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Abstract

In this survey, we give an introduction to the problem of learning and testing quantum
states from multiple copies. Special attention is paid to the tasks of estimating the eigen-
values of an unknown state, testing whether a state is maximally mixed, and performing full
quantum state tomography. We focus on the representation theory-based approached, devel-
oped in [ARS88, KW01, HM02, Har05, Key06, CM06, Chr06, CHW07, MW16, OW21, OW16,
HHJ+17, OW17, BOW19, CLM+21, AISW19] and elsewhere. Examing this approach also leads
to interesting new developments regarding the probabilistic combinatorics of longest increasing
subsequences.

Note: Modulo minor revisions, Sections 1 to 12 were written jointly with John Wright (Berke-
ley), and a somewhat condensed version of these sections appeared under the title A primer on
the statistics of longest increasing subsequences and quantum states in the Sept. 2017 edition of
SIGACT News.
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1 Spanish cryptograms

Suppose you encounter a cryptogram (substitution cipher) written in Spanish. To decipher it, you’ll
probably want to know the frequency of letters in Spanish text. So you download Don Quixote [Cer15]
and pick out a sample of 500 letters, drawn randomly with replacement; say, z, v, s, r, ñ, . . . , q.
The resulting histogram of 32 rows might look like this:
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What can you infer from this sample? It’s reasonable for you to estimate that the true frequency
𝑝𝑎 of the letter a in Spanish is approximately ̂︀𝑝𝑎 = 64

500 = 12.8%. Similarly, you might estimatê︀𝑝á = 1
500 = 0.2%, ̂︀𝑝𝑏 = 5

500 = 1%, ̂︀𝑝𝑐 = 19
500 = 3.8%, ̂︀𝑝𝑑 = 28

500 = 5.6%, ̂︀𝑝𝑒 = 66
500 = 13.2%, etc.1

Of course, the finite sample size 𝑛 = 500 means there will be some statistical error; for example,
with ̂︀𝑝𝑎 ≈ ̂︀𝑝𝑒 ≈ 13%, the true frequency of a and e might plausibly be anywhere between 10%
and 16%. So on the basis of this sample, you would be unwise to confidently declare that e is the
most probable letter in Spanish. On the other hand, it would be reasonable for you to conclude
that the most frequent letter has frequency ≈ 66

500 = 13.2%.
This question — What is the frequency of the most frequent letter? — is an example of a

letter-permutation-invariant statistic. That is, it doesn’t depend on the names of the letters: it
would be the same if you applied any of the 32! possible permutations to these names (as is done
in a cryptogram). Other letter-permutation-invariant statistics include: the entropy of the letter
frequencies; the total probability of the top-10 most frequent letters; the number of letters with
frequency at least 1%; and so forth. In any long Spanish cryptogram, these statistics would be
approximately the same. Indeed, knowing them would give you a good way to test whether a new
cryptogram is in Spanish or some other language.

As in the Don Quixote example, suppose we form a random “word” 𝑤 ∈ {𝑎, . . . , 𝑧}𝑛 by sampling
𝑛 letters independently; say, 𝑤1 = 𝑧, 𝑤2 = 𝑣, 𝑤3 = 𝑠, . . . , 𝑤𝑛 = 𝑞.2 On the basis of this,
we might wish to estimate some letter-permutation-invariant statistic (e.g., entropy, frequency of
the most frequent letter, etc.). It’s important to note that there are two symmetries at play.
The first symmetry is the position-permutation-invariance of the sample; i.e., the action of the
symmetric group 𝑆𝑛. Since the 𝑛 draws are independent, it doesn’t matter that z was the 1st,
107th, and 251st letter, or that v was the 48th, 133rd, 338th, and 350th; it only matters that

1Gaines’s cryptanalysis book [Gai14] reports 𝑝𝑎 = 12.7%, 𝑝𝑏 = 1.4%, 𝑝𝑐 = 3.9%, 𝑝𝑑 = 5.6%, 𝑝𝑒 = 13.2%, . . .
2Throughout this survey we use boldface to denote random variables.
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z occurred 3 times, v occurred 4 times, etc. This is why we immediately simplified to the histogram
in our example. The second symmetry is the letter-permutation-invariance; i.e., the action of the
symmetric group 𝑆𝑑, where 𝑑 = 32 is the number of letters. This symmetry says that the names
of the letter outcomes don’t matter; in other words, the statistic only depends on the (multi)set of
probabilities {𝑝𝑎, 𝑝𝑏, . . . , 𝑝𝑧}. Given this, we can simplify our histogram further by eliminating the
letter labels, and then sorting the rows. This produces a sorted histogram like the following:

𝜈1 = 66
𝜈2 = 64
𝜈3 = 50
𝜈4 = 34
𝜈5 = 34
𝜈6 = 32
𝜈7 = 29
𝜈8 = 28
𝜈9 = 23
𝜈10 = 19
𝜈11 = 16
𝜈12 = 15
𝜈13 = 13
𝜈14 = 13
𝜈15 = 12
𝜈16 = 9
𝜈17 = 7
𝜈18 = 6
𝜈19 = 5
𝜈20 = 5
𝜈21 = 5
𝜈22 = 4
𝜈23 = 3
𝜈24 = 2
𝜈25 = 2
𝜈26 = 1
𝜈27 = 1
𝜈28 = 1
𝜈29 = 1
𝜈30 = 0
𝜈31 = 0
𝜈32 = 0

In this sorted histogradm 𝜈 = SortedHistogram(𝑤), the first row has length 𝜈1 = 66, indicating
that the most frequent letter in the sample had frequency 66; the second row has length 𝜈2 = 64,
indicating that the 2nd most frequent letter had frequency 64; etc. By virtue of the two symmetries
in our problem — invariance to permuting the 𝑛 = 500 positions, and invariance to permuting the
𝑑 = 32 letter names — the sorted histogram 𝜈 encodes all the information we need to estimate
any letter-permutation-invariant statistic, such as entropy, or the probability of the most probable
letter. Indeed, if we define ̂︀𝑝𝑖 = 𝜈𝑖/𝑛, it would be reasonable to estimate these two quantities by∑︀𝑑

𝑖=1 ̂︀𝑝𝑖 log(1/̂︀𝑝𝑖) and ̂︀𝑝1, respectively.3

2 Quantum contraptions

We will now introduce the “quantum” version of the “classical” statistics problem described in the
previous section. Suppose you wander into a quantum computing laboratory and find a contraption
with a button on the side. Every time you press the button, 5 qubits pop out of the contraption.
If a 5-qubit system is in a “pure state”, you can represent it as

𝑎⃗1|00000⟩+ 𝑎⃗2|00001⟩+ 𝑎⃗3|00010⟩+ · · ·+ 𝑎⃗32|11111⟩,

where the numbers 𝑎⃗𝑖’s are complex “amplitudes” satisfying
∑︀

𝑖 |⃗𝑎𝑖|2 = 1. In other words, a 5-qubit
pure state can be represented by a unit vector 𝑎⃗ ∈ C32. (More generally, a system of 𝑞 qubits has
dimension 𝑑 = 2𝑞, and systems with non-qubit particles may have dimensions that are not powers
of 2.)

3This strategy of estimating a statistic of 𝑝 by computing the statistic for the empirical distribution ̂︀𝑝 is known as
the plug-in estimator. Though a good baseline estimate, it is often suboptimal; see, for example, [WY16, JVHW17]
for optimal entropy estimators which outperform the plug-in estimator.
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Actually, the contraption might have some probabilistic components inside it; for example,
flipping coins, or internal quantum measurement devices. As a consequence, when you press the
button, you may get some some kind of randomly distributed pure state vector — in other words,
a quantum mixed state. In principle, the contraption might produce any probability distribution
over any set of unit vectors in C32. However (see Section 8) it is a basic fact of quantum mechanics
that we may assume, without loss of generality, that the contraption produces a discrete proba-
bility distribution over some basis of 32 orthonormal vectors 𝑎⃗, 𝑏⃗, 𝑐⃗, · · · ∈ C32. Following quantum
notation, let’s write these unit vectors as |1⟩, |2⟩, . . . , |32⟩ ∈ C32, and write 𝑝1, 𝑝2, . . . , 𝑝32 for the
associated probabilities. In other words, every time you press the button, the contraption spits out
|𝑖⟩ with probability 𝑝𝑖 (𝑖 = 1 . . . 32). Although we’ve numbered them 1 . . . 32, we may still refer to
the vectors as letters.

Since you’ve never encountered the contraption before, both the probabilities 𝑝𝑖 and the or-
thonormal vectors |𝑖⟩ are unknown to you. Not only that, you can’t just “look at” the output
vectors to tell what they are; quantum mechanics only allows you to choose a “measurement” to
perform on them (discussed further in Section 8), and this measurement itself produces a proba-
bilistic outcome.4 These difficulties notwithstanding, you may press the button 𝑛 times, and we’ll
assume that the resulting outputs are independent and unentangled. For example, if you press the
button 𝑛 = 6 times, the contraption might spit out the sequence

|7⟩, |12⟩, |4⟩, |20⟩, |7⟩, |31⟩;

this would occur with probability 𝑝7 · 𝑝12 · 𝑝4 · 𝑝20 · 𝑝7 · 𝑝31. At this point, you can perform any
measurement you like on the particles. Quantum state tomography refers to the task of using the
samples to estimate the mixed state of the contraption’s output. In the general 𝑑-dimensional case,
this (roughly speaking) means estimating the probabilities 𝑝1, . . . , 𝑝𝑑 and the vectors |1⟩, . . . , |𝑑⟩.

As in the preceding discussion of Spanish cryptograms, for the moment we’ll only concern our-
selves with estimating statistics of the (multi)set of probabilities {𝑝1, . . . , 𝑝𝑑}. Most such statistics
have a natural physical meaning; for example, the largest probability gives a measure of how “pure”
the contraption’s output is, and the entropy

∑︀𝑑
𝑖=1 𝑝𝑖 log(1/𝑝𝑖) is called the von Neumann entropy

of the mixed quantum state. In this case, we again have two symmetries at play. First, we have the
same position-permutation-invariance as before; i.e., the action of the symmetric group 𝑆𝑛. This
is because the 𝑛 button presses are assumed to produce independent and unentangled outcomes.
Second, since we only care about statistics depending on {𝑝1, . . . , 𝑝𝑑} and we don’t care about the
identity of the orthonormal basis |1⟩, . . . , |𝑑⟩ of C𝑑, we have the symmetry of the unitary group
𝑈(𝑑) acting as “rotations/reflections” on bases.

When estimating properties of the set {𝑝𝑎, . . . , 𝑝𝑧} of Spanish letter frequencies, we “factored
out” the 𝑆𝑛 and 𝑆𝑑 symmetries when we reduced our sample to its sorted histogram of 𝑛 boxes
and 𝑑 rows. As it turns out (see Section 11) there is a similar way to “factor out” the 𝑆𝑛 and
𝑈(𝑑) symmetries when trying to estimate properties of the probabilities {𝑝1, . . . , 𝑝𝑑} associated
to the quantum contraption. In Section 4, we’ll state an Optimal Measurement Theorem, which
describes a certain quantum “measurement” that may be performed without loss of generality when
estimating statistics of {𝑝1, . . . , 𝑝𝑑}. Surprisingly, the possible measurement outcomes will be sorted
histograms of 𝑛 boxes and 𝑑 rows! The reason for this has to do with the representation theory of
the groups 𝑆𝑛 and 𝑈(𝑑), which is intimately connected with sorted histograms — also known as
Young diagrams.

4Although, if a “little birdie” told you the vectors |1⟩, . . . , |𝑑⟩, you could “measure in this basis” and thereby
exactly “look at” the output vectors. This would reduce you to a classical scenario like that of sampling from
unknown Spanish letter frequencies, 𝑝1, . . . , 𝑝32.
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Later in Section 11 we will explain a little representation theory to justify why the Optimal
Measurement Theorem is true. Before that, though, we will spend some time analyzing the prob-
ability distribution on Young diagrams that arises from the Optimal Measurement Theorem. As
we’ll see, this distribution is unfortunately not as simple as “draw an 𝑛-letter word 𝑤 from the
probability distribution {𝑝1, . . . , 𝑝𝑑} and form its sorted histogram”. Rather, it has to do with an
interesting combinatorial property of 𝑤: the lengths of its longest increasing subsequences.

3 Longest increasing subsequences: Robinson, Schensted, Knuth

Let 𝑤 be a length-𝑛 word over the ordered alphabet {𝑎, 𝑏, 𝑐, 𝑑}; for example, suppose 𝑛 = 10 and

𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐.

We define LIS(𝑤) to be the length of the longest increasing subsequence of 𝑤. (Throughout, “in-
creasing” will mean “nondecreasing”; in other words, in alphabetical order.) How can we easily
determine this length? For our example 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐, a little trial and error will convince you
that the underlined subsequence 𝑏𝑏𝑏𝑏𝑐 is maximal, so LIS(𝑤) = 5. For longer words, we’ll need to
be more systematic.

There is a natural dynamic program for computing LIS(𝑤) known as patience sorting that
involves processing the letters of 𝑤 one-by-one (see [AD99] for a survey on this topic). As we do
this, we maintain a growing array 𝐿 in which

𝐿[𝑗] = the “alphabetically smallest” letter that can end a length-𝑗 increasing subsequence.

For example, after processing 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐, our array will look like

𝐿 = 𝑎 𝑎 𝑏 𝑏 𝑐 .

This corresponds to the following five increasing subsequences:

𝐿[1] = 𝑎, because of 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐;

𝐿[2] = 𝑎, because of 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐;

𝐿[3] = 𝑏, because of 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐;

𝐿[4] = 𝑏, because of 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐;

𝐿[5] = 𝑐, because of 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐,

and it can be checked that there are no subsequences of length six or greater. The overall longest
increasing subsequence (of the word processed so far) is simply the length of the array; and, when a
new letter is processed, it’s not hard to update the entries of the array. To test your understanding,
you might confirm that if an 11th letter were to “arrive” at the end of our 𝑤, the four possibilities
would be:

𝑎 𝑎 𝑏 𝑏 𝑐 + 𝑎 = 𝑎 𝑎 𝑎 𝑏 𝑐 𝑎 𝑎 𝑏 𝑏 𝑐 + 𝑏 = 𝑎 𝑎 𝑏 𝑏 𝑏

𝑎 𝑎 𝑏 𝑏 𝑐 + 𝑐 = 𝑎 𝑎 𝑎 𝑏 𝑐 𝑐 𝑎 𝑎 𝑏 𝑏 𝑐 + 𝑑 = 𝑎 𝑎 𝑏 𝑏 𝑐 𝑑
(1)

The algorithm to update the diagram (array) can be thought of as follows:

Insertion: To process a new letter, ‘𝑖’, find the rightmost position in which it can be placed so
as to maintain alphabetical order. If this position is already occupied by some letter, then bump
that letter out of the diagram. Otherwise, place 𝑖 at the end of the diagram, in a new box.
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This rightmost position, say 𝑗, corresponds to the first entry 𝐿[𝑗] which is strictly larger than 𝑖.
The update 𝐿[𝑗] := 𝑖 therefore works because the subsequence ending in 𝐿[𝑗 − 1] can be appended
with 𝑖 to form a subsequence of length 𝑗; those letters to the left of 𝐿[𝑗] stay the same because they
are already less than or equal to 𝑖, and those letters to the right stay the same because there is
no increasing subsequence of length 𝑗 + 1 or greater ending in 𝑖. Considering the four examples in
Equation (1), we see that inserting a new ‘𝑎’ causes the ‘𝑏’ in the third box to be bumped; inserting
a new ‘𝑏’ causes the ‘𝑐’ in the fifth box to be bumped; inserting a ‘𝑐’ creates a new box at the end;
and inserting a ‘𝑑’ also creates a new box at the end. The value of LIS(𝑤) increases precisely when
a new box is created.

When a letter is “bumped” during the insertion process, it seems a shame to just throw it in the
trash. Following an idea of Robinson [Rob38], Schensted [Sch61], and Knuth [Knu70] (“RSK”),
let’s instead recursively “insert” the bumped letter into a subsequent row of the diagram. When this
RSK algorithm is applied to the word 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐, we get the following growing sequence of
filled Young diagrams:

𝑑−→ 𝑑
𝑏−→ 𝑏

𝑑

𝑏−→ 𝑏 𝑏
𝑑

𝑐−→ 𝑏 𝑏 𝑐
𝑑

𝑑−→ 𝑏 𝑏 𝑐 𝑑
𝑑

𝑏−→ 𝑏 𝑏 𝑏 𝑑
𝑐
𝑑

𝑎−→ 𝑎 𝑏 𝑏 𝑑
𝑏
𝑐
𝑑

𝑎−→ 𝑎 𝑎 𝑏 𝑑
𝑏 𝑏
𝑐
𝑑

𝑏−→ 𝑎 𝑎 𝑏 𝑏
𝑏 𝑏 𝑑
𝑐
𝑑

𝑐−→ 𝑎 𝑎 𝑏 𝑏 𝑐
𝑏 𝑏 𝑑
𝑐
𝑑

(2)

It is not too hard to check that the RSK algorithm, when applied to any word 𝑤 of length 𝑛,
produces what is known as a semistandard Young tableau of size 𝑛: a filled 𝑛-box Young diagram
in which the rows have increasing entries and the columns have strictly increasing entries. Because
of the second property, the number of rows will never be more than the number of letters in the
alphabet.

Given a semistandard Young tableau (SSYT), its shape is the Young diagram (sorted histogram)
produced by deleting the entries. We’ll write 𝜆 = RSKshape(𝑤) for the shape of the SSYT produced
by applying the RSK algorithm to word 𝑤; thus, e.g.,

RSKshape(𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐) = (3)

As we’ve seen, the top row of the diagram graphically encodes the dynamic program for determining
the length of the longest increasing subsequence. Thus if 𝜆 = RSKshape(𝑤), then 𝜆1 = LIS(𝑤). Is
there any meaning to the lengths of the subsequent rows of 𝜆? Greene’s Theorem [Gre74] implies
that there is:
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Greene’s Theorem: If 𝜆 = RSKshape(𝑤), then:

𝜆1 is the length of the longest increasing subsequence in 𝑤;

𝜆1 + 𝜆2 is the length of the longest union of 2 increasing subsequences in 𝑤;

𝜆1 + 𝜆2 + 𝜆3 is the length of the longest union of 3 increasing subsequences in 𝑤;

𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 is the length of the longest union of 4 increasing subsequences in 𝑤; etc.

For example, in our word 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐, Greene’s Theorem and Equation (3) tell us that 𝑤
should have 2 disjoint increasing subsequences of total length 5 + 3 = 8, and indeed here they are,
underlined/overlined: 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐. (It’s a coincidence that they’re both contiguous.)

4 Symmetric properties of probabilities: classical vs. quantum

Now let’s return to quantum contraptions. Suppose — as we were discussing — that we have a quan-
tum contraption that outputs a 𝑑-dimensional mixed state with unknown probabilities 𝑝1, . . . , 𝑝𝑑 for
an unknown orthonormal basis |1⟩, . . . , |𝑑⟩ of C𝑑. (In our example, 𝑑 was 32.) And suppose we want
to estimate some statistic only depending on the multiset {𝑝1, . . . , 𝑝𝑑}; for example, the maximum 𝑝𝑖
(which we recall is one way of quantifying how “pure” the contraption’s output is). We press the
button 𝑛 times, obtain 𝑛 independent unentangled outputs, and now must make some kind of quan-
tum measurement. As mentioned in Section 2, it is possible without loss of generality to “factor
out” the 𝑆𝑛 and 𝑈(𝑑) symmetries, yielding the following (see [CHW07, MW16, OW21, BOW19]):

Optimal Measurement Theorem: The optimal5 quantum measurement when one only cares
about {𝑝1, . . . , 𝑝𝑑} has the following property: It reports an 𝑛-box, 𝑑-row Young diagram 𝜆, and
the probability distribution of 𝜆 (over both the outcome of the contraption and the measurement’s
randomness) is exactly the same as that of RSKshape(𝑤) for 𝑤 ∼ 𝑝⊗𝑛, meaning that 𝑤 is a random
length-𝑛 word in which each letter is 𝑖 ∈ {1, . . . , 𝑑} independently with probability 𝑝𝑖.

This should be compared to the problem of estimating a letter-permutation-invariant statistic
of an unknown probability distribution like the frequencies of the 𝑑 = 32 Spanish letters. In that
“classical” scenario, an optimal algorithm also gets an 𝑛-box, 𝑑-row random Young diagram 𝜈;
however, this 𝜈 is simply distributed as the sorted histogram of a random word 𝑤.

