
~e0,...,~e2k`−1,~e2k`=~e0

Bn[~e0,~e1] · · · Bn[~e`−1,~e`]Bn[~e`+1,~e`] · · · Bn[~e2`,~e2`−1] · · · Bn[~e2k`,~e2k`−1]

= ∑ wt(e1)N~e0,~e1 · · ·wt(e`)N~e`−1,~e`wt(e`)N~e−1
` ,~e−1

`+1
· · ·wt(e2`−1)N~e−1

2`−1,~e−1
2`
· · ·wt(e2k`−1)N~e−1

2k`−1,~e−1
2k`

,

(12)

where wt(e) is the sign on edge e coming from the random 1-wise negations (it is the same for both
directed versions of the edge), and where N~e,~f is an indicator that (~e, ~f) forms a length-2 nomadic
walk. Roughly speaking, this quantity counts (with some ±1 sign) closed walks in In consisting
of 2k consecutive nomadic walks of length `. However, there is some funny business concerning
the joints between these nomadic walks. To be more precise, in each of the 2k segments we have
a nomadic walk of `+ 1 edges; and, the last edge in each segment must be the reverse of the first
edge in the subsequent segment. We will call these necessarily-duplicated edges “spurs”. Further-
more, when computing the sign with which the closed walk is counted, spurs’ signs are counted
either zero times or twice, depending on the parity of the segment. Hence they are effectively
discounted, since (−1)2 = (−1)0 = +1. Let us make some definitions encapsulating all of this.

Definition 6.6 (Nomadic linkages, and spurs). In an instance graph, a (2k× `)-nomadic linkage L is
the concatenation of 2k many nomadic walks (“segments”), each of length `+ 1, in which the last
directed edge of each walk is the reverse of first directed edge of the subsequent walk (including

11We chose the factor 4 here for “safety”. For quantitative aspects of our theorem, constant factors on ` will be
essentially costless.

34

wrapping around from the 2kth segment to the 1st). These 2k directed edges which are necessarily
the reverse of the preceding directed edge are termed spurs. The weight of L, denoted wt(L), is
the product of the signs of the non-spur edges in L.

Definition 6.7 (NonbacktrackingA-linkages). Recall that, strictly speaking, the nomadic property
requires “remembering” which atom each edge comes from. Thus the L above is really associated
to what we will call a (2k× 2`)-nonbacktrackingA-linkage — call it C— in the underlying constraint
graph. Formally:

• (“linkage”) C is a closed concatenation of 2k walks (called “segments”) in the constraint
graph, each consisting of `+ 1 length-2 variable-constraint-variable subpaths. The last such
length-2 subpath in each segment (“spur”) is equal to (the reverse of) the first length-2 sub-
path in the subsequent segment (including wraparound from the 2kth segment to the 1st).

• (“A-linkage”) For each length-2 subpath (v, f , v′) in C, where v is in variable group i, f is in
constraint group j, and v′ is in variable group i′, it holds that {i, i′} is an edge in Aj.

• (“nonbacktracking”) Each of the 2k segments is a nonbacktracking walk of length 2(`+ 1)
in the constraint graph.

We write wt(C) ∈ {±1} for the weight of the associated nomadic linkage in the instance graph.

Given these definitions, (12) tells us:

tr((B`
nB∗n

`)k) = ∑
(2k×2`)-nonbacktracking
A-linkages C in Hn

wt(C). (13)

Next, we make the observation that if Hn proves to have all vertices `-tangle-free, then we would
get the same result if we only summed over “externally tangle-free” linkages.

Definition 6.8 (Externally tangle-free linkages). We say that a (2k × 2`)-nonbacktracking link-
age in a constraint graph Hn is externally `-tangle-free if every vertex it touches is `-tangle-free
within Hn. (The “externally” adjective emphasizes that we are concerned with cycles not just
within the linkage’s edges, but also among nearby edges ofHn.)

Thus in light of Proposition 6.5 we have:

Lemma 6.9. Provided ` 6 κ log n for a certain universal κ > 0, we get that tr((B`
nB∗n

`)k) = S holds
except with probability O(1/n.99) , where

S := ∑
(2k×2`)-nonbacktracking

externally `-tangle-free
A-linkages C in Hn

wt(C).

In order to apply Markov’s inequality later, we will need the following technical claim:

Claim 6.10. S is a nonnegative random variable.

35

Proof. Given In, recall that

B`
n[~e, ~f] = ∑

nomadic walks
~e=~e0,~e1,...,~e`=~f in In

wt(e1)wt(e2) · · ·wt(e`).

Using a key idea of Bordenave (based on the “selective trace” of Friedman), define the related
operator B(`)

n via

B(`)
n [~e, ~f] = ∑

externally `-tangle-free nomadic walks
~e=~e0,~e1,...,~e`=~f in In

wt(e1)wt(e2) · · ·wt(e`),

where again the walk is said to be “externally `-tangle-free” if every vertex it touches is `-tangle-
free with Hn. Then very similar to the analysis that gave us (12) and (13), we get that

S = tr((B(`)
n (B(`)

n)∗)k).

Thus S is visibly always nonnegative, being the trace of the kth power of the positive semidefinite
matrix B(`)

n (B(`)
n)∗.

With these results in place, we can proceed to the main goal of the Trace Method: bounding
E[S]. Such a bound can be used in the following lemma:

Lemma 6.11. Assume that ` 6 κ log n and k` = ω(log n). Then from E[S] 6 R we may conclude that
ρ(Bn) 6 (1 + on(1)) · R

1
2k` holds, except with probability O(1/n.99).

