Sharpness of KKL on Schreier graphs
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Abstract. Recently, the Kahn-Kalai-Linial (KKL) Theorem on influences of functions on {0, 1}" was
extended to the setting of functions on Schreier graphs. Specifically, it was shown that for an undirected
Schreier graph Sch(G, X, U) with log-Sobolev constant p and generating set U closed under conjugation,
if f: X — {0,1} then &[f] 2 log(1/M[f]) - p- Var[f]. Here £[f] denotes the average of f’s influences,
and M[f] denotes their maximum.

In this work we investigate the extent to which this result is sharp. Our main result is that Talagrand’s
strengthened version of KKL also holds in the Schreier graph setting;:

3¥§{Iu[f]/log(1/1u[f])} > p- Var[f].

We also give both positive and negative results regarding the strength of this theorem. We show:

— The condition that U is closed under conjugation cannot in general be eliminated.

— The log-Sobolev constant cannot be replaced by the modified log-Sobolev constant.
— The result cannot be improved for the Cayley graph on S,, with transpositions.

— The result can be improved for the Cayley graph on Z;, with standard generators.

1 Introduction

1.1 The KKL Theorem

The famed KKL (Kahn-Kalai-Linial) Theorem [KKLS8S| asserts that for any “roughly balanced”
function f: {0,1}"™ — {0,1}, one of the coordinate ¢ € [n] must have “influence” Z;[f] 2 10%. This
theorem, along with generalizations by Bourgain—-Kahn-Kalai-Katznelson—Linial [BKK™92|, Tala-
grand [Tal94], and Friedgut [Fri98], has important applications in numerous areas of computer sci-
ence and mathematics, including distributed computing [BL90], random k-SAT [Fri99] and random
graphs [FK96], communication complexity [Raz95], hardness of approximation [DS05,CKK™06/KR0g],
metric embeddings [KRO9/DKSV06], weak random sources [KZ06], learning theory [OS08JOW09],
and extremal combinatorics [OW09]. To state the KKL Theorem more precisely, we first introduce
some definitions.

Definition 1. For f: {0,1}" — R we define:
Var[f] = E[f(x)*] - E[f(x)]*;

Lilf] = 3 El(f(x) — f(x))*], i€ [n];
Elf] = ave{Zi[f]};  MIf] = max{Z;[f]}.

i€[n] i€[n]

Here the random variable x is always uniformly distributed on {0,1}", and x¢ denotes x with its
ith coordinate ﬂippedﬁ
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We may now state the KKL Theorem:
KKL Theorem. Let f: {0,1}" — {0,1}. Then M[f] 2 2" . Var[f].

(Throughout this paper, A 2> B means that A > ¢B for some absolute constant ¢ > 0, and
log denotes the natural logarithm.) The KKL Theorem should be compared to the much easier
“Poincaré Inequality” for {0, 1}":

Poincaré Inequality. Let f: {0,1}" — R. Then E[f] > 2 - Var|f].

Note that the Poincaré Inequality may be sharp even for functions f: {0,1}" — {0,1}; e.g.,
when f(x) = z; for some ¢ € [n]. The proof method used in [KKLS§| can easily be extended to give
the following sharper result, first stated by Talagrand [Tal94]:

KKL Theorem 2. Let f: {0,1}" — {0,1}. Then E[f] 2 BWMID  var[f].

Indeed, Talagrand [Tal94] gave an even sharper version:

Talagrand Theorem. Let f: {0,1}" — {0,1}. Then avgie[n}{li[f] / log(l/l}[f])} > L. Varlf].

To see that this is strictly sharper, note that it rules out a function f having Var[f] = 1,
Z,[f] = 1/logn, and Z;[f] = (loglogn)/n for i > 2, something that isn’t ruled out by KKL

Theorem 2.

1.2 KKL on Schreier graphs

In a recent work [OWO09], the authors generalized KKL Theorem 2 to the setting of functions on
Schreier graphs. Let us recall this setting. Let G be a finite group acting transitively on a finite set
X. Let U C G be a generating set which is symmetric; i.e., closed under inverses. The associated
Schreier graph Sch(G, X, U) is the undirected graph with vertex set X and edges (z,z") for each
x € X, u € U, where % denotes the action of v on z. In the special case that G acts on X = G by
" = zu, the Schreier graph is simply the Cayley graph Cay(G,U). This is the case in the original
KKL Theorem setting, where G = X = Z7 and U is the standard generating set U = {e; : i € [n]}.

