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Abstract

The population recovery problem is a basic problem in noisy unsupervised learning that has
attracted significant attention in recent years [WY12, DRWY12, MS13, BIMP13, LZ15, DST16].
A number of different variants of this problem have been studied, often under assumptions on
the unknown distribution (such as that it has restricted support size). In this work we study
the sample complexity and algorithmic complexity of the most general version of the problem,
under both bit-flip noise and erasure noise model. We give essentially matching upper and
lower sample complexity bounds for both noise models, and efficient algorithms matching these
sample complexity bounds up to polynomial factors.

1 Introduction

1.1 The erasure noise and bit-flip noise population recovery problems

The noisy population recovery (NPR) problem is to learn an unknown probability distribution D on
{0, 1}n, under ν-noise, to `∞-accuracy ε.1 In this problem the learner gets access to independent
samples y, each distributed as follows: First x ∼ D, and then y ∼ Noiseν(x), where Noiseν(·)
denotes either the application of bit-flip noise or erasure noise (described below). The learner’s
task is to output an estimate D̂ of D satisfying ‖D̂ − D‖∞ ≤ ε (with high probability). For the
sake of a compact representation, we assume the learner only outputs the nonzero values of D̂;
this means that a successful learner need only output O(1/ε) nonzero values. We are interested in
minimizing both the sample complexity and the running time of learning algorithms.

A simpler variation of the NPR problem is the estimation task. Here the algorithm doesn’t
need to output a complete D̂; it only needs to output an ε-accurate estimate of D(u) for a given
input u ∈ {0, 1}n. Certainly the estimation task is no harder than full NPR; conversely, it is known

∗Supported by NSF grant CCF-1814706. Work was partly done when the author was on the faculty at North-
western University.
†Supported by NSF grant CCF-1618679.
‡Supported by NSF grants CCF-1420349 and CCF-1563155.
1With high probability. Because we are not concerned with logarithmic factors in our time/sample complexity, we

will for simplicity omit discussion of the standard tricks (independent repetition, taking the median of estimators)
used to boost success probabilities. We will also always assume, without loss of generality, that ε is at most some
sufficiently small absolute constant.
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and not hard (see Section 2.1) that given the ability to do estimation, one can do full NPR with
just a poly(n, 1/ε) factor slowdown. Hence we mainly focus on estimation in this paper.

As mentioned above, we consider two different models of noise. Each involves a parameter
0 < ν < 1; smaller values of ν correspond to more noise, so ν may be better thought of as a
“correlation” parameter.

Erasure noise. For x ∈ {0, 1}n we define Erase1−ν(x) to be the distribution on {0, 1, ?}n given
by independently replacing each coordinate of x with the symbol ‘?’ with probability 1−ν. Thus ν
is the retention probability for each coordinate.

Bit-flip noise. For x ∈ {0, 1}n we define Flip 1−ν
2

(x) to be the distribution on {0, 1}n given by

independently flipping each coordinate of x with probability 1−ν
2 . Equivalently, each coordinate of

x is retained with probability ν (as in erasure noise), and is otherwise replaced with a uniformly
random bit. This is also the model of noise associated to the so-called “Bonami–Beckner noise
operator” Tν (see [O’D14] for the precise description and many applications of this operator).

1.2 Our results

For the bit-flip noise population recovery problem, our main result is a lower bound on the sample
complexity of estimation, as well as a full NPR algorithm whose running time (hence also sample
complexity) matches it up to polynomial factors:

Theorem 1.1 (NPR bit-flip noise upper and lower bounds). Let ε > 0 be sufficiently small and let
n ∈ N. Then any estimation algorithm for NPR with bit-flip noise must use at least the following
number of samples:exp

(
Θ
(
n1/3 · ln2/3(1/ε)/ν2/3

))
if
(2 ln(1/ε)

n

) 1
4 ≤ ν ≤ 1/2,

exp
(

Θ
(
n1/3 · ln2/3(1/ε) · (1− ν)1/3

))
if 1/2 ≤ ν ≤ 1− 2 ln(1/ε)

n .

Here Θ(·) hides an absolute constant factor independent of ν and n. Furthermore, for 2 ln(1/ε)/n ≤
ν ≤ 1−2 ln(1/ε)/n, there is an algorithm for the full NPR problem with bit-flip noise having running
time and samples equal to the above times poly(n, 1/ε).

Prior to this work and the very recent and independent work of [PSW17], no nontrivial upper
or lower bounds were known even for the sample complexity of the general bit-flip noise popula-
tion recovery problem. (See [WY12, LZ15, DST16] for earlier works that gave upper bounds and
algorithms under the additional assumption that the unknown distribution D is guaranteed to be
supported on at most k strings.)

For the erasure noise population recovery problem, our main positive result is an efficient
algorithm, and our main negative result is a near-matching lower bound for algorithms which meet
either of the following conditions: (a) only uses information about the number of 1’s that are
present in the received string or (b) the ambient dimension n is sufficiently large. More precisely,
we have the following theorem.

Theorem 1.2 (NPR erasure noise upper and lower bounds). Let ε > 0 be sufficiently small,
0 ≤ ν ≤ 1 and let n ∈ N.

1. There is an algorithm for the full NPR problem with erasure noise using time and samples at
most poly(n, 1/ε1/ν). Moreover, the sample complexity of the estimation algorithm is upper
bounded by O(1/ε1/ν).
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2. Assume that
√

16 ln(1/ε)/n ≤ ν ≤ 1/160.Then any estimation algorithm for NPR with era-
sure noise that only uses the number of 1’s in each received string must use at least 1/εΩ(1/ν)

samples.

3. If n ≥ ε−Ω(1/ν), then any estimation algorithm for NPR with erasure noise must use at least
1/εΩ(1/ν) samples.

For this problem, in earlier work [MS13] gave an algorithm with sample complexity and running
time (n/ε)O(log(1/ν)/ν). In the above theorem, item 3 follows from a simple reduction from item
2 (which exploits the shift invariance of binomial distributions). This reduction is presented in
Appendix A. Thus, in the main body of this paper, we only focus on proving items 1 and 2.

