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Abstract

In this work, we study the parity complexity measures C⊕
min[f ] and DT⊕[f ]. C⊕

min[f ] is the
parity kill number of f , the fewest number of parities on the input variables one has to fix in
order to “kill” f , i.e. to make it constant. DT⊕[f ] is the depth of the shortest parity decision
tree which computes f . These complexity measures have in recent years become increasingly
important in the fields of communication complexity [ZS09, MO09, ZS10, TWXZ13] and pseu-
dorandomness [BSK12, Sha11, CT13].

Our main result is a composition theorem for C⊕
min. The k-th power of f , denoted f◦k, is the

function which results from composing f with itself k times. We prove that if f is not a parity
function, then

C⊕
min[f◦k] ≥ Ω(Cmin[f ]k).

In other words, the parity kill number of f is essentially supermultiplicative in the normal kill
number of f (also known as the minimum certificate complexity).

As an application of our composition theorem, we show lower bounds on the parity com-
plexity measures of Sort◦k and HI◦k. Here Sort is the sort function due to Ambainis [Amb06],
and HI is Kushilevitz’s hemi-icosahedron function [NW95]. In doing so, we disprove a conjec-
ture of Montanaro and Osborne [MO09] which had applications to communication complexity
and computational learning theory. In addition, we give new lower bounds for conjectures
of [MO09, ZS10] and [TWXZ13].



1 Introduction

Recent work on the Log-Rank Conjecture has shown the importance of two related Boolean function
complexity measures: sparsity and parity decision tree (PDT) depth. The sparsity of a Boolean
function, denoted sparsity[f̂ ], is the number of nonzero coefficients in its Fourier transform. A
parity decision tree is a decision tree in which the nodes are allowed to query arbitrary parities
of the input variables. The PDT depth of a Boolean function, denoted DT⊕[f ], is the depth of
the shortest PDT which computes f . These two quantities were linked in the papers of [MO09]
and [ZS10], both of which posed the following question:

Given a sparse Boolean function, must it have a short parity decision tree?

As a lower bound, any PDT computing f must have depth at least 1
2 log(sparsity[f̂ ]), and [MO09,

ZS10] conjectured that there exists a PDT which is only polynomially worse—depth log(sparsity[f̂ ])k

for some absolute constant k. Settling this question in the affirmative would prove the Log-Rank
Conjecture for an important class of functions known as XOR functions (introduced in [ZS09]).
Unfortunately, at present we are very far from deciding this question. The best known upper-

bound is DT⊕[f ] ≤ O

(√
sparsity[f̂ ] · log(sparsity[f̂ ])

)
by [TWXZ13] (see also [STV14, Lov13]),

only a square root better than the trivial DT⊕[f ] ≤ sparsity[f̂ ] bound.
A quantity intimately related to DT⊕[f ] is the parity kill number of a Boolean function f ,

denoted C⊕min[f ] (for reasons we will soon explain). This is the fewest number of parities on the
input variables one has to fix in order to “kill” f , i.e. to make it constant. There are several
equivalent ways to reformulate this definition. Perhaps the most familiar is in terms of parity
certificate complexity, a generalization of the “normal” certificate complexity measure. Given an
input x ∈ Fn2 , the certificate complexity of f on x is the minimum number of bits xi one has to
read to be certain of the value of f(x). Formally,

C[f, x] := min{codim(C) : C 3 x, C is a subcube on which f is constant}.

We define the minimum certificate complexity of f to be Cmin[f ] := minx{C[f, x]}. This is the
minimum number of input bits one has to fix to force f to be a constant. The parity certificate
complexity of f on x is defined analogously, as follows:

C⊕[f, x] := min{codim(H) : H 3 x, H is an affine subspace on which f is constant},

and therefore C⊕min[f ] = minx{C⊕[f, x]}. We note here that Cmin[f ] ≥ C⊕min[f ] always.
Given a parity decision tree T for f , the parities that T reads on input x ∈ Fn2 form a parity

certificate for x. As a result, C⊕min[f ] lower-bounds the length of any root-to-leaf path in any parity
decision tree for f . In particular, DT⊕[f ] ≥ C⊕min[f ]. Thus, to lower-bound DT⊕[f ], it suffices
to lower-bound C⊕min[f ]. Remarkably, the reverse is true as well: a recent result by Tsang et
al. [TWXZ13] has shown that to upper -bound DT⊕[f ], it suffices to upper -bound C⊕min[f ]1. More
formally, they showed:

Theorem 1. Suppose that C⊕min[f ] ≤M [f ] for all Boolean functions f , where M [f ] is some down-

ward non-increasing complexity measure. Then DT⊕[f ] ≤M [f ] · log(sparsity[f̂ ]) for all f .

1A similar argument of translating a best-case bound into a worst-case bound was recently used by Lovett in [Lov13]
to show a new upper-bound for the Log-Rank Conjecture. He showed that any total Boolean function with rank r
has a communication protocol of complexity O(

√
r · log(r))
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Here by downward non-increasing we mean that M [f ′] ≤ M [f ] whenever f ′ can be derived from
f by fixing some parities on the input variables. Theorem 1 implies that to prove the conjecture
of [MO09, ZS10], it suffices to show a bound of the form C⊕min[f ] ≤ log(sparsity[f̂ ])k, for some
absolute constant k. This motivates studying the properties of C⊕min[f ].

Another area in which parity kill number features prominently is pseudorandomness. A common
scenario in this area deals with randomness extraction, in which one has access to a source that
outputs mildly random bits, and the goal is to extract from these bits a set of truly random bits.
A variety of tools have been developed to accomplish this goal in different settings, one of which
is the affine disperser. An affine disperser of dimension d is simply a function f : Fn2 → F2 with
C⊕min[f ] ≥ n− d− 1. Generally, one hopes to design dispersers with low dimension or, equivalently,
a high parity kill number. An affine disperser f is “pseudorandom” in the sense that given inputs
from a source which is supported on some large enough affine subspace H, f will always be non-
constant. Affine dispersers have been constructed with sublinear dimension [BSK12], and the state
of the art is a disperser with dimension no(1) [Sha11]. The study of affine dispersers has gone
hand-in-hand with studying the parity kill number of F2-polynomials; see [CT13] for an example.

Let DT[f ] denote the depth of the shortest decision tree computing f . As DT[f ] is such a
simple and well-understood complexity measure, one might hope to carry over intuition, and, when
possible, even results, about DT[f ] to the case of DT⊕[f ]. In some cases, this hope has borne fruit:
an example is the following theorem from [BTW13], which until recently was only known to hold
for decision trees.

Theorem 2. Let f be a Boolean function. Then
∑n

i=1 f̂(i) ≤ O(DT⊕[f ]1/2).