There is a natural random walk on a Schreier graph Sch(G, X,U). Let K denote the Markov
transition matrix for this walk and write L = id— K for the normalized Laplacian. Since Sch(G, X, U)
is undirected, regular, and connected, the random walk has a unique invariant probability measure:
the uniform distribution on X. We denote this measure by 7, and we write L?(x) for the inner
product space of functions f: X — R with inner product (f, g) = Eg[f(x)g(x)].

Thinking of K as an operator on L?(r), we have K = avg,c; Ky, where K, is the operator
defined by K, f(z) = f(z"). Similarly, L = avg, cy; Ly, where we define the operator L, = id — K.
We have the following simple facts:

Proposition 1. The adjoint K of K, is K,-1, and similarly L}, = L,-1.

Proof. This holds because for each fixed u € U, the pairs (z,2*) and (z* ', x) have the same
distribution when & ~ 7.

Proposition 2. For all f,g € L?(r) it holds that (L, f, L.g) = {f, Lug) + (f, L%g).

Proof. We have (L f, Lug) = (f —Kuf, 9= Kug) = ({f, 9)—(f, Kug))+ (Kuf, Kug) = (Ku [, g)). The
first quantity in parentheses is precisely (f, L,g). As for the second quantity, we have (K, f, K,g)
)

Epr[f(x%)g(x")] = (f,g), because " is uniformly distributed when @ is; furthermore, (K, f, g
(f, K*g). Hence the second quantity in parentheses is indeed (f, L} g) as required.



We may now define “influences” in the Schreier graph setting:

Definition 2. The influence of generator u € U on f € L?(x) is defined to be

1
Zu[f] = <fa Luf> = QHLufH%v

where the second equality is by Proposition |3 We also define M[f] = maxycu{Z.[f]} and

Elf) = avg{ T} = (. L),

uelU
which is sometimes called the “energy” of f.

These definitions agree with those in the original KKL Theorem setting where G = X = Z7,
U={e; :i€[n]}
To state the KKL Theorem in Schreier graphs we must also recall the “log-Sobolev inequality”
for Markov chains. For a nonnegative function f € L?(r), the entropy of f is defined to be
Ent[f] = E [f(x)log f(x)] ~ B [f(z)]log B [f(x)].

T~ T~

with 0log0 defined to be 0. The log-Sobolev constant for the Markov chain on Sch(G, X,U) is
defined to be the largest constant p such that the following inequality holds:

Log-Sobolev Inequality. For all nonconstant f € L*(r), Ent[f?] < 2p~E[f].

This notion was introduced by Gross [Gro75] who showed the following:

2
-

Gross’s Theorem. For Cay(Zy,U) with U = {e; : i € [n]}, the log-Sobolev constant is p =
We may now state the authors’ generalization [OW09] of KKL Theorem 2 to Schreier graphs:

Theorem 1. Let Sch(G, X,U) be a Schreier graph with log-Sobolev constant p. Assume that U is
closed under conjugation. Then for all f: X — {0,1} it holds that E[f] = log(1/M|f]) - p - Var[f].
In particular, M[f] 2 plog(1/p) - Var[f].

The motivation for this theorem was the setting where X is the set of length-n binary strings of
Hamming weight k, G = S,, acts on X by permuting coordinates, and U = {(ij) : 1 <1i < j < n}.
The log-Sobolev constant for this Schreier graph is known [LY98] to be p = O(1) assuming % is
bounded away from 0 and 1. Using the resulting KKL Theorem, the authors were able to give a
stable version of the classical Kruskal-Katona theorem, as well as an optimal weak-learning algo-
rithm for the class of monotone Boolean functions.

Subsequently, additional related generalizations of KKL appear in manuscripts of Cordero-
Erausquin—Ledoux [CEL11] and Sachdeva—Tulsiani [ST11], both of which were written indepen-
dently of the present work.

1.3 Our results

One may ask whether Talagrand’s strengthening of the KKL Theorem also holds in the Schreier
graph setting. We establish this using a method of proof alluded to in Talagrand’s paper [Tal94].

Theorem 2. Let Sch(G, X,U) be a Schreier graph with log-Sobolev constant p. Assume that U is
closed under conjugation. Then for all f: X — {0,1} it holds that

Z1f) .
SZ%{logu/zu[fn}Zp Varl/l



In particular, this proves the original KKL Theorem with a proof that has not previously appeared
in the literature.