Finally, we note that in very recent and independent work, [PSW17] have obtained very similar
results to Theorems 1.1 and 1.2 for the population recovery problem. We explain the relationship
between their results and our results below.

1.3 Our techniques and relationship to the work of [PSW17]

Our approach is similar in spirit to, and shares some technical similarities with, the recent work
of [DOS16, NP16] on the trace reconstruction problem as well as the earlier work of Moitra and
Saks [MS13] on population recovery with erasure noise. At a high level, we take an analytic view
on the combinatorial process defined by the bit-flip and erasure noise operators, and convert the
sample complexity questions for these population recovery problems to questions about the extrema
of real-coefficient polynomials satisfying certain conditions on various circles in the complex plane;
we then obtain our sample complexity bounds by analyzing these extremal polynomial questions.
We remark here that [MS13] were the first to introduce complex analytic tools in the line of work
mentioned here – in contrast to our paper, [MS13] arrives at the complex analytic formulation
by considering the dual of a LP-based estimator. However, it is possible to directly arrive at the
complex analytic formulation without invoking the notion of LP duality, and this is what we do
in this paper. Finally, we mention that the main algorithmic ingredient in our results is linear
programming.

This work and the work of [PSW17] were done concurrently and independently of each other.
We now briefly explain the relationship between the techniques and results in these papers. (a)
The results for NPR with bit-flip noise (i.e. Theorem 1.1) are the same as those of [PSW17].
(b) As stated, our results for NPR with erasure noise are quantitatively somewhat weaker though
qualitatively quite similar to those of [PSW17]. In particular, we show that the sample complexity
of the estimation problem in this setting is 1/εΘ(1/ν). In contrast, [PSW17] show that the sample
complexity for the estimation problem in presence of erasure noise, is precisely (1/ε)max{2,2(1−ν)/ν}

up to polylogarithmic factors. For any ν, our result differs from that of [PSW17] only up to a
fixed constant factor in the exponent of ε. We remark that our paper was written independently of
[PSW17] and thus no attempt was made to match the results of [PSW17] or to obtain exponents
with precise constant factors. Incidentally, it turns out that the proof of item 1 of Theorem 1.2 in
fact yields the same exponent as that of [PSW17] though we state our result without the factor
“1−ν” (see Theorem 4.1). Finally, we also note that the sample complexity for both our results and
the results of [PSW17] are “dimension free” for the estimation problem, i.e., the sample complexity
bound is independent of the ambient dimension n. In contrast, for the full NPR problem, the
sample complexity depends on n (in both the papers).

At a high level, the techniques of [PSW17] are similar to ours (and those of [NP16, DOS16])
though our proofs are substantially shorter. This is essentially because we are able to leverage
some recent results from [BEK99, Erd16] in our proofs. In particular, in the proof of Item 2 of
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Theorem 1.2, we directly utilize the construction of an extremal polynomial from [Erd16], while
in contrast [PSW17] rely on an argument from first principles based on Hadamard’s three line
theorem.
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2 Preliminaries

2.1 Well-known preliminary reductions

Estimation, enumeration, and recovery. Variants of the NPR problem with relaxed goals
have been studied in the literature. One is the aforementioned estimation problem. Another
(complementary) variant is called enumeration: in the enumeration problem, the learning algorithm
is only required to output a list of strings x1, . . . , xm that is guaranteed (with high probability) to
include all strings that have probability at least ε under D; such strings are sometimes referred to
as “heavy hitters.” Batman et al. [BIMP13] give a range of results for the enumeration problem.

It is easy to see that a solution to the estimation problem can be efficiently bootstrapped to full
NPR given the ability to solve the enumeration problem (simply run estimation, with a sufficiently
boosted success probability, on each of the m strings in the list obtained from enumeration). In
turn, it is also well known that an estimation algorithm can be efficiently transformed into an
enumeration algorithm via a “branch-and-prune” approach. Roughly speaking, such an approach
maintains a not-too-large (size at most O(1/ε)) set of i-bit prefixes that is known to contain all
the “heavy hitters”; to construct the set of (i + 1)-bit prefixes, the approach first “branches” to
extend each i-bit prefix x to both x0 and x1, and then “prunes” any element of {x0, x1} that
is determined, using the estimation procedure, not to be a heavy hitter. (Note that since only
heavy hitters are maintained it will again be the case that the set of (i + 1)-bit prefixes has size
at most O(1/ε).) As [BIMP13] observe, an early example of such a branch-and-prune routine
that performs enumeration given an oracle for estimation is the Goldreich–Levin algorithm [GL89]
for list-decoding the Hadamard code. Both Dvir et al. [DRWY12] and Batman et al. [BIMP13]
give fairly detailed analyses of the above-described reduction from enumeration to estimation; we
omit the details here and refer the interested reader to Section 6.1 of [DRWY12] and Section 2
of [BIMP13] respectively.

Summarizing the reductions discussed above, we have that NPR is (up to polynomial factors)
no harder than the estimation problem, and it is also clearly no easier than estimation (since
estimation is a subproblem of general NPR). Thus in the rest of this paper we restrict our attention
to the estimation problem.

Symmetrization. We further recall some well-known techniques that have been used in past
papers on NPR. First, in the estimation problem, we may assume without loss of generality that
the string u whose probability is to be estimated is u = (0, . . . , 0). To see this, for any point
u ∈ {0, 1}n, let Du define the distribution where Du(v) = D(u ⊕ v). Here u ⊕ v represents the
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bitwise XOR of u and v. Then the mass of Du(0) is the same as the mass of D(u). For bit flip
noise, we can generate y ∼ Flip 1−ν

2
(Du) as u ⊕ Flip 1−ν

2
(D). For erasure noise, we can generate

y ∼ Erase1−ν(Du) as u ⊕ Erase1−ν(D) (where we are overloading the operator ⊕ in the obvious
way, i.e. ‘?’ ⊕{0, 1} =‘?’). Thus, for both erasure and bit-flip noise, given noisy samples from D,
we can generate noisy samples for the distribution Du.