Another example is the OSSS inequality for decision trees [OSSS05], which can also be shown to
hold for parity decision trees by a straightforward adaptation of the proof of [JZ11]. However, these
few instances of similarity appear to be the deceptive minority rather than the majority. On the
whole, parity decision trees seem to have a much richer and more counterintuitive structure than
normal decision trees, and many questions which are trivial for decision trees become interesting
for parity decision trees.

1.1 Boolean function composition and powering

One of the most basic operations one can perform on two Boolean functions f : Fn2 → F2 and
g : Fm2 → F2, is to compose them, producing the new function f ◦ g : Fm·n2 → F2. On input
y = (y(1), · · · , y(n)) ∈ (Fm2 )n,

(f ◦ g)(y) := f(g(y(1)), · · · , g(y(n))).

Using this, we can construct the k-th power f◦k of a Boolean function recursively: f◦1 := f , and
f◦k := f ◦ f◦k−1. Boolean function powering is a simple tool for generating families of Boolean
functions, and it is especially useful in proving lower bounds. It has found application in a variety
of areas, from communication complexity [NW95] and Boolean function analysis [OT13] to com-
putational learning theory [Tal13b] and quantum query complexity [HLS07]. For a comprehensive
introduction to the subject of Boolean function composition and powering, see [Tal13b].

Decision tree depth is multiplicative with respect to composition and powering: DT[f ◦ g] =
DT[f ] ·DT[g], and DT[f◦k] = DT[f ]k. On the other hand, Cmin is supermultiplicative: Cmin[f ◦g] ≥
Cmin[f ] · Cmin[g], and Cmin[f◦k] ≥ Cmin[f ]k (for simple proofs of these facts, see [Tal13b]). How
might DT⊕ and C⊕min behave under composition and powering?

Given arbitrary Boolean functions f and g, consider their composition f ◦ g. Let us try to
construct a small parity certificate for (f ◦ g)(y), i.e. a way to fix a small number of parities on the
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variables in y to make f ◦ g constant. To begin, consider a minimum (non-parity) certificate for
f(x1, . . . , xn). This certificate consists of a set of coordinates J ⊆ [n], where |J | = Cmin[f ], and
for each i ∈ J a fixing xi = bi, for bi ∈ F2. The guarantee is that if each xi in J is set according
to this certificate then f is forced to be a constant. Now we will write down a parity certificate
for f ◦ g which, for each i ∈ J , fixes g(y(i)) to have value bi. The obvious way to do this is to
separately write down the minimum parity certificate for g(y(i)) which sets g(y(i)) = bi, for each
i ∈ J . This gives a parity certificate for f ◦ g of size at least Cmin[f ] · C⊕min[g]; we will call this the
trivial certificate. Note that if we used this process to construct a parity certificate for f◦k, it would
have size at least Cmin[f ](k−1) ·C⊕min[f ]. In particular, the size of the trivial certificate is essentially
supermultiplicative in Cmin[f ].

Let us consider trying to improve on the trivial certificate for the powered function f◦k. The
trivial certificate seems to only weakly use the power of parities. Potentially, significantly shorter
certificates could exist which combine the parity certificates for the various f(y(i))’s in clever ways.
Indeed, depending on the identiy of f , it is sometimes possible to take small “shortcuts” when
making the trivial certificate and save on a small number of parities. However, using these shortcuts
on f◦k yields a parity certificate whose size is still essentially supermultiplicative in Cmin[f ]. Thus,
on the whole there isn’t an obvious way to improve on the trivial certificate in any substantive way.
It is tempting then to conjecture that C⊕min is in fact supermultiplicative in Cmin, and if this were
true we could prove it by showing optimality of the trivial certificate.

Unfortunately, this intuition does not hold in general. When f is a parity function, f◦k is also a
parity function, for all k. In this case, C⊕min[f ] = 1 even though Cmin[f ](k−1) ·C⊕min[f ], the size of the
trivial certificate, may be quite large. Our main result is that if we rule out this one pathological
case, then C⊕min[f ] is indeed supermultiplicative in Cmin[f ]:

Theorem 3. Let f : Fn2 → F2 be a Boolean function which is not a parity. Then

C⊕min[f◦k] ≥ Ω(Cmin[f ]k).

Here, the constant in the Ω(·) depends on the function f .

Note that as Cmin[f ] ≥ C⊕min[f ], this is a stronger statement than both C⊕min[f◦k] = Ω(C⊕min[f ]k)
and Cmin[f◦k] = Ω(Cmin[f ]k). In addition, because DT⊕[f ] ≥ C⊕min[f ], this shows that DT⊕[f ] ≥
Ω(Cmin[f ](k−1)). That the constant in the Ω(·) depends on f follows from the fact that the bound we
show is of the form C⊕min[f◦k] ≥ C · Cmin[f ](k−1), where C > 0 is an absolute constant independent
of f . The example of the trivial certificate shows that we cannot improve this lower bound to
C · Cmin[f ]k, where C > 0 is independent of f . However, as is typically the case for Boolean
function powering, Theorem 3 is sufficient for our applications.

Most of the work in proving Theorem 3 comes from proving the following two-function compo-
sition theorem for C⊕min[f ◦ g]:

Theorem 4. Let f : Fn2 → F2 and g : Fm2 → F2 be Boolean functions. If C⊕min[g] ≥ 2, then

C⊕min[f ◦ g] ≥ C⊕min[f ] + Cmin[f ].

One oddity of this theorem is that the right-hand side of the inequality does not depend on g (the
only dependence on g is in the hypothesis C⊕min[g] ≥ 2). Though this theorem is sufficient for our
applications, it is interesting to consider how tight it might be. The example of the trivial certificate
suggests a composition theorem of the form “C⊕min[f ◦g] ≥ Cmin[f ] ·C⊕min[g]”. However, it is possible
to construct functions f and g for which C⊕min[f ◦ g] ≈ 1

2Cmin[f ] ·C⊕min[g]. We discuss this further in
Section 6.

After proving Theorem 4, we first prove a stronger version of Theorem 3 in the special case
when C⊕min[f ] ≥ 2:
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Theorem 5. Let f : Fn2 → F2 be a Boolean function with C⊕min[f ] ≥ 2. Then

C⊕min[f◦k] ≥ Cmin[f ]k − Cmin[f ]

Cmin[f ]− 1
+ C⊕min[f ] ≥ Cmin[f ](k−1).

The general theorem then follows from a simple reduction to this case. As we will see, Theorem 5
obtains quantitatively tight bounds for certain functions f .

