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Abstract

In this paper we study functions with low influences on
product probability spaces. The analysis of boolean func-
tionsf : {−1, 1}n → {−1, 1} with low influences has be-
come a central problem in discrete Fourier analysis. It is
motivated by fundamental questions arising from the con-
struction of probabilistically checkable proofs in theoretical
computer science and from problems in the theory of social
choice in economics.

We prove an invariance principle for multilinear polyno-
mials with low influences and bounded degree; it shows that
under mild conditions the distribution of such polynomials
is essentially invariant for all product spaces. Ours is one
of the very few known non-linear invariance principles. It
has the advantage that its proof is simple and that the er-
ror bounds are explicit. We also show that the assumption
of bounded degree can be eliminated if the polynomials are
slightly “smoothed”; this extension is essential for our ap-
plications to “noise stability”-type problems.

In particular, as applications of the invariance principle
we prove two conjectures: the “Majority Is Stablest” con-
jecture [29] from theoretical computer science, which was
the original motivation for this work, and the “It Ain’t Over
Till It’s Over” conjecture [27] from social choice theory.
The “Majority Is Stablest” conjecture and its generaliza-
tions proven here, in conjunction with the “Unique Games
Conjecture” and its variants, imply a number of (optimal)
inapproximability results for graph problems.

1 Introduction

1.1 Harmonic analysis of boolean functions

The motivation for this paper is the study ofboolean
functionsf : {−1, 1}n → {−1, 1}, where{−1, 1}n is
equipped with the uniform probability measure. This topic

is of significant interest in theoretical computer science; it
also arises in other diverse areas of mathematics including
combinatorics (e.g., sizes of set systems, additive combina-
torics), economics (e.g., social choice), metric spaces (e.g.,
non-embeddability of metrics), geometry in Gaussian space
(e.g., isoperimetric inequalities), and statistical physics
(e.g., percolation, spin glasses).

Beginning with Kahn, Kalai, and Linial’s landmark
paper “The Influence Of Variables On Boolean Func-
tions” [24] there has been much success in analyzing ques-
tions about boolean functions using methods of harmonic
analysis. Recall that KKL essentially shows the following
(see also [38, 18]):

KKL Theorem: If f : {−1, 1}n → {−1, 1} sat-
isfies E[f ] = 0 and Infi(f) ≤ τ for all i, then∑n

i=1 Infi(f) ≥ Ω(log(1/τ)).

We have used here the notationInfi(f) for the influence of
theith coordinate onf ,

Infi(f) = E
x
[Var

xi

[f(x)]] =
∑

S3i

f̂(S)2. (1)

Although an intuitive understanding of the analytic
properties of boolean functions is emerging, results in this
area have used increasingly elaborate methods, combining
random restriction arguments, applications of the Bonami-
Beckner inequality, and classical tools from probability
theory. See for example [38, 39, 18, 17, 6, 3, 7, 32, 10].

As in the KKL paper, some of the more refined problems
studied in recent years have involved restricting attention
to functions with low influences [3, 6, 10] (or, relatedly,
“non-juntas”). There are several reasons for this. The first
is that large-influence functions such as “dictators” — i.e.,
functions f(x1, . . . , xn) = ±xi — frequently trivially



maximize or minimize quantities studied in boolean analy-
sis. However this tends to obscure the truth about extremal
behaviors among functions that are “genuinely” functions
of n bits. Another reason for analyzing only low-influence
functions is that this subclass is often precisely what is
interesting or necessary for applications. For example,
in PCP-based hardness of approximation of results one
often needs to analyze so-called “Long Code tests”; this
involves distinguishing between dictator functions (“long
codes”) and functions that are far from being dictators —
i.e., functions in which all variables have small influence.
There are by now quite a few results in hardness of ap-
proximation that use results on low-influence functions or
require conjectured such results; e.g., [13, 28, 11, 30, 29].
As another example, in the theory of social choice from
economics, boolean functionsf : {−1, 1}n → {−1, 1}
often represent voting schemes, mappingn votes between
two candidates into a winner. In this case, it is very natural
to exclude voting schemes that give any voter an undue
amount of influence; see e.g. [26].