Next, for the problem of estimating D(0, . . . , 0), we may assume without loss of generality that
D is symmetric, meaning that it gives equal probability mass to all strings at the same Hamming
weight. In other words, D is effectively given by a probability distribution Dsym on [0..n], with
D(x) = Dsym(|x|)/

(
n
|x|
)
. On one hand, if D(0, . . . , 0) can be estimated in the general case, it can

certainly be estimated in the symmetric case. On the other hand, given a general distribution D,
the learner can randomly permute the coordinates of each sample, effectively obtaining access to
samples from a symmetric distribution D′, with D′(0, . . . , 0) = D(0, . . . , 0). Thus it suffices for the
learner to be able to estimate in the symmetric case. (We note that both these tricks, namely
reducing to the case when u = (0, . . . , 0) and symmetrizing D, appear in several previous works
such as [DRWY12, MS13].)

In the symmetric case, we will express the unknownDsym as a probability (row) vector [p0 p1 · · · pn].
Here pi denotes the total weight of the strings with Hamming weight i. Although the learner ob-
serves full strings, it may as well only consider the Hamming weights of the strings it receives.
(This is without loss of generality in the bit-flip noise model, since the number of 0s is completely
determined by the number of 1s. In the erasure noise model, this is why our lower bound holds
only for algorithms that only use the number of 1’s in each received string; see the discussion in
Section 1.3.)

Thus we may view the learner as obtaining samples from the probability (row) vector [q0 q1 · · · qn],
where

q = pA, Aij = Pr[a weight i string becomes a weight j string under ν noise]. (1)

It is not hard to write down the entries of A in either noise model. We remark that, after sym-
metrization, the bit-flip model becomes equivalent to running the well-known Ehrenfest urn model
for continuous time tn, where e−t = ν. It is easy to write down the known generating function for
that model:

Proposition 2.1 ([Sie47, BH51]). For A associated to the Flip 1−ν
2

noise model, and z an indeter-

minate,
n∑
j=0

Aijz
j =

(
1− ν

2
+

1 + ν

2
z

)i(1 + ν

2
+

1− ν
2

z

)n−i
.

Proof. Fix i, j and let x be any string of weight i. Let Ek denote the event that k of the 1’s in
x become 0 and j − i + k of the 0’s in x become 1. From positivity constraints, we derive that
0 ≤ k ≤ i and i ≤ j + k ≤ n. It follows then that

Aij =
∑

k:0≤k≤i and i≤j+k≤n

(
i

k

)(
n− i

j − i+ k

)(
1 + ν

2

)(i−k)+(n−j−k)(1− ν
2

)k+(j−i+k)

.

Thus, we get that

n∑
j=0

Aijz
j =

n∑
j=0

∑
k:0≤k≤i and i≤j+k≤n

(
i

k

)(
n− i

j − i+ k

)(
1 + ν

2

)(i−k)+(n−j−k)(1− ν
2

)k+(j−i+k)

zj .
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We now simplify the right hand side by reversing the order of summation and rewriting it in terms
of ` = j + k − i.

i∑
k=0

n−i∑
`=0

(
i

k

)(
n− i
`

)(
1 + ν

2

)n−k−`(1− ν
2

)k+`

z`+i−k.

=
i∑

k=0

(
i

k

)(
1 + ν

2

)n−k
·
(

1− ν
2

)k
zi−k

(
1 +

(1− ν)z

(1 + ν)

)n−i
=

(
1 +

(1− ν)z

(1 + ν)

)n−i(1 + ν

2

)n
zi
(

1 +
(1− ν)

(1 + ν)z

)i
=

(
1− ν

2
+

1 + ν

2
z

)i(1 + ν

2
+

1− ν
2

z

)n−i
. (2)

This finishes the proof.

For the erasure model, the generating function is even simpler.

Proposition 2.2. For A associated to the Erase1−ν noise model, and z an indeterminate,

n∑
j=0

Aijz
j =

(
(1− ν) + νz

)i
.

Proof. By definition of Erase1−ν , it follows that when j ≤ i, Aij =
(
i
j

)
νj(1− ν)i−j and 0 otherwise.

Thus,
n∑
j=0

Aijz
j =

∑
j≤i

(
i

j

)
νj(1− ν)i−jzj =

(
(1− ν) + νz

)i
.

To recap, in the estimation problem the learner’s task is to estimate p0 to accuracy ε, given
samples from q. We recall the well-known fact that, by taking the empirical distribution of O(n/δ2)
samples, the learner may obtain an estimate q̂ of q satisfying ‖q̂ − q‖1 ≤ δ (with high probability).
Although q = pA, as noted in previous works one unfortunately cannot effectively estimate p0

simply as the first coordinate of q̂A−1, because A is very poorly conditioned. Instead one needs a
more sophisticated approach.

3 Reduction to an analytic problem

It is not hard to characterize the optimal sample complexity for the estimation problem. Define

η(ε, ν) = min
probability vectors p,p′

|p0−p′0|>2ε

‖pA− p′A‖1 (3)

(where the parameter ν implicitly appears within A). If two probability vectors p and p′ have
|p0 − p′0| > 2ε, then a successful estimation algorithm must be able to distinguish the two cases.
But if q = pA, q′ = p′A are close, in the sense that ‖q − q′‖1 ≤ δ, then a learning algorithm will
need Ω(1/δ) samples to distinguish them with high probability. We conclude:
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Proposition 3.1. The sample complexity of any population recovery algorithm — indeed, any
estimation algorithm — is Ω(1/η(ε, ν)).