While Theorems 3 and 5 give a lower bound on DT⊕[f◦k] via the inequality DT⊕[f◦k] ≥
C⊕min[f◦k], sometimes we can get a better lower bound if we know some additional information
about f . In this case, we use the following theorem:

Theorem 6. Let f : Fn2 → F2 be a Boolean function satisfying f(0) = 0. If f is not a parity
function, then

C⊕[f◦k,0] ≥ Ω(C[f,0]k).

In particular, we note that the LHS of the inequality is a lower bound on DT⊕[f ]. Here, the constant
in the Ω(·) depends on the function f .

1.2 Applications

For our main application of Theorem 3, we disprove one conjecture in communication complexity
and show lower bounds for two related conjectures. Let us begin by stating the conjectures. The
first we introduced above:

Conjecture 1 ([MO09, ZS10]). For every Boolean function f , DT⊕[f ] ≤ O(log(sparsity[f̂ ])k), for
some absolute constant k.

The next conjecture was introduced in [MO09] as a possible means of proving Conjecture 1. It
states, roughly, that for any Boolean function f , there is always a parity one can query to “collapse”
a large part of f ’s Fourier transform onto itself.

Conjecture 2 (Montanaro–Osborne). There exists universal constants C > 0,K ∈ [0, 1] such that
the following holds: for every Boolean function with sparsity[f̂ ] ≥ C there exists β ∈ Fn2 such that∣∣supp(f̂) ∩ (supp(f̂) + β)

∣∣ ≥ K · sparsity[f̂ ],

where supp(f̂) = {α : f̂(α) 6= 0}, and supp(f̂) + β = {α+ β : α ∈ supp(f̂)}.

If this conjecture were true, then one could construct a good parity decision tree for f by always
querying the parity associated with the β guaranteed by the conjecture. After log(sparsity[f̂ ])
queries, the restricted function would have constant sparsity. As a result, this conjecture is strong
enough to imply Conjecture 1 with k = 1, i.e. DT⊕[f ] ≤ O(log(sparsity[f̂ ])). We remark that
Conjecture 1 with k = 1 also has implications outside of communication complexity: together with
the inequality of Theorem 2 and the Fourier-analytic learning algorithm of [OS07], they imply an
efficient algorithm for learning poly(n)-sparse monotone functions from uniform random examples.
This would represent a significant advance on a major open problem in learning theory, that of
efficiently learning poly(n)-term monotone DNF formulas.

The final conjecture upper bounds Cmin[f ] in terms of ‖f̂‖1 :=
∑

α |f̂(α)| (this is Conjecture 27
in [TWXZ13]):

Conjecture 3 ([TWXZ13]). For every Boolean function f , C⊕min[f ] ≤ O(log(‖f̂‖1)k), for some
absolute constant k.
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Combined with Theorem 1, this implies Conjecture 1 with exponent (k + 1):

DT⊕[f ] ≤ O(log(‖f̂‖1)k · log(sparsity[f̂ ])) ≤ O(log(sparsity[f̂ ])k+1),

where we have used here the inequality ‖f̂‖1 ≤ sparsity[f̂ ]. The authors of [TWXZ13] point out
that they don’t know of a counterexample to Conjecture 3 even in the case of k = 1 (which was
true also for Conjecture 1).

To prove lower bounds for these conjectures, we consider a pair of functions and the function
families generated by powering them. The first of these functions is the Sort function. This function
was introduced by Ambainis in [Amb06], in which the family of functions Sort◦k was used to provide
a separation between polynomial degree and quantum query complexity (see also [LLS06, HLS07]).
Applying Theorem 3 to Sort◦k yields the following corollary:

Corollary 1.1. For infinitely many n, there exists a Boolean function f : Fn2 → F2 satisfying

C⊕min[f ] = Ω((log(sparsity[f̂ ]))log2 3) = Ω(log(‖f̂‖1)log2 3).

This example shows that a lower bound of k ≥ log2 3 ≈ 1.58 is necessary for Conjecture 3. In fact,
by using Theorem 5, we can exactly calculate both C⊕min[Sort◦k] and DT⊕[Sort◦k] (see Section 5 for
full details).

The second function we consider is Kushilevitz’s hemi-icosahedron function HI. The family of
functions HI◦k has provided the best known lower bounds for a variety of problems (e.g. [NW95,
HKP11]). Applying Theorem 6 to HI◦k yields:

Corollary 1.2. For infinitely many n, there exists a Boolean function f : Fn2 → F2 satisfying

DT⊕[f ] = Ω((log(sparsity[f̂ ]))log3 6).

This example shows that a lower bound of k ≥ log3 6 ≈ 1.63 is necessary for Conjecture 1.
In addition, both Corollaries 1.1 and 1.2 provide examples of functions for which DT⊕[f ] =
ω(log(sparsity[f̂ ])), disproving Conjecture 2.

For full details of these functions and the lower bounds, see Section 5. Independent of this
work, Noga Ron-Zewi, Amir Shpilka, and Ben Lee Volk have also proven Corollary 1.2 using a
family of functions related to HI◦k [RZSV13]. With their kind permission, we have reproduced
their argument in Appendix A.

1.3 Organization

Section 2 contains definitions and notations. The most technical part of the paper is Section 3,
which contains the proof of Theorem 4. Section 4 contains some consequences of Theorem 4, most
importantly Theorems 3, 5, and 6. In Section 5, we lower bound the parity complexity measures of
Sort◦k and HI◦k, proving Corollaries 1.1 and 1.2. The alternate proof of Corollary 1.2 by Ron-Zewi,
Shpilka, and Volk can be found in Appendix A.

2 Preliminaries

2.1 Fourier analysis over the Boolean hypercube

We will be concerned with the Fourier representation of Boolean functions and its relevant com-
plexity measures. In this context it will be convenient to view the output of f as real numbers
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−1, 1 ∈ R instead of elements of F2, where we associate 0 ∈ F2 with 1 ∈ R, and 1 ∈ F2 with
−1 ∈ R. Throughout this paper we will often switch freely between the two representations.

Every function f : Fn2 → R has a unique representation as a multilinear polynomial

f(x) =
∑
α∈Fn

2

f̂(α)χα(x) where χα(x) = (−1)〈x,α〉,

known as the Fourier transform of f . The numbers f̂(α) are the Fourier coefficients of f , and we
refer to the 2n functions χα : Fn2 → {−1, 1} as the Fourier characters. We write supp(f̂) = {α ∈
F
n
2 : f̂(α) 6= 0} to denote the support of the Fourier spectrum of f . The Fourier sparsity of f ,

which we denote as sparsity[f̂ ], is the cardinality of its Fourier spectrum supp(f̂).