In this paper we give a new framework for studying
functions on product probability spaces with low influ-
ences. Our main tool is a simple invariance principle for
low-influence polynomials; this principle lets us take an
optimization problem for functions on one product space
and pass freely to other product spaces, such as Gaussian
space. In these other settings the problem sometimes
becomes simpler to solve. It is interesting to note that while
in the theory of hypercontractivity and isoperimetry it is
common to prove results in the Gaussian setting by proving
them first in the{−1, 1}n setting (see, e.g., [1]), here the
invariance principle is actually used to go the other way
around.

As applications of our invariance principle we prove two
previously unconnected conjectures from boolean harmonic
analysis; the first was motivated by hardness of approxima-
tion in computer science, the second by the theory of social
choice from economics:

Conjecture 1.1 (“Majority Is Stablest” conjecture [29])
Let0 ≤ ρ ≤ 1 andε > 0 be given. Then there existsτ > 0
such that iff : {−1, 1}n → [−1, 1] satisfiesE[f ] = 0 and
Infi(f) ≤ τ for all i, then

Sρ(f) ≤ 2
π arcsin ρ + ε.

Here we have used the notation

Sρ(f) =
∑

S

ρ|S|f̂(S)2 (2)

for the noise stabilityof f . This quantity measures how
correlatedf(x) andf(y) are whenx andy areρ-correlated

random strings. Specifically, letTρ denote the operator on
functionsf : {−1, 1}n → R defined by

(Tρf)(x) = E
y
[f(y)], (3)

where y is a random string in{−1, 1}n chosen so that
E[xiyi] = ρ for eachi independently. Then it holds that

Sρ(f) = E
x
[f(x)(Tρf)(x)] = E

x,y
[f(x)f(y)],

where in these expectationsx is chosen uniformly at
random from{−1, 1}n.

“Majority Is Stablest” and its generalizations proven in
the full version of this paper [34] imply the following hard-
ness of approximation consequences. Assuming Khot’s
Unique Games Conjecture [28] (UGC) we have:

• MAX- 2LIN(2) and MAX-2SAT have (1 − ε, 1 −
Θ(ε1/2))-hardness. This improves upon [28], where
a hardness of(1 − ε, 1 − ε1/2+o(1)) is proven. This
follows from our results in conjunction with [28].

• MAX-CUT has .878-hardness, matching the
Goemans-Williamson approximation factor. This
follow from our result together with [29].

• For eachε > 0 there existsq = q(ε) such that MAX-
2LIN(q) has(1−ε, ε)-hardness. Indeed, this statement
is equivalentto UGC. Again, this follows from our re-
sults together with [29].

• The MAX-q-CUT problem, has(1 − 1/q + q2+o(1))-
hardness factor. This asymptotically matches the ap-
proximation factor obtained by Frieze and Jerrum [20].
This follows from our results together with [29].

We would also like to mention that in a recent work [12]
building on our results, it is proven that coloring a3-
colorable graph with any number of colors is NP-hard
assuming a variant of UGC.

The second conjecture we prove using our invariance
principle was made by E. Friedgut and G. Kalai [27] in
2001:

Conjecture 1.2 (“It Ain’t Over Till It’s Over”) Let 0 ≤
ρ < 1 and ε > 0 be given. Then there existsδ > 0
and τ > 0 such that iff : {−1, 1}n → {−1, 1} satis-
fiesE[f ] = 0 and Infi(f) ≤ τ for all i, thenf has the
following property: IfV is a random subset of[n] in which
eachi is included independently with probabilityρ, and if
the bits(xi)i∈V are chosen uniformly at random, then

P
V, (xi)i∈V

[∣∣E[f | (xi)i∈V ]
∣∣ > 1− δ

]
≤ ε.
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(In words, the conjecture states that even if a randomρ
fraction of voters’ votes are revealed, with high probability
the election is still slightly undecided, providedf has low
influences.)