On the other hand, suppose the lower bound η(ε/2, ν) ≥ 2δ holds. Consider an estimation
algorithm that first produces an empirical estimate q̂ with ‖q̂ − q‖1 < δ using O(n/δ2) samples,
and then exactly solves the following optimization problem using linear programming:

min
probability vectors p′

‖q̂ − p′A‖1.

(This can be efficiently written as an LP with O(n) variables and constraints and with rational
numbers of poly(n) bit-complexity.2) First, observe that the objective of the above program is at
most δ (because p′ = p achieves objective at most δ). Thus, if p∗ is the optimal solution, then
‖q̂ − p∗A‖1 ≤ δ. This implies that ‖pA − p∗A‖1 ≤ 2δ which by our assumption implies that
‖p − p∗‖1 ≤ ε. Consequently, |p0 − p∗0| ≤ ε. Thus we get an efficient solution to the estimation
problem. In conclusion, we have established the following:

Proposition 3.2. The estimation problem can be solved with poly(n, 1/η(ε/2, ν)) time and samples.

Thus we see that, up to polynomial factors, both the sample complexity and runtime complexity
of the estimation problem is effectively controlled by the parameter η(ε, ν).

We now further simplify the definition of η(ε, ν), similar to what was done in [DOS16]. The
difference of two probability vectors over [0..n] is precisely any vector in the set

∆ := {[c0 c1 · · · cn] :
∑
i
ci = 0,

∑
i
|ci| ≤ 2}.

Thus we have that
η(ε, ν) = min

c∈∆
c0>2ε

‖cA‖1.

Let z be defined as z = (1, z, z2, . . . , zn). Then, using the triangle inequality and Cauchy-Schwartz
inequality, we have

max
|z|=1

|cAz| ≤ ‖cA‖1 ≤
√
n+ 1 ·max

|z|=1
|cAz|.

Note also that cAz is a polynomial in z that is easily calculated from the generating function of the
noise process (see Propositions 2.1, 2.2). We obtain:

Theorem 3.3.

η(ε, ν)√
n+ 1

≤ min
c∈∆
c0>2ε

{
max|z|=1 |Fc(z)| in the Flip 1−ν

2
noise model

max|z|=1 |Ec(z)| in the Erase1−ν noise model
≤ η(ε, ν),

where

Fc(z) =
n∑
i=0

ci

(
1− ν

2
+

1 + ν

2
z

)i(1 + ν

2
+

1− ν
2

z

)n−i
, (4)

Ec(z) =
n∑
i=0

ci
(
(1− ν) + νz

)i
. (5)

2For simplicity in this paper we assume that ε and ν are rational quantities of poly(n) bits known to the learning
algorithm. Since ε is part of the input, this is a reasonable assumption about ε. In the case of erasure noise, it is
easy to estimate ν from the samples – see Section 3.3 in [WY12].
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Given c ∈ ∆ with c0 > 2ε, define the following polynomial (with real coefficients and a complex
parameter):

Qc(v) =
n∑
i=0

civ
i.

Thus the assumptions on c are equivalent to Qc(0) > 2ε, Qc(1) = 0, and L(Qc) ≤ 2, where L(Qc)
is the length of Qc; i.e., the sum of the absolute values of its coefficients.

In analyzing Ec above, we use that Ec(z) =
∑n

i=0 ciu
i, where u = (1−ν)+νz. As z ranges over

the unit circle |z| = 1, the range of the parameter u, namely {(1 − ν) + νz : |z| = 1} is precisely
the circle ∂Dν(1− ν) of radius ν centered at the real value 1− ν. Thus

max
|z|=1

|Ec(z)| = max
u∈∂Dν(1−ν)

|Qc(u)|.

In analyzing Fc above, we use that

Fc(z) =
(

ν
1+ν
2
− 1−ν

2
w

)n n∑
i=0

ciw
i, where w =

1−ν
2 + 1+ν

2 z
1+ν

2 + 1−ν
2 z

. (6)

As the parameter z ranges over the unit circle, w also ranges over the unit circle. To see this, note
that w is a Möbius transformation of z, and thus as z ranges over a circle w ranges over either a
circle or a line. Further, it is easy to see that for z = 1,−1, i, the resulting w lies on the unit circle.
Consequently, for any z such that |z| = 1, w lies on the unit circle. Parameterizing w as w = eiθ,
it is not hard to compute that∣∣∣∣ ν

1+ν
2
− 1−ν

2
w

∣∣∣∣2 =
2ν2

(1− cos θ) + (1 + cos θ)ν2
=

1

1 + (1−ν2) sin2(θ/2)
ν2

. (7)

Thus

max
|z|=1

|Fc(z)| = max
−π<θ≤π

(
1

1 + (1−ν2) sin2(θ/2)
ν2

)n/2
· |Qc(eiθ)|. (8)

We finally conclude:

Corollary 3.4.

η(ε, ν)√
n+ 1

≤ min
Q


max
−π<θ≤π

(
1

1 + (1−ν2) sin2(θ/2)
ν2

)n/2
· |Q(eiθ)| in the Flip 1−ν

2
noise model

max
u∈∂Dν(1−ν)

|Q(u)|, in the Erase1−ν noise model

≤ η(ε, ν),

where the minimum is over real-coefficient polynomials Q of degree at most n satisfying Q(0) > 2ε,
Q(1) = 0, and L(Q) ≤ 2.

Combining Propositions 3.1 and 3.2 with Corollary 3.4, we see that Theorems 1.1 and 1.2 follow
from giving bounds on the two quantities specified in Corollary 3.4 (or in Theorem 3.3). We give
such bounds in the following sections.
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4 Circle bounds for erasure noise

4.1 A lower bound on η(ε, ν) for erasure noise

Notice that L(Q) ≤ 2 implies that |Q(u)| ≤ 2 for all |u| = 1. We have the following:

Theorem 4.1. Let Q be a complex polynomial with |Q(0)| ≥ 2ε and |Q(u)| ≤ 2 for |u| = 1.