Further, in this paper we address several natural questions one might ask regarding the sharp-
ness of Theorem [2l The most obvious question is whether the condition that U be closed under
conjugation is really necessary. Although originally inclined to believe it is not, we show here the
following;:

Theorem 3. The assumption that U is closed under conjugation cannot in general be removed
from Theorem[3, even for Cayley graphs.

There are also natural cases where Theorem (1] does not give a strong result because the log-
Sobolev constant is too small. One such example is the Cayley graph on S, with generating set given
by transpositions. In this case the log-Sobolev constant is known [DSCI6/LY98] to be p = O(—+—).

nlogn
Hence for f: S, — {0,1} with Var[f] > 1, Theorem |1/ only implies that M[f] > 1. One might ask
whether this inequality can nevertheless be improved. Unfortunately, the answer is no:

Theorem 4. For the Cayley graph on S,, (n > 1) with generating set U equal to all transpositions,
there is a function f: S, — {0,1} with Var[f] >2/9 and Z,[f] < 2 for allu € U.

The proof is short enough that we can give it here. Say that f(o) = 1 if o is a derangement (i.e.,
has no fixed point) and f(o) = 0 otherwise. It is well known that the fraction of permutations
in S, which are derangements is >\ (_Z.!l)z € [1/3,1/2]; thus Var[f] > 2/9. By symmetry, all
transpositions u have the same influence; the influence of (12), say, is

Pg [0 has no fixed point, o - (12) has a fixed point].

O~on

For the event in question to occur, o must have either o(1) = 2 or (2) = 1. But the probability
of this is at most % + % = %, completing the proof of Theorem [4. This theorem also immediately
implies:

Corollary 1. In general, one cannot replace the log-Sobolev constant p in Theorem |1 with the
modified log-Sobolev constant pg.

The modified log-Sobolev constant pg, which always satisfies pg > p, was introduced in several
papers, dating back to [Wu00]; it is defined to be the largest the constant such that Ent[f?] <
%PE L(f2, Llog f?). Corollary [1| follows from Theorem {4 because it is known [GQ03|Goe04/BT06]
that the modified log-Sobolev constant for the Cayley graph of S,, with transpositions is pg = @(%)

Another natural setting for which Theorem [I] does not give a strong result is the Cayley graph
on 7! with standard generating set U = {£e; : i € n}. It is known that the log-Sobolev constant
for this Cayley graph satisfies p = ©(—%-); thus Theorem [1|shows that M([f] > % - Var[f]
for any f: Z% — {0,1}. In contrast to the case of S,,, we show that Theorem [l can be improved
for Z7,.

Theorem 5. For any f: Z, — {0,1} it holds that E[f] 2 w - Var[f]. In particular,
M(f] = 98" . Var|f]. Further, these inequalities are sharp up to a constant factor-.

gn
~ mn
1.4 Organization of the remainder of the paper

In Section [2] we prove Theorem [2] we prove our main result, the generalization of the Talagrand
Theorem to the Schreier graph setting. This proof uses Orlicz norms and is probably the most



technically interesting part of the paper. In the following sections we discuss various strengths
and weaknesses of this theorem. In Section [3| we show Theorem [3] establishing that the condition
that U be closed under conjugation cannot be removed, even for Cayley graphs. The example
takes place on the semidirect product Z5 x Z,. In Section 4] we show Theorem [5| regarding Z;,;
the proof follows from a simple combinatorial compression argument combined with the “BKKKL
generalization” [BKK™92] of the KKL Theorem.

2 The Talagrand Theorem in Schreier graphs

Recall Talagrand’s Theorem, which generalizes the KKL Theorem: for all f:{0,1}" — {0,1},

avg {Z(f] / log(1/Zi[f)) } 2 Var(f]. (1)

1€[n]

In fact, in [Tal94] Talagrand also proved a version of this result for {0,1}" equipped with the
p-biased measure, p # 1/2. Talagrand straightforwardly deduced from the following Fourier-
theoretic inequality:

Talagrand’s Inequality. For g: {0,1}" — R with E[g] =0,

~ 2
3 gfjifsuguﬁm (2)

0#SC[n]
Here || - |3 denotes a certain Orlicz-type norm with M(t) ~ t2/logt.

Talagrand’s proof of (a p-biased version of) (2) is slightly lengthy. It relies in part on a hypercon-
tractive inequality for {0, 1}" under the p-biased distribution, which Talagrand proves by reduction
to the standard ([Bon70]) p = 1/2 case. After the proof, Talagrand remarks that one can obtain
in the p = 1/2 case “by duality from an inequality of L. Gross [the log-Sobolev inequality], that it-
self follows from [the hypercontractive inequality]”. However it would be two years before the sharp
log-Sobolev and hypercontractive constants for the p-biased distribution were obtained [DSC96];
as Talagrand wrote, this “creates complications in using this [log-Sobolev and duality] approach
when p # 1/2”. In this section we deduce the approach Talagrand presumably had in mind, and
show that it can be extended to the setting of Schreier graphs.