Let’s make a closer comparison between the classical and quantum scenarios. In both cases, we
want to use 𝑛 samples to estimate a permutation-invariant property of the probability distribution
𝑝 = (𝑝1, . . . , 𝑝𝑑). In both cases, we can imagine that a random word 𝑤 ∈ {1, . . . , 𝑑}𝑛 is chosen
from the product probability distribution 𝑝⊗𝑛. In the classical case, we get to see the Young
diagram 𝜈 = SortedHistogram(𝑤); in the quantum case, we get to see the “LIS information”
𝜆 = RSKshape(𝑤). For example, if 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐, then

𝜆 = RSKshape(𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐) = 𝜈 = SortedHistogram(𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐) =

(4)
A first immediate observation is that the quantum case is at least as hard as the classical case.

One way to see this is that 𝜈 contains all the information you could ever want, whereas 𝜆 doesn’t;
another way is via Footnote 4.

5Vis-a-vis either of these two cases: (i) Discriminating between two classes of multisets, as in Hypothesis Testing.
(ii) Estimating a statistic with minimal variance (quadratic risk).
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A second observation is that the LIS information 𝜆 will always be more “top-heavy” than the
sorted histogram 𝜈. More precisely, we will always have that 𝜆 majorizes 𝜈, written 𝜆 ≻ 𝜈,
meaning that 𝜆1 + · · ·+ 𝜆𝑘 ≥ 𝜈1 + · · ·+ 𝜈𝑘 for all 1 ≤ 𝑘 ≤ 𝑑, with equality for 𝑘 = 𝑑. This follows
directly from Greene’s Theorem, since one can always find 𝑘 increasing subsequences in 𝑤 whose
union has length at least 𝜈1 + · · ·+ 𝜈𝑘, simply by taking all of the most frequently occurring letter
as one subsequence, all of the 2nd-most frequently occurring letter as a 2nd subsequence, . . . , all
of the 𝑘th-most frequently occurring letter as the 𝑘th subsequence.

A third observation concerns symmetry with respect to permuting {1, . . . , 𝑑}. So far we’ve
assumed we’re only interested in properties of the multiset {𝑝1, . . . , 𝑝𝑑}, such as the maximum 𝑝𝑖,
or the entropy of 𝑝. This is why we could reduce to the sorted histogram 𝜈 in the classical case,
and why (according to the Optimal Measurement Theorem) we can reduce to the RSK output 𝜆 in
the quantum case. Now it’s very clear that the distribution of the sorted histogram 𝜈 is invariant
to permuting 𝑝1, . . . , 𝑝𝑑, but it’s far from clear that this is true of the RSK output 𝜆. In fact, it
may seem almost definitely false! The very nature of the RSK algorithm, and the phrase “longest
increasing subsequence”, are both intimately tied up with the ordering on the 𝑑-letter alphabet.
But nevertheless, the following surprising fact is true: The distribution on 𝜆 (that is, RSKshape(𝑤)
for 𝑤 ∼ 𝑝⊗𝑛) is unchanged no matter how the probabilities 𝑝1, . . . , 𝑝𝑑 are permuted. The reason
for this will be mentioned in Section 5, but for now you might think about the case 𝑑 = 2, wherein
𝜆 is fully determined by the length of its first row, LIS(𝑤). Thus the fact says that the length
of the longest increasing subsequence in a random word with 60% 1’s and 40% 2’s has the same
distribution as in a random word with 40% 1’s and 60% 2’s. . .

Because of this symmetry property, we will sometimes assume — without loss of generality —
that 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑑. In this case, we can combine the previous observations to get an interesting
inequality. As mentioned, 𝜆 always majorizes the sorted histogram 𝜈 of 𝑤. In turn, the sorted
histogram always majorizes the unsorted histogram of 𝜈, call it 𝜂. Taking expectations of the
statement 𝜆 ≻ 𝜂 yields

(E[𝜆1],E[𝜆2], . . . ,E[𝜆𝑑]) ≻ (𝑝1𝑛, 𝑝2𝑛, . . . , 𝑝𝑑𝑛), (5)

a statement we will use several times later. These inequalities help us understand lower bounds on
the 𝜆𝑖’s; we’d like to get some comparable upper bounds so as to really nail down the distribution
on 𝜆. This issue will be taken up in Section 7, but first we digress to describe a few more properties
of the RSK algorithm.

5 The RSK bijection and Schur symmetric polynomials

In fact, we have so far described only half of the RSK algorithm. In addition to the semistandard
tableau described in Section 3, known as the insertion tableau, the full RSK algorithm applied to
a word 𝑤 also maintains a second tableau known as the recording tableau. This tableau is updated
in parallel with the insertion tableau: when the 𝑡th new box is added to the insertion tableau,
a new box is added to the recording tableau in the same position, filled with “timestamp” 𝑡. In
Equation (2) we illustrated how the insertion tableau grows on the example word 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐;
the full insertion/recording tableau output of RSK on 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐 would be:

RSK(𝑤) =

⎛⎜⎜⎝
𝑎 𝑎 𝑏 𝑏 𝑐
𝑏 𝑏 𝑑
𝑐
𝑑

,

1 3 4 5 10
2 8 9
6
7

⎞⎟⎟⎠ . (6)
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For general 𝑤, the usual notation is RSK(𝑤) = (𝑃,𝑄), where 𝑃 is the insertion tableau and 𝑄 is the
recording tableau. Since the tableaus6 always grow down-and-to-the-right, 𝑄 is always a standard
tableau. This means that both its rows and columns are strictly increasing, and that it contains
exactly the numbers 1 through 𝑛, where 𝑛 is the length of word 𝑤.

When combined with the insertion tableau, the recording tableau gives all the additional infor-
mation needed to reverse the steps of the RSK algorithm and thereby invert the RSK mapping.
For example, given just the output tableaus in Equation (6), we could recover 𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐 as
follows: First, the recording tableau tells us that the 10th and final box was created in position 5
of the first row. This can only happen if 𝑐 was the final letter inserted into the first row; hence
𝑤10 = 𝑐 and

RSK(𝑤1𝑤2 · · ·𝑤9) =

⎛⎜⎜⎝
𝑎 𝑎 𝑏 𝑏
𝑏 𝑏 𝑑
𝑐
𝑑

,

1 3 4 5
2 8 9
6
7

⎞⎟⎟⎠ .

At this step, the recording tableau tells us that the box in position 3 of the second row was the final
box created. As a result, 𝑑 must have been inserted into the second row in the final step, and this
could only have happened if it was previously bumped down by 𝑏 in the first row. In conclusion,
𝑤9 = 𝑏 and

RSK(𝑤1 · · ·𝑤8) =

⎛⎜⎜⎝
𝑎 𝑎 𝑏 𝑑
𝑏 𝑏
𝑐
𝑑

,

1 3 4 5
2 8
6
7

⎞⎟⎟⎠ .

Continuing in this manner allows us to recover the entire string 𝑤.

1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
3 3 4 4 4 4 4 4 4 4 4 4 4
4 4

Remarkably, this argument shows that any pair of tableaus (𝑃,𝑄) can be inverted into a word 𝑤
so long as 𝑃 is semistandard, 𝑄 is standard, and 𝑃 and 𝑄 have the same shape. Hence, the RSK
algorithm gives a bijection between words and pairs of tableaus, one standard and one semistandard,
which we state formally below.

Before doing so, we have yet to touch on the most basic application of the RSK algorithm,
which is to permutations rather than words. Given a permutation 𝜋 ∈ 𝑆𝑛, if we write it as
𝜋 = (𝜋(1), . . . , 𝜋(𝑛)), then we can view it as an 𝑛-letter word on the alphabet {1, . . . , 𝑛} which just
happens to have no repetitions. As a result, if RSK(𝜋) = (𝑃,𝑄), then 𝑃 has 𝑛 boxes, contains each
integer in {1, . . . , 𝑛} exactly once, and is semistandard; this implies that it is in fact standard, like 𝑄.
Conversely, any pair of standard tableaus (𝑃,𝑄) of the same shape inverts to a permutation 𝜋. As
a result, the RSK algorithm also gives a bijection between permutations and pairs of standard
tableaus. These two bijections are formalized as follows.

Theorem 5.1 (RSK correspondence). Given an integer 𝑛 and an 𝑛-box Young diagram 𝜆, let
SYT(𝜆) be the set of standard Young tableaus with shape 𝜆. Then the RSK algorithm witnesses the
bijection

𝜋 ∈ 𝑆𝑛
RSK←→ (𝑃,𝑄) ∈

⋃︁
𝑛-box 𝜆

SYT(𝜆)× SYT(𝜆). (7)

6Sometimes spelled ‘tableaux’.
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Further, for 𝑑 ≤ 𝑛, let SSYT𝑑(𝜆) be the set of semistandard Young tableaus with shape 𝜆 and
entries in {1, . . . , 𝑑}. Then the RSK algorithm witnesses the bijection

𝑤 ∈ {1, . . . , 𝑑}𝑛 RSK←→ (𝑃,𝑄) ∈
⋃︁

𝑛-box 𝜆

SSYT𝑑(𝜆)× SYT(𝜆). (8)

It’s customary to write dim𝜆 = |SYT(𝜆)| for the number of standard tableaus of shape 𝜆.
Taking cardinalities of both sides of Equation (7), we see that

𝑛! =
∑︁

𝑛-box 𝜆

(dim𝜆)2. (9)

(The notation dim𝜆 comes from the representation theory of the symmetric group, as we’ll see in
Section 11. In this context, Equation (9) is also a consequence of the decomposition of the regular
representation of 𝑆𝑛 into irreducible representations.) A conclusion is that if a permutation 𝜋 ∼ 𝑆𝑛

is drawn uniformly at random, then Pr[RSKshape(𝜋) = 𝜆] = (dim𝜆)2/𝑛!. Incidentally, there is a
famous explicit formula for dim𝜆, the Hook Length formula [FRT54]:

dim𝜆 =
𝑛!∏︀

□∈𝜆 ℎ𝑙(□)
, where ℎ𝑙(□) = #{boxes in 𝜆 due east and south of □, including □}.

(10)
Analogously to Equation (9), suppose we “count” both sides of Equation (8) according to the

product measure 𝑝⊗𝑛 on words formed by a probability distribution 𝑝 = (𝑝1, . . . , 𝑝𝑑) on letters. The
conclusion is that

Pr
𝑤∼𝑝⊗𝑛

[RSKshape(𝑤) = 𝜆] = 𝑠𝜆(𝑝) · dim𝜆, (11)

where 𝑠𝜆 denotes the Schur polynomial indexed by 𝜆, defined by

𝑠𝜆(𝑥1, . . . , 𝑥𝑑) =
∑︁

𝑇∈SSYT𝑑(𝜆)

∏︁
□∈𝑇

𝑥𝑇 (□), where 𝑇 (□) is the entry of tableau 𝑇 in box □. (12)

(This probability distribution on Young diagrams was perhaps first studied in the general-𝑝 case
by Its, Tracy, and Widom [ITW01].)

It is a surprising and non-obvious fact that the Schur polynomials are in fact symmetric in
the variables 𝑥1, . . . , 𝑥𝑛. (Hint for the proof: it suffices to show that they are invariant under
interchanging 𝑥𝑖 and 𝑥𝑖+1; for this, there’s a relatively simple bijection of tableaus. . . ) Indeed,
when ranging over 𝑛-box diagrams 𝜆, they form a linear basis for the set of all 𝑑-variable degree-𝑛
symmetric polynomials. (We will encounter another, more familiar, such basis later in Section 10:
the power sum symmetric polynomials.) Finally, we mention an alternative, more compact formula
for the Schur polynomials, which can be proven using some classical combinatorics (see, e.g., [Sta99,
Ch. 7]):

𝑠𝜆(𝑥1, . . . , 𝑥𝑑) =
det
(︁(︀

𝑥
𝜆𝑗+𝑑−𝑗
𝑖

)︀
𝑖𝑗

)︁
∏︀

𝑖<𝑗(𝑥𝑖 − 𝑥𝑗)
. (13)

Swapping any two variables 𝑥𝑠, 𝑥𝑡 in the above formula simply creates a negative sign in the numer-
ator and the denominator; thus this formula gives another testament that the Schur polynomials
are symmetric.
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6 Two majorization theorems for the RSK algorithm

In Section 4 we described a “majorization” result about the RSK algorithm that is an imme-
diate consequence of Greene’s Theorem: If 𝑤 is any word with 𝜆 = RSKshape(𝑤) and 𝜈 =
SortedHistogram(𝑤), then 𝜆 ≻ 𝜈, meaning that

∑︀𝑘
𝑖=1 𝜆𝑖 ≥

∑︀𝑘
𝑖=1 𝜈𝑖 for all 𝑘. In this section

we mention two additional recently proven [OW16, OW17] majorization results concerning RSK.
The first majorization result has a highly intuitive statement. Suppose that 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑑

is a sorted probability distribution on {1, . . . , 𝑑}, and 𝑞 is another. Further, suppose that 𝑞 ≻ 𝑝;
roughly speaking, this means that a word 𝑤 drawn randomly from 𝑞⊗𝑛 tends to have more letters
from “earlier in the alphabet” than if it is drawn from 𝑝⊗𝑛. In either case, the sortedness of 𝑝 and 𝑞
ensures that the smaller letters of 𝑤 tend to collect up higher in the Young diagram produced by
RSK(𝑤), whereas the larger letters, outnumbered by the smaller letters, will be bumped into the
lower rows. As a result, we might expect RSKshape(𝑤) to be more “top-heavy” for 𝑤 ∼ 𝑞⊗𝑛 than
for 𝑤 ∼ 𝑝⊗𝑛. This is exactly what the first majorization theorem says:

Coupling Majorization Theorem [OW16]: Let 𝑝, 𝑞 be sorted probability distributions on
{1, . . . , 𝑑} with 𝑞 ≻ 𝑝. Let 𝜆 = RSKshape(𝑤) for 𝑤 ∼ 𝑝⊗𝑛, and let 𝜇 = RSKshape(𝑧) for
𝑧 ∼ 𝑞⊗𝑛. Then there is a probabilistic coupling (𝜆,𝜇) such that 𝜇 ≻ 𝜆 always. (As a consequence,
E[𝜇1 + · · ·+ 𝜇𝑘] ≥ E[𝜆1 + · · ·+ 𝜆𝑘] for all 𝑘.)

Here, a probabilistic coupling (𝜆,𝜇) refers to a probability distribution on pairs of Young diagrams
such that the first diagram has marginal 𝜆 and the second diagram has marginal 𝜇. Although this
theorem statement is rather intuitive, a fairly intricate bijective proof was required.

The second majorization theorem we wish to mention is concerned with the “lower rows” of the
Young diagrams produced by RSK. For 𝜆 = RSKshape(𝑤), Greene’s Theorem tells us an excellent
interpretation for the length of the first row, 𝜆1: it’s equal to LIS(𝑤). The lengths of the lower
rows, though, are a little harder to interpret. Let’s say we want to understand the shape of rows 𝑘
and below when RSK is applied to word 𝑤. We’ll take the example of 𝑘 = 2 and our favorite word
𝑤 = 𝑑𝑏𝑏𝑐𝑑𝑏𝑎𝑎𝑏𝑐, whose growing insertion tableau was shown in Equation (2). We want to focus on
the Young diagram formed by rows 2 and below, so we sit next to the entrance of row 2 and watch
as letters come in (after being bumped from row 1). In the example Equation (2), we see a letter
𝑑 come in at “time” 2, a letter 𝑐 at time 6, a letter 𝑏 at time 7, another letter 𝑏 at time 8, and a
letter 𝑑 at time 9. Let’s annotate the original string 𝑤 with superscripts, indicating these “times
of being inserted into row 2”:

𝑤 = 𝑑2𝑏7𝑏8𝑐6𝑑9𝑏𝑎𝑎𝑏𝑐.

(To emphasize: the first 𝑑 has superscript 2 because it was bumped at time 2 whereas the second 𝑑
has superscript 9 because it was bumped at time 9.) In our example it’s a coincidence that all
letters that made it to row 2 are from the first half of 𝑤. In any case, let’s write 𝑤bump for 𝑑𝑐𝑏𝑏𝑑,
the letters that entered into row 2 in the order they entered ; i.e., sorted according to the subscripts
above. Then by definition of the RSK algorithm, the insertion tableau of RSK(𝑤) at rows 2 and
below will equal the insertion tableau of RSK(𝑤bump):

𝑑−→ 𝑑
𝑐−→ 𝑐

𝑑

𝑏−→ 𝑏
𝑐
𝑑

𝑏−→ 𝑏 𝑏
𝑐
𝑑

𝑑−→ 𝑏 𝑏 𝑑
𝑐
𝑑

= RSK(𝑤bump).

On the other hand, let’s write 𝑤orig for 𝑑𝑏𝑏𝑐𝑑, the letters that entered into row 2 in the order they
originally appear in 𝑤. We could imagine applying RSK to this subsequence of 𝑤, although it’s
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sort of counterfactual:

𝑑−→ 𝑑
𝑏−→ 𝑏

𝑑

𝑏−→ 𝑏 𝑏
𝑑

𝑐−→ 𝑏 𝑏 𝑐
𝑑

𝑑−→ 𝑏 𝑏 𝑐 𝑑
𝑑

= RSK(𝑤orig).

Comparing the shapes of the Young diagrams produced, we have

RSKshape(𝑤orig) = ≻ = RSKshape(𝑤bump).

The second majorization theorem we present says that this is a general phenomenon:

Lower-Row Majorization Theorem [OW17]: Let 𝑤 ∈ {1, . . . , 𝑑}𝑛 be a word and let 1 ≤ 𝑘 ≤ 𝑑.
When applying RSK to 𝑤, some of its letters enter into the 𝑘th row. Let 𝑤bump denote the sequence
of these letters in the order they enter, and let 𝑤orig denote the sequence in the order they originally
appear in 𝑤. Then RSKshape(𝑤orig) ≻ RSKshape(𝑤bump).

The proof of this theorem involved a rather complicated analysis of a geometric interpretation
of the RSK algorithm known as Viennot’s construction [Vie81]. Unlike the Coupling Majoriza-
tion Theorem, we admit to not having great intuition for the Lower-Row Majorization Theorem.
(Indeed, when recalling it, we sometimes forget whether the conclusion should have ≻ or ≺ !) How-
ever, it seems to be an invaluable tool for reasoning about the lower rows produced by the RSK
algorithm.

7 Probabilistic combinatorics of longest increasing subsequences

Let’s return to the problem of understanding the shape of 𝜆 = RSKshape(𝑤) when 𝑤 ∼ 𝑝⊗𝑛.7

Throughout this section we will assume that 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑑, which is without loss of generality
as we have discussed. For concreteness, consider the following example 𝜆 when 𝑛 = 1000 and
𝑝 = (0.5, 0.2, 0.2, 0.1):

𝜆1 = 503
𝜆2 = 215
𝜆3 = 181
𝜆4 = 101

Interestingly, it appears that 𝜆𝑖/𝑛 ≈ 𝑝𝑖 for each 1 ≤ 𝑖 ≤ 4, albeit with somewhat large error
for 𝑝2 = 𝑝3. If this were typically true in general, then the normalized Young diagram 𝜆/𝑛 =
(𝜆1/𝑛, , . . . ,𝜆𝑑/𝑛) would provide us with a good estimate (̂︀𝑝1, . . . , ̂︀𝑝𝑛) of the sorted probability
distribution (𝑝1, . . . , 𝑝𝑑). In turn, this would let us estimate any statistic of the multiset {𝑝1, . . . , 𝑝𝑑}.
So how might we show that 𝜆𝑖 ∼ 𝑝𝑖𝑛 for large 𝑛?

Let’s start with the 𝑖 = 1 case. As described in Section 3, 𝜆1 = LIS(𝑤), so we’d like to show
that the longest increasing subsequence in 𝑤 ∼ 𝑝⊗𝑛 has length roughly 𝑝1𝑛. The lower bound
is simple: indeed, we already determined (see Inequality (5)) that E[𝜆1] ≥ 𝑝1𝑛. This is because
LIS(𝑤) is always at least the number of 1’s in 𝑤, a quantity with mean 𝑝1𝑛.