Then for 0 < ν < 1/2 we have maxu∈∂Dν(1−ν) |Q(u)| ≥ 2ε
1−ν
ν . For 1/2 ≤ ν ≤ 1, we have

maxu∈∂Dν(1−ν) |Q(u)| ≥ 2ε.

Proof. Let us first consider the case when 1/2 ≤ ν ≤ 1. In this case, note that 0 is contained in the
circle Dν(1 − ν). By the maximum modulus principle, |Q(0)| ≤ maxu∈∂Dν(1−ν) |Q(u)|. However
|Q(0)| ≥ 2ε which finishes the proof in this case.

Let us now assume that 0 < ν < 1/2. Let U be the unit circle, let O be the circle of radius
1/2 centered at 1/2, which lies inside U , and let C = ∂Dν(1− ν), which lies inside O. The Möbius
transformation A(u) = 1/(1− u) takes these circles to vertical lines U ′, O′, and C ′ with real parts
1/2, 1, and 1/2ν, respectively. Defining the function f(u) = Q(A−1(u)), we have that f is bounded
on the strip defined by U ′ and C ′, and we have that supu∈U ′ |f(u)| ≤ 2, supu∈O′ |f(u)| ≥ 2ε. Writing
M for the maximum modulus of f on C ′, the Hadamard Three-Lines Theorem implies that

2
1−2ν
1−ν M

ν
1−ν ≥ 2ε,

which completes the proof after rearrangement.

4.2 An upper bound on η(ε, ν) for erasure noise

In this section, we will prove the following theorem:

Theorem 4.2. There is an absolute constant τ > 0 such that for every ν ≤ 1/10, 0 < ε < τ and
ln(1/ε)/ν2 ≤ n, there exists a vector c ∈ ∆ with c0 > 2ε such that the polynomial Qc(u) =

∑n
i=0 ciu

i

satisfies
sup

u∈∂Dν/16(1−ν/16)
|Qc(u)| = εΩ(1/ν).

In order to prove this theorem, we will first collect a few facts. Given a, r > 0, define the set
Ba,r as

Ba,r =
{

(1− 8a) + 4a(z + z−1) : z ∈ ∂Dr(0)
}
.

We now make a few observations about the set Ba,r as r varies. In particular, we have the following
fact:

Fact 4.3. For r ∈ {1, 2, 4}, the sets Ba,r are as follows:

• For r = 1, the set Ba,r is the line segment joining 1 and 1− 16a.

• For r = 2, the set Ba,r is the ellipse centered at 1−8a with major axis [1−8a−10a, 1−8a+10a]
and minor axis [1− 8a+ 6i, 1− 8a− 6i].

• For r = 4, the set Ba,r is the ellipse centered at 1−8a with major axis [1−8a−17a, 1−8a+17a]
and minor axis [1− 8a+ 15i, 1− 8a− 15i].

9



Proof. For z ∈ ∂Dr(0), we can express z = x + iy where x = r cos θ and y = r sin θ, where r ∈ R
and θ ∈ [0, 2π). Consequently, points on Ba,r can be parameterized as

Ba,r =

{
(1− 8a) + 4a cos θ

(
r +

1

r

)
+ 4ai sin θ

(
r − 1

r

)
: θ ∈ [0, 2π)

}
.

Let w = x1 + iy1 where x1, y1 ∈ R and w ∈ Ba,r. Then the tuple (x1, y1) satisfies

(x1 − (1− 8a))2

16a2
(
r + 1

r

)2 +
y2

1

16a2
(
r − 1

r

)2 = 1

This implies each r, Ba,r describes an ellipse with the center at 1− 8a. The major axis is given by
[1− 8a+ 4a(r+ 1

r ), 1− 8a− 4a(r+ 1
r )] and the minor axis is given by [1− 8a+ 4a(r− 1

r )i, 1− 8a−
4a(r − 1

r )i]. Plugging in the values of r (for r ∈ {1, 2, 4}), we get the claim.

Next, we have the following claim.

Claim 4.4. The circle D4a(1− 4a) is contained in Ba,2.

Proof. The ellipse Ba,2 is centered at 1−8a with the major and minor axis aligned with the real and
imaginary axis. Further, the length of the semi-major axis is 10a and the length of the semi-minor
axis is 6a. Thus, any point z = x+ iy is contained in this ellipse as long as

(x− (1− 8a))2

100a2
+

y2

36a2
≤ 1.

The circle ∂D4a(1− 4a) consists of points z = x+ iy where x = 1− 4a+ 4a cos θ and y = 4a sin θ.
Observe that for any such point z = x+ iy,

(x− (1− 8a))2

100a2
+

y2

36a2
=

(4a+ 4a cos θ)2

100a2
+

(4a sin θ)2

36a2
=

4(1 + cos θ)2

25
+

4 sin2 θ

9
.

The last quantity can be easily bounded by 1 showing that ∂D4a(1− 4a) is contained in Ba,2. This
immediately implies the same for D4a(1− 4a).

By Hadamard’s three circle theorem, any holomorphic function f satisfies

sup
u∈D4a(1−4a)

|f(u)| ≤ sup
u∈Ba,2

|f(u)| ≤
√

sup
u∈Ba,1

|f(u)| ·
√

sup
u∈Ba,4

|f(u)|. (9)

Consequently, we have the following corollary.

Corollary 4.5. Let c ∈ ∆ and Qc(u) =
∑n

i=0 ciu
i. Then,

sup
u∈D4a(1−4a)

|Qc(u)| ≤
√

sup
u∈Ba,1

|Qc(u)| · 2
√

exp(9an).