The spectral 1-norm of f is defined to be

‖f‖1 :=
∑
α∈Fn

2

|f̂(α)|.

For Boolean functions, we have sparsity[f̂ ] ≥ ‖f‖1.

2.2 Parity complexity measures

In this section, we define some relevant complexity measures. We begin with parity decision tree
complexity.

Definition 7 (Parity decision trees). A parity decision tree (PDT) is a binary tree where each
internal node is labelled by a subset α ⊆ [n], and each leaf is labelled by a bit b ∈ F2. A PDT
computes a Boolean function f : Fn2 → F2 the natural way: on input x ∈ Fn2 , it computes 〈x, α〉
where α is the subset at the root. If 〈x, α〉 = 1 the right subtree is recursively evaluated, and if
〈x, α〉 = 0 the left subtree is recursively evaluated. When a leaf is reached the corresponding bit
b ∈ F2 is the output of the function.

Definition 8 (Parity decision tree complexity). Let f : Fn2 → F2 be a Boolean function. The
parity decision tree complexity of f , denoted DT⊕[f ], is the depth of the shallowest parity decision
tree computing f .

Definition 9 (Certificate complexity). Let f : Fn2 → F2 be a Boolean function. For every x ∈ Fn2 ,
the certificate complexity and parity certificate complexity of f at x are defined to be

C[f, x] := min{codim(C) : C 3 x, where C is a subcube on which f is constant}
C⊕[f, x] := min{codim(H) : H 3 x, where H an affine subspace within which f is constant}.

The certificate complexity and parity certificate complexity of f are

C[f ] := max{C[f, x] : x ∈ Fn2} and C⊕[f ] := max{C⊕[f, x] : x ∈ Fn2}

The minimum certificate complexity and minimum parity certificate complexity of f are

Cmin[f ] := min{C[f, x] : x ∈ Fn2} and C⊕min[f ] := min{C⊕[f, x] : x ∈ Fn2}

The complexity measures are related as follows:
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Fact 2.1. The parity complexity measures satisfy C⊕min[f ] ≤ C⊕[f ] ≤ DT⊕[f ] for every Boolean
function f .

Fact 2.2. For every Boolean function f and integer k ≥ 1, we have Cmin[f◦k] ≥ Cmin[f ]k.

Fact 2.3. For every Boolean function f and integer k ≥ 1, we have C[f◦k,0] ≥ C[f,0]k.

Let B = {α1, . . . , αd} ⊆ Fn2 be a linearly independent set of vectors, and σ : B → F2. We write
A[B, σ] to denote the affine subspace

A[B, σ] := {x ∈ Fn2 : 〈x, αi〉 = σ(αi) for all 1 ≤ i ≤ d}

of co-dimension d. Note that A[B, σ] is a linear subspace if σ is the constant 0 function.

We say that coordinate i ∈ [n] is relevant in an affine subspace H if there is an x ∈ Fn2 such
that x ∈ H but x+ ei /∈ H, and if not we say that i is irrelevant.

Proposition 2.4. Let f : Fn2 → F2 be a Boolean function and H ⊆ Fn2 be an affine subspace on
which f is constant. Then Cmin[f ] is at most the number of relevant coordinates in H.

Proof. Without loss of generality, suppose coordinates i ∈ [k] are relevant in H and the others are
irrelevant. Fix an arbitrary x ∈ H and consider

C = {y ∈ Fn2 : yi = xi for all i ∈ [k]},

Note that C ⊆ H, since any y ∈ C differs from x only on the irrelevant coordinates of H. Therefore
C is a subcube of co-dimension k on which f is constant, and so Cmin[f ] ≤ C[f, x] ≤ k.

3 Supermultiplicativity of parity certificate complexity

Theorem 4. Let f : Fn2 → F2 and g : Fm2 → F2 be Boolean functions. If C⊕min[g] ≥ 2, then

C⊕min[f ◦ g] ≥ C⊕min[f ] + Cmin[f ].

Our proof uses the following strategy: given an affine subspace H on which f ◦g is constant, we
generate an affine subspace H∗ on which f is constant. We do this by removing each g from f ◦ g
one-by-one. Our key step is in showing that every time we remove a g on the outer layer, if that g
was relevant to H, then removing it reduces the codimension of H by at least one. This step we
formalize as Proposition 3.1 below.

Proposition 3.1. Let f∗ : Fn2×F2 → F2 and g : Fk2 → F2 be Boolean functions where C⊕min[g] ≥ 2.
Define f : Fn2 ×Fk2 → F2 to be:

f(x, y) = f∗(x, g(y)).

For any affine subspace H ⊆ F
n
2 × Fk2 on which f is constant, there exists an affine subspace

H∗ ⊆ Fn2 ×F2 on which f∗ is constant such either:

1. codim(H∗) ≤ codim(H)− 1, or

2. the (n+ 1)-st coordinate is irrelevant in H∗ and codim(H∗) ≤ codim(H).

Furthermore, among the first n x-coordinates, any coordinate that was irrelevant in H remains
irrelevant in H∗ as well.
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Proof of Theorem 4 assuming Proposition 3.1. Consider f ◦g. Let H ⊆ Fn·m2 be an affine subspace
of minimum co-dimension on which f ◦ g is constant, and so codim(H) = C⊕min[f ◦ g]. Applying
Proposition 3.1 to each of the n base functions g that f is composed with, we get an affine subspace
H∗ ⊆ Fn2 on which f is constant. Note that the first condition of Proposition 3.1 must hold at
least Cmin[f ] times in this process of deriving H∗ from H, since there are at least Cmin[f ] relevant
variables in H∗ by Proposition 2.4. Therefore

C⊕min[f ] ≤ codim(H∗)

≤ codim(H)− Cmin[f ]

= C⊕min[f ◦ g]− Cmin[f ].

Rearranging this inequality completes the proof.

3.1 Proof of Proposition 3.1

We begin with a pair of technical lemmas.

Lemma 3.2. Let g : F3
2 → F2. There exists an affine subspace H ⊆ F3

2 of codimension at most
one such that g(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ a3x3 for all x ∈ H, where a0, a1, a2, a3 ∈ F2.

Proof. Since the only arity-two Boolean functions with F2-degree two are AND (two-bit conjunc-
tion) and OR2 (two-bit conjunction), we may assume that the restriction of f to any subcube of
co-dimension one yields either AND2 or OR2. It follows that f must be isomorphic to either

MAJ(x1, x2, x3) = 1 iff at least two input bits are 1

NAE(x1, x2, x3) = 1 iff x1 6= x2 or x2 6= x3,

both of which satisfy the lemma since they are computed by parity decision trees of depth 2.