2.1 Basics of Orlicz norms

We begin by recalling some basics of Orlicz norms; see, e.g., [KR6IJRR91]. A function ¢ : R — R=?
is called a Young function if it is convex, even, and satisfies ¢(0) = 0, lim;_,o, @(t) = oco. Each
such function has a complementary Young function ¥, defined by ¥(s) = sup{t|s| — @(t) : t > 0}.
Given a measure space ({2, 0, 1) and a Young function @, one can define the following “gauge” (or
“Luxemburg”) norm on functions f: 2 — R:

Ifllo = inf{e >0 /Q (f/c)du < 1}.

This norm is closely equivalent to the “Orlicz” norm. Given two Young functions &; and @5 one
writes @1 < Py if there exist constants ¢, tg > 0 such that @(t) < @(ct) for all t > to. If 1 < Py



and also @3 < @1, then we call &1 and @5 equivalent and write @1 ~ @5. In this case the associated
norms are also equivalent [KR61, (9.24) and (13.7)]:

||f||451 5 ||f||452 5 ||f||¢’1 for all f

Finally, if @ and ¥ are a complementary Young pair we have the following generalized Hélder’s
inequality [RR91, Prop. 1] for functions f,g: 2 — R:

/Q Faldi < 20 fllallglle-

2.2 Talagrand’s key inequality for Markov chains

We now show how to generalize Talagrand’s key inequality to the setting of Markov chains.

These Markov chains need not be random walks on Schreier graphs; for this subsection, we
merely assume that we have an irreducible finite Markov chain X with a transition matrix K which
is not necessarily reversible. We write 7 for the (unique) probability distribution on X which is
invariant for K, and L?(7) for the inner product space of functions f: X — R with inner product
(f,g9) = Egor[f(x)g(x)]. We also let L = id — K be the (normalized) Laplacian of the Markov
chain. The entropy and energy of functions f € L?(r) are defined as in the Schreier graph case,
as is the log-Sobolev constant of the chain. We write L3(7) for the subspace of functions f with
E.-[f(x)] = 0. By the assumption that the chain is irreducible, L is invertible when restricted
to L&(m); we write L™! for its inverse on this subspace. For example, in the setting of the natural
random walk on {0,1}" we have

. (S
1f= SIS SNs, 1= Y fg,)m
SCln] 0£5C[n]

for all f € L%(r), f2(m) respectively.
The generalization of Talagrand’s inequality involves certain gauge norms on L?(7). Let

t? _ t*log(e + t?)

M(t) = log(c + )’ N'(t) 1 )

which are easily verified to be Young functions. M and N’ are not complementary but by [KR61,
Lem. 7.2] we have that M ~ M’ where M’ is the Young complement of N'. Let us also introduce
the Young function

N(t) = t*log(1 + t2),

for which it is easy to verify N(¢/2) < N'(t) < N(t) when ¢t > 1, and hence N ~ N’. Bobkov and
Gotze [BGI9] have shown that the norm || - || is closely related to entropy:
Proposition 3. For any f € Li(r) it holds that || f||3 S supecr{Ent{(f + )%} S [If]%-

Note that

sup{Ent((f + o]} <207 E[f] (3)

follows immediately from the log-Sobolev inequality because E[f + ¢|] = £[f] for all constants c.

We now state and prove the generalization of Talagrand’s inequality to our setting of Markov
chains:



Theorem 6. For all f € L3(w) it holds that (f, L71f) < p7 Y| fI3,

Proof. The result is trivial if f = 0. Otherwise,
L2 S ARALT IR S IAIRAETHIR S IIfII?w-Slelﬂg{Ent[(L_lf+C)2]}
C

< oA €LY = o7 AR (LT ),

as required, where the first inequality uses generalized Holder, the second inequality uses M’ ~ M
and N’ ~ M, the third inequality uses Proposition |3, and the fourth inequality is the log-Sobolev
inequality (or rather, (3)).