Proof. We apply (9) to the function Qc and then observe that

sup
u∈Ba,4

|Qc(u)| ≤ sup
u∈Ba,4

|u|n · (
n∑
j=0

|cj |) ≤ 2 · (1 + 9a)n ≤ 2 · exp(9an),

which concludes the proof.
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We next recall the following theorem from [Erd16]:

Theorem 4.6 (Lemma 3.3 of [Erd16]). For any L ∈ [0, 1/17) and M ∈ N, there is a real-
coefficient polynomial p(u) =

∑M
j=0 aju

j with |a0| ≥ L · (
∑M

j=1 |aj |) such that p has at least

TL,M = min{2
7

√
M · (− lnL),M} repeated roots at 1.

We will also use the following result from [BEK99]:

Claim 4.7 (Lemma 5.4 of [BEK99]). Let p : C→ C be defined as p(u) =
∑M

j=0 aju
j where |aj | ≤ 1

for all 0 ≤ j ≤ n. Further, let p have k repeated roots at 1. Let A be the interval [1− k/(9M), 1].
Then

sup
u∈A
|p(u)| ≤ (M + 1)

(
e

9

)k
.

With these two results in hand, we are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let us set M = bln(1/ε)/ν2c and let p(u) =
∑M

j=0 cju
j be the polynomial

from Theorem 4.6 with L = 2ε. Let us also scale the coefficients such that |c0| = 2ε and thus∑M
j=0 |cj | ≤ 2. As ln(1/ε)/ν2 ≤ n, M ≤ n and thus our construction is well-defined. The polynomial

p has at least T roots at 1, where

T = min

{
2

7

ln(1/ε)

ν
,
ln(1/ε)

ν2

}
=

2

7

ln(1/ε)

ν
.

Let us define θ = T/(9M) = (2/63) · ν. By applying Claim 4.7, it follows that

sup
u∈[1−θ,1]

|p(u)| ≤ (M + 1) ·
(
e

9

)T
≤
(

1

3

)T
.

Here the last inequality uses the relation between T and M and ε ≤ τ . Finally, set a = ν/63. Then,
applying Corollary 4.5, we obtain

sup
u∈D4a(1−4a)

|p(u)| ≤
√

sup
u∈Ba,1

|p(u)| · 2
√

exp(9aM) ≤

√(
1

3

)T
· 4 · exp(9aM).

Plugging in a = ν/63, M = bln(1/ε)/ν2c and T = (2Mν)/7, we obtain that

sup
u∈D4a(1−4a)

|p(u)| ≤ εΩ(1/µ),

which concludes the proof.

5 Circle bounds for bit-flip noise

5.1 A lower bound on η(ε, ν) for bit-flip noise

In this section we prove the following theorem:

Theorem 5.1. For 0 < ν, ε < 1 and n ∈ N which satisfy 2 ln(2/ε)
n ≤ ν ≤ 1− 2 ln(2/ε)

n , we have

η(ε, ν) ≥ ε · exp

(
−O

(
ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
.
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Proof. Fix any vector [c0 c1 . . . cn] ∈ ∆ with |c0| > 2ε. Recalling Theorem 3.3 and (6), to prove
Theorem 5.1 it suffices to show that the function Fc(z) as defined in (6) satisfies

max
|z|=1

|Fc(z)| ≥ ε · exp

(
−O

(
ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
. (10)

To prove this, we recall (8) which states that

max
|z|=1

|Fc(z)| = max
−π<θ≤π

(
1

1 + (1−ν2) sin2(θ/2)
ν2

)n/2
· |Qc(eiθ)|.

Next, we observe that for −π < θ ≤ π, we have

1− (1− ν2) sin2(θ/2) ∈
[
1− (1− ν2)θ2

4
, 1− (1− ν2)θ2

16

]
,

where the last inclusion uses θ2/16 ≤ sin2(θ/2) ≤ θ2/4, which holds for θ ∈ [−π, π]. Using the
elementary fact e−x ≤ 1/(1 + x) for all x ≥ 0, it follows that(

1

1 + (1−ν2) sin2(θ/2)
ν2

)
≥ exp

(
−1− ν2

4ν2
θ2

)
and thus, we have

max
|z|=1

|Fc(z)| ≥ max
−π<θ≤π

exp

(
−1− ν2

8ν2
θ2n

)
· |Qc(eiθ)|. (11)

Next, set θ∗ as

θ∗ =
1

10
· ν

2/3 · ln1/3(1/ε)

(n(1− ν2))1/3
.

(It is easy to see the constraints on ν dictate imply that θ∗ ≤ 1). Let A∗ = [−θ∗, θ∗]. Then,
plugging in the value of θ∗ in (11), we get

max
|z|=1

|Fc(z)| ≥ exp

(
−O

(
ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
·max
θ∈A∗

|Qc(eiθ)|. (12)

To lower bound maxθ∈A∗ |Qc(eiθ)|, we recall Corollary 3.2 of [BE97]:

Theorem 5.2 (Corollary 3.2 of [BE97]). There is a universal constant c > 0 such that the following
holds: Let Q(u) be a univariate polynomial with complex coefficients, Q(u) =

∑n
j=0 bju

j with
|b0| = 1 and all coefficients |bj | ≤ M. Let A be a subarc of the unit circle with length a, where
0 < a < 2π. Then there is some w ∈ A such that

|Q(w)| ≥ exp

(
−c(1 + lnM)

a

)
.

We now apply this theorem to polynomial Qc/c0 by setting “M” to 1/c0, “a” to θ∗ and “A” to
A∗. This yields

max
θ∈A∗

|Qc(eiθ)|
c0

≥ exp

(
−Θ(1) · (1 + ln(1/c0))

θ∗

)
Using that 1 ≥ c0 ≥ 2ε, we get that

max
θ∈A∗

|Qc(eiθ)| ≥ ε · exp

(
−O

(
ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
Combining with (12) finishes the proof.