Proof. Let T = tr((B`
nB∗n

`)k). On one hand, with λ denoting eigenvalues and σ denoting singular
values, we have

T > λmax((B`
nB∗n

`)k) = λmax

(√
B`

nB∗n
`

)2k

= σmax(B`
n)

2k > ρ(B`
n)

2k = ρ(Bn)
2k`.

On the other hand, since S is a nonnegative random variable (Claim 6.10), we can apply Markov’s
Inequality to deduce that S 6 n · R except with probability at most 1/n. Now from Lemma 6.9 we
may infer that except with probability O(1/n.99),

T = S 6 n · R =⇒ ρ(Bn)
2k` 6 n · R.

The result now follows by taking 2k`-th roots.

6.2 Eliminating singletons, and reduction to counting

Our next step toward bounding E[S] is typical of the Trace Method: Rather than first choos-
ing Hn randomly and then summing over the linkages therein, we instead sum over all potentially-
appearing linkages and insert an indicator that they actually appear in the realized random con-
straint graph. Defining

Kn = the “complete” constraint graph with cn constraint vertices and rn variable vertices,

36

this means that

S = ∑
(2k×2`)-nonbacktracking
A-linkages C in Kn

1[C is in Hn] · 1[C is externally `-tangle-free within Hn] ·wtIn(C). (14)

Here we wrote wtIn(C) to emphasize that even once C is in Hn and is externally `-tangle-free, its
weight is still a random variable arising from the 1-wise uniform negations. These negations will
create another simplification (one not available to Friedman/Bordenave). For this we will need
another definition:

Definition 6.12 (Singleton-free C’s). Let C be a (2k× 2`)-nonbacktracking circuit in Kn. If there is
an atom vertex that is passed through exactly once, we call it a singleton. If C contains no singleton,
we call it singleton-free.

Referring to (14), consider E[S]. If C contains any singleton, then it will contribute 0 to this
expectation. The reason is that, provided C appears in Hn and is externally `-tangle-free therein,
the 1-wise uniform negations will assign a uniformly random ±1 sign to the edge engendered by
C’s singleton, and this sign will be independent of all other signs that go into wtIn(C). On the
other hand, when C is singleton-free, we will simply upper-bound the (conditional) expectation
of wtIn(C) by +1. We conclude that

E[S] 6 ∑
(2k×2`)-nonbacktracking

singleton-free
A-linkages C in Kn

Pr[C is in Hn and is externally `-tangle-free therein]. (15)

Let us now begin to simplify the probability calculation.

Definition 6.13 (E(C), V(C), G(C)). Let C be a (2k× 2`)-nonbacktracking A-linkage in Kn. Write
E(C) for the set of undirected edges in Kn formed by “undirecting” all the directed edges in C
(this includes reducing from a multiset to a set, if necessary). Then let G(C) denote the undirected
subgraph of Kn induced by E(C), and write V(C) for its vertices.

Let’s simplify the “tangle-freeness” situation.

Definition 6.14 (Internal tangle-free linkages). We say that a (2k× 2`)-nonbacktracking linkage C
in Kn is internally `-tangle-free if every vertex it touches is `-tangle-free within G(C).

We certainly have:

linkage C not even internally `-tangle-free

=⇒ Pr[C is in Hn and is externally `-tangle-free therein] = 0.

Thus we can restrict the sum in (15) to internally `-tangle-free linkages. Having done that, we will
upper bound the sum by dropping this insistence on external tangle-freeness. Thus

E[S] 6 ∑
(2k×2`)-nonbacktracking

interally `-tangle-free, singleton-free
A-linkages C in Kn

Pr[C is in Hn]. (16)

37

We will now bound Pr[C is in Hn], so as to reduce all our remaining problems to counting.
Towards this, recall that Hn is a random n-lift of the complete graph Kr,c. One thing this implies
is that every group-i variable-vertex in Hn will have exactly one edge to each of c groups of
constraint-vertices, and vice versa. Let us codify the C’s that don’t flagrantly violate this property:

Definition 6.15 (Valid C’s). We say a (2k× 2`)-nonbacktracking A-linkage C in Kn is valid if G(C)
has the property that every variable-vertex in it is connected to at most 1 constraint-vertex from
each of the c groups, and each constraint-vertex is connected to at most 1 variable-vertex from
each of the r groups.

Evidently, Pr[C is in Hn] = 0 if C is invalid. Thus from (16) we can deduce:

E[S] 6 ∑
(2k×2`)-nonbacktracking

valid, internally `-tangle-free, singleton-free
A-linkages C in Kn

Pr[C is in Hn]. (17)

Next, it is straightforward to show the following lemma (see Proposition A.8 of [DMO+19] for
essentially the same observation):

Lemma 6.16. If C is a valid (2k× 2`)-nonbacktracking A-linkage in Kn, and k` = o(
√

n), then

Pr[C is in Hn] = (1 + on(1)) · n−|E(C)|.

Proof. (Sketch.) Proceed through the edges in E(C) in an arbitrary order. Each has approximately
a 1/n chance of appearing in Hn, even conditioned on the appearance of the preceding edges.
For example, this is exactly true for the first edge. For subsequent edges e = {u, v}, validity
ensures that no preceding edge already connects u to a vertex in v’s part, or vice versa. Thus the
conditional probability of e appearing in Hn is essentially the probability that a particular edge
appears in a random matching on n + n vertices (which is 1/n), except that a “small” number of
vertex pairs may already have been matched. This “small” quantity is at most |E(C)| 6 4k`, so the
1/n probability becomes 1/(n− 4k`) at worst. Multiplying these conditional probabilities across
all |E(C)| edges yields a quantity that is off from n−|E(C)| by a factor of at most (1 +O(k`)/n)4k` 6
1 + on(1), the inequality using (k`)2 = o(n).