The truth of these results gives illustration to a recurring
theme in the harmonic analysis of boolean functions: the
extremal role played the Majority function. It seems this
theme becomes especially prominent when low-influence
functions are studied. To explain the connection of Ma-
jority to our applications: In the former case the quantity
2
π arcsin ρ is preciselylimn→∞ Sρ(Majn); this explains the
name of the Majority Is Stablest conjecture. In the latter
case, we show thatδ can be taken to be on the order of
ερ/(1−ρ) (up to o(1) in the exponent), which is the same
asymptotics one gets iff is Majority on a large number of
inputs.

1.2 Outline of the paper

We begin in Section 2 with an overview of our invari-
ance principle for the special case of the uniform measure
on the discrete cube, a discussion of the two conjectures,
and the consequences of their being true. In Section 3 we
give mostly complete proof sketches of the main invariance
principle and the Majority Is Stablest conjecture. Proof de-
tails and extensions can be found in the full version of this
paper [34]. Finally, Section 4 of this abstract briefly de-
scribes some additional results appearing in [34]

1.3 Related work

Our multilinear invariance principle has some an-
tecedents. For degree 1 polynomials it reduces to a version
of the Berry-Esseen Central Limit Theorems. Indeed, our
proof follows the same outlines as Lindeberg’s proof of the
CLT [33] (see also [16]).

Since presenting our proof of the invariance principle,
we have been informed by Oded Regev that related results
were proved in the past by V. I. Rotar′ [36]. As well, a
contemporary manuscript of Sourav Chatterjee [9] with
an invariance principle of similar flavor has come to our
attention. What is common to our work and to [36, 9] is a
generalization of Lindeberg’s argument to the non-linear
case. The result of Rotar′ is an invariance principle similar
to ours where the condition on the influences generalizes
Lindeberg’s condition. The setup is not quite the same,
however, and the proof in [36] is of a rather qualitative
nature. It seems that even after appropriate modification
the bounds it gives would be weaker and less useful for
our type of applications. (This is quite understandable;
in a similar way Lindeberg’s CLT can be less precise

than the Berry-Esseen inequality even though — indeed,
because — it works under weaker assumptions.) The
paper [9] is by contrast very clear and explicit. However
it does not seem to be appropriate for many applica-
tions since it requires low “worst-case” influences, instead
of the “average-case” influences used by this work and [36].

Finally, we would like to mention that some chaos-
decomposition limit theorems have been proved before in
various settings. Among these are limit theorems for U
and V statistics and limit theorems for random graphs; see,
e.g. [23].

2 Our results

2.1 The invariance principle

In this subsection we present a simplified version of our
invariance principle in the special case of the uniform mea-
sure on the discrete cube. Suppose that(X1, . . . , Xn) is an
n-bit string drawn from the uniform measure on{−1, 1}n,
so thatX1, . . . , Xn are independentp = 1/2 Bernoulli ran-
dom variables. LetQ(x1, . . . , xn) =

∑n
i=1 cixi be a linear

form where
∑

c2
i = 1. The Berry-Esseen Central Limit

Theorem implies that

sup
t

∣∣∣P[Q(X1, . . . , Xn) ≤ t]−P[G ≤ t]
∣∣∣ ≤ O

(∑n
i=1|ci|3

)
,

whereG denotes a standard normal random variable. Note
that a simple corollary of the above is

sup
t

∣∣∣P[Q(X1, . . . , Xn) ≤ t]−

P[Q(G1, . . . , Gn) ≤ t]
∣∣∣ ≤ O

(
max

i
|ci|

)
. (4)

Here theGi’s denote independent standard normals. We
have upper-bounded the sum of|ci|3 here by a maximum,
for simplicity; more importantly though, we have sugges-
tively replacedG by

∑
i ciGi, which of course has the

same distribution.

We would like to generalize (4) tomultilinear polynomi-
als in theXi’s; i.e., functions of the form

Q(x1, . . . , xn) =
∑

S⊆[n]

cS

∏

i∈S

xi, (5)

where the real constantscS satisfy
∑

c2
S = 1. Let

d = maxcS 6=0 |S| denote the degree ofQ. Unlike in
the d = 1 case of the CLT, there is no single random
variableG which always provides a limiting distribution.
However one can still hope to prove, in light of (4), that
the distribution of the polynomial applied to the variables
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Xi is close to the distribution of the polynomial applied
to independent Gaussian random variables. This is indeed
what our invariance principle shows.