12



5.2 An upper bound on η(ε, ν) for bit-flip noise

In this section we prove the following theorem:

Theorem 5.3. There is a universal constant c > 0 such that for ν, 0 < ε < c and n ∈ N which

satisfy
(2 ln(2/ε)

n

)1/4 ≤ ν ≤ 1− 2 ln(2/ε)
n , we have

η(ε, ν) = exp

(
− Ω

(
ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
.

Recalling (8), to prove this result we must demonstrate the existence of a vector [c0 c1 . . . cn] ∈ ∆,
|c0| > 2ε such that Fc(z) satisfies

sup
|z|=1
|Fc(z)| = exp

(
Ω

(
− ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
, (13)

where we recall from Equation (4) that

Fc(z) =
n∑
i=0

ci

(
1− ν

2
+

1 + ν

2
z

)i(1 + ν

2
+

1− ν
2

z

)n−i
.

To prove this, we will use Theorem 4.6 and the following lemma, which relates the multiplicity
of roots of a polynomial at 1 with the supremum of p on an arc centered at 1.

Lemma 5.4 (Lemma 4.7 in [BE97]). Suppose p : C → C is a polynomial of the form p(u) =∑M
j=0 aju

j, where |aj | ≤ 9 and p has k repeated roots at 1. If A denotes the arc of the unit circle
that is symmetric around 1 and has length (2k)/(9M), then

sup
u∈A
|p(u)| ≤ 9(M + 1) ·

(
e

9

)k
.

Proof of Theorem 5.3. With these results in hand we are ready to specify our construction of
[c0, . . . cn]. For this, we set M as follows:

M = bn2/3 · ln1/3(1/ε) · (1− ν2)2/3 · ν−4/3c.

We first make the following observations about M . (i) Since ν4 ≥ ln(1/ε)
n , it is the case that M ≤ n.

(ii) Since 1− ν ≥ 2 ln(2/ε)/n, it is moreover the case that M ≥ ln(1/ε).
For M as defined above, let us rescale the polynomial in Theorem 4.6 so that |a0| = 2ε and

thus,
∑M

j=1 |aj | ≤ 1. We now set cj = aj for all 1 ≤ j ≤ M and cj = 0 otherwise. Note that since
M ≤ n, this is well-defined.

By construction, the polynomial p(u) defined as p(u) =
∑M

j=0 cju
j has at least T repeated roots

at 1, where

T = min

{
2

7

√
M · ln(1/2ε),M

}
=

2

7

√
M · ln(1/2ε),

where the last equality uses 1− ν ≥ 2 ln(2/ε)/n. We note for later reference that

T = Ω
(
n1/3 · ln2/3(1/ε) · (1− ν2)1/3 · ν−2/3

)
. (14)

Let us define θ∗ as

θ∗ =
2T

9M
=

4

63

√
ln(1/2ε)

M
≤ 4

63
· ln1/3(1/ε) · ν2/3

n1/3 · (1− ν2)1/3
. (15)
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Observe that since 1− ν ≥ 2 ln(1/ε)/n, it holds that θ∗ ≤ 4/63. Let A be the arc of the unit circle
A = {eiθ| − θ∗ ≤ θ ≤ θ∗}. Applying Lemma 5.4 (and observing that all degree M + 1 and higher
coefficients of p are zero), we obtain that

sup
u∈A
|p(u)| = 9 · (M + 1) ·

(
e

9

)T
≤
(

1

3

)T
. (16)

Here the last inequality uses T = 2
7

√
M · ln(1/2ε) and the fact that ε is at most some sufficiently

small constant.
Now we turn our attention to Fc(z). Recalling (6), we have that

sup
|z|=1
|Fc(z)| = sup

|w|=1

∣∣∣∣∣
(

ν
1+ν

2 −
1−ν

2 w

)n
·
n∑
i=0

ciw
i

∣∣∣∣∣ . (17)

Let us write Φc(w) to denote

(
ν

1+ν
2
− 1−ν

2
w

)n
·
∑n

i=0 ciw
i, so we seek to upper bound sup|w|=1 |Φc(w)|.

We do this by upper bounding |Φc(w)| separately on the sets A and A.
First, we bound |Φc(w)| in the set A as follows:

sup
w∈A
|Φc(w)| ≤ sup

w∈A
|p(w)| ≤ e−Ω(T ) = exp

(
− Ω

(
ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
. (18)

Here the first inequality uses the fact that

∣∣∣∣ ν
1+ν
2
− 1−ν

2
w

∣∣∣∣ ≤ 1, the second inequality uses (16), and

the last equality uses (14).
To bound |Φc(w)| in A, we will need a couple of facts. First, since

∑n
j=0 |cj | ≤ 2, it is the case

that |p(w)| ≤ 2 for all |w| = 1, and consequently

|Φc(w)| ≤ 2

∣∣∣∣∣ ν
1+ν

2 −
1−ν

2 w

∣∣∣∣∣
n

.

Recalling (7), we have

sup
w∈A
|Φc(w)| ≤ 2

(
1

1 + (1−ν2) sin2(θ∗/2)
ν2

)n/2
≤ 2

(
1

1 + (1−ν2)(θ∗)2

8ν2

)n/2
,

where the last inequality uses sin2(θ∗/2) ≥ (θ∗)2/8 which holds since θ∗ ≤ 4/63. Finally, again

using ν4 ≥ ln(1/ε)/n and recalling (15), we have (1−ν2)(θ∗)2

8ν2
≤ 4/63 (with room to spare). Thus,

we have that

sup
w∈A
|Φc(w)| ≤ 2

(
1

1 + (1−ν2)(θ∗)2

8ν2

)n/2
≤ exp

(
− Ω

(
(1− ν2)(θ∗)2n

ν2

))