Combining this lemma with (17) and Lemma 6.11, we are able to reduce bounding ρ(Bn) to a
counting problem:

Lemma 6.17. Assume that ` 6 κ log n and ω(log n) < k` < o(
√

n). Then except with probabil-
ity O(1/n.99),

ρ(Bn) 6 (1 + on(1)) · R
1

2k` , where R := ∑
(2k×2`)-nonbacktracking

valid, internally `-tangle-free, singleton-free
A-linkages C in Kn

n−|E(C)|.

6.3 Tangle-free, singleton-free linkages are nearly duplicative

Our goal in this subsection is to show that each linkage C we sum over in Lemma 6.17 is “nearly
duplicative”: the number of variable-vertices is at most (1 + o(1))k`, and the same is true of

38

constraint-vertices — even though the obvious a priori upper bound for each of them is 2k`. This
factor- 1

2 savings is precisely the source of the square-root in Theorem 6.1. We begin with a graph-
theoretic lemma and then deduce the nearly-duplicative property.

Lemma 6.18. Let C be a (2k × 2`)-nonbacktracking, internally `-tangle-free linkage in Kn. Assume
log(k`) = o(`). Then G(C) has at most O(k log(k`)) vertices of degree exceeding 2.

Proof. For brevity, let us write G = G(C), w = |V(C)|, and note that we have a trivial upper
bound of w 6 4k`. Let t denote the number of cycles of length at most ` in G. By deleting at most t
edges, we can form a graph G̃ with girth at least `. A theorem of Alon, Hoory, and Linial [AHL02]
implies that any (possibly irregular) graph with w vertices and girth at least ` must have average
degree at most 2+O(log(w)/`) (this uses log(w) = o(`)). Thus G̃ has such a bound on its average
degree. After restoring the deleted edges, we can still conclude that the average degree in G is at
most 2 +O(log(w)/`) + 2t

w . Writing w1, w2, w3+ for the number of vertices in G of degree 1, 2, and
3-or-more respectively, this means

2 + O(log(w)/`) +
2t
w

>
w1 + 2w2 + 3w3+

w
=

w1 + 2(w− w1 − w3+) + 3w3+

w
= 2− w1

w
+

w3+

w
=⇒ w3+ 6 O(w log(w)/`) + w1 + 2t.

The first term here is O(k log(k`)) as desired, since w 6 4k`. We will also show the next two
terms are O(k). Regarding w1, degree-1 vertices in G can only arise from the spurs of C, and hence
w1 6 2k. Finally, 2t 6 O(k) follows from the below claim combined with w 6 4k`:

t 6
w
2`

+ 1. (18)

We establish (18) using the tangle-free property of C. Recall that t is the number of “short” cycles
in G, meaning cycles of length at most `. By the `-tangle-free property of C (recalling the factor 4 in
its definition), every v ∈ V has at most one short cycle within distance 3` of it. Thus if we choose
paths in G that connect all short cycles (recall G is connected), then to each short cycle we can
uniquely charge at least 3`− 1 > 2` vertices from these paths. It follows that w = |V| > 2`(t− 1),
establishing (18).

Corollary 6.19. In the setting of Lemma 6.18, assume also that C is singleton-free and valid. Then the
number of variable-vertices C visits is at most k`+O(k log(k`)), and the same is true of constraint-vertices.

Proof. Think of C as a succession of 2k(`+ 1) “two-steps”, where a two-step is a length-2 directed
path going from a variable-vertex, to a constraint-vertex, to a (distinct) variable-vertex. Call two
such two-steps “duplicates” if they use the same three variables (possibly going in the opposite
direction). We claim that “almost all” two-steps have at least one duplicate. To see this, consider
the constraint-vertex in some two-step a. Since C is singleton-free, at least one other two-step b
must pass through the constraint-vertex of a. If b is not a duplicate of a, then this constraint-
vertex will have degree exceeding 2 in G(C). By Lemma 6.18 there are at most O(k log(k`)) such
constraint-vertices. Further, by validity each constraint-vertex can support at most (r

2) = O(1)
unduplicated two-steps. Thus at most O(k log(k`)) of the 2k(`+ 1) two-steps are unduplicated.

Now imagine we walk through the two-steps of C in succession. Each two-step can visit at
most one “new” variable-vertex and one “new” constraint-vertex. However each two-step which

39

is a duplicate of a previously-performed two-step visits no new vertices. Among the 2k(` + 1)
two-steps, at most O(k log(k`)) are unduplicated. Thus at least (2k(` + 1) −O(k log(k`)))/2 =

k(` + 1) − O(k log(k`)) two-steps are duplicates of previously-performed two-steps. It follows
that at most k(`+ 1) +O(k log(k`)) two-steps visit any new vertex. This completes the proof.

6.4 The final countdown

We now wish to count the objects summed in the definition of R from Lemma 6.17. The remainder
of this section will be devoted to proving:

Theorem 6.20. For every ε > 0, except with probability O(1/n.99),

ρ(Bn) 6 (1 + on(1)) · (1 + ε) ·
√

ρ(|B1|).

The bulk of the technical matter in the proof of Theorem 6.20 will involve analyzing

(2k× 2`)-nonbacktracking, valid, internally `-tangle-free, singleton-free, A-linkages C (19)

in Kn.