It turns out that the appropriate generalization of the
Berry-Esseen theorem (4) is to control the error by a func-
tion of d and ofmaxi

∑
S3i c2

S — i.e., the maximum of the
influencesof Q (as in (1)).

Theorem 2.1 Let (X1, . . . , Xn) be ann-bit string drawn
from the uniform measure on{−1, 1}n and letQ be a de-
greed multilinear polynomial as in (5) with

Var[Q] :=
∑

|S|>0

c2
S = 1,

Infi(Q) :=
∑

S3i

c2
S ≤ τ for all i.

Then

sup
t

∣∣∣P[Q(X1, . . . , Xn) ≤ t] −

P[Q(G1, . . . , Gn) ≤ t]
∣∣∣ ≤ O(dτ1/8d),

whereG1, . . . , Gn are independent standard Gaussians.

Note that if d is fixed then the above bound tends to
0 with τ . In fact the same result holds for a much
wider family of random variables. For example the con-
dition that(X1, . . . , Xn) is drawn from the uniform mea-
sure on{−1, 1}n may be replaced by the condition that
X1, . . . , Xn are i.i.d. random variables withE[Xi] = 0,
E[X2

i ] = 1 and either

• E[X3
i ] ≤ β < ∞ for all i, in which case the error is

bounded byO(dβ1/3τ1/8d) or

• Xi obtains only finitely many values, all with proba-
bility at leastα > 0. In this case the error is bounded
by O(d α−1/6 τ1/8d).

We call this theorem an “invariance principle” because
it shows thatQ(X1, . . . , Xn) has essentially the same
distribution no matter what theXi’s are.

An unavoidable deficiency of this sort of invariance prin-
ciple is the dependence ond in the error bound. In appli-
cations such as Majority Is Stablest and It Ain’t Over Till
It’s Over, the functionsf may well have arbitrarily large
degree. To overcome this, we introduce a supplement to the
invariance principle: We show that if the polynomialQ is
“smoothed” slightly then the dependence ond in the error
bound can be eliminated and replaced with with a depen-
dence on the smoothness. For “noise stability”-type prob-
lems such as ours, this smoothing is essentially harmless.

2.2 Majority Is Stablest

2.2.1 About the problem

The Majority Is Stablest conjecture, Conjecture 1.1,
was first formally stated in [29]. However the notion of
Hamming balls having the highest noise stability in various
senses has always been widespread among the commu-
nity studying discrete Fourier analysis. Indeed, already
in KKL’s 1998 paper [24] there is the suggestion that
Hamming balls and subcubes should maximize a certain
noise stability-like quantity. In [3], it was shown that every
“asymptotically noise stable” function is correlated with
a weighted majority function; also, in [35] it was shown
that the Majority function asymptotically maximizes a
high-norm analog ofSρ.

More concretely, strong motivation for getting sharp
bounds on the noise stability of low-influence functions
came from two 2002 papers, one by Kalai [25] on social
choice and one by Khot [28] on PCPs and hardness of
approximation. We briefly discuss these two papers below.

Kalai ’02 — Arrow’s Impossibility Theorem: Suppose
n voters rank three candidates —A, B, andC — and a
social choicefunction f : {−1, 1}n → {−1, 1} is used
to aggregate the rankings, as follows:f is applied to the
n A-vs.-B preferences to determine whetherA or B is
globally preferred; then the same happens forA-vs.-C
and B-vs.-C. The outcome is termed “non-rational” if
the global ranking hasA preferable toB preferable toC
preferable toA (or if the other cyclic possibility occurs).
Arrow’s Impossibility Theorem from the theory of social
choice states that under some mild restrictions onf (such
asf being odd; i.e.,f(−x) = −f(x)), the only functions
which never admit non-rational outcomes given rational
voters are the dictator functionsf(x) = ±xi.