Let’s now heuristically reason about an upper bound for 𝜆1 = LIS(𝑤). The longest increasing
subsequence in 𝑤 can always be determined as follows: First, take some partition of the positions
(1, . . . , 𝑛) into 𝑑 contiguous blocks, 𝐵1, . . . , 𝐵𝑑. Next, form an increasing sequence in 𝑤 by taking

7We remark that for 𝑝 = (1/𝑑, . . . , 1/𝑑) with 𝑑 ≫ 𝑛, this tends to the topic of understanding the shape of
𝜆 = RSKshape(𝜋) when 𝜋 ∼ 𝑆𝑛 is a random permutation, in which case 𝜆 is said to have Plancherel distribution.
The Plancherel distribution is extremely well-studied; see [IO02, Rom14] for excellent overviews of this area.
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all of the letter-1’s in block 𝐵1, all of the letter-2’s in block 𝐵2, and so forth. Finally, maximize this
procedure over all partitions into blocks. Now for any partition, the number of letters 𝑖 that 𝑤 has in
block 𝐵𝑖 will be tightly concentrated around 𝑝𝑖|𝐵𝑖|. Thus the length of the increasing subsequence
of 𝑤 formed from the partition should be not much more than 𝑝1|𝐵1|+ 𝑝2|𝐵2|+ · · ·+ 𝑝𝑑|𝐵𝑑|. But
𝑝𝑖 ≤ 𝑝1 for all 𝑖, so this is at most 𝑝1(|𝐵1| + · · · + |𝐵𝑑|) = 𝑝1𝑛. Indeed, one can formalize this
argument using standard concentration bounds and get that LIS(𝑤) ≤ 𝑝1𝑛 + 𝑂(𝑑

√
𝑛 log 𝑛) with

high probability. We will later see a noticeably tighter upper bound.
The fact that indeed 𝜆𝑖 ∼ 𝑝𝑖𝑛 for all 𝑖 ∈ [𝑑] was first shown by Vershik and Kerov [VK81].

Since then, several works have determined that in the limit as 𝑛 → ∞, the deviation of the nor-
malized Young diagram 𝜆/𝑛 from the probability vector 𝑝 is distributed like a random vector
arising from the spectrum of certain random matrix ensembles; specifically, it has a partly Gaus-
sian, partly Tracy–Widom limiting distribution. This was first shown for the case of uniform 𝑝𝑖’s
by [Ker03, TW01, Joh01] and generalized to the case of nonuniform 𝑝𝑖’s by [ITW01, HX13, Mél12].
Unfortunately, these limiting results don’t necessarily give results for the nonasymptotic case, as
needed for applications to quantum state learning and testing. By this we mean they heavily rely
on considering 𝑝 fixed and then taking 𝑛 → ∞. In particular, the error bounds can have an un-
controlled dependence on quantities like 𝑑 and min𝑝𝑖 ̸=𝑝𝑗 (𝑝𝑖 − 𝑝𝑗)

−1, which will not be suitable for
quantum estimation purposes, where 𝑛 might be proportional to 𝑑 or 𝑑2, and no a priori assumption
can be made about the gaps between consecutive 𝑝𝑖’s.

Still, these limiting results are very useful for obtaining the correct intuition for the nonasymp-
totic case. Most useful has been the following ansatz which they suggest:

Ansatz: 𝜆𝑖 ≈ 𝑝𝑖𝑛± 2
√︀
𝑝𝑖𝑑𝑖𝑛.

Here 𝑑𝑖 is the number of occurrences of 𝑝𝑖 in (𝑝1, . . . , 𝑝𝑑).
One of the main goals in [OW16, OW17] is to prove sharp bounds — that hold for every 𝑝, 𝑑,

and 𝑛 — on the closeness of the normalized Young diagram 𝜆/𝑛 to the sorted probability vector 𝑝.
For instance, in Section 12, we sketch a proof of the ℓ2-bound

E
𝜆

[︀
‖𝜆/𝑛− 𝑝‖22

]︀
≤ 𝑑

𝑛
,

which is indeed consistent with the ansatz. Going beyond this single global error bound, [OW17] was
able to show some per-row error bounds, which help in analyzing the Hellinger distance and
𝜒2-divergence of 𝜆/𝑛 from 𝑝. The easiest to state such bound is the following:

𝑝𝑖𝑛− 2
√
𝜏𝑖𝑛 ≤ E[𝜆𝑖] ≤ 𝑝𝑖𝑛 + 2

√
𝜏𝑖𝑛, (14)

where 𝜏𝑖 = min{1, 𝑝𝑖𝑑}. (Note that this is suggested by the ansatz, as 𝑝𝑖𝑑𝑖 ≤ 𝜏𝑖 always.) In the
most-studied cases of 𝑝 = (1/𝑑, . . . , 1/𝑑) and 𝑖 = 1, we get

𝑛

𝑑
− 2
√
𝑛 ≤ E

𝑤∼{1,...,𝑑}𝑛
[LIS(𝑤)] ≤ 𝑛

𝑑
+ 2
√
𝑛

and then taking 𝑑 → ∞ yields E𝜋∼𝑆𝑛 [LIS(𝜋)] ≤ 2
√
𝑛, an upper bound for the classical Ulam–

Hammersley problem [Ula61, Ham72]. In the remainder of this section, we will sketch the proof of
the upper bound in Inequality (14).

Our starting point is the fact that much stronger asymptotics can be obtained in case the
largest probability 𝑝1 is noticeably larger than the second-largest probability 𝑝2. For example, in a
long sequence of random English letters, the longest increasing subsequence will almost surely be
essentially the same as the number of 𝑒’s; thus its distribution will be very close to having mean 𝑝𝑒𝑛
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and standard deviation
√︀
𝑝𝑒(1− 𝑝𝑒)𝑛. On the other hand, in Spanish, where 𝑝𝑎 ≈ 𝑝𝑒, the longest

increasing subsequence may involve a mix of 𝑎’s and 𝑒’s, and its length has a greater chance of
deviating noticeably above 𝑝𝑎𝑛 ≈ 𝑝𝑒𝑛.

To make this observation more formal, let 𝑤(∞) = 𝑤1𝑤2𝑤3 · · · be an infinite random word
with each 𝑤𝑖 ∼ 𝑝 independently, and set 𝑤(𝑛) = 𝑤1 · · ·𝑤𝑛 to be its length-𝑛 prefix. Consider the
(indefinite) process of performing RSK on 𝑤(∞), and let 𝜆(𝑛) = RSKshape(𝑤(𝑛)) be the “snapshot”
of the RSK shape at time 𝑛. Then Its, Tracy, and Widom [ITW01] showed that

E[𝜆
(𝑛)
1 ]− 𝑝1𝑛

𝑛→∞−−−→
∑︁
𝑖>1

𝑝𝑖
𝑝1 − 𝑝𝑖

. (15)

The limiting quantity on the right is finite if and only if 𝑝1 > 𝑝2 strictly. Supposing that 𝑝1−𝑝2 ≥ 𝛿,
its value is at most

∑︀𝑑
𝑖=2

𝑝𝑖
𝛿 ≤ 1/𝛿. So at an intuitive level, Equation (15) tells us that in a random

length-𝑛 word with letter probabilities satisfying 𝑝1 ≥ 𝑝2 + 𝛿, the expected length of the longest
increasing subsequence is just an additive 1/𝛿 larger than the expected length 𝑝1𝑛 of the all-1’s
subsequence.

Unfortunately, Equation (15) is merely a limiting statement; it could be true that E[𝜆
(𝑛)
1 ]−𝑝1𝑛

only becomes smaller than, say, 2/𝛿 once 𝑛 ≥ 2𝑑 · 21/𝛿 — or even worse. Indeed, the proof of
Equation (15) in [ITW01] involves asymptotic hacking on the explicit formula Equation (11) (using
formulas Equation (10) and Equation (13)) and it heavily relies on 𝑑 and min𝑝𝑖 ̸=𝑝𝑗 (𝑝𝑖−𝑝𝑗)

−1 being
treated as “constant” while 𝑛→∞. However, the combinatorial RSK perspective allows us a nice
trick which lets us convert these heavily asymptotic statements to perfectly nonasymptotic ones.

The trick is to show that

E[𝜆
(𝑛)
1 ]− 𝑝1𝑛 is an increasing function of 𝑛; i.e., E[𝜆

(𝑛+1)
1 − 𝜆

(𝑛)
1 ] ≥ 𝑝1. (16)

To show this, let 𝛿(𝑛+1) = 𝜆
(𝑛+1)
1 −𝜆

(𝑛)
1 . By definition, 𝛿(𝑛+1) is the 0/1 indicator random variable

for the event that, in the infinite RSK process, inserting letter 𝑤𝑛+1 creates a new box in the first
row. Thus E[𝛿(𝑛+1)] is the probability of this event, and we need to show the probability is at
least 𝑝1.

To show this, we recall that the RSK output distribution depends only on the multiset {𝑝1, . . . , 𝑝𝑑},
and not on the ordering of the letters; hence, we can “reverse the alphabet” to 1 > 2 > · · · > 𝑑
without changing the distribution of 𝜆(𝑡) for any 𝑡. But upon doing this, it becomes evident that
the probability that the (𝑛 + 1)th box is in the first row is at least 𝑝1. This is because we get a
new box in the first row whenever 𝑤𝑛+1 = 1 (which is now the last letter “in alphabetical order”).

Thus we have established Inequality (16). But now we have an increasing sequence, E[𝜆
(𝑛)
1 ]−𝑝1𝑛,

and we know its limiting value thanks to Equation (15). This means that the limiting value must
be an upper bound for all 𝑛! That is,

E[𝜆
(𝑛)
1 ]− 𝑝1𝑛 ≤

∑︁
𝑖>1

𝑝𝑖
𝑝1 − 𝑝𝑖

, for all 𝑛. (17)

This already gives the upper bound we desire for Inequality (14) in the case when 𝑝1 ≥ 𝑝2 + 2√
𝑛

.

However it can become arbitrarily bad when 𝑝2 gets close to 𝑝1, and it gives nothing at all when
𝑝1 = 𝑝2. To get around this, we would like to slightly “shift” some probability mass of 𝑝 onto 𝑝1 so
that: (i) the expected LIS is not changed too much; and, (ii) there is a decent separation between
𝑝1 and 𝑝2. Formally, let 𝛿 = 1√

𝑛
, and construct a sorted probability distribution 𝑞 = (𝑞1, . . . , 𝑞𝑑)

with 𝑞1 = 𝑝1 + 𝛿, 𝑞2 ≤ 𝑝2, and 𝑞 ≻ 𝑝. (This 𝑞 can be constructed by simply moving the bottom
𝛿-mass of 𝑝 onto 𝑝1. We note 𝑞 cannot be constructed if 𝑝1 > 1 − 𝛿, but in this case our desired
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bound is trivially true.) We can now apply the Coupling Majorization Theorem from Section 6
(indeed, just the last statement in it, with 𝑘 = 1.) Using the notation from that theorem, we have

E[𝜆1] ≤ E[𝜇1] ≤ 𝑞1𝑛 +
∑︁
𝑖>1

𝑞𝑖
𝑞1 − 𝑞𝑖

≤ 𝑞1𝑛 +
√
𝑛 =

(︂
𝑝1 +

1√
𝑛

)︂
𝑛 +
√
𝑛 = 𝑝1𝑛 + 2

√
𝑛, (18)

as stated in Inequality (14).
Next, we would like to generalize this to get a similar upper bound on E[𝜆𝑘] for any row

1 ≤ 𝑘 ≤ 𝑑. For this we use the Lower-Row Majorization Theorem. For 𝑤 ∼ 𝑝⊗𝑛, it tells us that

𝜆𝑘 = RSKshape(𝑤)𝑘 = RSKshape(𝑤bump)1 ≤ RSKshape(𝑤orig)1 = LIS(𝑤orig).

Analyzing 𝑤orig directly still seems difficult, because it still requires understanding which letters
are bumped to the 𝑘th row. However, all the letters bumped into the 𝑘th row are at least 𝑘.
Hence 𝑤orig is a subsequence of 𝑤≥𝑘, the subsequence of 𝑤 formed by removing all letters less
than 𝑘. Because adding letters cannot decrease the longest increasing subsequence, we have that
LIS(𝑤orig) ≤ LIS(𝑤≥𝑘). But 𝑤≥𝑘 is simple to analyze: it’s distributed exactly as 𝑝⊗𝑚

≥𝑘 , where

𝑚 ∼ Binomial(𝑛, 𝑝𝑘 + · · ·+ 𝑝𝑑) and 𝑝≥𝑘 is the probability distribution 1
𝑝𝑘+···+𝑝𝑑

(𝑝𝑘, . . . , 𝑝𝑑). So we
can conclude that

E[𝜆𝑘] ≤ E[LIS(𝑤≥𝑘)] ≤ E
𝑚

[(𝑝≥𝑘)1𝑚 + 2
√
𝑚] ≤ 𝑝𝑘𝑛 + 2

√︀
(𝑝𝑘 + · · ·+ 𝑝𝑑)𝑛,

where the second inequality uses Inequality (18) and Jensen’s inequality. As 𝑝𝑘 + · · ·+ 𝑝𝑑 ≤ 𝜏𝑘, we
get the claimed upper bound in Inequality (14).

8 Mechanics of quantum mechanics

We have not yet given any justification for the Optimal Measurement Theorem, which concerns a
certain quantum measurement that outputs Young diagrams. Now is the time to delve into the
mathematics of quantum states and measurements.

In the physical world, a “quantum measurement” is a device that takes in a quantum particle
system (of some fixed dimension 𝐷) and outputs some classical information. Its output should
always be considered a random variable. Even when the input is a deterministic pure state vector
𝑣 ∈ C𝐷, the output will be randomly distributed (in a well-defined way, based on the device
itself and the input state 𝑣). And on top of this, we will consider measuring quantum contraption
outputs, which themselves are randomized.

Speaking of quantum contraptions, we imagined a scenario where, at the push of a button, the
contraption outputs a 𝑑-dimensional state which is one of the orthonormal vectors |1⟩, . . . , |𝑑⟩ ∈ C𝑑

with probabilities 𝑝1, . . . , 𝑝𝑑. In an effort to learn about these vectors and probabilities, we have
considered pushing the button 𝑛 times. Suppose 𝑑 = 32, 𝑛 = 6, and the output is the sequence

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6.

Here each 𝑣𝑡 is one of |1⟩, . . . , |32⟩ ∈ C32 — although we don’t yet know these basis vectors. One
thing we might do is build some cleverly chosen measuring device 𝑀 that accepts 32-dimensional
inputs and reads out some classical information. We could then apply it to each of 𝑣1, . . . , 𝑣6. A
more sophisticated thing to do is build 6 different measuring devices, 𝑀1, . . . ,𝑀6, each taking a
32-dimensional input, and apply 𝑀𝑡 to 𝑣𝑡, 𝑡 = 1 . . . 6. An even more sophisticated strategy might
involve adaptivity — we could build and apply different 32-dimensional measuring devices based
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on the outcomes of previous measurements. However the most sophisticated thing we could do is
build a single measurement device ℳ that takes as input all 6 samples simultaneously.

If you think of a single 𝑣𝑡 ∈ C32 as the state of 5 qubits, then collectively 𝑣1, . . . , 𝑣6 represent the
state of 5×6 = 30 qubits. This in turn is defined by some 230 = (25)6-dimensional vector. In general,
if we have 𝑛 “unentangled” 𝑑-dimensional systems with pure states 𝑣1, . . . , 𝑣𝑛 ∈ C𝑑, then their state
is defined by a vector of dimension 𝐷 = 𝑑𝑛. Specifically, it is the vector 𝑣1 ⊗ 𝑣2 ⊗ · · · ⊗ 𝑣𝑛 ∈ (C𝑑)⊗𝑛.
This situation is least complicated when each vector 𝑣𝑡 is one of 𝑑 orthonormal possibilities
|1⟩, . . . , |𝑑⟩, as we have been considering. In that case, (C𝑑)⊗𝑛 should be thought of as the vector
space spanned by 𝑑𝑛 vectors that, by fiat, are orthonormal and are named

|𝑖1⟩ ⊗ |𝑖2⟩ ⊗ · · · ⊗ |𝑖𝑛⟩, 𝑖𝑡 ∈ {1, . . . , 𝑑}.

For typographical simplicity, we usually write these vectors simply as |𝑖1𝑖2 · · · 𝑖𝑛⟩, where 𝑖1𝑖2 · · · 𝑖𝑛
ranges over all “words” in {1, . . . , 𝑑}𝑛. So if, e.g., we have a contraption with 4-dimensional outputs
|1⟩, |2⟩, |3⟩, |4⟩ ∈ C4, and we press its button twice, the possible outputs are 42 orthonormal vectors
in (C4)⊗2 named

|11⟩, |12⟩, |13⟩, |14⟩, |21⟩, |22⟩, |23⟩, |24⟩, |31⟩, |32⟩, |33⟩, |34⟩, |41⟩, |42⟩, |43⟩, |44⟩.

Let’s return to the notion of measurement devices for a 𝐷-dimensional particle system. One of
the most general kind of measurement devices works as follows. Let 𝑓 be an ordered orthonormal
basis (“frame”) |𝑓1⟩, . . . , |𝑓𝐷⟩ for C𝐷. Then we can build a measurement device 𝑀𝑓 that, on input
a pure state |𝑣⟩ ∈ C𝐷, produces the following classical read-outs:

“𝑗” with probability |⟨𝑓𝑗 |𝑣⟩|2 = ⟨𝑓𝑗 |𝑣𝑖⟩⟨𝑣𝑖|𝑓𝑗⟩, 𝑗 = 1 . . . 𝐷.

Here we are using the “bra-ket” notation in which |𝑓𝑗⟩ and |𝑣⟩ denote column vectors, and ⟨𝑓𝑗 |
denotes the (complex conjugate-)transposed row vector of |𝑓𝑗⟩. So ⟨𝑓𝑗 |𝑣⟩ = ⟨𝑓𝑗 ||𝑣⟩ is just the usual

inner-product of |𝑓𝑗⟩ and |𝑣⟩, the number |⟨𝑓𝑗 |𝑣⟩|2 = ⟨𝑓𝑗 |𝑣⟩ ⟨𝑓𝑗 |𝑣⟩ = ⟨𝑓𝑗 |𝑣𝑖⟩⟨𝑣𝑖|𝑓𝑗⟩ is its squared
magnitude, and the fact that these quantities sum to 1 is a consequence of the Pythagorean theorem
(and that all the vectors involved have unit length).

We have described what happens when a “pure state” |𝑣⟩ is fed into 𝑀𝑓 . What happens if
we feed in a randomly chosen pure state? Specifically, say we have a “mixed state” ℛ, meaning
a probability distribution over some pure states |𝑣1⟩, . . . , |𝑣𝑟⟩, in which outcome |𝑣𝑖⟩ occurs with
probability 𝑞𝑖. Here the |𝑣𝑖⟩’s are arbitrary unit vectors in C𝐷, and 𝑟 might be more or less than 𝐷.
If we make a draw from ℛ, feed the result into the measurement device 𝑀𝑓 , and observe the
outcome, what do we see? We get

“𝑗” with probability
𝑟∑︁

𝑖=1

𝑞𝑖|⟨𝑓𝑗 |𝑣𝑖⟩|2 =
𝑟∑︁

𝑖=1

𝑞𝑖⟨𝑓𝑗 |𝑣𝑖⟩⟨𝑣𝑖|𝑓𝑗⟩ = ⟨𝑓𝑗 |

(︃
𝑟∑︁

𝑖=1

𝑞𝑖|𝑣𝑖⟩⟨𝑣𝑖|

)︃
|𝑓𝑗⟩. (19)

Notice that these probabilities only depend on the 𝐷 ×𝐷 matrix

𝜎 =

𝑟∑︁
𝑖=1

𝑞𝑖|𝑣𝑖⟩⟨𝑣𝑖|. (20)

This matrix 𝜎 is called the density matrix for the mixed state ℛ, and we see that two mixed
states ℛ and ℛ′ with the same density matrix produce identical measurement outcomes, and thus
cannot be distinguished by any measurement devices 𝑀𝑓 ! Accordingly, two such mixed states are
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considered physically identical, and they’re mathematically represented by the same object, the
density matrix 𝜎.

As an example, let 𝐷 = 2 and define the unit vectors

|𝑎⟩ =

[︂
1
0

]︂
, |𝑏⟩ =

[︂
0
1

]︂
, |𝑎′⟩ =

[︂
3/5
4/5

]︂
, |𝑏′⟩ =

[︂
−4/5

3/5

]︂
.

Now if we define the mixed state ℛ = “|𝑎⟩ or |𝑏⟩ with probability 1
2 each” and the mixed state

ℛ′ = “|𝑎′⟩ or |𝑏′⟩ with probability 1
2 each”, they both have the same density matrix, namely

𝜎 =
1

2

[︂
1
0

]︂ [︀
1 0

]︀
+

1

2

[︂
0
1

]︂ [︀
0 1

]︀
=

1

2

[︂
3/5
4/5

]︂ [︀
3/5 4/5

]︀
+

1

2

[︂
−4/5

3/5

]︂ [︀
−4/5 3/5

]︀
=

[︂
1/2 0
0 1/2

]︂
=

1

2
1,

(21)
where 1 denotes the identity matrix. In particular, suppose an engineer designs and builds a
quantum contraption with 1-qubit (𝐷 = 2) output given by ℛ. Then a statistician wanders into
the lab, presses the contraption’s button several times, and estimates its output as ℛ′. At first it
might look like the statistician estimated the probabilities 𝑝1 = 𝑝2 = 1

2 perfectly but the vectors
|𝑎⟩, |𝑏⟩ poorly, since |𝑎′⟩, |𝑏′⟩ look quite different. But in fact the statistician should be given full
points for a 100% correct estimate! It only makes sense to try to estimate the density matrix 𝜎 of
an unknown mixed state, and the quality of an estimate matrix ̂︀𝜎 should be measured in terms of
some matrix-distance between 𝜎 and ̂︀𝜎.