Definition 6.21 (Steps: stale, fresh, and boundary). We call each of the 4k(`+ 1) directed edges
from which C is composed a step. If we imagine traversing these steps in order, they “reveal”
vertices and edges of G(C) as we go along. We call a step stale if the edge it traverses was pre-
viously traversed in C (in some direction). Note that both endpoints of the edge must also have
been previously visited. Otherwise, if the step traverses a “new” edge, it will be designated either
“fresh” or “boundary”. It is designated fresh if the vertex it reaches was never previously visited
in C. Otherwise, the step is boundary; i.e., the step goes between two previously-visited vertices,
but along a new edge. For the purposes of defining fresh/boundary, we specify that the initial
vertex of C is always considered to be “previously visited”.

The following facts are immediate:

Fact 6.22. The number of fresh steps in C is |V(C)| − 1. (The −1 accounts for the fact that the initial
vertex is considered “previously visited”.) Since the number of fresh and boundary steps together is |E(C)|,
it follows that the number of boundary steps is |E(C)| − |V(C)|+ 1.

Definition 6.23. We write Lkgs(f , b) for the collection of linkages as in (19) having exactly f fresh
edges and b boundary edges.

Our goal is to show:

Lemma 6.24. For every ρ̂ > ρ(|B1|) we have:

|Lkgs(f , b)| 6 poly(k, `)b+k · n f+1 · ρ̂ f /2

where the constants in the poly factor depend on ρ̂.

40

Before proving this lemma, observe that many linkages are the same modulo the labels be-
tween 1 and n that are defined by the lifting. To make this formal we first introduce some notation
and follow by using it to aid in the proof of Lemma 6.24.

Given a linkage C we write C = ((v1, i1), (v2, i2), . . . , (v4k(`+1), i4k(`+1))), where (vj, ij) are ver-
tices from Kn and vj indicates the base vertex (from Kr,c) and ij is an integer (between 1 and n)
that indicates the lifted copy. This notation means that C traverses this sequence of vertices in this
order.

Definition 6.25 (Isomorphism of linkages). Given two linkages C and C ′ that visit |V(C)| =

|V(C ′)| vertices, we say they are isomorphic if are the same modulo the labels between 1 and n
that are defined by the lifting. Formally, letting C = ((v1, i1), . . . , (v4k(`+1), i4k(`+1))) and C ′ =
((v′1, i′1), . . . , (v′4k(`+1), i′4k(`+1))), there exist permutations πv on [n] for each v ∈ V(Kr,c) such that
for all j we have v′j = vj and i′j = πvj(ij).

This isomorphism relation induces equivalence classes for which we want to assign represen-
tative elements. We do so as follows.

Definition 6.26 (Canonical linkages). A linkage C is said to be canonical if for every vertex v ∈ Kr,c,
if C visits j distinct lifted copies of v then it first visits (v, 1), then (v, 2), . . ., and finally (v, j). We
write Lkgsc(f , b) for the collection of canonical linkages as in (19) having exactly f fresh steps and
b boundary steps.

Proposition 6.27. |Lkgs(f , b)| 6 n f+1|Lkgsc(f , b)|.

Proof. It suffices to show that for every canonical linkage C ∈ Lkgsc(f , b), it has at most n f+1

isomomorphic linkages C ′ ∈ Lkgs(f , b). By Fact 6.22, C visits exactly f + 1 distinct vertices, call
them {(v(1), i(1)), . . . , (v(f+1), i(f+1))}. Every isomorphic C ′ may be obtained by taking a list of
numbers (i′1, . . . , i′f+1) ∈ [n] f+1 and replacing all appearances of (v(j), i(j)) in C with (v(j), i′j). (Not
all such lists lead to isomorphic C ′, but we don’t mind overcounting.) This completes the proof, as
there are n f+1 such lists.

We now have all the tools to prove the desired lemma.

Proof of Lemma 6.24. With Proposition 6.27 in place, it suffices to bound the number of canonical
linkages as follows:

|Lkgsc(f , b)| 6 poly(k, `)b+k · ρ̂ f /2.

Our strategy is to give an encoding of linkages in Lkgsc(f , b), and then bound the number of
possible encodings. Let C be an arbitrary linkage in Lkgsc(f , b). To encode C, we first partition it
into 2k many “2(`+ 1)-segments”, each of which corresponds to nonbacktracking walks between
spurs,and specify how to encode each 2(`+ 1)-segment. We then partition each 2(`+ 1)-segment
into maximal contiguous blocks of the same type of step (“type” as in Definition 6.21) and store
an encoding of information about the steps therein. Ultimately, it will be possible to uniquely
decipher C from its constructed encoding.

Towards describing our encoding, we first define the sequence Svisited, constructed from the
f + 1 vertices in V(C) sorted in increasing order of first-visit time.

41

Encoding positions of blocks. We define Pfresh, Pboundary and Pstale, which are sequences noting
the starting positions and ending positions of fresh, boundary, and stale blocks respectively, in the
order visited in C.

Encoding fresh steps. Let Sfresh be the sequence obtained by replacing each vertex of Svisited with
its corresponding base vertex in Kr,c.

Encoding boundary steps. Let β be a block of boundary steps (v0, v1), . . . , (v|β|−1, v|β|). Let ti be
such that vi is the ti-th vertex in Svisited. We define Encb(β) as the sequence (t0, t1), . . . , (t|β|−1, t|β|).
Let β1, . . . , βT be the blocks of boundary steps in the order in which they appear in C. We store the
concatenation of Encb(β1), . . . , Encb(βT), which we call Sboundary.