2.3 The Talagrand Theorem for Schreier graphs

We now return to our setting of Schreier graphs and prove Theorem [2] the generalization of the
Talagrand Theorem. We begin with a simple calculation (cf. [KR61], (9.23)]):

Fact 7 Let f: X — {0,1} be the indicator of a subset of measure T. Then

||f”M < Hm-

Proof. Write ¢ = ¢(1) = toateriyy M 7 =0 then f is 0 almost everywhere and hence W fllar =

0 = ¢(0). Otherwise, we verify that [, M(f/c)dp < 1:

T B log(e +1/7)
c2log(e +1/c%) log(e + loslet/n)y =

/QM(f/c)du:TM(l/c) =

as log(e+1/7) > 1.

With this calculation in hand, we are able to deduce Theorem [2] from Theorem[6] The deduction
is not quite as straightforward as in Talagrand’s case, since our operators L, are not self-adjoint.

Theorem [2|restated. Let Sch(G, X,U) be a Schreier graph with log-Sobolev constant p. Assume
that U is closed under conjugation. Then for all f: X — {0,1} it holds that

Z.[f]

ave {log(l/Iu[f])} <o Varlfl

Proof. Given uw € U, let ¢ = L, f. Since x" is uniformly distributed when x is, it follows that
Ez~r[g(x)] = 0. Hence we may apply Theorem [6] obtaining

(9, L7 g) < p~ g3 (4)
Since |g| is the 0-1 indicator of a set of measure 27,[f], we conclude from Fact [7| that

) 2,11 Llf
Iollss = ol < e 1 22,17 g1 /217D

(using 0 < Z,[f] < 1/2). Thus from (4]) we deduce

Ll
log(1/Z.[f]) ~

(Luf, L™ L f).



Since U is closed under conjugation, it follows that L, commutes with L (see [OW09]). Hence L,
commutes with L™ on L3(7) and we obtain

(Luf, L_lLUf> = (Lul, LuL_1f> =(f LuL_1f> +(/, LuflL_lf%

using Propositions [2] and [, Thus

Ll ) )
sty 20 (BT )+ (R L L)),

Averaging over u € U and noting that avg,c{L,} = L = avg,cy{L,-1} (because U is closed
under inverses), we get

{ T [f]
log(1/Z.[f])

completing the proof.

avg
uelU

} > 99 (fLLL"'f) = 20+ (£, f — BIf]) = 2p - Var[/],

3 When U is not closed under conjugation

In this section we prove Theorem [3] establishing that the condition that U be closed under conju-
gation cannot be removed from Theorem [2} Our counterexample will take place on a Cayley graph,
Cay(G,U). The group G is the semidirect product Z§ X Z,, where Z, acts on Z5 by the natural
cyclic shift of coordinates. I.e., for (z,1), (y,j) € Z% x Zy, the group multiplication is given by

(z,9) - (y,7) = (x +y™, i+ j), (5)

where y™ € Z3 is the vector given by cyclically shifting y’s coordinates ¢ places to the right. We
take U to be the following symmetric generating set of 2n elements:

U={(ei,0) :i € [n]} U{(0,)) : j € Zn}.

(If one prefers not to have the group identity in the generating set, it is not hard to alter our
argument so that it works for U\ {(0,0)}.) We remark that U is not closed under conjugation; e.g.,

(e1,0) - (0,1) - (e1,0)™" = (e1,0) - (0,1) - (e1,0) = (e1,0) - (e2,1) = (e1 + e2,1) # (0,1).

To show that the conclusion of Theorem [1|is not satisfied for Cay(G, U), it suffices to establish the
following two lemmas:

Lemma 1. There is a function f: G — {0,1} with Var[f] = 1/4 and Z,[f] < 5~ for allu € U.

1
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Lemma 2. Assuming n > 1, the log-Sobolev constant pg for Cay(G,U) satisfies pg =

The first lemma is extremely easy; the function is f((v,7)) = 1. Clearly Pr,;[f((x,7)) =
1] = 1/2 and hence Var[f] = 1/4. The generators (0,7) € U have 0 influence on f, and it is easy
1

to calculate that the generators (e;,0) have influence 5~ each. We now prove the second lemma.