Let’s summarize some properties of a 𝐷-dimensional density matrix 𝜎, all of which follow
from Equation (20). First, 𝜎 is positive-semidefinite, meaning that it is Hermitian (equal to its
complex conjugate transpose 𝜎†) and that ⟨𝑔|𝜎|𝑔⟩ ≥ 0 for all vectors |𝑔⟩ ∈ C𝐷. Second, 𝜎 has
trace tr(𝜎) equal to 1, where the trace is the sum of 𝜌’s diagonal entries. An easy way to see this
is to use the linearity of trace, tr(𝑐𝐴 + 𝐵) = 𝑐 tr(𝐴) + tr(𝐵), and the cyclic property of trace,
tr(𝐴𝐵) = tr(𝐵𝐴) =

∑︀𝐷
𝑖,𝑗=1𝐴𝑖𝑗𝐵𝑗𝑖. Applying these to Equation (20) gives

tr(𝜎) = tr

(︃
𝑟∑︁

𝑖=1

𝑞𝑖|𝑣𝑖⟩⟨𝑣𝑖|

)︃
=

𝑟∑︁
𝑖=1

𝑞𝑖 tr(|𝑣𝑖⟩⟨𝑣𝑖|) =
𝑟∑︁

𝑖=1

𝑞𝑖 tr(⟨𝑣𝑖|𝑣𝑖⟩) =
𝑟∑︁

𝑖=1

𝑞𝑖 tr
(︀[︀

1
]︀)︀

=
𝑟∑︁

𝑖=1

𝑞𝑖 = 1.

Since 𝜎 is positive-semidefinite, it will always have an orthonormal basis of eigenvectors, call them
|1⟩, . . . , |𝐷⟩, with associated nonnegative eigenvalues, call them 𝑝1, . . . , 𝑝𝐷 ≥ 0. Further, the trace
of a matrix equals the sum of its eigenvalues.8 Thus 𝑝1 + · · · + 𝑝𝐷 = 1, we can view the 𝑝𝑖’s
as a probability distribution over the eigenvectors |𝑖⟩, and 𝜎 =

∑︀𝐷
𝑖=1 𝑝𝑖|𝑖⟩⟨𝑖|. In particular, every

positive-semidefinite matrix of trace 1 corresponds to a mixed state over 𝑑 orthonormal pure state
outcomes, justifying a claim made in Section 2.

Please note that for a given density matrix 𝜎, its spectrum — i.e., the multiset of eigenvalues
{𝑝1, . . . , 𝑝𝐷}— is uniquely determined, but it doesn’t have an inherent ordering. Furthermore, cor-
responding orthonormal eigenvectors |1⟩, . . . , |𝐷⟩ are not uniquely determined. Taking the example
from Equation (21), we see that the 2-dimensional density matrix 𝜎 = 1

21 has eigenvalues (12 ,
1
2),

but for associated eigenvectors we can choose literally any pair of orthonormal vectors in C2. The
𝐷-dimensional analogue of this state, 𝜎 = 1

𝐷1, is called the maximally mixed state; it is the unique
state with spectrum corresponding to the uniform probability distribution ( 1

𝐷 , . . . , 1
𝐷 ).

Let’s make a final observation of relevance for quantum contraptions. Suppose a quantum
contraption outputs |1⟩, . . . , |𝑑⟩ with probabilities 𝑝1, . . . , 𝑝𝑑, and hence has density matrix 𝜌 =

8This follows because trace is unitarily invariant : tr(𝑈𝜎𝑈†) = tr(𝜎𝑈†𝑈) = tr(𝜎1) = tr(𝜎) for any unitary 𝑈 .
Choosing 𝑈 to be a unitary matrix that moves the orthonormal basis |1⟩, . . . , |𝐷⟩ to the standard basis of C𝐷, we
get that 𝑈𝜎𝑈† is a diagonal matrix with 𝑝1, . . . , 𝑝𝐷 on the diagonal, and the claim follows.
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∑︀𝑑
𝑖=1 𝑝𝑖|𝑖⟩⟨𝑖|. If we hit its button 𝑛 times and view the output collectively, we get |𝑤⟩ ∈ (C𝑑)⊗𝑛

with probability Pr𝑝⊗𝑛 [𝑤], where 𝑤 runs over all words 𝑖1𝑖2 · · · 𝑖𝑛 ∈ {1, . . . , 𝑑}𝑛. This probability
distribution on pure states has density matrix

𝜎 =

𝑑∑︁
𝑖1,...,𝑖𝑛=1

(︃
𝑛∏︁

𝑡=1

𝑝𝑖𝑡

)︃(︃
𝑛⨂︁

𝑡=1

|𝑖𝑡⟩

)︃(︃
𝑛⨂︁

𝑡=1

⟨𝑖𝑡|

)︃
=

𝑛⨂︁
𝑡=1

(︃
𝑑∑︁

𝑖=1

𝑝𝑖|𝑖⟩⟨𝑖|

)︃
=

𝑛⨂︁
𝑡=1

𝜌 = 𝜌⊗𝑛, (22)

where ⊗ also denotes the matrix Kronecker product. Thus quantum state tomography problems
can be thought of as estimating properties of a density matrix 𝜌 given the ability to measure 𝜌⊗𝑛.

9 Noncommutative probability

Before thinking about measurements of the bigger state 𝜌⊗𝑛, let’s first discuss measuring a single
density matrix 𝜌 ∈ C𝑑×𝑑. Measurement can be thought of as a way of generating classical random
outcomes from a “base source” of quantum randomness, namely a positive 𝑑 × 𝑑 matrix 𝜌 with
trace 1. In this section we’ll consistently make an analogy to a similar situation in classical proba-
bility: generating classical random outcomes from a “base source” of classical randomness, namely
a probability distribution 𝑝 ∈ R𝑑 (which is a vector of positive numbers adding to 1). Indeed, if
you restrict attention to diagonal density matrices 𝜌, the two situations become identical.

So far we have seen that, given 𝜌, you can generate 𝑑 classical random outcomes with an 𝑀𝑓

measurement, where 𝑓 = (|𝑓1⟩, . . . , |𝑓𝑑⟩) is an orthonormal basis of C𝑑. Let’s write the resulting
outcome probabilities from Equation (19) in a slightly different way, using the cyclic property of
trace (and the fact that the trace of a single number is itself):

measuring 𝜌 with 𝑀𝑓 yields outcome “𝑗” with probability ⟨𝑓𝑗 |𝜌|𝑓𝑗⟩ = tr(⟨𝑓𝑗 |𝜌|𝑓𝑗⟩) = tr(𝜌|𝑓𝑗⟩⟨𝑓𝑗 |).

Writing 𝐸𝑗 = |𝑓𝑗⟩⟨𝑓𝑗 | (the matrix which projects onto 𝑓𝑗), the above is tr(𝜌𝐸𝑗), which also equals
tr(𝜌†𝐸𝑗) because 𝜌† = 𝜌. Now the trace of a matrix product 𝑋†𝑌 is the same as the entrywise
dot-product between matrices 𝑋 and 𝑌 :

tr(𝑋†𝑌 ) =

𝑑∑︁
𝑖,𝑗=1

(𝑋†)𝑖𝑗𝑌𝑗𝑖 =

𝑑∑︁
𝑖,𝑗=1

𝑋*
𝑗𝑖𝑌𝑗𝑖 = ⟨𝑋,𝑌 ⟩,

where we use the ⟨·, ·⟩ notation for matrix dot-product. Thus we can further write:

measuring 𝜌 with 𝑀𝑓 yields outcome “𝑗” with probability ⟨𝜌,𝐸𝑗⟩, 𝐸𝑗 = |𝑓𝑗⟩⟨𝑓𝑗 |.

This can be compared with the simplest way of generating classical outcomes given a classical base
source of randomness 𝑝 ∈ R𝑑: namely, simply drawing from 𝑝 and reporting the outcome. If we do
this, the probability of outcome 𝑗 is ⟨𝑝, 𝑒𝑗⟩, where 𝑒𝑗 = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the 𝑗th
coordinate.

So far we have only used our base sources of randomness (𝜌 or 𝑝) to generate outcomes from
the set {1, . . . , 𝑑}. In the classical case, we could generate outcomes in some other set Ω as follows:
First, draw 𝑗 from 𝑝. Next, add some additional coin flips 𝑥. Then form a final outcome 𝜔 ∈ Ω via
some deterministic function ℎ of 𝑗 and 𝑥. A similar thing is possible in the quantum case: First,
draw |𝑣⟩ from 𝜌. Next, add some additional qubits initialized to, say, |0⟩, thereby increasing the
dimension to 𝐷. Next, perform a measurement 𝑀𝐹 using some 𝐷-dimensional frame 𝐹 , producing
an outcome 𝐽 ∈ {1, . . . , 𝐷}. Lastly, form a final outcome 𝜔 ∈ Ω by applying a deterministic
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function ℎ : {1, . . . , 𝐷} → Ω to 𝐽 . This whole process — call it ℳ — can be viewed as a
“generalized measurement” of 𝜌, with outcomes in Ω. And it turns out that this is the most general
kind of measurement allowed by the laws of quantum mechanics. As an example, the measurement
described in the Optimal Measurement Theorem can be thought of as a general measurement of 𝜌⊗𝑛

with outcome set Ω equal to the collection of all 𝑛-box, 𝑑-row Young diagrams.
There is a relatively simple way to mathematically describe any such general measurement ℳ

(which, in quantum lingo, is called a “POVM”). A little calculation shows that, corresponding to
anyℳ, there exist positive-semidefinite matrices 𝐸1, 𝐸2, . . . , 𝐸|Ω| ∈ C𝑑×𝑑 satisfying

∑︀
𝜔∈Ω𝐸𝜔 = 1,

such that
measuring 𝜌 with ℳ yields outcome 𝜔 with probability ⟨𝜌,𝐸𝜔⟩.

In caseℳ is of the basic type 𝑀𝑓 , the matrices 𝐸𝜔 are just |𝑓𝑗⟩⟨𝑓𝑗 |, 1 ≤ 𝑗 ≤ 𝑑. Again, we can com-
pare these general measurements to the classical case. If we let 𝑒1, 𝑒2, . . . , 𝑒|Ω| be any nonnegative

vectors in R𝑑 with
∑︀

𝜔∈Ω 𝑒𝜔 = (1, 1, . . . , 1), then we can use a base probability distribution 𝑝 ∈ R𝑑

to generate outcome 𝜔 with probability ⟨𝑝, 𝑒𝜔⟩. In both scenarios, we have a useful special case:
a two-outcome measurement, or equivalently, a probabilistic event. In the classical case, if 𝑒 ∈ R𝑑

satisfies 0 ≤ 𝑒 ≤ (1, . . . , 1), we can think of it as an “event” that occurs with probability ⟨𝑝, 𝑒⟩.
Similarly, in the quantum case, if 𝐸 ∈ C𝑑×𝑑 satisfies 0 ⪯ 𝐸 ⪯ 1 (in the positive-semidefinite
ordering), we can think of 𝐸 as an “event” that occurs with probability ⟨𝜌,𝐸⟩ (arising from the
two-outcome measurement with outcomes {0, 1} and matrices 𝐸1 = 𝐸, 𝐸0 = 1− 𝐸).

We can also describe the quantum analogue of real-valued random variables, called observables.
If 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑, we can form a classical real random variable 𝑥 from a probability
distribution 𝑝 ∈ R𝑑 by taking 𝑥 to have value 𝑥𝑗 with probability 𝑝𝑗 . The expectation of this
random variable is ⟨𝑝, 𝑥⟩. In the quantum case, suppose we associate the real values 𝑥1, . . . , 𝑥𝑑
to the outcomes of a basic measurement 𝑀𝑓 with frame |𝑓1⟩, . . . , |𝑓𝑑⟩. This yields a real random

variable 𝑥 in which value 𝑥𝑗 occurs with probability
⟨
𝜌, |𝑓𝑗⟩⟨𝑓𝑗 |

⟩
. The expectation of this random

variable is

𝑑∑︁
𝑗=1

⟨
𝜌, |𝑓𝑗⟩⟨𝑓𝑗 |

⟩
𝑥𝑗 =

⟨
𝜌,

𝑑∑︁
𝑗=1

𝑥𝑗 |𝑓𝑗⟩⟨𝑓𝑗 |

⟩
= ⟨𝜌,𝑋⟩, where 𝑋 =

𝑑∑︁
𝑗=1

𝑥𝑗 |𝑓𝑗⟩⟨𝑓𝑗 |.

Here the “observable” 𝑋 is a 𝑑 × 𝑑 Hermitian matrix, with eigenvalue/vector pairs 𝑥𝑗 , |𝑓𝑗⟩; con-
versely, to any Hermitian 𝑋 we can associate a real-valued random variable using its eigen-
value/vector pairs. Notice also that if we square all the values 𝑥𝑗 , we get the eigenvalue/vectors of
the Hermitian matrix 𝑋2. In other words, the expected value of 𝑥2 is ⟨𝜌,𝑋2⟩. Given these obser-
vations, it’s natural to introduce — for any Hermitian (“observable”) 𝑋 ∈ C𝑑×𝑑 — the notations

E𝜌[𝑋] = ⟨𝜌,𝑋⟩, Var𝜌[𝑋] = E𝜌[𝑋2]−E𝜌[𝑋]2, stddev𝜌[𝑋] =
√︁

Var𝜌[𝑋].

Some familiar properties hold: for example, E[𝑐𝑋 + 𝑌 ] = 𝑐E[𝑋] + E[𝑌 ], and E[1] = 1, and
Var𝜌[𝑋] ≥ 0. The main thing to watch out for is that observables need not commute! In fact,
𝑋𝑌 = 𝑌 𝑋 occurs if and only if the product 𝑋𝑌 is itself an observable (i.e., Hermitian); thus
E𝜌[𝑋𝑌 ] = E𝜌[𝑌 𝑋] holds whenever it is “well-defined”. As a general substitute for 𝑋𝑌 , one can
sometimes use the always-Hermitian matrix 1

2(𝑋𝑌 + 𝑌 𝑋). Incidentally, though it’s irrelevant for
this survey, you might try proving as an exercise the famous Heisenberg uncertainty principle (in
Robertson’s form [Rob29]): for all observables 𝑋,𝑌 ,

stddev𝜌[𝑋] · stddev𝜌[𝑌 ] ≥
⃒⃒
E𝜌[ 𝑖2(𝑋𝑌 − 𝑌 𝑋)]

⃒⃒
.
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10 Testing for the uniform distribution/maximally mixed state

Let’s return to the problem of estimating properties of an unknown quantum contraption; in other
words, estimating properties of an unknown density matrix 𝜌 ∈ C𝑑×𝑑 given the ability to measure
𝑛 samples, 𝜎 = 𝜌⊗𝑛. As in classical statistical testing, we focus on finding tests with good error
guarantees while keeping 𝑛 as small as possible. Recalling Section 2 we may think of 𝜌 as a mixed
state, outputting one of |1⟩, . . . , |𝑑⟩ with probabilities 𝑝1, . . . , 𝑝𝑑, where |1⟩, . . . , |𝑑⟩ is an unknown
orthonormal basis of C𝑑, and the probabilities 𝑝𝑖 are also unknown.

To begin, we’ll focus on testing whether 𝜌 is the maximally mixed state, 1
𝑑1, mentioned near

the end of Section 8; in other words, testing whether 𝜌’s spectrum, the multiset {𝑝1, . . . , 𝑝𝑑}, is
{1𝑑 , . . . ,

1
𝑑}. This is the quantum analogue of the classical problem of testing whether an unknown

probability distribution is the uniform distribution (see, e.g., [GR00, Pan08]).
The basic idea behind testing whether a probability distribution is uniform is to estimate the

degree-2 power sum symmetric polynomial, pow2(𝑝) =
∑︀𝑑

𝑖=1 𝑝
2
𝑖 .
9 This expression is called the

purity of 𝜌 in the quantum case, and the collision probability of 𝑝 in the classical case. The latter
term refers to the fact that pow2(𝑝) = Pr𝑤∼𝑝⊗2 [𝑤1 = 𝑤2], the probability that two independent
draws from 𝑝 yield the same letter. This quantity is minimized when 𝑝 is the uniform distribution,
with minimal value 1

𝑑 . (Also, it has maximal value 1 when 𝑝 is “pure”; i.e., 𝑝𝑖 = 1 for some 𝑖.)
Furthermore, pow2(𝑝) is close to minimal if and only if 𝑝 is close to uniform: specifically,

pow2(𝑝)− 1
𝑑 = 𝛿𝑝, where 𝛿𝑝 := ‖𝑝− 1

𝑑1‖
2
2 is the ℓ22-distance between 𝑝 and the uniform distribution.

(23)
Let’s work our way up to the quantum case by first studying the classical case. (For more on

classical distribution testing, we recommend the survey of Canonne [Can15].) A natural way to
estimate pow2(𝑝) in the classical case is simply to draw an 𝑛-letter word 𝑤 ∼ 𝑝⊗𝑛 and compute
the random variable

𝑐(2) := avg
1≤𝑠 ̸=𝑡≤𝑛

{1[𝑤𝑠 = 𝑤𝑡]}, which has E[𝑐(2)] = avg
𝑠 ̸=𝑡
{Pr[𝑤𝑠 = 𝑤𝑡]} = pow2(𝑝).

In statistics parlance, 𝑐(2) is an unbiased estimator of pow2(𝑝), and hence 𝑐(2) − 1
𝑑 is an unbiased

estimate of 𝛿𝑝. It’s only a small chore to explicitly compute E[𝑐2(2)] and hence Var[𝑐(2)] in terms of

pow2(𝑝) and pow3(𝑝) (the latter being the probability that 3 letters drawn from 𝑝 are all equal):

Var[𝑐(2)] =
1(︀
𝑛
2

)︀(pow2(𝑝)− pow2(𝑝)2) +
2(𝑛− 2)(︀

𝑛
2

)︀ (pow3(𝑝)− pow2(𝑝)2) (24)

≤ 𝑂

(︃
𝛿𝑝
𝑛2

+
1

𝑑𝑛2
+

𝛿
3/2
𝑝

𝑛
+

𝛿𝑝
𝑑𝑛

)︃
,

where the inequality used Equation (23), some arithmetic, and
∑︀

𝑖 𝛾
3
𝑖 ≤ (

∑︀
𝑖 𝛾

2
𝑖 )3/2. If we fix a

threshold 𝜃 ≤ 1 and set 𝑛 = 𝐾 max{𝜃−1𝑑−1/2, 𝜃−1/2} with 𝐾 a large constant, then Var[𝑐(2)] ≤
.0001 max{𝛿2𝑝, 𝜃2}. Of course, Var[𝑐(2)] is also the variance of 𝑐(2) − 1

𝑑 , whose mean is 𝛿𝑝. Summa-
rizing:

Theorem 10.1. With 𝑛 = 𝑂(max{𝜃−1𝑑−1/2, 𝜃−1/2}) samples, the estimator 𝑐(2) − 1
𝑑 has mean

equal to 𝛿𝑝 (the ℓ22-distance of 𝑝 from uniform), and standard deviation at most .01 max{𝛿𝑝, 𝜃};
hence by Chebyshev we can use it to decide (with high confidence) whether 𝛿𝑝 ≤ .9𝜃 or 𝛿𝑝 ≥ 𝜃.

9The usual notation for this is 𝑝𝑘(𝑥); however, this clashes with our notation 𝑝1, . . . , 𝑝𝑑 for probabilities.
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In the language of Hypothesis Testing, this might be called a (.9𝜃, 𝜃)-tolerant testing algorithm
for 𝑝 being ℓ22-close to the uniform distribution. Noting that

√︀
𝑑𝛿𝑝 is an upper bound on the total

variation distance of 𝑝 from uniformity (by Cauchy–Schwarz), we can set 𝜃 = 𝜖2/𝑑 and immediately
derive an algorithm which tests whether 𝑝 is the uniform distribution or has total variation distance
at least 𝜖 from it, using 𝑛 = 𝑂(

√
𝑑/𝜖2). Such a result was first obtained in [CDVV14, VV17], and

it was later obtained using the collision tester in [DGPP19].
In a very similar way, we can estimate how close a quantum contraption’s density matrix

𝜌 ∈ C𝑑×𝑑 is to the maximally mixed state 1
𝑑1, in ℓ22-distance (also known as squared Frobenius, or

Hilbert–Schmidt, distance). We remark that this distance is again

⟨𝜌− 1
𝑑1, 𝜌−

1
𝑑1⟩ = ⟨𝜌, 𝜌⟩ − 2

𝑑 tr(𝜌) + 1
𝑑 = tr(𝜌2)− 1

𝑑 =
𝑑∑︀

𝑖=1
𝑝2𝑖 − 1

𝑑 = pow2(𝑝)− 1
𝑑 = 𝛿𝑝.