Encoding stale steps. For each block β of stale steps, let u be the first vertex and v be the last
vertex of β, and let p(β) be the position in C where the block β starts. Let Sp(β),uv,|β| denote the
list (in, say, lexicographic order) of all possible nonbacktracking walks from u to v of length |β|
that only use edges visited by C before position p(β); note that β occurs in Sp(β),uv,|β|. We let
Encs(β) = (t, m) such that the t-th vertex in Svisited is the last vertex visited in β (that is v), and m
is the position of β in Sp(β),uv,|β|. Let β1, . . . , βT be the blocks of stale steps in the order they appear
in C. We store the concatenation of Encs(β1), . . . , Encs(βT), which we call Sstale.

We refer to the constructed (Pfresh, Pboundary, Pstale, Sfresh, Sboundary, Sstale) as the encoding of C.

Unique reconstruction of linkage. In this part of the proof, we show that we can uniquely re-
cover C from its encoding. First, since C is a canonical linkage we can correctly reconstruct Svisited

from Sfresh because the labels are visited in canonical (increasing) order. From Pfresh, Pboundary and
Pstale, we can infer a partition of [4k(` + 1)] into blocks in order β1, . . . , βT and the type of each
block. We sketch an inductive proof that shows how C can be uniquely recovered from its encod-
ing. As our base case, the first block is a fresh block and hence all the steps that comprise it can be
recovered from Svisited. Towards our inductive step, suppose we know the edges in C from blocks
β1, . . . , βi, we show how to recover the edges in βi+1 from the encoding of C. If βi+1 is a fresh or
boundary block, its recovery is straightforward. Suppose βi+1 is a stale block. Then from Pstale and
Sstale, we can infer the last vertex v visited by βi+1 and the length of the block |βi+1|. We know the
first vertex u in βi+1 and can reconstruct Sp(βi+1),uv,|βi+1| since we have complete information about
the steps in C prior to βi+1. We can then infer βi+1 from Sp(βi+1),uv,|βi+1| and Sstale.

Bounding the number of metadata encodings. A fresh block must either be followed by a
boundary step, or must occur at the end of a 2(` + 1)-segment; analogously, a stale block must
either be preceded by a boundary step, or must occur at the start of a 2(` + 1)-segment. Thus,
the number of fresh blocks and stale blocks are each bounded by b + 2k. Further, the number of
boundary blocks is clearly bounded by b. Since there are at most (4k(`+ 1))2 distinct combina-
tions of starting and ending positions of a block, the number of distinct possibilities that the triple
(Pfresh, Pstale, Pboundary) can be bounded by (4k(`+ 1))6b+8k.

42

Bounding number of fresh step encodings. For a fixed Pfresh, we give an upper bound on the
number of possibilities for Sfresh. Fixing Pfresh fixes a number T as well as q1, . . . , qT such that there
are T fresh blocks in C and such that the i-th block has length qi. Let us focus on a single fresh
block β. The sequence of vertices in Sfresh corresponding to β give a nonbacktracking walk Wβ in
the base constraint graph Kr,c. Additionally, for a consecutive triple (i, j, i′) in this nonbacktracking
walk, {i, i′} must be an edge in the corresponding base instance graph I1 due C being an A-
linkage. Let W̃β be the maximal subwalk of Wβ that starts and ends with a variable vertex. Note
that W̃β corresponds exactly to a nomadic walk in I1 whose length is at most |β|/2. Now regarding
Wβ, either Wβ is equal to W̃β (there is 1 way in which this can happen), or both the first and last
steps of Wβ are not in W̃β (there are c2 ways in which this can happen), or exactly one of the first
and last steps of Wβ is not in W̃β (there are 2c ways in which this can happen). This tells us that the
number of distinct possibilities for Wβ is bounded by (c + 1)2δb|β|/2c, where δs denotes the number
of nomadic walks of length s in I1. Thus, we obtain an upper bound of (c + 1)2T ∏T

i=1 δbqi/2c
on the number of possibilities for Sfresh, which is bounded by (c + 1)2b+4k ∏T

i=1 δbqi/2c. Towards
simplifying the expression, we bound δs. Observe that for a given edge e ∈ E(|I1|), the number of
nomadic walks of length s starting with e is given by ‖(|B1|)s1e‖1. This implies that δs 6 ‖(|B1|)s‖1,
where ‖(|B1|)s‖1 = sup{‖(|B1|)sx‖ : ‖x‖1 = 1}.

To bound the above, first observe that we have a simple bound ‖(|B1|)s‖1 6 κs provided κ is a
large enough constant (for example, the maximum degree of I1 is a possible such value). Next, it
is known that

lim
s→∞

(‖(|B1|)s‖)1/s = ρ(|B1|),

and hence for any ρ̂ > ρ(|B1|), there is a constant `0 such that ‖(|B|)s‖1 6 (ρ̂)s for all s > `0.
Putting these two bounds together we get that for any s > `0,

δs 6 ‖(|B1|)s‖1 6 (ρ̂)s−`0κ`0 .

Thus the number of possibilities for Sfresh is bounded by (c + 1)2b+4k ∏T
i=1(ρ̂)

bqi/2c−`0κ`0 , which
can, in turn, be bounded by

(
(c + 1)2κ`0 ρ̂−`0

)b+2k
(ρ̂) f /2.

Bounding number of stale step encodings. For any stale block β, let u and v be the first and
last visited vertices respectively. Sstale specifies a number in [f + 1] to encode v, and a number
between 1 and M where M is the total number of nonbacktracking walks from u to v of length |β|.
Since the number of stale blocks is bounded by b + 2k, the number of possibilities for what Sstale

can be is at most (M(f + 1))b+2k. We show that M 6 2, and hence translate our upper bound to
(2(f + 1))b+2k.