Kalai [25] studied theprobability of a rational outcome
given that then voters vote independently and at ran-
dom from the 6 possible rational rankings. He showed
that the probability of a rational outcome in this case is
precisely3/4 + (3/4)S1/3(f). Thus it is natural to ask
which functionf with small influences is most likely to
produce a rational outcome. Instead of considering small
influences, Kalai considered the essentially stronger as-
sumption thatf is “transitive-symmetric”; i.e., that for all
1 ≤ i < j ≤ n there exists a permutationσ on [n] with
σ(i) = j such thatf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))
for all (x1, . . . , xn). Kalai conjectured that Majority was
the transitive-symmetric function that maximized3/4 +
(3/4)S1/3(f) He further observed that this would imply
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that in any transitive-symmetric scheme the probability of
a rational outcome is at most3/4 + (3/2π) arcsin(1/3) +
on(1) ≈ .9123; however, Kalai could only prove the weaker
bound.9192.

Khot ’02 — Unique Games and hardness of ap-
proximating 2-CSPs: In computer science, many
combinatorial optimization problems are NP-hard, mean-
ing it is unlikely there are efficient algorithms that always
find the optimal solution. Hence there has been extensive
interest in understanding the complexity ofapproximating
the optimal solution. Consider for example “k-variable
constraint satisfaction problems” (k-CSPs) in which the
input is a set of variables over a finite domain, along with
some constraints onk-sets of the variables, restricting
what sets of values they can simultaneously take. We say
a problem has “(c, s)-hardness” if it is NP-hard, given a
k-CSP instance in which the optimal assignment satisfies
a c-fraction of the constrains, for an algorithm to find an
assignment that satisfies ans-fraction of the constraints.
In this case we also say that the problem is “s/c-hard to
approximate”.

The PCP and Parallel Repetition theorems have led to
many impressive results showing that it is NP-hard even
to give α-approximations for various problems, especially
k-CSPs fork ≥ 3. For example, letting MAX-kLIN(q)
denote the problem of satisfyingk-variable linear equa-
tions overZq, it is known [22] that MAX-kLIN(q) has
(1 − ε, 1/q + ε)-hardness for allk ≥ 3, and this is sharp.
However it seems that current PCP theorems are not strong
enough to give sharp hardness of approximation results for
2-CSPs (e.g., constraint satisfaction problems on graphs).
The influential paper of Khot [28] introduced the “Unique
Games Conjecture” (UGC) in order to make progress on
2-CSPs; UGC states that a certain 2-CSP over a large
domain has(1− ε, ε)-hardness.

Interestingly, it seems that using UGC to prove hardness
results for other 2-CSPs typically crucially requires strong
results about influences and noise stability of boolean func-
tions. For example, the analysis of MAX-2LIN(2) in Khot’s
paper [28] required an upper bound onS1−ε(f) for smallε
among balanced functionsf : {−1, 1}n → {−1, 1} with
small influences; to get this, Khot used the following deep
result of Bourgain [7] from 2001:

Theorem 2.2 (Bourgain [7]) If f : {−1, 1}n → {−1, 1}
satisfiesE[f ] = 0 andInfi(f) ≤ 10−d for all i ∈ [n], then

∑

|S|>d

f̂(S)2 ≥ d−1/2−O(
√

log log d/ log d) = d−1/2−o(1).

Note that Bourgain’s theorem has the following easy corol-
lary:

Corollary 2.3 If f : {−1, 1}n → {−1, 1} satisfiesE[f ] =
0 andInfi(f) ≤ 2−O(1/ε) for all i ∈ [n], then

S1−ε(f) ≤ 1− ε1/2+o(1).

This corollary enables Khot to show(1− ε, 1− ε1/2+o(1))-
hardness for MAX-2LIN(2), which is close to sharp (the al-
gorithm of Goemans-Williamson [21] achieves1−O(

√
ε)).

As an aside, we note that Khot and Vishnoi [31] recently
used Corollary 2.3 to prove that negative type metrics do
not embed intò1 with constant distortion.

Another example of this comes from the work of [29].
Among other things, [29] studied the MAX-CUT problem:
Given an undirected graph, partition the vertices into two
parts so as to maximize the number of edges with endpoints
in different parts. The paper introduced the Majority Is Sta-
blest Conjecture 1.1 and showed that together with UGC it
implied( 1

2 + 1
2ρ−ε, 1

2 + 1
π arcsin ρ+ε)-hardness for MAX-

CUT. In particular, takingρ ≈ .69 implies MAX-CUT is
.878-hard to approximate, matching the groundbreaking al-
gorithm of Goemans and Williamson [21].