Lemma 3.3. Let H be an affine subspace of Fn2 ×Fk2. There exists an invertible linear transforma-
tion L = L`⊗Lr on Fn2 ×Fk2, B∗ ⊆ Fn2 ×Fk2, and σ∗ : B∗ → F2 such that A[B∗, σ∗] = {Lx : x ∈ H},
and B∗ can be partitioned into B∗ = B∗x t B∗y t B∗x,y, where

• B∗x,y = {(ei, ei) : 1 ≤ i ≤ t}
• B∗x = {(ej ,0) : t+ 1 ≤ j ≤ t′}
• B∗y = {(0, ek) : t+ 1 ≤ k ≤ t′′},

and t+ (t′ − t) + (t′′ − t) = codim(H).

Proof. Let H = A[B, σ], where B = {(α1, β1), . . . , (αd, βd)} ⊆ Fn2 × Fk2. First, we claim that we
may assume without loss of generality that the multisets of vectors

B` = {α ∈ Fn2 − {0} : (α, β) ∈ B for some β ∈ Fk2}
Br = {β ∈ Fk2 − {0} : (α, β) ∈ B for some α ∈ Fn2}

are each linearly independent. Indeed, suppose there exists αi1 , . . . , αik ∈ B` such that αi1 + . . .+
αik = 0 (an identical argument applies for Br). Since B is linearly independent, there must exist
some j ∈ [k] such that βij 6= 0. We note that H remains the same if we replace (αij , βij ) with
(0, βi1 + . . .+ βik), and if we set σ∗(0, βi1 + . . .+ βik) = σ(αi1 , βi1) + . . .+ σ(αik , βik). In addition,
βi1 + . . .+ βik can be written as a linear combination of the other elements in Br if and only if βij
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can. Therefore, the number of elements in B` ∪ Br that can be written as a linear combination of
the others decreases by one. Performing this replacement iteratively, the process must eventually
terminate with B` and Br both being linearly independent.

When B` and Br are linearly independent, it is straightforward to define invertible linear trans-
formations L` on Fn2 mapping B` to {e1, . . . , e|B`|} and Lr on Fk2 mapping Br to {e1, . . . , e|Br|}
accordingly, so that the invertible linear transformation L on Fn2 ×Fk2 given by

L(x, y) =
(
(L−1` )Tx, (L−1r )T y

)
satisfies the conditions of the lemma.

Now we prove Proposition 3.1.

Proof of Proposition 3.1. Let the input variables of f∗ : Fn2 × F2 → F2 be x1, . . . , xn ∈ Fn2 and
z ∈ F2, and the input variables of g : Fk2 → F2 be y1, . . . , yk ∈ Fk2. By Lemma 3.3, we may assume
that H = A[B, σ] where B = Bx t By t Bx,y and

• Bx,y = {(ei, ei) : 1 ≤ i ≤ t}
• Bx = {(ej ,0) : t+ 1 ≤ j ≤ t′}
• By = {(0, ek) : t+ 1 ≤ k ≤ t′′},

and t+ (t′ − t) + (t′′ − t) = codim(H). Let

Cx = {x ∈ Fn2 : xj = σ(ej ,0) for all t+ 1 ≤ j ≤ t′}
Cy = {y ∈ Fk2 : yk = σ(0, ek) for all t+ 1 ≤ k ≤ t′′}

be subcubes of Fn2 and Fk2 of co-dimension |Bx| and |By| respectively. Note that H comprises
exactly the pairs (x, y) ∈ Cx × Cy satisfying xi ⊕ yi = σ(ei, ei) for all 1 ≤ i ≤ t.

3.1.1 Case 1: |By| ≥ 1 and |Bx,y| = 0.

First suppose there exists b ∈ F2 such that g(y) = b for all y ∈ Cy; by our assumption on g we
have |By| ≥ C⊕min[g] ≥ 2. We claim that f∗ is constant on

H∗ = {(x, z) : x ∈ Cx and z = b}

of co-dimension |Bx|+ 1 = (|B|− |By|) + 1 ≤ |B|−1. Indeed, suppose there exists (x, b), (x′, b) ∈ H∗
such that f∗(x, b) 6= f∗(x′, b). Then for any y ∈ Cy we have (x, y), (x′, y) ∈ H and f(x, y) 6= f(x′, y).

On the other hand, suppose g is not constant on Cy. In this case we claim that f∗ is constant
on H∗ = {(x, z) : x ∈ Cx} of co-dimension |Bx| = |B| − |By| ≤ |B| − 1. Again, suppose there exists
(x, z), (x′, z′) ∈ H∗ such that f∗(x, z) 6= f∗(x′, z′). Selecting y, y′ ∈ Cy such that g(y) = z and
g(y′) = z′, we get (x, y), (x′, y′) ∈ H such that f(x, y) 6= f(x, y′).

3.1.2 Case 2: |By| ≥ 1 and |Bx,y| ≥ 1.

We define subcubes C ′x ⊆ Cx and C ′y ⊆ Cy:

C ′x = {x ∈ Cx : xi = 0 for all 1 ≤ i ≤ t− 1}
C ′y = {y ∈ Cy : yi = σ(ei, ei) for all 1 ≤ i ≤ t− 1}.
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Note that C ′x has co-dimension |Bx| + |Bx,y| − 1 ≤ |B| − 2. Furthermore, to show that a pair
(x, y) ∈ C ′x × C ′y falls in H it suffices to ensure xt ⊕ yt = σ(et, et). We consider two possibilities:
(i) there exists a0, at ∈ F2 such that g(y) = a0 ⊕ atyt for all y ∈ C ′y, and otherwise (ii) there exists

b ∈ F2 such that g is non-constant on C ′y ∩ {y ∈ Fk2 : yt = b}.

(i) We claim that f∗ is constant on

H∗ = {(x, z) : x ∈ C ′x and z = a0 ⊕ at(xt ⊕ σ(et, et))}.

of co-dimension (|Bx| + |Bx,y| − 1) + 1 ≤ |B| − 1. Indeed, suppose f(x, z) 6= f(x′, z′) for some
(x, z), (x′, z′) ∈ H∗. Selecting y, y′ ∈ C ′y such that yt = (xt ⊕ σ(et, et)) ⊕ a0 and y′t = (x′t ⊕
σ(et, et))⊕ a0, we get (x, y), (x′, y′) ∈ H such that f(x, y) 6= f(x′, y′).

(ii) In this case we claim that f∗ is constant on

H∗ = {(x, z) : x ∈ C ′x and xt = σ(et, et)⊕ b}.

Suppose f(x, z) 6= f(x′, z′) for some (x, z), (x′, z′) ∈ H∗. Selecting y, y′ ∈ C ′y ∩ {y ∈ Fk2 : yt = b}
satisfying g(y) = z and g(y′) = z′, we get (x, y), (x′, y′) ∈ H such that f(x, y) 6= f(x′, y′).