Since all blocks are contained within 2(` + 1)-segments and the A-linkage being encoded is
4`-tangle-free, the steps traversed by β are in a connected subgraph H with at most one cycle. Our
goal is to show that there are at most 2 nonbacktracking walks of a given length L between any
pair of vertices x, y. There is at most one nonbacktracking walk between x and y that does not visit
vertices on C, the single cycle in H, and if such a walk exists, it is the unique shortest path. Any
nonbacktracking walk between x and y that visits vertices of C can be broken down into 3 phases
— (i) a nonbacktracking walk from x to vx, the closest vertex in C to x, (ii) a nonbacktracking walk
from vx to vy, the closest vertex in C to y, (iii) a nonbacktracking walk from vy to y. Phases (i)
and (iii) are always of fixed length, whose sum is some L′. Thus, it suffices to show that there

43

are at most 2 nonbacktracking walks from vx to vy of length L− L′. Any nonbacktracking walk
takes r rotations in C and then takes an acyclic path from vx to vy, whose length is observed to
be strictly less than |C|, for r > 0. The steps in a nonbacktracking walk from vx to vy are either
all in a clockwise direction, or all in an anticlockwise direction, and hence for any r there are at
most 2 nonbacktracking walks from vx to vy of length strictly between (r− 1)|C| and r|C|+ 1. In
particular, there are at most 2 nonbacktracking walks between vx and vy of length equal to L− L′.

Bounding number of boundary step encodings. Sboundary is a sequence of b tuples in [f + 1]2,
and hence there are at most (f + 1)2b distinct sequences that Sboundary can be.

Final bound: The above gives us a final bound of:

(4k(`+ 1))6b+8k((c + 1)2κ`0(ρ̂)−`0)b+2k(ρ̂) f /22b+2k(f + 1)3b+2k (20)

which, when combined with Proposition 6.27 gives the desired claim.

We wrap everything up by combining the results of Lemma 6.24 with Lemma 6.17 to prove
Theorem 6.20.

Proof of Theorem 6.20. Let ` = κ log n, where κ is the universal constant from Proposition 6.5, let k
be chosen so that k` = ω(log n), let R be as in Lemma 6.17, and let ρ̂ be any constant greater than
ρ(|B1|). Then we have

R = ∑
(2k×2`)-nonbacktracking

valid, internally `-tangle-free, singleton-free
A-linkages C in Kn

n−|E(C)|

=
∞

∑
f=0

∞

∑
b=0
|Lkgs(f , b)|n−(f+b)

=
2k`+O(k log(k`))

∑
f=0

∞

∑
b=0
|Lkgs(f , b)|n−(f+b) (by Corollary 6.19)

6
2k`+O(k log(k`))

∑
f=0

∞

∑
b=0

poly(k, `)b · poly(k, `)k · (ρ̂) f /2 · n
nb (by Lemma 6.24)

=
2k`+O(k log(k`))

∑
f=0

n · poly(k, `)k · (ρ̂) f /2
∞

∑
b=0

(
poly(k, `)

n

)b

=
2k`+O(k log(k`))

∑
f=0

n · poly(k, `)k · (ρ̂) f /2 ·
(

1

1− poly(k,`)
n

)
6 2n · poly(k, `)k(2k`+ O(k log(k`)))(ρ̂)k`+O(k log(k`))

For the choice of k and ` in the theorem statement, we can use Lemma 6.17 to conclude that

ρ(Bn) 6 (1 + on(1)) ·
√

ρ̂.

with probability 1−O(n.99). Since the above bound holds for any ρ̂ > ρ(|B1|), for any ε > 0, it
can be rewritten as

ρ(Bn) 6 (1 + on(1)) · (1 + ε) ·
√

ρ(|B1|).

44

7 The SDP value for random two-eigenvalue CSPs

In this section, we put all the ingredients together to conclude our main theorem. We start with
an elementary and well known fact and include a short proof for self containment.

Fact 7.1. Let A be a real n× n symmetric matrix. Then

1
n

max
X�0,Xii=1

〈A, X〉 6 λmax(A)

1
n

min
X�0,Xii=1

〈A, X〉 > λmin(A)

Proof. We prove the upper bound below. The proof of the lower bound is identical.

1
n

max
X�0,Xii=1

〈A, X〉 6 1
n

max
X�0,tr(X)=n

〈A, X〉

= max
X�0,tr(X)=1

〈A, X〉

= λmax(A).

Recall αgr := (c− 1)(−λ1λ2) and rX := 2√αgr.

Theorem 7.2. Let A = (A1, . . . , Ac) be a sequence of r-vertex atoms with edge weights ±1. Let Hn

denote a random n-lifted constraint graph and In = A(Hn) an associated instance graph with 1-wise
uniform negations (ξ f

ii′). Let An be the adjacency matrix of In. Then, with probability 1− on(1),

max
X�0,Xii=1

〈An, X〉 = (λ1 + λ2 + rX ± ε)n

min
X�0,Xii=1

〈An, X〉 = (λ1 + λ2 − rx ± ε)n.

Proof. maxX�0,Xii=1〈An, X〉 > (λ1 +λ2 + rX− ε)n follows from Theorem 5.2 and maxX�0,Xii=1〈An, X〉 6
(λ1 + λ2 + rX + ε)n follows from Fact 7.1. The upper and lower bounds on minX�0,Xii=1〈An, X〉
can be determined identically.

Acknowledgments

We thank Yuval Peled for emphasizing the bipartite graph view of additive lifts, and Tselil Schramm
for helpful discussions surrounding the trace method on graphs. S.M. would like to thank Jess
Banks and Prasad Raghavendra for plenty of helpful discussions on orthogonal polynomials and
nonbacktracking walks. Finally, we are grateful to Xinyu Wu for bringing the relevance of [BC18]
to our attention and helping us to understand the issues discussed in Section 1.3.