Again, we’d like a small-variance unbiased estimator for pow2(𝑝), but now it must be an observable.
Let’s warm up by considering the case 𝑛 = 2, writing 𝜎 = 𝜌⊗2. We are looking for an observable
Hermitian operator 𝑋, acting on (C𝑑)2, such that E𝜎[𝑋] = ⟨𝜎,𝑋⟩ = pow2(𝑝). In the classical
case with 𝑛 = 2, the random variable 𝑐(2) involved drawing 𝑤 ∼ 𝑝⊗2 and checking if 𝑤1 = 𝑤2.
Another way to view this is checking whether 𝑤2𝑤1 = 𝑤1𝑤2; i.e., whether swapping the two letters
produces the same word. This suggests letting 𝑋 be the operator on (C𝑑)⊗2 that “swaps the two
tensor components”: 𝑋(|𝑢⟩ ⊗ |𝑣⟩) = |𝑣⟩ ⊗ |𝑢⟩. Let’s denote 𝑋 by 𝒫(1 2), for reasons we’ll see in
Section 11. Note that this swapping operator is Hermitian, and it can be defined independently
of any basis for C𝑑 (which is good, because a contraption-tester doesn’t have any fixed basis in
mind). That said, it’s advantageous for analysis to consider 𝒫(1 2) in the natural tensor basis of
𝜌’s eigenvalues |1⟩, . . . , |𝑑⟩: it becomes a 𝑑2 × 𝑑2 permutation matrix, and it maps |𝑖1𝑖2⟩ to |𝑖2𝑖1⟩
for any 1 ≤ 𝑖1, 𝑖2 ≤ 𝑑. In other words, 𝒫(1 2) =

∑︀
𝑖1,𝑖2
|𝑖2𝑖1⟩⟨𝑖1𝑖2|. Recalling Equation (22), we also

have 𝜌⊗2 =
∑︀

𝑖1,𝑖2
𝑝𝑖1𝑝𝑖2 |𝑖1𝑖2⟩⟨𝑖1𝑖2|. Thus in the 𝑑2 × 𝑑2 matrix dot-product ⟨𝜌⊗2,𝒫(1 2)⟩, we only

get contributions when 𝑖1 = 𝑖2. Specifically,

E
𝜌⊗2

[𝒫(1 2)] = ⟨𝜌⊗2,𝒫(1 2)⟩ =
𝑑∑︁

𝑖=1

𝑝2𝑖 = pow2(𝑝). (25)

Thus the observable 𝒫(1 2) is an “unbiased estimator” for the quantum purity. As for its variance,
E𝜌⊗2 [𝒫2

(1 2)] = E𝜌⊗2 [1] = 1, so the variance is 𝒫(1 2) is 1− pow2(𝑝)2, which is not very small. But of
course we have only used 𝑛 = 2 so far.

As with the definition of the estimator 𝑐(2), we can drive down the variance by taking larger 𝑛

and averaging over all possible
(︀
𝑛
2

)︀
transpositions. So let’s define an observable on (C𝑑)⊗𝑛 by

𝒞(2) = avg
1≤𝑠 ̸=𝑡≤𝑛

{𝒫(𝑠 𝑡)}, where 𝒫(𝑠 𝑡) acts on (C𝑑)⊗𝑛 by swapping the 𝑠th and 𝑡th tensor components.

Although each 𝒫(1 2) here is defined on (C𝑑)⊗𝑛 rather than (C𝑑)⊗2, the expectation computation
Equation (25) still holds. E𝜌⊗𝑛 [𝒫(𝑠 𝑡)] equals the probability that a random word 𝑤 ∼ 𝑝⊗𝑛 satisfies

𝑤(𝑠 𝑡) = 𝑤, where 𝑤(𝑠 𝑡) denotes the word 𝑤 with its 𝑠th and 𝑡th letters swapped, and this is
indeed pow2(𝑝). Thus E𝜌⊗𝑛 [𝒞(2)] = pow2(𝑝).

As for the computation of E𝜌⊗𝑛 [𝒞2(2)] and hence Var𝜌⊗𝑛 [𝒞(2)], it’s nearly identical to that of

E[𝑐2(2)]. We will do it in some detail in Section 11, but to be brief, here: Upon squaring 𝒞(2),
we get three kinds of contributions, arising from the three cycle-types that can arise from the
product (𝑠 𝑡)(𝑠′ 𝑡′) of two transpositions: either the identity, a 3-cycle, or the product of disjoint
2-cycles. When we compute expectations, these contributions yield 1, pow3(𝑝), and pow2(𝑝)2,
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respectively. The only difference from the classical case comes when {𝑠, 𝑡} = {𝑠′, 𝑡′}, wherein we
have 𝒫2

(𝑠 𝑡) = 1 in comparison with the classical 1[𝑤𝑠 = 𝑤𝑡]
2 = 1[𝑤𝑠 = 𝑤𝑡]. In the end, very

similarly to Equation (24), we get

Var[𝒞(2)] =
1(︀
𝑛
2

)︀(1− pow2(𝑝)2) +
2(𝑛− 2)(︀

𝑛
2

)︀ (pow3(𝑝)− pow2(𝑝)2). (26)

The fact that this is a bit worse (larger) than in the classical case actually makes the parameters
simpler; in the expression following Equation (24) the first two terms get replaced by 𝑂( 1

𝑛2 ), and

it suffices to bound the second two terms by 𝑂(
𝛿𝑝
𝑛 ); thus Var[𝑐(2)] ≤ 𝑂( 1

𝑛2 +
𝛿𝑝
𝑛 ). Then taking

𝑛 = 𝐾/𝜃 with 𝐾 a large constant we get Var[𝑐(2) − 1
𝑑1] = Var[𝑐(2)] ≤ .0001 max{𝛿2𝑝, 𝜃2} again.

And once again,
√︀

𝑑𝛿𝑝 is an upper bound on the matrix ℓ1-distance (or trace distance) between 𝜌
and the maximally mixed state, by a matrix form of Cauchy–Schwarz. We can therefore obtain
tolerant testers for whether 𝜌 is close to the maximally mixed state:

Theorem 10.2. Given 𝑛 = 𝑂(1/𝜃) samples of 𝜌 ∈ C𝑑×𝑑, we can decide (with high confidence)
whether 𝛿𝑝 ≤ .9𝜃 or 𝛿𝑝 ≥ 𝜃. As a consequence, given 𝑛 = 𝑂(𝑑/𝜖2) samples, we can decide (with
high confidence) whether 𝜌 is the maximally mixed state 1

𝑑1 or has trace distance at least 𝜖 from it.

Theorem 10.2 was first obtained in [OW21], but the viewpoints described in this section are
from [BOW19]. The sample complexity 𝑛 = 𝑂(𝑑/𝜖2) in the theorem is tight: [OW21] proved that
even distinguishing “𝜌 = 1

𝑑1” from “𝜌 has eigenvalues {1+𝜖
𝑑 , 1−𝜖

𝑑 , 1+𝜖
𝑑 , 1−𝜖

𝑑 , . . . , 1+𝜖
𝑑 , 1−𝜖

𝑑 }” requires
Ω(𝑑/𝜖2) samples. (Previously, [CHW07] had shown this statement, and therefore an Ω(𝑑) lower
bound, when 𝜖 = 1.) Elaborating on the techniques used to prove Theorem 10.2, [BOW19] also
showed tight results for testing identity of 𝜌 to any fixed density matrix, with respect to “infidelity”
and other distance measures.

11 Representation theory gives a nice basis for observables

Let’s go over the variance computation for the quantum purity estimator 𝒞(2) in a more expansive
fashion. We defined 𝒞(2) as the average of 𝒫(𝑠 𝑡) over all transpositions (𝑠 𝑡) ∈ 𝑆𝑛, where 𝒫(𝑠 𝑡) acts

on (C𝑑)⊗𝑛 by transposing the 𝑠th and 𝑡th tensor components. More generally, for any permutation
𝜋 ∈ 𝑆𝑛 we could define the operator 𝒫𝜋 that acts by permuting the 𝑛 tensor components according
to 𝜋. We have 𝒫𝜋𝒫𝜋′ = 𝒫𝜋𝜋′ ; in other words, 𝒫 is a representation10 of the symmetric group 𝑆𝑛

on the vector space (C𝑑)⊗𝑛. We may then define, for any “cycle type” 𝜅 of permutations in 𝑆𝑛,

𝒞𝜅 = avg
𝜋 of cycle type 𝜅

{𝒫𝜋}.

For example, if 𝜅 is the cycle type (4, 3), then 𝒞𝜅 is the average of all operators 𝒫𝜋 where 𝜋 is
the product of a 4-cycle and a (disjoint) 3-cycle. Incidentally, when we speak of cycle types, we
generally don’t write cycles of length 1; strictly speaking we should, in which case the cycle type
(4, 3) would be more properly written as (4, 3, 1, 1, . . . , 1), with the number of 1’s being 𝑛−7. When
all 1’s are included and the parts are sorted, a cycle type is nothing more than a partition of 𝑛; i.e.,
a Young diagram. We also mention that the cycle types are in correspondence with the conjugacy
classes of the symmetric group 𝑆𝑛.

10It would be more common to see the notation 𝒫(𝜋)𝒫(𝜋′) = 𝒫(𝜋𝜋′), but we used subscripts instead to avoid
writing things like 𝒫((𝑠 𝑡)).

22



Now for a density matrix 𝜌 ∈ C𝑑×𝑑 with spectrum 𝑝1, . . . , 𝑝𝑑, we saw that the expectation
E𝜌⊗𝑛 [𝒫(𝑠 𝑡)] equals the probability that a random word 𝑤 ∼ 𝑝⊗𝑛 is invariant to transposing the 𝑠th

and 𝑡h letters — i.e., that it satisfies 𝑤 = 𝑤(𝑠 𝑡). This is just Pr[𝑤𝑠 = 𝑤𝑡] =
∑︀𝑑

𝑖=1 𝑝
2
𝑖 = pow2(𝑝).

Since this is the same for every transposition (𝑠 𝑡), we of course also have E𝜌⊗𝑛 [𝒞(2)] = pow2(𝑝).
More generally, let 𝜅 be a cycle type for 𝑆𝑛 and define the generalized power sum symmetric

polynomial
pow𝜅(𝑝) = pow𝜅1

(𝑝) · pow𝜅2
(𝑝) · pow𝜅3

(𝑝) · · ·

(Note that it doesn’t matter whether or not we include the 1-cycles in the cycle type 𝜅, since
pow1(𝑝) = 1 anyway.) Now if 𝜋 ∈ 𝑆𝑛 has cycle type 𝜅, it is not hard to see that11

E
𝜌⊗𝑛

[𝒫𝜋] = Pr
𝑤∼𝑝⊗𝑛

[𝑤 = 𝑤𝜋] = pow𝜅(𝑝); hence E
𝜌⊗𝑛

[𝒞𝜅] = pow𝜅(𝑝). (27)

Here 𝑤𝜋 is the word formed from 𝑤 by permuting its 𝑛 positions according to 𝜋. To illustrate this
with an example, let’s take 𝜅 = (4, 3) again. Suppose 𝜋 is of this cycle type, say 𝜋 = (1 2 3 4)(5 6 7).
Then 𝑤 = 𝑤𝜋 if and only if the first 4 letters of 𝑤 are the same and also the 5th, 6th, and 7th
letters are the same. These two (independent) events occur with probability

∑︀𝑑
𝑖=1 𝑝

4
𝑖 = pow4(𝑝)

and
∑︀𝑑

𝑖=1 𝑝
3
𝑖 = pow3(𝑝), respectively, and hence the probability both occur is indeed pow(4,3)(𝑝).

To compute the variance of the purity estimator 𝒞(2), we needed to first compute E𝜌⊗𝑛 [𝒞2(2)],
where

𝒞2(2) = avg
(𝑠 𝑡),(𝑠′ 𝑡′)

{𝒫(𝑠 𝑡)𝒫(𝑠′ 𝑡′)}.

The product of two uniformly random transpositions in 𝑆𝑛 is either the identity (probability 1/
(︀
𝑛
2

)︀
),

a 3-cycle (probability 2(𝑛− 2)/
(︀
𝑛
2

)︀
), or of cycle type (2, 2) (probability

(︀
𝑛−2
2

)︀
/
(︀
𝑛
2

)︀
). Hence

𝒞2(2) = 1

(𝑛2)
· 1+ 2(𝑛−2)

(𝑛2)
· 𝒞(3) +

(𝑛−2
2 )

(𝑛2)
· 𝒞(2,2). (28)

Therefore

E
𝜌⊗𝑛

[𝒞2(2)] =
1(︀
𝑛
2

)︀ +
2(𝑛− 2)(︀

𝑛
2

)︀ pow3(𝑝) +

(︀
𝑛−2
2

)︀(︀
𝑛
2

)︀ · pow(2,2)(𝑝),

from which Equation (26) follows (note that pow(2,2)(𝑝) = pow2(𝑝)2).
Let’s look more closely at these “cycle type observables” 𝒞𝜅. One thing to note is that they

commute: 𝒞𝜅𝒞𝜅′ = 𝒞𝜅′𝒞𝜅 for any two cycle types; in fact, it’s not hard to show that 𝒞𝜅 commutes
with every 𝒫𝜋. (Indeed the collection {𝒞𝜅}𝜅 is a basis for the “center of the group algebra C𝑆𝑛”.)
Let’s define

𝒜 = {real linear combinations of the observables 𝒞𝜅};

the right-hand side of Equation (28) is an example element of 𝒜. This 𝒜 is not only a (real)
vector space of dimension equal to the number of cycle types (conjugacy classes) of 𝑆𝑛, it has a
(compatible) commutative multiplication operation. Thus it is a commutative algebra over the
reals.

It’s not a coincidence that the observable 𝒞(2) we used to estimate the quantum purity
∑︀

𝑖 𝑝
2
𝑖 is

a member of 𝒜. Suppose we have a quantum contraption with output 𝜌 ∈ C𝑑×𝑑 and we’ve come

11In what follows, we allow ourselves the liberty of writing “E𝜌⊗𝑛 [𝒫𝜋]” even though 𝒫𝜋 is not usually Hermitian
and therefore not an “observable”. (It’s only Hermitian when 𝜋 = 𝜋−1.) Nevertheless, the expression ⟨𝜌⊗𝑛, 𝑋⟩ makes
sense for any operator 𝑋 on (C𝑑)⊗𝑛, and the final operator 𝒞𝜅 that we care about is Hermitian. That’s because 𝒞𝜅

is a real linear combination of Hermitian operators of the form 1
2
(𝒫𝜋 +𝒫𝜋−1), since 𝜋 and 𝜋−1 always have the same

cycle type.

23



up with some observable 𝑋 on (C𝑑)⊗𝑛 with a certain expectation 𝜇 = E𝜌⊗𝑛 [𝑋]. (E.g., we might
be trying to estimate a statistic 𝜇 of 𝜌’s eigenvalues 𝑝; or, perhaps we are trying to decide if the
multiset 𝑝 has a certain property, and 𝑋’s eigenvalues are all 0 or 1 corresponding to “no” and “yes”
outcomes.) Since we are indifferent to the eigenvectors |1⟩, . . . , |𝑑⟩ of 𝜌, we may as well “average 𝑋
over all unitary transformations of C𝑑”; i.e., replace it with avg𝑈{𝑈⊗𝑛𝑋(𝑈−1)⊗𝑛}, where 𝑈 is a
“uniformly random” (Haar-random) element of the unitary group 𝑈(𝑑). It is not hard to show that
this can only decrease the variance of 𝑋 (which is good), and the resulting 𝑋 has the property
that it is a linear combination of the permutation operators 𝒫𝜋. (The latter fact is nontrivial; it
is a consequence of the Schur–Weyl duality theorem from representation theory, discussed further
in Section 15.) Furthermore, since the 𝑛 outputs of the contraption 𝜌 are independent, we may as
well “average 𝑋 over all permutations in 𝑆𝑛”; i.e., replace the new 𝑋 with avg𝜋∼𝑆𝑛

{𝒫𝜋𝑋𝒫−1
𝜋 }.

Again, this can only decrease the variance, and the resulting 𝑋 is now in 𝒜. Thus we have shown
that we may as well only consider observables in 𝒜. This will be the justification for the Optimal
Measurement Theorem, as we will shortly see.

What’s convenient about the observables 𝒞𝜅 is that they have a straightforward definition and
a nice formula for their expectation: E𝜌⊗𝑛 [𝒞𝜅] = pow𝜅(𝑝). What’s inconvenient about the 𝒞𝜅’s is
multiplying them; even the simple computation of 𝒞2(2) in Equation (28) was a little tiresome. One

thing that would be nice would be to have a different, “orthogonal” basis (Π𝜆)𝜆 for 𝒜, meaning
one with the property that

Π𝜆 ·Π𝜆′ =

{︃
Π𝜆 if 𝜆 = 𝜆′,

0 if 𝜆 ̸= 𝜆′;
i.e., the Π𝜆’s are orthogonal projections on (C𝑑)⊗𝑛.

(The fact that we chose the letter 𝜆 to index the basis is not accidental. . . ) Then linear combinations
of these basis elements would be very easy to multiply.

There is another bonus of finding such a nice basis of orthogonal projections: we can build a
general quantum measurement (“POVM”) from it, taking the “𝐸” matrices to be the orthogonal
projections Π𝜆. Since every element of the algebra 𝒜 is a linear combination of the Π𝜆’s, we can
construct any observable we may have wanted by first performing this measurement — thereby
getting some random 𝜆 — and then deterministically post-processing 𝜆.

By the end of this section, we will see an orthogonal basis (Π𝜆)𝜆 for 𝒜 in which the 𝜆’s range
over all 𝑛-box, 𝑑-row Young diagrams, and

Pr
𝜌⊗𝑛

[𝜆 = 𝜆] = ⟨𝜌⊗𝑛,Π𝜆⟩ = dim(𝜆) · 𝑠𝜆(𝑝). (29)

As described in equation Equation (11) from Section 5, this is precisely the probability distribution
on Young diagrams that arises from RSKshape(𝑤) when 𝑤 ∼ 𝑝⊗𝑛. Thus we see the full justification
for the Optimal Measurement Theorem.

Let’s now look for the desired “nice orthogonal basis” (Π𝜆)𝜆. When 𝑛 = 2, things are very
simple: there are only two cycle types in 𝑆2, and 𝒜 is just the span of 1 (the identity operator on
(C𝑑)⊗2) and 𝒫(1 2) (the swapping operator). The nice basis we’re looking for is

Πsym = 1
2 · 1+ 1

2𝒫(1 2), Πalt = 1
2 · 1−

1
2𝒫(1 2).

For 𝑛 = 3, we have three cycle types, and the desired nice basis for 𝒜 is

Πsym = avg
𝜋∈𝑆3

{𝒫𝜋}, Πalt = avg
𝜋∈𝑆3

{sgn(𝜋) · 𝒫𝜋}, Πstd = 1
3

(︀
2 · 1− 𝒫(1 2 3) − 𝒫(1 3 2)

)︀
.
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For 𝑛 = 4. . . well, the pattern isn’t easy to spot. You might not be surprised to learn, though, that
it has something to do with the representation theory of the symmetric group (see, e.g., [Mél17]
for a recent textbook on the subject). Specifically, in the general-𝑛 case, the basis for 𝒜 we’re
looking for has one member Π𝜆 for each 𝑛-box Young diagram 𝜆. (This is the correct count of
basis members, since it also equals the number of cycle types in 𝑆𝑛.) These Young diagrams index
the irreducible representations of 𝑆𝑛, and as such they also index the (normalized) characters of
𝑆𝑛, which are certain functions ̂︀𝜒𝜆 : 𝑆𝑛 → Q with the property that ̂︀𝜒𝜆(𝜋) only depends on the
cycle type of 𝜋. (Because of this, we’ll sometimes write ̂︀𝜒𝜆(𝜅), where 𝜅 is the cycle type of 𝜋.) The
“orthogonal basis” of 𝒜 we are looking for turns out to be

Π𝜆 = (dim𝜆)2

𝑛! ·
∑︁
𝜋∈𝑆𝑛

̂︀𝜒𝜆(𝜋) · 𝒫𝜋, (30)

(recall dim𝜆 = #SYT(𝜆)). To see that Π𝜆 ∈ 𝒜, you can observe that the coefficient on 𝒫𝜋 in its
definition only depends on 𝜋’s cycle type. To see that the Π𝜆’s are “orthogonal” requires some
representation theory; basically, you expand the product Π𝜆Π𝜆′ , use the fact that each character is
the trace of the associated representation, and then use the fact that different matrix elements of
representations are orthogonal.