≤ exp

(
− Ω

(
ln2/3(1/ε) · (n(1− ν2))1/3

ν2/3

))
,

where for the last inequality we used θ∗ = Θ(1) · ln1/3(1/ε)·ν2/3
n1/3·(1−ν2)1/3

, which follows from (15). Combining

with (18) finishes the proof.
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[BEK99] P. Borwein, T. Erdélyi, and G. Kós. Littlewood-type problems on [0, 1]. Proc. London
Math. Soc. (3), 79(1):22–46, 1999. 1.3, 4.2, 4.7

[BH51] R. Bellman and T. Harris. Recurrence times for the Ehrenfest model. Pacific Journal
of Mathematics, 1(2):179–193, 1951. 2.1

[BIMP13] L. Batman, R. Impagliazzo, C. Murray, and R. Paturi. Finding heavy hitters from
lossy or noisy data. In APPROX-RANDOM 2013, pages 347–362, 2013. (document),
2.1

[DOS16] A. De, R. O’Donnell, and R. Servedio. Optimal mean-based algorithms for trace re-
construction. Available at https://arxiv.org/abs/1612.03148, 2016. 1.3, 3

[DRWY12] Z. Dvir, A. Rao, A. Wigderson, and A. Yehudayoff. Restriction access. In Innova-
tions in Theoretical Computer Science 2012, Cambridge, MA, USA, pages 19–33, 2012.
(document), 2.1, 2.1

[DST16] A. De, M. E. Saks, and S. Tang. Noisy population recovery in polynomial time. In
IEEE 57th Annual Symposium on Foundations of Computer Science, pages 675–684,
2016. (document), 1.2
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A Reduction between the restricted and general lower bound

In this section we give a reduction from item 2 to item 3 of Theorem 1.2. We first set up some
notation. For a distribution D supported on {0, 1}n, let De denote the distribution obtained from
Erase1−ν(x) where x ∼ D. Let D1,e denote the distribution of the number of ones in De and D0,1,e

denote the joint distribution of the number of zeros and ones in De. Note that D1,e is supported
on N and D0,1,e is supported on N2.

We will now show how item 2 of Theorem 1.2 implies item 3. Observe that item 2 is equivalent
to the existence of a pair of distributions X and Y supported on {0, 1}n0 (for n0 ∈ N) such that
‖X − Y‖∞ ≥ ε and ‖X1,e − Y1,e‖1 ≤ εΩ(1/ν). In fact, it suffices to choose n0 = Θ(ν−2 · ln(1/ε)).

Note that by symmetrization, without loss of generality, we can assume that X and Y are
symmetric distributions. As a consequence, for any pair z, z′ ∈ {0, 1, ?}n0 which have the same
number of zeros and ones (and hence the same number of ‘?’), Xe(z) = Xe(z′) and Ye(z) = Ye(z′).
Item 3 would thus follow if we can show ‖X0,1,e − Y0,1,e‖1 ≤ εΩ(1/ν). While this is not necessarily
true, we will modify X and Y to achieve this property.

Choose a number m0 (we will fix this later) and let us define X̃ by sampling x from X and
padding with m0 zeros. The distribution Ỹ is defined likewise. Observe that

‖X̃ − Ỹ‖∞ = ‖X − Y‖∞ ≥ ε.

For any ` ∈ N and q ∈ [0, 1], let Bin(`, q) denote the binomial distribution with ` trials where each
trial succeeds with probability q. We now claim that

‖X̃0,1,e −X1,e × Bin(m0, ν)‖1 ≤
n0√

m0 ·min{ν, 1− ν}
. (19)

To prove this, we need the following basic fact about binomial distributions.

Fact A.1. Let X ∼ Bin(m0, ν) and Y ∼ Bin(m0, ν) + 1. Then,

‖X − Y ‖1 ≤
1√

m0 ·min{ν, 1− ν}
,

where for random variables Z1 and Z2, we use ‖Z1 − Z2‖1 to denote the `1 distance between the
corresponding distributions.

To prove (19), let X0,z,e = X0,1,e|(X1,e = z). In other words, X0,z,e is the conditional distribution

on the number of zeros in X0,1,e conditioned on X1,e = z. Note that the number of ones in X̃0,1,e is

the same as X1,e. We now define X̃0,z,e = X̃0,1,e|(X1,e = z). Observe that X̃0,z,e = X0,z,e+Bin(m0, ν).
However, observe that X0,z,e is supported on [0, . . . , n0]. Applying Fact A.1, we get

‖X̃0,z,e − Bin(m0, ν)‖1 ≤
n0√

m0 ·min{ν, 1− ν}
.
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Since this holds for all z, we get (19). Analogously, we also get

‖Ỹ0,1,e − Y1,e × Bin(m0, ν)‖1 ≤
n0√

m0 ·min{ν, 1− ν}
. (20)

By construction, we have that ‖X1,e − Y1,e‖1 ≤ εΩ(1/ν). Combining with (19) and (20), we have

‖Ỹ0,1,e − X̃0,1,e‖1 ≤ εΩ(1/ν) +
2n0√

m0 ·min{ν, 1− ν}
.

To ensure that the right hand side is bounded by εΩ(1/ν), it suffices to choose m0 = ε−Ω(1/ν) · n2
0 ·

1
min{ν,1−ν} . Plugging in the value of n0 = Θ(ν−2 · ln(1/ε)), it suffices to choose m0 = 1

min{ν,1−ν} ·
ε−Ω(1/ν). Thus, the distributions X̃ and Ỹ are supported on {0, 1}n where n = 1

min{ν,1−ν} · ε
−Ω(1/ν).

This almost proves item 3 except the factor of 1
min{ν,1−ν} in the lower bound for n.

To remove this factor, note that even if ν = 1, there is a trivial lower bound of ε−2 for any
estimation algorithm for NPR (this holds as long as n ≥ log(1/ε)). Further, since access to samples
with erasure noise ν ′ can be simulated given access to samples with noise rate ν (provided ν ′ ≤ ν),
this lower bound holds for any noise rate ν ≥ 0. Combining this observation with the earlier lower
bound proves Item 3.
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