Proof. (Lemma) We determine pe by comparing it with the log-Sobolev constant pg of a related
Cayley graph. Specifically, let X be the set Z5 x Z,; we write G = (X, -), where - is the group
multiplication defined in . Let H be the abelian direct product group Z% x Zp; we write H =
(X,+). We may interpret U C X as both a subset of G and of H; it is a symmetric generating set



of both. We may interpret any function f: X — R as being both a function on G and on H; we
distinguish the influence of w € U on f within G and within H as

T71f1= E [f(@)(f(@) - f@-w), L'lfl= E [f@)(f(z)~ f(z+uv)

x~X r~X
We claim that
alf] = ave{Z{[f]} = ave{Zy [/} = Enlf]
uelU uelU

for all f: X — R. First, ZG[f] = ZH[f] for any u = (0, j), since « - u =  + u for such u. Second,
for the generators in U of the form (e;,0) we have

o {26,001} = B, [f@)(/(@) ~ ave{ sl (cs.0)})]

o~ X 1€[n]
= B @@ - wveff @+ (0] = ave{Z 11},

because {z - (e;,0) : ¢ € [n]} = {x + (&;,0) : i € [n]} (as multisets) for each z € X.

Since we have Eg[f] = Ep[f] for all f: X — R and since Ent[f] does not depend on the
group structure, it follows that pg = pg. It thus remains to show that pgp = % The random walk
on Cay(H,U) is the product two random walks, one the standard random walk on Z% and one
the random walk on the complete graph K, with self-loops. It follows [DSC96, Lemma 3.2] that
PH = %min{ng,p;{n}. Since pzy = 2 ([Gro7H)) and pg,, = ig;(:?_/?)) > 2 ([DSC96l, Theorem A.1]),

n
1

n

it follows that py = - as claimed.

4 Improved bounds for Z7

Here we prove Theorem
Theorem [5| restated. For any f: Z — {0,1} it holds that

ol 3 B/ M)

(6)

In particular, M[f] 2, 1‘7%? - Var|[f]|. Further, these inequalities are sharp up to a constant factor.

We remind the reader that Theorem [2 implies only M[f] = % - Var|[f] for a function
whose influences are all equal.

Proof. Let g: Z}, — {0,1}. For = € Z}, and i € [n], we write ¢;,: Zy, — {0,1} for the function
giz(a) = g(z1,...,2i-1,a,Ziy1,...,2y); we also identify g; , with a subset of Z,,. It follows from
the definitions that Z,[g] = Z_,[g9] = E3[|0¢iz|/2m], where we write 0g; , = {z € Zy, : g(x) #
g(x 4+ 1)}. We will write simply Z;[g] for this common value.

Consider the jth compression operator o; for j € [n]; one may define o;g : Z7, — {0,1} by
stating that (0;9)j.(a) = 1la < |g;.|] for each x € Z},. Note that E[o;g] = E[g] always. It is
a familiar fact in the study of influences (see, e.g., [BLI0]) that compressing a function does not
increase any of its influences. In our particular context of Z7, the proof is straightforward and
essentially appears in [BL91]. (That paper studies ‘grids’ rather than our ‘discrete torus’; the only
difference this makes is for the claim that Z;[o;g] < Z;[g], but this follows immediately from the
fact that |0(0i9)iz| < |0giz| for every x € Z7,.) If we now write § = o102 - - - 09, we conclude that

E[g] = E[g], Zi[g) < Zi[g] Y, Vi,z, Giz ={0,1,...,a— 1} for some 0 < a < m.



Given any f: Z}' — {0,1}, the first two facts above show that to prove @ for f, it suffices to
prove it for f. Thus without loss of generality we may assume f satisfies the third condition above:
for each i € [n] and = € Z7, it holds that f;, = {0,1,...,a — 1} for some 0 < a < m. In this case,
note that |0f; | is always either 0 or 2, depending on whether or not f; ., is a constant. It follows
that

Zi|f] = Zi[f]/m = Pryzp [ fiz not constant]/m,

where Z/[f] denotes the influence of the ith coordinate on f in the sense of Bourgain-Kahn-Kalai-
Katznelson—Linial [BKKT92|. Hence proving @ for f is equivalent to proving

>_Zilf) z log(1/ max{Z{[f]}) - Var[f]. (7)
i=1

But the inequality was proved by Friedgut and Kalai [FK96] (building on [BKK™92|) for any
f: 02" —{0,1}, where 2" is a product probability space.

Finally, to show that @ may be sharp up to a constant, consider functions f: Z — {0,1} of
the form f(z) = h(|2z1/m],...|22m/m]), where h: {0,1}" — {0,1}. Then inequality (6] is sharp
up to a constant for f if and only if inequality is sharp up to a constant for h with respect to {2,
a p-biased probability space on {0,1}". Here p=1/2 if miseven and p=1/2—1/2m € [1/3,1/2)
if m is odd. In either case, it is well known [FK96] that there are function families h (namely
“Tribes”) which are sharp for on {2 up to a universal constant.
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