You might want an explicit formula for the normalized group character ̂︀𝜒𝜆(𝜋) for 𝑆𝑛, but
unfortunately you can’t expect a very good one — computing symmetric group characters is a task
that is even harder than “NP-complete”! (Precisely, this task is #P-complete [Hep94].) In the
next section we’ll see that computing ̂︀𝜒𝜆(𝜋) is efficient when the cycle type of 𝜋 is considered to
be of “constant” size (with 1-cycles ignored). For now, we’ll take the following implicit definition
of the character values ̂︀𝜒𝜆(𝜅), sometimes called the Murnaghan–Nakayama rule. It says that the
characters essentially express how to write the Schur basis of symmetric functions in terms of the
power sum basis.

pow𝜅(𝑥1, . . . , 𝑥𝑑) =
∑︁
𝜆

̂︀𝜒𝜆(𝜅) dim(𝜆) · 𝑠𝜆(𝑥1, . . . , 𝑥𝑑). (31)

Given this definition, the formula Equation (29) follows immediately by applying E𝜌⊗𝑛 [·] to Equa-
tion (30) and using Equation (27). Thus we have now fully explained the justification for the Op-
timal Measurement Theorem. (Incidentally, the task of actually implementing the POVM (Π𝜆)𝜆
has been shown to be efficiently doable on a quantum computer [MW16].)

12 Symmetric group characters on small conjugacy classes

It may look like we’ve made some backward progress in terms of estimating statistics of the spectrum
{𝑝1, . . . , 𝑝𝑑} of 𝜌. Initially we considered the simple observables 𝒞𝜅, which have expectation pow𝜅(𝑝).
Now we’ve justified the Optimal Measurement Theorem which tells us we may instead measure
using the Π𝜆’s and thereby obtain a Young diagram 𝜆 distributed as RSKshape(𝑤) for 𝑤 ∼ 𝑝⊗𝑛.
But given such a 𝜆, how would we recover an estimator for, say, pow2(𝑝)? The answer lies in the
combination of formulas Equation (30) and Equation (31): to get an estimator with mean pow𝜅(𝑝),
we need to output ̂︀𝜒𝜆(𝜅).

Happily, there is a “good” (efficient) formula for computing the (normalized) character ̂︀𝜒𝜆(𝜅)
when the cycle type 𝜅 has “constant” size (see [VK81, KO94, OO96, Oko08]). To describe it, it’s
helpful to introduce some notation. First, let 𝜅 be a partition of the integer 𝑘 (with 𝑘 ≤ 𝑛) and
let 𝜋 ∈ 𝑆𝑛 be of cycle type 𝜅. We think of 𝜋 as fixed and 𝜆 = (𝜆1, . . . , 𝜆𝑑) as variable. It’s more
elegant to work with the following “shifted” parameters 𝐿1, . . . , 𝐿𝑑, where 𝐿𝑖 = 𝜆𝑖 − (𝑖 − 1/2).
(These expressions have a natural pictorial meaning; 𝐿𝑖 is the displacement from the main diagonal
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of the right edge of the 𝑖th row in 𝜆. See the figure below for an example with 𝜆 = (5, 3, 1, 1).)
Next, introduce the notation Σ𝜅(𝜆) = 𝑛(𝑛 − 1) · · · (𝑛 − 𝑘 + 1) · ̂︀𝜒𝜆(𝜋). (The prefactor here is the
number of ways of “embedding” an element of 𝑆𝑘 into 𝑆𝑛.) Finally, the symmetric group characters
are specified by the fact that Σ𝜅(𝜆) is the unique polynomial of the form

pow𝜅(𝐿) +
{︁

lower-degree power sum polynomials of 𝐿
}︁

such that Σ𝜅(𝜆) = 0 whenever 𝜆 has fewer than 𝑘 boxes.

𝐿1 = 𝜆1 − 0.5 = 4.5
𝐿2 = 𝜆2 − 1.5 = 1.5
𝐿3 = 𝜆3 − 2.5 = −1.5
𝐿4 = 𝜆4 − 3.5 = −2.5

To take the simplest example, suppose 𝜅 = (2), so 𝑘 = 2; in other words, we are interested in
characters’ values on transpositions. We are told that

Σ(2)(𝜆) = pow2(𝐿) + 𝑎 · pow1(𝐿) + 𝑏

for some constants 𝑎, 𝑏, and that Σ(2)(𝜆) = 0 whenever 𝜆 has fewer than two boxes — i.e., when
𝜆 = (1, 0, . . . , 0) or (0, 0, . . . , 0). The two constraints let us solve for the two unknowns and we find
that 𝑎 = 0, 𝑏 = −

∑︀𝑑
𝑖=1(𝑖− 1/2)2. We can therefore finally conclude,

for 𝜋 a transposition, ̂︀𝜒𝜆(𝜋) =
1

𝑛(𝑛− 1)

(︃
𝑑∑︁

𝑖=1

𝜆2
𝑖 −

𝑑∑︁
𝑖=1

(2𝑖− 1)𝜆𝑖

)︃
. (32)

With this formula in hand, we can show a sample-efficient method for learning the complete
spectrum {𝑝1, . . . , 𝑝𝑑} of an unknown 𝜌: the Empirical Young Diagram (EYD) method, first pro-
posed by [ARS88, KW01]. Without loss of generality, assume 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑑. The EYD
method obtains 𝜆 from 𝜌⊗𝑛 as in the Optimal Measurement Theorem and then simply outputs the
estimates ̂︀𝑝𝑖 = 𝜆𝑖/𝑛. Following [OW16], let’s see that this method has the guarantee

E
𝜆

[︀
‖̂︀𝑝− 𝑝‖22

]︀
≤

2
∑︀𝑑

𝑖=1 𝑖𝑝𝑖
𝑛

≤ 𝑑

𝑛
. (33)

(The latter inequality is because 𝑝1 = 𝑝2 = · · · = 𝑝𝑑 = 1/𝑑 yields the largest value of
∑︀

𝑖 𝑖𝑝𝑖 when
subject to 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑑.) A consequence of Inequality (33) is that 𝑛 = 𝑂(𝑑/𝜖) samples suffice
to estimate the sorted spectrum 𝑝 to ℓ22-accuracy 𝜖 (with high probability), and hence 𝑛 = 𝑂(𝑑2/𝜖2)
samples suffice to estimate it to total variation distance 𝜖, by Cauchy–Schwarz (improving on the
previous bound of 𝑛 = 𝑂(𝑑2/𝜖2 · log(𝑑/𝜖)) samples due to [HM02, CM06]).

To obtain Inequality (33), we begin with

E
𝜆

[︀
‖̂︀𝑝− 𝑝‖22

]︀
= E

[︃
𝑑∑︁

𝑖=1

(𝜆𝑖/𝑛− 𝑝𝑖)
2

]︃
=

1

𝑛2
E

[︃
𝑑∑︁

𝑖=1

𝜆2
𝑖

]︃
− 2

𝑛

𝑑∑︁
𝑖=1

𝑝𝑖E[𝜆𝑖] + pow2(𝑝)

=
1

𝑛2
E

[︃
𝑛(𝑛− 1)̂︀𝜒𝜆(2) +

𝑑∑︁
𝑖=1

(2𝑖− 1)𝜆𝑖

]︃
− 2

𝑛

𝑑∑︁
𝑖=1

𝑝𝑖E[𝜆𝑖] + pow2(𝑝)

(by Equation (32))

= (2− 1/𝑛)pow2(𝑝) +
1

𝑛2

𝑑∑︁
𝑖=1

(2𝑖− 1− 2𝑝𝑖𝑛)E[𝜆𝑖], (34)
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where in the last line we used that E[̂︀𝜒𝜆(2)] = pow2(𝑝). We now use the majorization statement
Inequality (5) from Section 4, namely that (E[𝜆𝑖])𝑖 ≻ (𝑝𝑖𝑛)𝑖. Since the sequence (2𝑖− 1− 2𝑝𝑖𝑛)𝑖 is
increasing in 𝑖, and the sequence (E[𝜆𝑖])𝑖 is decreasing in 𝑖, a basic rearrangement inequality tells
us that the inner product

∑︀𝑑
𝑖=1(2𝑖 − 1 − 2𝑝𝑖𝑛)E[𝜆𝑖] only increases if we replace (E[𝜆𝑖])𝑖 with a

sequence that it majorizes. Thus we get the following bound, implying Inequality (33):

Equation (34) ≤ (2−1/𝑛)pow2(𝑝)+
1

𝑛2

𝑑∑︁
𝑖=1

(2𝑖−1−2𝑝𝑖𝑛)𝑝𝑖𝑛+pow2(𝑝) =
2
∑︀𝑑

𝑖=1 𝑖𝑝𝑖
𝑛

−
(︂

1 + pow2(𝑝)

𝑛

)︂
.

Elaborations of this method for bounding the sample-complexity of learning 𝜌’s spectrum appear
in [OW16, OW17]; results include learning just the 𝑘 largest eigenvalues with sample complexity
depending only on 𝑘, and learning with respect to Hellinger, KL-, and 𝜒2-divergence error. More-
over, this algorithm can in principle be performed efficiently on a quantum computer, and the idea
of experimentally realizing it has been discussed [BHA+18].

13 On to full quantum tomography, in trace distance and infidelity

By now we have described why 𝑛 = 𝑂(𝑑2/𝜖2) samples suffice to estimate suffice to estimate the
spectrum of an unknown 𝑑-dimensional state 𝜌 to total variation distance 𝜖. In fact, the remainder
of this survey will be devoted to explaining why this many samples also suffice to estimate the
entire quantum state 𝜌, to trace distance 𝜖. This fact was first shown in [OW16], and the closely
related fact that 𝜌 can be learned up to infidelity 𝜖2 (an even stricter measure), using slightly
more samples 𝑛 = 𝑂(𝑑2/𝜖2 · log(𝑑/𝜖)), was shown independently and simultaneously in [HHJ+17]
(see also [OW17]). Indeed, [HHJ+17] also showed that the 𝑂(𝑑2/𝜖2) bound for trace distance is
tight up to a constant factor (but interestingly, there is no lower bound showing that the 𝑂(𝑑2/𝜖2)
bound cannot be significantly improved for spectrum estimation. . . ). Presenting these algorithms
for (near-)optimal full state tomography will take us further into the world of representation theory
and the RSK process, but first we must discuss more precisely our algorithm’s desideratum is: that
is, what it means to closely estimate 𝜌 (in “trace distance”, or “infidelity”).

Now that we have a good algorithm, the Empirical Young Diagram (EYD) method, for es-
timating the eigenvalues 𝑝1, . . . , 𝑝𝑑 of an unknown 𝜌, one might think it remains to estimate its
eigenvectors |𝑣1⟩, . . . , |𝑣𝑑⟩ of 𝜌. But as discussed in Section 8, it doesn’t quite make sense to seek
the eigenvectors of 𝜌 per se. We saw an example therein, the maximally mixed 1-qubit state

𝜎 =

[︂
1/2 0
0 1/2

]︂
, where two different choices of orthonormal eigenvectors led to the same physical

state 𝜎. Rather, it only makes sense to try to estimate a density matrix 𝜌 with respect to some
matrix-distance.

Just as there are a variety of “distances” between probability distributions (total variation,
Hellinger, KL-divergence, 𝜒2-divergence, etc.), there are a variety of ways to measure the distance
between quantum states. Natural properties to require of such distances are:12

• dist(𝜌, 𝜎) ≥ 0 with equality if and only if 𝜌 = 𝜎;

• Unitary invariance: dist(𝑈𝜌𝑈 †, 𝑈𝜎𝑈 †) = dist(𝜌, 𝜎) for any unitary 𝑈 .

12One might also require symmetry, dist(𝜌, 𝜎) = dist(𝜎, 𝜌), and the triangle inequality, dist(𝜌, 𝜎) ≤ dist(𝜌, 𝜉) +
dist(𝜉, 𝜎). Although the trace distance and Bures distance discussed below do satisfy these, we might prefer not to
insist on them, since other important “distances” like the quantum relative entropy do not satisfy them.
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Here we will just recap the two most popular ones; for more details the reader might consult [BOW19]
and the references therein.

The trace distance between states 𝜌 and 𝜎 is

Dtr(𝜌, 𝜎) =
1

2
‖𝜌− 𝜎‖1,

where here ‖𝑋‖1 = tr(
√
𝑋†𝑋) is the trace norm, the sum of the absolute values of the eigenvalues

(for a Hermitian matrix 𝑋 such as 𝜌−𝜎). The factor of 1
2 is included so that the maximum possible

trace distance between quantum states is 1. The trace distance is the quantum analogue of the
total variation distance between two classical probability distributions 𝑝 and 𝑞,

dTV(𝑝, 𝑞) =
1

2
‖𝑝− 𝑞‖1.

Indeed, if 𝜌 = diag(𝑝) and 𝜎 = diag(𝑞), then the trace distance reduces to the total variation
distance.

In fact, there is a further connection between total variation distance and trace distance of
quantum states; an old theorem of Helstrom [Hel76] says that

Dtr(𝜌, 𝜎) = sup
POVM (𝐸1,...,𝐸|Ω|)

{dTV(𝑟𝜌(𝐸), 𝑟𝜎(𝐸))}, where 𝑟𝜉(𝐸) = (⟨𝜉, 𝐸1⟩, . . . , ⟨𝜉, 𝐸|Ω|⟩).

To explain this in words, suppose we have an unknown quantum state 𝜉 that might be either 𝜌
or 𝜎. In an effort to distinguish them, we apply some general quantum measurement represented
by a POVM (𝐸𝜔)𝜔∈Ω; the result is a random outcome distributed according to the classical distri-
bution 𝑟𝜉(𝐸). The trace distance between 𝜌 and 𝜎 is thus the maximum total variation distance
that can be achieved between the outcome distributions 𝑟𝜌(𝐸) and 𝑟𝜎(𝐸). Moreover, recall that the
trace distance between probability distributions 𝑝 and 𝑞 on Ω represents the maximal advantage
that can be achieved in distinguishing a draw from either 𝑝 or 𝑞; that is,

dTV(𝑝, 𝑞) = max
𝐴⊆Ω

{︂⃒⃒⃒⃒
Pr
𝑝

[𝐴]−Pr
𝑞

[𝐴]

⃒⃒⃒⃒}︂
.

Thus the trace distance between quantum states 𝜌 and 𝜎 has an important operational meaning:
it is the maximal advantage one can achieve in guessing whether an unknown state 𝜉 is either 𝜌
or 𝜎, given the ability to apply any measurement to (one copy of) 𝜉. This intuitive meaning is the
reason we are attached to the trace distance, despite the fact that it is mildly unwieldy to compute.
In fact, when we get around to analyzing it, we will just use the basic (matrix) Cauchy–Schwarz
bound: for 𝜌, 𝜎 ∈ C𝑑×𝑑 we have

Dtr(𝜌, 𝜎)2 ≤ 1

4
𝑑 ·D2

HS(𝜌, 𝜎) =
1

4
𝑑 · tr((𝜌− 𝜎)2),

where D2
HS(𝜌, 𝜎) is the (square of the) far easier-to-compute Hilbert–Schmidt (Frobenius) distance.

The second popular way to measure the distance of quantum states 𝜌 and 𝜎 is via their fidelity :

F(𝜌, 𝜎) = ‖√𝜌
√
𝜎‖1.

Actually, this is a measure of closeness rather than distance; we have F(𝜌, 𝜎) ≤ 1 with equality if
and only if 𝜌 = 𝜎. The quantity 1 − F(𝜌, 𝜎) is sometimes termed the infidelity between 𝜌 and 𝜎,
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and it is very closely related to a proper quantum distance metric, the quantum Hellinger distance
DH(𝜌, 𝜎), defined by

DH(𝜌, 𝜎) = DHS(
√
𝜌,
√
𝜎) =

√︁
tr(
√
𝜌−
√
𝜎)2.

Precisely, it is shown in [ANSV08] that

(1− F(𝜌, 𝜎)) ≤ 1

2
D2

H(𝜌, 𝜎) ≤ 2(1− F(𝜌, 𝜎)),

and hence infidelity and squared quantum Hellinger distance are the same up to a small constant
factor. Again, if 𝜌 and 𝜎 are classical, we reduce to the classical Hellinger distance dH(𝑝, 𝑞) between
two probability distributions 𝑝 and 𝑞:

d2
H(𝑝, 𝑞) =

𝑑∑︁
𝑖=1

(
√
𝑝𝑖 −

√
𝑞𝑖)

2.

Although these Hellinger formulas look somewhat peculiar at first, classical Hellinger distance has
two chief merits. First, it is tightly linked to total variation distance; we have

1

2
d2
H(𝑝, 𝑞) ≤ dTV(𝑝, 𝑞) ≤ dH(𝑝, 𝑞), and similarly

1

2
D2

H(𝑝, 𝑞) ≤ Dtr(𝑝, 𝑞) ≤ DH(𝑝, 𝑞).

The second merit of classical Hellinger distance is its tensorization property: BC(𝑝⊗𝑛, 𝑞⊗𝑛) =
BC(𝑝, 𝑞)𝑛, where 1

2d2
H(𝑝, 𝑞) = 1− BC(𝑝, 𝑞). (This quantity BC(𝑝, 𝑞), the Bhattacharyya coefficient

between 𝑝 and 𝑞, is a classical analogue of fidelity.) Combining these two facts shows that the
number of samples one needs to reliably distinguish between draws from 𝑝 versus draws from 𝑞
is proportional to 1/d2

H(𝑝, 𝑞). This gives a very natural operational interpretation of Hellinger
distance, and strongly motivates its quantum counterpart.

14 Analyzing estimators via leading principal minor traces

Let us now discuss basic strategies for producing an estimate ̂︀𝜌 of an unknown quantum state
𝜌 ∈ C𝑑×𝑑, and how we might try to bound the expected distance between ̂︀𝜌 and 𝜌.

As there is no reason to favor any particular orientation of C𝑑, it makes sense sto consider only
“unitarily invariant” algorithms Est; by this we mean that the distribution of Est(𝑈𝜌𝑈 †) should be
the same as that of 𝑈Est(𝜌)𝑈 † for any fixed unitary 𝑈 . Assuming our algorithm has this property,
we may assume (for analysis purposes only!) that 𝜌 is diagonal:

𝜌 = diag(𝑝1, 𝑝2, . . . , 𝑝𝑑) for 𝑝1 ≥ 𝑝2 ≥ · · · 𝑝𝑑.

Also, as mentioned earlier, it’s reasonable for a full state tomography algorithm to begin by esti-
mating the unknown 𝜌’s spectrum using the Empirical Young Diagram method. Recall that this
measures 𝜌⊗𝑛 using the orthogonal projections Π𝜆, and thereby obtains a random 𝑛-box, 𝑑-row
Young diagram 𝜆 with the property that ̂︀𝑝 defined by ̂︀𝑝𝑖 = 𝜆𝑖/𝑛 is likely to be a good estimate
for the sorted eigenvalues 𝑝 of 𝜌. Let us introduce some notation for this probability distribution
on 𝜆, which we call the Schur–Weyl distribution:

𝜆 ∼ SW𝑛(𝑝) denotes Pr[𝜆 = 𝜆] = 𝑠𝜆(𝑝) · dim𝜆 = Pr
𝑤∼𝑝⊗𝑛

[RSKshape(𝑤) = 𝜆], (35)
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as discussed in Section 5. Having obtained the estimate ̂︀𝑝 = 𝜆/𝑛, it remains for our estimation
algorithm to somehow obtain an appropriate unitary 𝑈 and output

̂︀𝜌 = 𝑈 diag(̂︀𝑝)𝑈 † = 𝑈 diag(𝜆/𝑛)𝑈 †

as its final estimate for 𝜌. Let us write
𝑈 ∼ K𝜆(𝜌)

for the distribution on 𝑈 that our algorithm will eventually obtain, given 𝜌 and the Young diagram
𝜆 = 𝜆 produced by the EYD method. We chose the letter “K” since we will soon focus on a method
due to Keyl.