3.1.3 Case 3: |By| = 0 and |Bx,y| ≥ 1.

First suppose there exists b1, . . . , bt ∈ F2 such that g is non-constant on the subcube C ′y = {y ∈
F
k
2 : yi = bi for all 1 ≤ i ≤ t}. In this case we claim that f∗ is constant on

H∗ = {(x, z) : x ∈ Cx and xi = σ(ei, ei)⊕ bi for all 1 ≤ i ≤ t}.

Indeed, suppose there exists (x, z), (x′, z′) ∈ H∗ such that f∗(x, z) 6= f∗(x′, z′). Select y, y′ ∈ C ′y
satisfying g(y) = z and g(y′) = z′, we get (x, y), (x′, y′) ∈ H such that f(x, y) 6= f(x′, y′). Note
that although codim(H∗) may be as large as |B|, we have that H∗ is a subcube in Fn2 ×F2 where
the (n+ 1)-st coordinate is irrelevant, satisfying the second condition of the theorem statement.

Finally, if no such subcube C ′y exists then g is a junta over its first t coordinates. It is straight-

forward to verify that t ≥ 3, since every 2-junta has C⊕min at most 1. Consider the sub-function
g′ : F3

2 → F2 where g′(y1, y2, y3) := g(y1, y2, y3, 0, . . . , 0). Applying Lemma 3.2 to g′, we get that
there exists α ∈ F3

2 × 0k−3 and a0, a1, a2, a3, b ∈ F2 such that

g′(y) = a0 ⊕ a1y1 ⊕ a2y2 ⊕ a3y3 for all y satisfying 〈y, α〉 = b. (1)

Exactly two elements of {e1, e2, e3} form a linearly independent set with α. We suppose without
loss of generality that they are e1 and e2, and so e3 = α+ c1 e1 + c2 e2 for some c1, c2,∈ F2.

We claim that f∗ is constant on the affine subspace H∗ comprising (x, z) ∈ Fn2 ×F2 satisfying
all of the following conditions:

I. x ∈ Cx.

II. xi = σ(ei, ei) for all 4 ≤ i ≤ t.
III. x3 = σ(e3, e3)⊕ b⊕ c1(x1 ⊕ σ(e1, e1))⊕ c2(x2 ⊕ σ(e2, e2)).

IV. z = a0 ⊕ a1(x1 ⊕ σ(e1, e1))⊕ a2(x2 ⊕ σ(e2, e2))⊕ a3(x3 ⊕ σ(e3, e3)).
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Note that H∗ has co-dimension |Bx| + (t − 3) + 1 + 1 = |B| − 1. Once again, suppose f∗(x, z) 6=
f∗(x′, z′) where (x, z), (x′, z′) ∈ H∗. Selecting y ∈ F3

2 × 0k−3 satisfying

y1 = x1 ⊕ σ(e1, e1), y2 = x2 ⊕ σ(e2, e2), 〈y, α〉 = b, (2)

and likewise y′ for x′, we claim that (x, y), (x′, y′) ∈ H and f(x, y) 6= f(x′, y′).

We show that (x, y) ∈ H by checking that xi⊕ yi = σ(ei, ei) for all 1 ≤ i ≤ t; the argument for
(x′, y′) is identical. Since yi = 0 for all i ≥ 4, condition (II) of H∗ ensures that xi ⊕ yi = σ(ei, ei)
for these i’s. The conditions (2) on y1 and y2 above ensure that xi ⊕ yi = σ(ei, ei) for i ∈ {1, 2}.
For i = 3, we use the fact that

y3 = 〈y, e3〉
= b⊕ c1y1 ⊕ c2y2
= b⊕ c1(x1 ⊕ σ(e1, e1))⊕ c2(x2 ⊕ σ(e2, e2)),

and see that condition (III) on H∗ in fact ensures x3 ⊕ y3 = σ(e3, e3).

To complete the proof it remains to argue that g(y) = z; again an identical argument establishes
g(y′) = z′. This follows by combining (1) and (2) with condition (IV) on H∗:

g(y) = g′(y) = a0 ⊕ a1y1 ⊕ a2y2 ⊕ a3y3
= a0 ⊕ a1(x1 ⊕ σ(e1, e1))⊕ a2(x2 ⊕ σ(e2, e2))⊕ a3(x3 ⊕ σ(e3, e3))

= z.

Here the second equality is by (1), the third by (2), and the final by condition (IV) on H∗.

Remark 10. It can be checked that in all cases, if H is a linear subspace on which f is constantly
0, then H∗ is a linear subspace on which f∗ is constantly 0 as well. Therefore, a straightforward
modification of the Proof of Theorem 4 using Proposition 3.1 (and Fact 2.3) yields the following
incomparable statement:

Theorem 11. Let f : Fn2 → F2 and g : Fm2 → F2 be Boolean functions satisfying f(0) = g(0) = 0.
If C⊕min[g] ≥ 2, then

C⊕[f ◦ g,0] ≥ C⊕[f,0] + C[f,0].

In particular, we note that the LHS of the inequality is a lower bound on DT⊕[f ◦ g].

4 Some consequences of Theorem 4

We will now derive some easy consequences of Theorem 4.

Theorem 5. Let f : Fn2 → F2 be a Boolean function with C⊕min[f ] ≥ 2. Then

C⊕min[f◦k] ≥ Cmin[f ]k − Cmin[f ]

Cmin[f ]− 1
+ C⊕min[f ] ≥ Cmin[f ](k−1).

Proof. We apply Theorem 4 and split f◦k as f◦k = f◦k−1 ◦ f .

C⊕min[f◦k ◦ f ] ≥ C⊕min[f◦k−1] + Cmin[f◦k−1]

≥ C⊕min[f◦k−1] + Cmin[f ](k−1).

Here we have used Theorem 4 for the first inequality and the supermultiplicativity of Cmin (Fact 2.2)
for the second. Solving this recurrence completes the proof.
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Next, we have our main theorem.

Theorem 3. Let f : Fn2 → F2 be a Boolean function which is not a parity. Then

C⊕min[f◦k] ≥ Ω(Cmin[f ]k).

Here, the constant in the Ω(·) depends on the function f .

To prove this, we will need the following fact, which is easy to prove:

Fact 4.1. Suppose f : Fn2 → F2 is not a parity and Cmin[f ] ≥ 2. Then C⊕min[f ◦ f ] ≥ 2.

Using this, we can prove Theorem 3.