References

[AA15] Scott Aaronson and Andris Ambainis. Forrelation: a problem that optimally sepa-
rates quantum from classical computing. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing, pages 307–316, 2015. 12

45

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Proceedings of the 42nd Annual ACM Symposium on
Theory of Computing, pages 171–180, 2010. 1

[ADR82] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of Bell’s inequal-
ities using time-varying analyzers. Physical Review Letters, 49(25):1804–1807, 1982.
11

[AFH15] Omer Angel, Joel Friedman, and Shlomo Hoory. The non-backtracking spectrum of
the universal cover of a graph. Transactions of the American Mathematical Society,
367(6):4287–4318, 2015. 16, 26

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular
graphs. Graphs and Combinatorics, 18(1):53–57, 2002. 39

[Amb06] Andris Ambainis. Polynomial degree vs. quantum query complexity. Journal of
Computer and System Sciences, 72(2):220–238, 2006. 11

[APV16] Andris Ambainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. Sensitivity versus certifi-
cate complexity of Boolean functions. In Proceedings of the 11th Annual Computer
Science Symposium in Russia, pages 16–28, 2016. 11

[BC18] Charles Bordenave and Benoı̂t Collins. Eigenvalues of random lifts and polynomial
of random permutations matrices. arXiv preprint arXiv:1801.00876, 2018. 8, 9, 45

[BDH18] Gerandy Brito, Ioana Dumitriu, and Kameron Decker Harris. Spectral gap in random
bipartite biregular graphs and its applications. arXiv preprint arXiv:1804.07808, 2018.
34

[Bel64] John Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika,
1(3):195–200, 1964. 11

[BFKL93] Avrim Blum, Merrick Furst, Michael Kearns, and Richard Lipton. Cryptographic
primitives based on hard learning problems. In Proceedings of the 13th Annual
International Cryptography Conference, pages 278–291, 1993. 1

[BKM17] Jess Banks, Robert Kleinberg, and Cristopher Moore. The Lovász Theta func-
tion for random regular graphs and community detection in the hard regime. In
Proceedings of the 21st Annual International Workshop on Randomized Techniques
in Computation, volume 81, pages 28:1–28:22, 2017. 2

[BL06] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral
gap. Combinatorica. An International Journal on Combinatorics and the Theory of
Computing, 26(5):495–519, 2006. 14

[BLM15] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spec-
trum of random graphs: community detection and non-regular Ramanujan graphs.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages
1347–1357. IEEE, 2015. 6

46

[BMMN13] Mark Braverman, Konstantin Makarychev, Yury Makarychev, and Assaf Naor.
The Grothendieck constant is strictly smaller than Krivine’s bound. Forum of
Mathematics. Pi, 1:e4, 42, 2013. 10

[Bor15] Charles Bordenave. A new proof of Friedman’s second eigenvalue theorem and its
extension to random lifts. arXiv preprint arXiv:1502.04482, 2015. 5, 34

[CGHV15] Endre Csóka, Balázs Gerencsér, Viktor Harangi, and Bálint Virág. Invariant Gaussian
processes and independent sets on regular graphs of large girth. Random Structures
& Algorithms, 47(2):284–303, 2015. 2

[CHSH69] John Clauser, Michael Horne, Abner Shimony, and Richard Holt. Proposed experi-
ment to test local hidden-variable theories. Physical Review Letters, 23(15):880–884,
1969. 11

[CHTW04] Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and
limits of nonlocal strategies. In Proceedings of the 19th Annual Computational
Complexity Conference, pages 246–249, 2004. 11

[CW04] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: extending
Grothendieck’s Inequality. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 54–60, 2004. 10

[DMO+19] Yash Deshpande, Andrea Montanari, Ryan O’Donnell, Tselil Schramm, and Sub-
habrata Sen. The threshold for SDP-refutation of random regular NAE-3SAT. In
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2305–2321, 2019. 2, 12, 32, 34, 38

[DMS17] Amir Dembo, Andrea Montanari, and Subhabrata Sen. Extremal cuts of sparse ran-
dom graphs. The Annals of Probability, 45(2):1190–1217, 2017. 1

[DP93] Charles Delorme and Svatopluk Poljak. Laplacian eigenvalues and the maximum cut
problem. Mathematical Programming, 62(1–3):557–574, 1993. 2, 10

[DS16] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning
DNF’s. In Proceedings of the 29th Annual Conference on Learning Theory, pages
815–830, 2016. 1

[DSS15] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pages
59–68, 2015. 1

[Elo09] Yehonatan Elon. Gaussian waves on the regular tree. Technical Report 0907.5065,
arXiv, 2009. 2

[Fei02] Uriel Feige. Relations between average case complexity and approximation complex-
ity. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pages 543–543, 2002. 1, 2

47

[Fri08] Joel Friedman. A proof of Alon’s second eigenvalue conjecture and related problems.
Memoirs of the American Mathematical Society, 195(910):viii+100, 2008. 1, 5

[FS02] Uriel Feige and Gideon Schechtman. On the optimality of the random hyperplane
rounding technique for Max-Cut. Randoom Structures and Algorithms, 20(3):403–
440, 2002. 10

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer–Verlag, 1988. 10

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Technical
Report 90, Electronic Colloquium on Computational Complexity, 2000. 1

[Gro53] Alexander Grothendieck. Résumé de la théorie métrique des produits tensoriels
topologiques. Boletı́n de la Sociedad Matemática São Paulo, 8:1–79, 1953. 10