To evaluate how well our estimation algorithm has performed, we will choose some notion of
distance D for quantum states (e.g., trace distance) and try to bound the expectation of

D(̂︀𝜌, 𝜌) = D(𝑈diag(̂︀𝑝)𝑈 †, diag(𝑝)) = D(diag(̂︀𝑝),𝑈 † diag(𝑝)𝑈), (36)

where the latter equality uses unitary invariance of D. We’ve made this switch because we already
understand ̂︀𝑝 quite well, and 𝑈 † diag(𝑝)𝑈 will be easier to understand as it has only one random
aspect, 𝑈 .

To analyze a quantum distance D(diag(𝑞), 𝑈 † diag(𝑝)𝑈), it is convenient to observe that the
matrix 𝐻 with 𝐻𝑖𝑗 = |𝑈𝑖𝑗 |2 is doubly-stochastic (has row- and column-sums 1), since 𝑈 is unitary.
The doubly-stochastic matrices are precisely the convex hull of the permutation matrices, and hence
we may think of 𝐻 as a probability distribution on permutations 𝜋 ∈ 𝑆𝑑. We will write 𝜋 ∼ 𝑈 to
denote that 𝜋 is drawn from this distribution, so in particular

Pr
𝜋∼𝑈

[𝜋(𝑗) = 𝑖] = |𝑈𝑖𝑗 |2.

Now in fact many quantum distances D (including Hilbert–Schmidt distance, quantum Hellinger
distance, and quantum relative entropy) can be nicely expressed using this notation; for example,
it is just a small exercise to check that

D2
HS(diag(𝑞), 𝑈 † diag(𝑝)𝑈) = E

𝜋∼𝑈
[‖𝑞 − 𝑝𝜋‖22], D2

H(diag(𝑞), 𝑈 † diag(𝑝)𝑈) = E
𝜋∼𝑈

[d2
H(𝑞, 𝑝𝜋)],

where 𝑝𝜋 denotes the probability distribution with (𝑝𝜋)𝑖 = 𝑝𝜋(𝑖). Focusing on the Hilbert–Schmidt
distance for a moment, we therefore have that when 𝜆 ∼ SW𝑛(𝜌) (the EYD method), and then
𝑈 ∼ K𝜆(𝜌) (Keyl’s algorithm, eventually), and then 𝜋 ∼ 𝑈 , it holds that

E[D2
HS(̂︀𝜌, 𝜌)] = E[‖̂︀𝑝− 𝑝𝜋‖22] ≤ 2E[‖̂︀𝑝− 𝑝‖22] + 2E[‖𝑝− 𝑝𝜋‖22],

where we used the “triangle inequality” ‖𝑎− 𝑐‖22 ≤ 2‖𝑎− 𝑏‖22 + 2‖𝑏− 𝑐‖22. The first term above is
bounded by 2𝑑

𝑛 thanks to our analysis of the EYD method, Inequality (33). If we could also obtain
the bound

E
𝜆∼SW𝑛(𝜌)
𝑈∼K𝜆(𝜌)

𝜋∼𝑈

[‖𝑝− 𝑝𝜋‖22]
?
≤ 𝑂

(︂
𝑑

𝑛

)︂
, (37)

then we would finally have

E[Dtr(̂︀𝜌, 𝜌)2] ≤ 1

4
𝑑 ·E[DHS(̂︀𝜌, 𝜌)] ≤ 𝑂

(︂
𝑑2

𝑛

)︂
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and thereby obtain the result from [OW16] that 𝑛 = 𝑂(𝑑2/𝜖2) samples are enough to reliably
guarantee Dtr(̂︀𝜌, 𝜌) ≤ 𝜖. (Analogous considerations also hold for quantum Hellinger distance, and
hence tomography with respect to fidelity.)

Rather a lot is going on in the probabilistic experiment of Inequality (37), and it will not be
easy to directly bound E[‖𝑝 − 𝑝𝜋‖2]. After defining Keyl’s unitarily invariant distribution K𝜆(𝜌),
and analyzing it using more representation theory, the pinnacle of our understanding will be the
conclusion that for 𝜌 = diag(𝑝),

E
𝜆∼SW𝑛(𝜌)
𝑈∼K𝜆(𝜌)

𝜋∼𝑈

[𝑝≤𝑘 − (𝑝𝜋)≤𝑘] ≤ E
𝜆∼SW𝑛(𝜌)̂︀𝑝=𝜆/𝑛

[̂︀𝑝≤𝑘 − 𝑝≤𝑘] + 𝑘
𝑑

𝑛
∀ 1 ≤ 𝑘 ≤ 𝑑, (38)

where we use the notation 𝑞≤𝑘 =
∑︀𝑘

𝑖=1 𝑞𝑖. In other words, the shortfall between 𝑝𝜋’s top-𝑘 proba-
bilities and those of 𝑝 is not much more than the excess of the top-𝑘 EYD estimates for 𝑝. Luckily,
as sketched in Section 7, we understand the latter quantity in great detail! So it remains to compare
the two quantities on the left in Inequalities (37) and (38).

For bounding Hellinger distance this is quite involved, but for the ℓ2-norm in Inequality (37) it
is not too difficult. We have

E[‖𝑝−𝑝𝜋‖22] = E

[︃
2

𝑑∑︁
𝑖=1

𝑝2𝑖 − 2

𝑑∑︁
𝑖=1

𝑝𝑖𝑝
2
𝜋(𝑖)

]︃
= 2

𝑑∑︁
𝑖=1

𝑝𝑖E[𝑝𝑖−𝑝𝜋(𝑖)] = 2

𝑑∑︁
𝑘=1

(𝑝𝑘−𝑝𝑘+1)E[𝑝≤𝑘−(𝑝𝜋)≤𝑘],

(39)
the last equality being summation-by-parts (with 𝑝𝑑+1 interpreted as 0). Applying Inequality (38),
the above is at most

2

𝑑∑︁
𝑘=1

(𝑝𝑘 − 𝑝𝑘+1)E[̂︀𝑝≤𝑘 − 𝑝≤𝑘] + 2

𝑑∑︁
𝑘=1

(𝑝𝑘 − 𝑝𝑘+1) · 𝑘
𝑑

𝑛
.

The second, “error term” above telescopes to 2(
∑︀

𝑘 𝑝𝑘) 𝑑
𝑛 = 2𝑑

𝑛 , and the first “main term” is equal
to E[‖̂︀𝑝− 𝑝‖22] by reversing the steps of Equation (39). Thus we get

E[‖𝑝− 𝑝𝜋‖22] ≤ E[‖̂︀𝑝− 𝑝‖22] +
2𝑑

𝑛
,

and so indeed Inequality (37) follows from our EYD analysis, Inequality (33).
Finally we have reduced the task of quantum tomography with 𝑛 = 𝑂(𝑑2/𝜖2) samples to the

following: Describing and analyzing the random unitary 𝑈 produced by K𝜆(𝜌), and showing that
the corresponding 𝜋 ∼ 𝑈 it produces satisfies Inequality (38) — i.e., it does not “scramble” 𝑝 too
much. Recalling that for 𝜋 ∼ 𝑈 ,

E[(𝑝𝜋)≤𝑘] =

𝑘∑︁
𝑖=1

E[𝑝𝜋(𝑖)] =

𝑘∑︁
𝑖=1

(𝑈 †𝜌𝑈)𝑖𝑖 = tr
(︁

(𝑈 †𝜌𝑈)[𝑘]

)︁
,

where (𝑈 †𝜌𝑈)[𝑘] denotes the top-left 𝑘 × 𝑘 submatrix of 𝑈 †𝜌𝑈 , we see that our task will involve

studying the traces of leading principal minors of 𝑈 †𝜌𝑈 , when 𝑈 ∼ K𝜆(𝜌).

15 Representation theory of the general linear group

We now take a step back and think about the whole quantum state tomography procedure. As
mentioned earlier, given 𝑛 samples of the unknown state 𝜌 ∈ C𝑑×𝑑, it makes sense to begin by
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using the EYD algorithm to estimate 𝜌’s eigenvalues. To see where we stand after performing this
EYD algorithm on 𝜌⊗𝑛, we need to review some representation theory.

The critical tool is the Schur–Weyl duality theorem [Wey46], which indirectly arose in Section 11
when we discussed how, given an observable 𝑋 acting on (C𝑑)⊗𝑛, we might wish to average it over
all permutations in 𝑆𝑛 and also over all unitaries in 𝑈(𝑑). Here we are using that (C𝑑)⊗𝑛 is a
representation both for 𝑆𝑛 (with 𝜋 ∈ 𝑆𝑛 acting by permuting tensor components) and also for 𝑈(𝑑)
(with 𝑈 ∈ 𝑈(𝑑) naturally acting simultaneously on each tensor component). Moreover, the actions
of 𝑆𝑛 commute with those of 𝑈(𝑑) and hence (C𝑑)⊗𝑛 is also a representation for the product group
𝑆𝑛 × 𝑈(𝑑). It will be convenient to observe that we can slightly more generally replace 𝑈(𝑑) here
by GL(𝑑), the group of invertible matrices in C𝑑×𝑑. Now the Schur–Weyl duality theorem asserts
that (C𝑑)⊗𝑛 has the orthogonal decomposition

(C𝑑)⊗𝑛 ∼=
⨁︁

𝑛-box, 𝑑-row
Young diagrams 𝜆

Sp𝜆 ⊗V𝑑
𝜆, (40)

where the Specht module Sp𝜆 is the irreducible representation of 𝑆𝑛 indexed by 𝜆 and the Weyl
module V𝑑

𝜆 is the irreducible (polynomial) representation of GL(𝑑) indexed by 𝜆.13

This Schur–Weyl decomposition is extremely well tailored for our situation. First, the permu-
tation operator 𝒫𝜋 discussed in Section 11 acts only on the Sp𝜆 spaces, as 𝜋 (i.e., it acts as identity
on the V𝑑

𝜆 spaces). Conversely, the source from which we are learning, 𝜌⊗𝑛, acts only on the V𝑑
𝜆

spaces14, as 𝜌; in other words, if 𝜙𝜆(𝜌) denotes the action of 𝜌 on V𝑑
𝜆, then

𝜌⊗𝑛 acts in Equation (40) as
⨁︁

𝑛-box, 𝑑-row
Young diagrams 𝜆

1Sp𝜆 ⊗ 𝜙𝜆(𝜌).

And finally, the projection operator Π𝜆 discussed earlier is precisely the projection onto the
𝜆-component of (C𝑑)⊗𝑛 in Equation (40). From this it follows that the probability of the EYD
algorithm yielding Young diagram 𝜆 is

⟨𝜌⊗𝑛,Π𝜆⟩ = tr(Π𝜆𝜌
⊗𝑛Π𝜆) = tr(1Sp𝜆 ⊗ 𝜙𝜆(𝜌)) = dim(𝜆) · 𝜒𝜆(𝜌),

where dim(𝜆) is the dimension of the Sp𝜆 representation of 𝑆𝑛, and 𝜒𝜆(𝜌) is the character of the
V𝑑

𝜆 representation of GL(𝑑) at 𝜌. It is a fundamental fact of representation theory that 𝜒𝜆(𝜌) =
𝑠𝜆(𝑝), and indeed this is sometimes taken as a definition of the Schur polynomials; thus we have
obtained yet another confirmation of Equations (11) and (29).

Now suppose that we apply the EYD algorithm to 𝜌⊗𝑛 and obtain some particular outcome 𝜆.
It is a basic rule of quantum mechanics that the quantum state now “collapses” to a new quantum
state 𝜌⊗𝑛 | Π𝜆 (“𝜌⊗𝑛 conditioned on Π𝜆”), defined by

𝜌⊗𝑛 | Π𝜆 =
Π𝜆𝜌

⊗𝑛Π𝜆

⟨𝜌⊗𝑛,Π𝜆⟩
,

13For the practical question of quantum state tomography, we remark that in [BCH05, Har05] it is shown that there
is an efficient quantum circuit for transforming the standard basis of (C𝑑)⊗𝑛 into a natural basis for the right-hand
side of Equation (40) — namely, the combination of Young’s orthogonal basis for the Sp𝜆’s, and the Gelfand–Tsetlin
basis for the V𝑑

𝜆’s (the latter of which we will describe shortly).
14It is here where it is convenient to have replaced 𝑈(𝑑) with GL(𝑑), since the latter (usually) contains 𝜌. Formally

speaking we might not have 𝜌 ∈ GL(𝑑) if 𝜌 has some eigenvalues equal to 0. But we may ignore this point in the
future, as it is easily handled by a standard limiting argument. (All our representations are polynomial and hence
continuous.)
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which we now know is
1Sp𝜆
dim𝜆

⊗ 𝜙𝜆(𝜌)

𝑠𝜆(𝑝)
.

Here the first tensor component is the maximally mixed state on Sp𝜆, independent of 𝜌, so we may
as well just discard it. What’s left is (up to a normalizing factor) simply the GL(𝑑)-representation
of 𝜌 within V𝑑

𝜆. The remainder of this section is devoted to describing 𝜙𝜆(𝜌).
The representation 𝜙𝜆(𝜌) is particularly easy to understand when 𝜌 is diagonal, 𝜌 = diag(𝑝).

In this case, there is an orthonormal basis of eigenvectors for 𝜙𝜆(𝜌) in V𝑑
𝜆, known as the Gelfand–

Tsetlin basis (see, e.g., [Mol02] for some history). This basis, (|𝑇 ⟩)𝑇∈SSYT𝑑(𝑛), is indexed by the
semistandard tableaus 𝑇 with shape 𝜆 and entries from {1, . . . , 𝑑}, and we have the following
eigenvalue equation:

𝜙𝜆(diag(𝑝))|𝑇 ⟩ = 𝑝𝑇 |𝑇 ⟩, where 𝑝𝑇 =
∏︁
□∈𝑇

𝑝𝑇 (□), (41)

and recall 𝑇 (□) denotes the entry of tableau 𝑇 in box □. (Incidentally, this fact, together with
tr(𝜙𝜆(𝜌)) = 𝜒𝜆(𝜌) = 𝑠𝜆(𝑝), allows one to nicely recover the tableau-based formula Equation (12)
for 𝑠𝜆(𝑝).) Assuming as we typically do that 𝑝 is a sorted probability distribution, 𝑝1 ≥ 𝑝2 ≥ · · · ≥
𝑝𝑑 ≥ 0, we see from Equation (41) that the largest eigenvalue of 𝜌 = diag(𝑝) occurs when 𝑇 is
all-1’s in its 1st row, all-2’s in its 2nd row, etc. We will write 𝑇𝜆 for this particular filling of 𝜆, and
|𝑇𝜆⟩ is called the highest weight vector in V𝑑

𝜆. To give an example with 𝑛 = 15, 𝑑 = 4:

𝜆 = 𝑇𝜆 =

1 1 1 1 1 1
2 2 2 2
3 3 3
4 4

⟨𝑇𝜆|𝜙𝜆(diag(𝑝))|𝑇𝜆⟩ = 𝑝
𝑇𝜆 = product of entries in

𝑝1 𝑝1 𝑝1 𝑝1 𝑝1 𝑝1
𝑝2 𝑝2 𝑝2 𝑝2
𝑝3 𝑝3 𝑝3
𝑝4

or equivalently in

𝑝1 𝑝2 𝑝3 𝑝4
𝑝1 𝑝2 𝑝3
𝑝1 𝑝2 𝑝3
𝑝1 𝑝2
𝑝1
𝑝1

,

where at the very end we filled the conjugate diagram 𝜆′ to 𝜆, obtained simply by reflecting it along
the main diagonal.

Referring to this final conjugated diagram above, one thing to note is that the product of the
entries in the first row, 𝑝1𝑝2𝑝3𝑝4, is the determinant of 𝜌 = diag(𝑝); the product of the entries in the
second row, 𝑝1𝑝2𝑝3, is the determinant of 𝜌’s top-left 3×3 submatrix (its 3rd leading principal minor,
denoted |𝜌[3]|); and, in the third through sixth rows we get |𝜌[3]|, |𝜌[2]|, |𝜌[1]|, |𝜌[1]|, respectively. In
other words, for diagonal 𝜌 we have

⟨𝑇𝜆|𝜙𝜆(𝜌)|𝑇𝜆⟩ = Δ𝜆(𝜌), where Δ𝜆(𝜌) =
∏︁
𝑖≥1

|𝜌[𝑑+1−𝑖]|𝜆
′
𝑖 =

𝑑∏︁
𝑗=1

|𝜌[𝑘]|𝜆𝑘−𝜆𝑘+1 , (42)

with Δ𝜆 : C𝑑×𝑑 → C sometimes called the generalized power function.
As we will now explain, the above formula Equation (42) in fact holds for all positive-semidefinite

𝜌 ∈ GL(𝑑), not just diagonal ones. To understand this, first recall that the Cholesky Decomposi-
tion allows us to write 𝜌 = 𝐿diag(𝑟)𝐿†, where 𝑟 is a positive vector and 𝐿 is a lower unitriangular
matrix (meaning 𝐿𝑖𝑗 is 1 if 𝑖 = 𝑗 and is 0 if 𝑗 > 𝑖). In turn, the lower/upper unitriagular matrices
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𝐿 and 𝐿† may be expressed as products of elementary unitriangular matrices (each having only one
nonzero off-diagonal entry), and there is a relatively simple formula for how these act on the basis
vectors |𝑇 ⟩ (see, e.g., [BR97, Mol02]). For our purposes, it suffices to know that upper unitriangular
matrices fix the highest weight vector |𝑇𝜆⟩. Thus

⟨𝑇𝜆|𝜙𝜆(𝜌)|𝑇𝜆⟩ = ⟨𝑇𝜆|𝜙𝜆(𝐿diag(𝑟)𝐿†)|𝑇𝜆⟩ = ⟨𝑇𝜆|𝜙𝜆(diag(𝑟))|𝑇𝜆⟩ = Δ𝜆(diag(𝑟)),

the last equality since we know Equation (42) holds for diagonal matrices. But Δ𝜆 is evidently a
multiplicative function (since det is), and Δ𝜆(𝐿) = Δ𝜆(𝐿†) = 1 (since unitriangular matrices have
all principal minors equal to 1). Thus

Δ𝜆(diag(𝑟)) = Δ𝜆(𝐿)Δ𝜆(diag(𝑟))Δ𝜆(𝐿†) = Δ𝜆(𝐿diag(𝑟)𝐿†) = Δ𝜆(𝜌),

thereby verifying Equation (42) for arbitrary positive semidefinite 𝜌.
We now have enough representation theory to describe and analyze Keyl’s estimation algorithm

for quantum states.

16 Keyl’s distribution on unitaries, and associated heuristics

In this section we describe the ideas Keyl [Key06] used to devise his estimation algorithm, and we
outline a heuristic for why it may satisfy our ultimate goal of Inequality (38), which we now slightly
rewrite:

Inequality (38) ⇐⇒ E
𝜆∼SW𝑛(𝜌)
𝑈∼K𝜆(𝜌)

[︁
tr
(︁

(𝑈 † diag(𝑝)𝑈)[𝑘]

)︁]︁
≥ 𝑝≤𝑘− E

𝜆∼SW𝑛(𝜌)̂︀𝑝=𝜆/𝑛

[̂︀𝑝≤𝑘−𝑝≤𝑘]−𝑘 𝑑
𝑛
. (43)

To recap, supposing 𝜌 has eigenvalues 𝑝, performing the EYD algorithm on 𝜌⊗𝑛 yields 𝜆 ∼
SW𝑛(𝑝). Then conditioned on 𝜆 = 𝜆, the quantum state 𝜌⊗𝑛 effectively collapses to 1

𝑠𝜆(𝑝)
𝜙𝜆(𝜌).

The plan is now to use ̂︀𝑝 = 𝜆/𝑛 as our estimate for 𝑝, to make some further quantum measurement
on 1

𝑠𝜆(𝑝)
𝜙𝜆(𝜌) to produce a unitary outcome 𝑈 ∈ 𝑈(𝑑), and to take ̂︀𝜌 = 𝑈 diag(̂︀𝑝)𝑈 † as our

estimate for 𝜌.
Since there are a continuum of possible 𝑈 ∈ 𝑈(𝑑), our measurement needs to use the continuous

notion of a POVM. We can take this to be a family (𝐸𝑈 )𝑈∈𝑈(𝑑) of positive-semidefinite operators

on V𝑑
𝜆 satisfying

∫︀
𝐸𝑈 𝑑𝑈 = 1, where 𝑑𝑈 denotes the Haar measure. Then the measurement

outcome when applied to 1
𝑠𝜆(𝑝)

𝜙𝜆(𝜌) will be distributed as 1
𝑠𝜆(𝑝)
⟨𝜙𝜆(𝜌), 𝐸𝑈 ⟩ 𝑑𝑈 ; one can think of

this as obtaining a random 𝑈 not with the “uniform” (Haar) distribution, but rather one weighted
by the relative density 1

𝑠𝜆(𝑝)
⟨𝜙𝜆(𝜌), 𝐸𝑈 ⟩. A natural idea is to have 𝐸𝑈 = 𝜙𝜆(𝑈)Γ𝜙𝜆(𝑈 †) for some

positive-semidefinite Γ on V𝑑
𝜆, which needs to satisfy the normalization condition

∫︀
𝑈Γ𝑈 † 𝑑𝑈 = 1.