Proof of Theorem 3. If Cmin[f ] = 1, then Cmin[f ]k = 1 as well, and so the theorem trivially holds.
From now on, we will assume that Cmin[f ] ≥ 2. We may write f◦k = f◦(k−2) ◦ (f ◦ f). By Fact 4.1,
C⊕min[f ◦ f ] ≥ 2. As a result, we can apply Theorem 4 to show that

C⊕min[f◦k] = C⊕min[f◦(k−2) ◦ (f ◦ f)] ≥ Cmin[f◦(k−2)] ≥ Cmin[f ](k−2).

This proves Theorem 3 using Cmin[f ]2 as the constant in the Ω(·).

This proof gives the bound C⊕min[f◦k] ≥ Cmin[f ](k−2). Though this is sufficient for most (if not
all) applications, it is possible to slightly improve on the bound it gives using a more sophisticated
argument. At a high level, if we try using the proof of Theorem 5 on a function f for which
C⊕min[f ] = 1, then it is possible when applying Proposition 3.1 to fall into case 1 without actually
reducing the codimension of H by one. Whenever this happens, the argument essentially makes no
progress, and if this always happens then there’s nothing we can say about C⊕min[f◦k]. Fortunately,
in the case when f is not a parity function, it is possible to use an amortized-analysis-style argument
to show that a constant fraction of the case 1s do result in reducing the codimension of H. This
allows us to slightly improve on the bound C⊕min[f◦k] ≥ Cmin[f ](k−2):

Lemma 4.2. Let f : Fn2 → F2 be a Boolean function which is not a parity. Then

C⊕min[f◦k] ≥ C · Cmin[f ](k−1),

where C > 0 is an absolute constant independent of f .

As the proof of this is more complicated than the proof of Theorem 3, we choose to omit it. We
note that by the example of the trivial certificate in Section 1.1, this gives the correct dependence
on Cmin[f ].

Now we have the issue of performing a similar “bootstrapping” on Theorem 11 to produce
Theorem 6. Theorem 11 follows from Theorem 4 by Remark 10. As we are just reusing the proof
of Theorem 4 to prove Theorem 3, the same remark holds here. As a result, we have the following
theorem.

Theorem 6. Let f : Fn2 → F2 be a Boolean function satisfying f(0) = 0. If f is not a parity
function, then

C⊕[f◦k,0] ≥ Ω(C[f,0]k).

In particular, we note that the LHS of the inequality is a lower bound on DT⊕[f ]. Here, the constant
in the Ω(·) depends on the function f .
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We end with a remark.

Remark 12. Theorem 3 shows that C⊕min[f◦k] has nontrivial exponential growth, except in the
following cases:

1. f is a parity function.

2. Cmin[f ] = 1, which has the following two subcases:

(a) There exists a bit b and an input xi such that xi = b⇒ f(x) = b.

(b) There does not exist a bit b and an input xi such that xi = b⇒ f(x) = b.

It is easy to see that in cases 1 and 2a, C⊕min[f◦k] = 1 for all k. This is not so clear for case 2b,
however. In fact, we can show that in case 2b, C⊕min[f◦k] has nontrivial exponential growth. To see
this, let us assume first that k is even (a similar argument can be made when k is odd), in which
case we can write f◦k = (f ◦ f)k/2. Now, because we’re in case 2b, Cmin[f ◦ f ] ≥ 2. Thus, we can
apply Theorem 3 to see that C⊕min[f◦k] ≥ Ω(Cmin[f ◦ f ]k/2) ≥ Ω(2k/2). In summary, our results
show that for any function f , either C⊕min[f◦k] = 1 for trivial reasons (i.e., f falls in case 1 or 2a),
or C⊕min[f◦k] has nontrivial exponential growth.

5 Lower bounds for specific functions

In this section, we show lower bounds on the parity complexity measures of Sort◦k and HI◦k.
Together, these prove Corollaries 1.1 and 1.2.

5.1 The Sort function

The Sort function of Ambainis [Amb06] is defined as follows.

Definition 13. Sort : F4
2 → F2 outputs 1 if x1 ≥ x2 ≥ x3 ≥ x4 or x1 ≤ x2 ≤ x3 ≤ x4. Otherwise,

Sort(x1, x2, x3, x4) = 0.

Viewing Sort as a function mapping {−1, 1}4 → {−1, 1}, its Fourier expansion is the degree-2
homogeneous polynomial

Sort(x1, x2, x3, x4) =
x1x2 + x2x3 + x3x4 − x4x1

2
. (3)

It is easy to check that Cmin[Sort] = 3, and so our Theorem 3 implies that C⊕min[Sort◦k] ≥ Ω(3k).
To compute the sparsity of Sort◦k, we first note that Equation 3 gives the recurrence

sparsity[Ŝort◦k] = 4 · sparsity[ ̂Sort◦(k−1)]2.

Solving this gives sparsity[Ŝort◦k] = 42
k−1. In particular, log(sparsity

(
Ŝort◦k

))
= O(2k). Together,

these facts imply the first equality in Corollary 1.1.

Corollary 1.1. C⊕min[Sort◦k] = Ω((log(sparsity[Ŝort◦k])log2 3) = Ω(log(‖Ŝort◦k‖1)log2 3).

For the second equality, it is easy to check that every nonzero Fourier coefficient of Sort◦k has

equal weight (up to differences in sign). Thus, ‖Ŝort◦k‖1 =

√
sparsity[Ŝort◦k], which gives the second

equality.
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Remark 14. It is also possible to verify that C⊕min[Sort] = 2. Thus, the more refined bound of
Theorem 5 shows that

C⊕min[Sort◦k] ≥ 3k + 1

2
,

which is matched exactly by a parity decision tree for Sort◦k of depth 1
2(3k + 1). In other words,

our analysis shows that DT⊕[Sort◦k] = C⊕min[Sort◦k] = 1
2(3k + 1), and in particular, every leaf in the

optimal parity decision tree computing Sort◦k has maximal depth.

5.2 The HI function

Definition 15. The hemi-icosahedron function HI : F6
2 → F2 of Kushilevitz [NW95] is defined as

follows: HI(x) = 1 if the Hamming weight ‖x‖ of x is 1, 2 or 6, and HI(x) = 0 if ‖x‖ is 0, 4 or 5.
Otherwise (i.e. ‖x‖ = 3), HI(x) = 1 if and only if one of the ten facets in the following diagram has
all three of its vertices 1:

Viewing HI as a function mapping {−1, 1}6 → {−1, 1}, its Fourier expansion is the degree-3
polynomial

HI(x1, . . . , x6) =
1

4

(
−
∑
i

xi + x1x2x3 + x1x2x4 + x1x3x6 + x1x4x5

+ x1x5x6 + x2x3x5 + x2x4x6 + x2x5x6 + x3x4x5 + x3x4x6
)
.