[GW95] Michel Goemans and David Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42:1115–1145, 1995. 2, 10

[GZ99] Rostislav Grigorchuk and Andrzej Żuk. On the asymptotic spectrum of random
walks on infinite families of graphs. In Random walks and discrete potential theory
(Cortona, 1997), Sympos. Math., XXXIX, pages 188–204. Cambridge Univ. Press, Cam-
bridge, 1999. 6

[HV15] Viktor Harangi and Bálint Virág. Independence ratio and random eigenvectors in
transitive graphs. The Annals of Probability, 43(5):2810–2840, 2015. 2

[JP00] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Designs,
Codes and Cryptography, 20(3):269–280, 2000. 1

[KMM+13] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka
Zdeborová, and Pan Zhang. Spectral redemption in clustering sparse networks.
Proceedings of the National Academy of Sciences of the United States of America,
110(52):20935–20940, 2013. 6

[KMOW17] Pravesh Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Proceedings of the 49th Annual ACM
Symposium on Theory of Computing, pages 132–145, 2017. 1, 2

[Kub12] Carlos S Kubrusly. Spectral theory of operators on Hilbert spaces. Springer Science
& Business Media, 2012. 16

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Proceedings of the 37th Annual International Cryptography
Conference, pages 599–629, 2017. 1

[Lov79] László Lovász. On the Shannon capacity of a graph. Institute of Electrical and
Electronics Engineers. Transactions on Information Theory, 25(1):1–7, 1979. 10

48

[Lyo17] Russell Lyons. Factors of IID on trees. Combinatorics, Probability and Computing,
26(2):285–300, 2017. 1

[Mas14] Laurent Massoulié. Community detection thresholds and the weak Ramanujan
property. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 694–703. ACM, 2014. 6

[MM09] Marc Mézard and Andrea Montanari. Information, physics, and computation. Ox-
ford University Press, 2009. 1

[MNS18] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold
conjecture. Combinatorica, 38(3):665–708, 2018. 6

[MO18] Sidhanth Mohanty and Ryan O’Donnell. X-Ramanujan graphs, 2018. Available at
https://arxiv.org/abs/1904.03500. 5, 6, 14

[Mon17] Andrea Montanari. Bounds on ground state enery in the Sherrington–Kirkpatrick
model, 2017. Open problem from AIM workshop, available at http://aimpl.org/
phaserandom/1/. 2

[Mon18] Andrea Montanari. Optimization of the Sherrington–Kirkpatrick hamiltonian. arXiv
preprint arXiv:1812.10897, 2018. 2

[MPR16] Raffaele Marino, Giorgio Parisi, and Federico Ricci-Tersenghi. The backtrack-
ing survey propagation algorithm for solving random k-sat problems. Nature
Communications, 7:12996, 2016. 1

[MS16] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random
graphs and their application to community detection. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing, pages 814–827, 2016. 2

[Nor97] Sam Northshield. Several Proofs of Ihara’s theorem. 1997. 17

[OST+14] Ryan O’Donnell, Xiaorui Sun, Li-Yang Tan, John Wright, and Yu Zhao. A composition
theorem for parity kill number. In Proceedings of the 29th Annual Computational
Complexity Conference, pages 144–154, 2014. 11

[Ram15] Farzaneh Ramezani. On the signed graphs with two distinct eigenvalues. arXiv
preprint arXiv:1511.03511, 2015. 12

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random
CSPs below the spectral threshold. In Proceedings of the 49th Annual ACM
Symposium on Theory of Computing, pages 121–131, 2017. 1

[Sen18] Subhabrata Sen. Optimization on sparse random hypergraphs and spin glasses.
Random Structures & Algorithms, 53(3):504–536, 2018. 1

[Tal06] Michel Talagrand. The Parisi formula. Annals of Mathematics. Second Series,
163(1):221–263, 2006. 1

49

https://arxiv.org/abs/1904.03500
http://aimpl.org/phaserandom/1/
http://aimpl.org/phaserandom/1/

[Tsi80] Boris Tsirelson. Quantum generalizations of Bell’s inequality. Letters in Mathematical
Physics, 4(2):93–100, 1980. 11

[Wil07] Ryan Williams. Algorithms and resource requirements for fundamental problems.
PhD thesis, Carnegie Mellon University, 2007. 11

[Woe00] Wolfgang Woess. Random walks on infinite graphs and groups, volume 138. Cam-
bridge university press, 2000. 9

50

	1 Introduction
	1.1 Our results
	1.2 Sketch of our techniques
	1.2.1 Friedman/Bordenave Theorems for two-eigenvalue additive lifts

	1.3 Relationship to the work of Bordenave–Collins

	2 Preliminaries
	2.1 2XOR optimization problems and their relaxations
	2.2 Quantum games, and some quantum-relevant constraints
	2.3 2XOR graphs with only 2 distinct eigenvalues
	2.4 Random constraint graphs, instance graphs, and additive products
	2.5 Nomadic walks operators
	2.6 Operator Theory

	3 An Ihara–Bass formula for additive lifts of 2-eigenvalue atoms
	4 Connecting the adjacency and nomadic spectrum
	5 Additive products of 2-eigenvalue atoms
	5.1 Enclosing the spectrum
	5.2 Construction of Witness Vectors
	5.3 SDP solution for random additive lifts

	6 Friedman/Bordenave for additive lifts
	6.1 Trace Method setup, and getting rid of tangles
	6.2 Eliminating singletons, and reduction to counting
	6.3 Tangle-free, singleton-free linkages are nearly duplicative
	6.4 The final countdown

	7 The SDP value for random two-eigenvalue CSPs