If we express Γ in the Gelfand–Tsetlin basis as Γ =
∑︀

𝑇 𝛾𝑇 |𝑇 ⟩⟨𝑇 | for nonnegative 𝛾𝑇 , then it is easy
to show the normalization condition becomes avg𝑇 {𝛾𝑇 } = 1. Plugging this all in, the resulting
relative density for the outcome 𝑈 is then∑︁

𝑇

𝛾𝑇
𝑠𝜆(𝑝)

∑︁
𝑇

⟨𝑇 |𝜙𝜆(𝑈 †𝜌𝑈)|𝑇 ⟩.

It remains to choose the 𝛾𝑇 ’s. As discussed at the beginning of Section 14, we may as well assume
for the sake of analysis that 𝜌 is diagonal. In this case, the dream is for our estimation algorithm
to output 𝑈 = 1 (or, at least, some diagonal unitary 𝑈); thus it is natural to hope that 𝑈 = 1 has
the highest relative density. Now since 𝜙𝜆(𝑈)|𝑇 ⟩ is a unit vector, the maximum possible value for
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⟨𝑇 |𝜙𝜆(𝑈 †𝜌𝑈)|𝑇 ⟩ is the maximum eigenvalue of 𝜙𝜆(𝜌), which we know to be Δ𝜆(𝜌), the eigenvalue
of the highest weight vector |𝑇𝜆⟩. Moreover, this is indeed achieved when 𝑈 = 1. Thus we have
motivated Keyl’s algorithm, which is to take 𝛾𝑇 = 0 for 𝑇 ̸= 𝑇𝜆, and to take 𝛾𝑇𝜆

to be maximal,
namely

𝛾𝑇𝜆
= |SSYT𝑑(𝑛)| = dim(V𝑑

𝜆) = 𝜒𝜆(1) = 𝑠𝜆(1, . . . , 1⏟  ⏞  
𝑑 times

).

Recalling that Equation (42) holds for all positive-semidefinite 𝜌, not merely diagonal ones, we
finally obtain Keyl’s distribution on unitaries: Given quantum state 𝜌 ∈ C𝑑×𝑑 with spectrum 𝑝,
and an 𝑛-box, 𝑑-row Young diagram 𝜆, Keyl’s distribution is

K𝜆(𝜌) = Φ𝜆(𝑝)−1 ·Δ𝜆(𝑈 †𝜌𝑈) 𝑑𝑈 for 𝑑𝑈 Haar measure on 𝑈(𝑑),

where

Φ𝜆(𝑝) =
𝑠𝜆(𝑝)

𝑠𝜆(1, . . . , 1)
.

is the normalized Schur polynomial. Note that, as planned, this distribution is unitarily invariant
with respect to 𝜌 (that is, 𝑊𝑈𝑊 † for 𝑈 ∼ K𝜆(𝜌) is distributed as K𝜆(𝑊𝜌𝑊 †) for any unitary 𝑊 ),
and so we may henceforth assume (for analysis purposes) that 𝜌 is diagonal, 𝜌 = diag(𝑝).

Although we now have an explicit formula for Keyl’s distribution 𝑈 ∼ K𝜆(diag(𝑝)), it is not
particularly easy to calculate with it. But as described in Section 14, we won’t be overly ambitious
about what we try to calculate. Indeed, recalling Inequality (38), we will only be interested in the
following principal minor traces: for 1 ≤ 𝑘 ≤ 𝑑,

E
𝑈

[︃
𝑘∑︁

𝑖=1

(𝑈 † diag(𝑝)𝑈)𝑖𝑖

]︃
= E

𝑈

[︁
tr
(︁

(𝑈 † diag(𝑝)𝑈)[𝑘]

)︁]︁
,

where again 𝑍[𝑘] denotes the top-left 𝑘 × 𝑘 submatrix of 𝑍. To try to access the above quantities,
we might start with the only computation that perhaps doesn’t not require too much in the way
of smarts: if 𝜇 ∈ N𝑑 is such that 𝜆 + 𝜇 is a valid Young diagram, then

E
𝑈∼K𝜆(𝜌)

[Δ𝜇(𝑈 †𝜌𝑈)] = Φ𝜆(𝑝)−1

∫︁
Δ𝜇(𝑈 †𝜌𝑈)Δ𝜆(𝑈 †𝜌𝑈) 𝑑𝑈

= Φ𝜆(𝑝)−1

∫︁
Δ𝜆+𝜇(𝑈 †𝜌𝑈) 𝑑𝑈

=
Φ𝜆+𝜇(𝑝)

Φ𝜆(𝑝)
,

where the second equality used the multiplicativity of Δ(·)(𝑝) (which is slightly more obvious from
the final expression in Equation (42)). In particular, taking 𝜇 = 𝑒1 = (1, 0, . . . , 0), we get

E
𝑈∼K𝜆(𝜌)

[(𝑈 †𝜌𝑈)11] =
Φ𝜆+𝑒1(𝑝)

Φ𝜆(𝑝)
, (44)

and taking 𝜇 = 𝑒𝑗 = (0, . . . , 0, 1, 0, . . . , 0) for 2 ≤ 𝑗 ≤ 𝑑 gives

E
𝑈∼K𝜆(𝜌)

[︃
det
(︀
(𝑈 †𝜌𝑈)[𝑗]

)︀
det
(︀
(𝑈 †𝜌𝑈)[𝑗−1]

)︀]︃ =
Φ𝜆+𝑒𝑗 (𝑝)

Φ𝜆(𝑝)
(45)
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(assuming 𝜆 + 𝑒𝑗 is a Young diagram15).
We are on the right track! In the upcoming Section 17 we will note that these ratios of normal-

ized Schur polynomials have a probabilistic interpretation, and that we might heuristically expect

Φ𝜆+𝑒𝑘(𝑝)

Φ𝜆(𝑝)
≈ 𝑝𝑘. (46)

In particular, we conclude from Equation (44) that we expect

(𝑈 †𝜌𝑈)11 ≈ 𝑝1.

Let us now write 𝑝
(𝑘)
1 ≥ 𝑝

(𝑘)
2 ≥ · · · ≥ 𝑝

(𝑘)
𝑘 for the eigenvalues of (𝑈 †𝜌𝑈)[𝑘], so e.g. 𝑝(𝑑) = 𝑝 always,

and 𝑝
(1)
1 = (𝑈 †𝜌𝑈)11. Then Equation (45) and our heuristic suggests

E
𝑈∼K𝜆(𝜌)

[︃ ∏︀𝑘
𝑖=1 𝑝

(𝑘)
𝑖∏︀𝑘−1

𝑖=1 𝑝
(𝑘−1)
𝑖

]︃
≈ 𝑝𝑘. (47)

Now the Cauchy Interlacing Theorem says that the sequence 𝑝(𝑖−1) always interlaces the sequence

𝑝(𝑖). In particular, if 𝑝
(1)
1 ≈ 𝑝1 as Section 16 suggests, and 𝑝

(𝑑)
1 = 𝑝1, then it must be that 𝑝

(𝑘)
1 ≈ 𝑝1

for all 𝑘. In particular, 𝑝
(2)
1 ≈ 𝑝1, and putting this into the 𝑘 = 2 case of Equation (47) yields

E
𝑈∼K𝜆(𝜌)

[︃
𝑝1𝑝

(2)
2

𝑝1

]︃
≈ 𝑝2,

and hence 𝑝
(2)
2 ≈ 𝑝2. Again, 𝑝

(𝑑)
2 = 𝑝2 and interlacing thus imply 𝑝

(𝑘)
2 ≈ 𝑝2 for all 𝑘, and putting

this into the 𝑘 = 3 case of Equation (47) yields

E
𝑈∼K𝜆(𝜌)

[︃
𝑝1𝑝2𝑝

(3)
3

𝑝1𝑝2

]︃
≈ 𝑝3,

and hence 𝑝
(3)
3 ≈ 𝑝3. Iterating this yields the hope that, in general,

(𝑝
(𝑘)
1 , . . . ,𝑝

(𝑘)
𝑘 ) ≈ (𝑝1, . . . , 𝑝𝑘)

which in turn implies

𝑝1 + · · ·+ 𝑝𝑘 ≈
𝑘∑︁

𝑖=1

𝑝
(𝑘)
𝑖 = tr

(︁
(𝑈 †𝜌𝑈)[𝑘]

)︁
,

in the direction of our final goal Inequality (43).

17 The final bound for quantum state tomography

Since expectations and ratios do not normally play well together, to make these heuristics work
requires a slightly different approach. Specifically, using just a little more work, it is shown by an
explicit computation in [OW16] that for all 1 ≤ 𝑘 ≤ 𝑑,

E
𝑈∼K𝜆(𝜌)

[(𝑈 † diag(𝑝)𝑈)𝑘𝑘] is a convex combination of
Φ𝜆+𝑒1(𝑝)

Φ𝜆(𝑝)
, . . . ,

Φ𝜆+𝑒𝑘(𝑝)

Φ𝜆(𝑝)
.

15A very minor amount of care is needed in the remaining arguments to discard cases when 𝜆 + 𝑒𝑗 is not a valid
Young diagram; for expositional simplicity, we will henceforth ignore this bookkeeping.

36



Moreover, using the Harish-Chandra–Itzykson–Zuber formula [HC57, IZ80] (see [Far15] for a the-
matic proof), Sra [Sra15] gave an extremely succinct proof that Φ𝜆+𝑒𝑖(𝑝) ≥ Φ𝜆+𝑒𝑗 (𝑝) whenever
𝑖 ≤ 𝑗 (confirming a conjecture of Cuttler, Greene, and Skandera [CGS11]). Thus we finally obtain

E
𝑈∼K𝜆(𝜌)

[(𝑈 † diag(𝑝)𝑈)𝑘𝑘] ≥ Φ𝜆+𝑒𝑘(𝑝)

Φ𝜆(𝑝)
. (48)

Now we tackle the heuristic Equation (46). We have

Φ𝜆+𝑒𝑖(𝑝)

Φ𝜆(𝑝)
=

(︂
𝑠𝜆+𝑒𝑖(𝑝)

𝑠𝜆(𝑝)

)︂ ⧸︁ (︂
𝑑 · 𝑠𝜆+𝑒𝑖(1/𝑑)

𝑠𝜆(1/𝑑)

)︂
, (49)

where 1/𝑑 stands for the uniform distribution (1/𝑑, . . . , 1/𝑑), and we used the fact that 𝑠𝜆(𝑥) is

a degree-|𝜆| homogeneous polynomial. We now use the fact that both 𝑠𝜆(𝑝) and
𝑠𝜆+𝑒𝑖

(𝑝)

𝑠𝜆(𝑝)
have

probabilistic interpretations (as observed in, e.g. [O’C03]).
Recall the “RSK process” from Section 7, where 𝑤(∞) = 𝑤1𝑤2𝑤3 · · · is an infinite random

word with each 𝑤𝑖 ∼ 𝑝 independently. Let us write 𝜆(𝑛) = RSKshape(𝑤1 · · ·𝑤𝑛), and also 𝜆(∞) =
(𝜆(0),𝜆(1),𝜆(2), . . . ) ∼ SW∞(𝑝). From Equation (12) and the RSK Correspondence (Theorem 5.1),
it follows that for any fixed sequence 𝜆(0) ≺ 𝜆(1) ≺ · · · ≺ 𝜆(𝑛) of Young diagrams with |𝜆(𝑖)| = 𝑖
(equivalently, for any recording tableau 𝑄 of shape 𝜆(𝑛)),

𝑠𝜆(𝑛) = Pr
𝜆(∞)∼SW∞(𝑝)

[𝜆(𝑡) = 𝜆(𝑡) ∀𝑡 ≤ 𝑛].

As a consequence, we also have

𝑠𝜆+𝑒𝑖(𝑝)

𝑠𝜆(𝑝)
= Pr

𝜆(∞)∼SW∞(𝑝)
[𝜆(𝑛+1) = 𝜆 + 𝑒𝑖 | 𝜆(𝑛) = 𝜆].

In words, the ratio above is the probability, given that at time 𝑛 the RSK process has formed Young
diagram 𝜆, that the (𝑛 + 1)st insertion will lead to a new box in the 𝑖th row. We know from our
investigations of the EYD method that after a large number of insertions, the fraction of boxes in
the 𝑖th row will approximate 𝑝𝑖, so it is reasonable to imagine that

𝑠𝜆+𝑒𝑖(𝑝)

𝑠𝜆(𝑝)
≈ 𝑝𝑖,

𝑠𝜆+𝑒𝑖(1/𝑑)

𝑠𝜆(1/𝑑)
.

Putting these into Equation (49) explains our heuristic Equation (46) from Section 16.
The key to proceeding rigorously involves inverting the denominator in Equation (49); if we

heuristically believe that it is nearly 1, then the simple inequality 1/𝑟 ≥ 2 − 𝑟 will not be very
wasteful. Applying it with Inequality (48) and Equation (49) we get

E
𝑈∼K𝜆(𝜌)

[(𝑈 † diag(𝑝)𝑈)𝑖𝑖] ≥
Φ𝜆+𝑒𝑖(𝑝)

Φ𝜆(𝑝)
≥ 2

𝑠𝜆+𝑒𝑖(𝑝)

𝑠𝜆(𝑝)
−
(︂
𝑠𝜆+𝑒𝑖(𝑝)

𝑠𝜆(𝑝)

)︂(︂
𝑑 · 𝑠𝜆+𝑒𝑖(1/𝑑)

𝑠𝜆(1/𝑑)

)︂
.

We now employ a somewhat explicit formula for the last factor above; using the Hook Length
Formula Equation (10) together with Stanley’s Hook-Content Formula [Sta99, Ch. 7.21] it follows
that

𝑑 · 𝑠𝜆+𝑒𝑖(1/𝑑)

𝑠𝜆(1/𝑑)
=

dim(𝜆 + 𝑒𝑖)

dim𝜆
· 𝜆𝑖 + (𝑑− 𝑖 + 1)

𝑛 + 1
.
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But this matches very nicely with the preceding formula, in light of the Schur–Weyl distribution
formula Equation (35); combining these (and using 𝑑−𝑖+1

𝑛+1 ≤
𝑑
𝑛) yields

E
𝑈∼K𝜆(𝜌)

[(𝑈 † diag(𝑝)𝑈)𝑖𝑖] ≥ 2𝐴𝑖 −𝐵𝑖, for 𝐴𝑖 =
𝑠𝜆+𝑒𝑖(𝑝)

𝑠𝜆(𝑝)
, 𝐵𝑖 =

Pr[𝜆(𝑛+1) = 𝜆 + 𝑒𝑖]

Pr[𝜆(𝑛) = 𝜆]
· 𝜆𝑖 + 𝑑

𝑛
,

(50)
where 𝜆(∞) ∼ SW∞(𝑝) in 𝐵.

We are ready to conclude, by summing over 𝑖 = 1 . . . 𝑘 and also taking expectations over the
outcome 𝜆 of the EYD algorithm. On one hand, we have

𝑘∑︁
𝑖=1

𝐴𝑖 =

𝑘∑︁
𝑖=1

𝑠𝜆+𝑒𝑖(𝑝)

𝑠𝜆(𝑝)
≥ 𝑝≤𝑘. (51)

Here we have exactly used Inequality (16), but generalized to the first 𝑘 rows, as opposed to just
the first row. (The proof is the same, since inserting one of the last 𝑘 letters in alphabetical order
in the RSK algorithm always creates a box within in the first 𝑘 rows.)

It remains to analyze the 𝐵𝑖’s, which we do in expectation over the outcome 𝜆 of the EYD
algorithm. Since it is distributed exactly as 𝜆(𝑛), we get

E
𝜆

[𝐵𝑖] ≤ E
𝜆′∼SW𝑛+1(𝑝)

[︂
𝜆′
𝑖 − 1 + 𝑑

𝑛

]︂
≤ E

𝜆∼SW𝑛(𝑝)

[︂
𝜆𝑖

𝑛

]︂
+

𝑑

𝑛
= ̂︀𝑝𝑖 +

𝑑

𝑛
.

Finally, summing this over 1 ≤ 𝑖 ≤ 𝑘 and putting the result together with Inequality (51) into
Equation (50), we precisely get our final goal, Inequality (43).
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[BOW19] Costin Bădescu, Ryan O’Donnell, and John Wright. Quantum state certification. In
Proceedings of the 51st Annual ACM Symposium on Theory of Computing, pages 503–
514, 2019. (document), 4, 10, 13

[BR97] Hélene Barcelo and Arun Ram. Combinatorial representation theory. Technical Report
math/9707221, arXiv, 1997. 15

[Can15] Clément Canonne. A survey on distribution testing: Your data is big.
But is it blue? Technical Report 63, Electronic Colloquium on Computa-
tional Complexity, 2015. http://www.cs.columbia.edu/~ccanonne/files/misc/

2015-survey-distributions.pdf. 10

[CDVV14] Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algo-
rithms for testing closeness of discrete distributions. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1193–1203. Society for Indus-
trial and Applied Mathematics, 2014. 10

[Cer15] Miguel de Cervantes Saavedra. El ingenioso hidalgo don Quijote de la Mancha. Pub-
lished by Francisco de Robles, 1605, 1615. http://www.gutenberg.org/ebooks/2000.
1

[CGS11] Allison Cuttler, Curtis Greene, and Mark Skandera. Inequalities for symmetric means.
European Journal of Combinatorics, 32(6):745–761, 2011. 17

[Chr06] Matthias Christandl. The Structure of Bipartite Quantum States. PhD thesis, Univer-
sity of Cambridge, 2006. (document)

[CHW07] Andrew Childs, Aram Harrow, and Pawe l Wocjan. Weak Fourier–Schur sampling, the
hidden subgroup problem, and the quantum collision problem. In 24th Annual Sympo-
sium on Theoretical Aspects of Computer Science, pages 598–609, 2007. (document),
4, 10

[CLM+21] Matthias Christandl, Felix Leditzky, Christian Majenz, Graeme Smith, Florian Speel-
man, and Michael Walter. Asymptotic performance of port-based teleportation. Com-
munications in Mathematical Physics, 381(1):379–451, 2021. (document)

[CM06] Matthias Christandl and Graeme Mitchison. The spectra of quantum states and
the Kronecker coefficients of the symmetric group. Communications in Mathematical
Physics, 261(3):789–797, 2006. (document), 12

39

http://www.cs.columbia.edu/~ccanonne/files/misc/2015-survey-distributions.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2015-survey-distributions.pdf
http://www.gutenberg.org/ebooks/2000


[DGPP19] Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Collision-based
testers are optimal for uniformity and closeness. Chicago Journal of Theoretical Com-
puter Science, 1:1–21, 2019. 10

[Far15] Jacques Faraut. Rayleigh theorem, projection of orbital measures and spline functions.
Advances in Pure and Applied Mathematics, 2015. 17

[FRT54] James Sutherland Frame, Gilbert de Beauregard Robinson, and Robert Thrall. The
hook graphs of the symmetric groups. Canadian Journal of Mathematics, 6(316):316–
324, 1954. 5

[Gai14] Helen Gaines. Cryptanalysis: a study of ciphers and their solution. Dover, 2014. 1

[GR00] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Tech-
nical Report TR00-020, Electronic Colloquium on Computational Complexity, 2000.
10

[Gre74] Curtis Greene. An extension of Schensted’s theorem. Advances in Mathematics, 14:254–
265, 1974. 3

[Ham72] John Hammersley. A few seedlings of research. In Proceedings of the 6th Berkeley
Symposium on Mathematical Statistics and Probability, pages 345–394, 1972. 7

[Har05] Aram Harrow. Applications of coherent classical communication and the Schur trans-
form to quantum information theory. PhD thesis, Massachusetts Institute of Technology,
2005. (document), 13

[HC57] Harish-Chandra. Differential operators on a semisimple Lie algebra. American Journal
of Mathematics, 79:87–120, 1957. 17

[Hel76] Carl Helstrom. Quantum Detection and Estimation Theory. Academic Press, 1976. 13

[Hep94] Charles Hepler. On the complexity of computing characters of finite groups. PhD thesis,
University of Calgary, 1994. 11

[HHJ+17] Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun Yu. Sample-
optimal tomography of quantum states. IEEE Transactions on Information Theory,
63(9):5628–5641, 2017. (document), 13

[HM02] Masahito Hayashi and Keiji Matsumoto. Quantum universal variable-length source
coding. Physical Review A, 66(2):022311, 2002. (document), 12
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