Because HI(0) = 0 and HI(x) = 1 for every string x of Hamming weight one, C[HI,0] = 6. As a
result, our Theorem 6 implies that DT⊕[HI◦k] ≥ Ω(6k). As for its sparsity, we refer to the following
fact.

Fact 5.1. sparsity
(
ĤI◦k

)
≤ 43

k
.

Proof. We will first show that any Boolean function f computed by a degree-d polynomial has
sparsity at most 4d. This is true because any such polynomial is 2−d-granular, meaning that every
coefficient is an integer multiple of 2−d (this fact is exercise 12 in chapter 1 of [O’D13]). Finally,
by Parseval’s equation,

1 =
∑
α∈Fn

2

f̂(α)2 =
∑

α:f̂(α)6=0

f̂(α)2 ≥ sparsity[f̂ ] ·
(

1

2d

)2

.

Rearranging, sparsity[f ] ≤ 4d.
We saw above that HI is a degree-3 polynomial, so HI◦k is a degree-3k polynomial. This means

that sparsity
(
ĤI◦k

)
≤ 43

k
.
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In particular, log(sparsity
(
ĤI◦k

))
= O(3k). Putting these facts together, we get Corollary 1.2:

Corollary 1.2. DT⊕[HI◦k] = Ω((log(sparsity[ĤI◦k]))log3 6).

6 Future directions

One obvious future direction is to improve the two-function version of our composition theorem
given in Theorem 4. As mentioned in Section 1.1, it is possible to construct functions f and g for
which C⊕min[f ◦g] ≈ 1

2Cmin[f ] ·C⊕min[g]. The construction is as follows: let f : F2
2 → F2 is the two-bit

parity function and g : Fm2 → F2 be a Boolean function (to be chosen later). Then fixing y
(1)
i = y

(2)
2

for each i ∈ [m] will cause f(g(y(1)), g(y(2))) to be a constant. This shows that C⊕min[f ◦ g] ≤ m.
Now, we can choose g to be an affine disperser of sublinear dimension (e.g., [BSK12] or [Sha11]),
meaning that C⊕min[g] = m−o(m), in which case C⊕min[f ◦g] / 1

2Cmin[f ] ·C⊕min[g]. (This example can
be extended to the case when f is the parity over any even number of variables.) To our knowledge,
this is the largest known gap between C⊕min[f ◦ g] and Cmin[f ] ·C⊕min[g], and so it is entirely possible
that a composition theorem of the form C⊕min[f ◦ g] ≥ 1

2Cmin[f ] · C⊕min[g] is true. Subsequent to our
publishing of this paper, Avishay Tal [Tal13a] proved the result, which improves on our Theorem 4
in the case when C⊕min[g] ≥ 9:

C⊕min[f ◦ g] ≥ Cmin[f ] ·
(
log2

(
C⊕min[g]

)
− 2
)

+ C⊕min[f ].

This is done by an improved analysis of our Case 3 (Section 3.1.3) when g is a junta over its first t
coordinates.

Another future direction is to prove a composition theorem for DT⊕. With respect to function
composition, DT[f ] is a more nicely behaved complexity measure than Cmin[f ]. This is because
DT[f◦k] = DT[f ]k exactly, whereas Cmin[fok] is only ≥ Cmin[f ]k. On the other hand, our paper
shows a composition theorem for C⊕min[f ] but leaves as an open problem proving a similar composi-
tion theorem for DT⊕[f ]. Though our results imply that DT⊕[f ] is supermultiplicative in Cmin[f ],
it is trivial to construct functions for which Cmin[f ] is small but DT⊕[f ] is quite large. Thus, a
composition theorem for DT⊕[f ] might prove to be useful.

A final direction, pointed out to us by an anonymous reviewer, is to investigate a weaker form
of Conjecture 2 in which the condition on the intersections is replaced with∣∣supp(f̂) ∩ (supp(f̂) + β)

∣∣ ≥ sparsity[f̂ ]

log
(
sparsity[f̂ ]

)d ,
where d is some absolute constant. Though this is weaker than Conjecture 2, it is still strong
enough to imply Conjecture 1. The Sort◦k function can be used to show that d must be ≥ 1 for this
to be true, and it is an interesting open problem whether this lower bound on d can be improved.

Acknowledgments. We would like to thank Rocco Servedio for helpful discussions. We also
would like to thank Noga Ron-Zewi, Amir Shpilka, and Ben Lee Volk for allowing us to reproduce
their argument in Appendix A.

A Communication complexity proof of Corollary 1.2

In this section, we give the alternate proof of Corollary 1.2 due to Ron-Zewi, Shpilka, and Volk [RZSV13].
Let ∧ : F2

2 → F2 be the two-bit AND function. The function family they consider is hk := HI◦k ◦∧.
Their lower bound is:
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Lemma A.1. DT⊕[hk] = Ω((log(sparsity[hk]))
log3 6).

Proof. Let us first calculate the sparsity of hk. As we saw in Section 5.2, HI◦k is a degree-3k

polynomial. Because ∧ is a degree-2 polynomial, the degree of hk is 2 · 3k. By a similar argument
as in Fact 5.1, this means that sparsity[ĥk] ≤ 42·3

k
. In particular, log(sparsity[ĥk]) ≤ O(3k).

Now we will show a lower bound on DT⊕[hk]. The main facts that we will use about HI are that
HI(0) = 0 and HI(x) = 1 for every string x of Hamming weight one. These imply that HI◦k(0) = 0
and HI◦k(x) = 1 for every string x of Hamming weight one.

Set n := 6k, the number of variables of HI◦k. Let us group the input variables of hk into two
strings x, y ∈ Fn2 and write

hk(x, y) = HI◦k(x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn).

Consider the communication complexity scenario in which Alice is given x and Bob is given y,
and they are asked to compute hk(x, y). If they had a parity decision tree for hk of depth d, then
they could compute hk(x, y) using O(d) bits of communication. Define the intersection size of x
and y to be the number of indices i for which xi ∧ yi = 1. It is easy to see that computing hk
is equivalent to solving the Set Disjointness problem, at least when x and y are guaranteed to
have intersection size 0 or 1 (this follows because HI◦k(0) = 0 and HI◦k(x) = 1 for every string x of
Hamming weight one). It is known that even in this special case, Set Disjointness requires Ω(n) bits
of communication [KS92] (see also [Raz92]). As a result, d = Ω(n), meaning that DT⊕[hk] = Ω(6k).

Combining this with the above bound of log(sparsity[ĥk]) ≤ O(3k) yields the lemma.
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