2.2.2 Consequences of confirming the conjecture

We confirm a generalization of the Majority Is Stablest con-
jecture. In particular:

Theorem 2.4 Letf : {−1, 1}n → [−1, 1] and assume that
Infi(f) ≤ τ for all i. Letµ = E[f ]. Then for any0 ≤ ρ <
1,

Sρ(f) ≤ lim
n→∞

Sρ(Thr(µ)
n ) + O

(
log log(1/τ)

log(1/τ)

)
,

whereThr(µ)
n : {−1, 1}n → {0, 1} denotes the symmet-

ric threshold function with expectation closest toµ, and the
O(·) hides a constant depending only on1− ρ.

Two remarks: First, the original Majority Is Stablest
conjecture was concerned with the caseµ = 0; in this
case,Thr(0)n is simply the Majority functionMajn and
the formula limn→∞ Sρ(Majn) = 2

π arcsin ρ is well
known [37]. Second, Theorem 2.4 in fact only needsf to
have small “low-degree influences”, a distinction crucial
for PCP applications.

We now give some consequences of this theorem:

Theorem 2.5 In the setting of Kalai [25], any odd, bal-
anced social choice functionf with on(1) influences has
probability at most3/4 + (3/2π) arcsin(1/3) + on(1) ≈
.9123 of producing a rational outcome. The Major-
ity function on n inputs achieves this bound,3/4 +
(3/2π) arcsin(1/3) + on(1).

By looking at the series expansion of2
π arcsin(1− ε) we

obtain the following strengthening of Corollary 2.3.
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Corollary 2.6 If f : {−1, 1}n → {−1, 1} satisfiesE[f ] =
0 andInfi(f) ≤ ε−O(1/ε) for all i ∈ [n], then

S1−ε(f) ≤ 1− (
√

8
π − o(1))ε1/2.

Using Corollary 2.6 instead of Corollary 2.3 in Khot [28]
we obtain

Corollary 2.7 Assuming UGC, MAX-2LIN(2) and MAX-
2SAT have(1− ε, 1−O(ε1/2))-hardness.

More generally, [29] now implies

Corollary 2.8 MAX-CUT has(1
2 + 1

2ρ−ε, 1
2 + 1

π arcsin ρ+
ε)-hardness for eachρ and all ε > 0, assuming UGC only.
In particular, the Goemans-Williamson .878-approximation
algorithm is best possible, assuming UGC only.

The following two results are consequences of the general-
ization of “Majority Is Stablest” we prove here. The details
of the construction are given in [29]:

Theorem 2.9 UGC implies that for eachε > 0 there exists
q = q(ε) such that MAX-2LIN(q) has(1 − ε, ε)-hardness.
Indeed, this statement isequivalentto UGC.

Theorem 2.10 The MAX-q-CUT problem, has(1 − 1/q +
q2+o(1))-hardness factor, assuming UGC only. This asymp-
totically matches the approximation factor obtained by
Frieze and Jerrum [20].

2.3 It Ain’t Over Till It’s Over

The It Ain’t Over Till It’s Over conjecture was originally
made by Kalai and Friedgut [27] in studying social indeter-
minacy [19, 26]. The setting here is similar to the setting
of Arrow’s Theorem from Section 2.2.1 except that there
are an arbitrary finite number of candidates. LetR denote
the (asymmetric) relation given on the candidates when the
monotonesocial choice functionf is used. Kalai showed
that if f has small influences, then the It Ain’t Over Till
It’s Over Conjecture implies thateverypossible relationR
is achieved with probability bounded away from0. Since
its introduction in 2001, the It Ain’t Over Till It’s Over
problem has circulated widely in the community studying
harmonic analysis of boolean functions. The conjecture
was given as one of the top unsolved problems in the field
at a workshop at Yale in late 2004.

We confirm the It Ain’t Over Till It’s Over conjecture and
generalize it to functions on arbitrary finite product proba-
bility spaces with means bounded away from 0 and 1. Fur-
ther, the asymptotics we give show that symmetric thresh-
old functions (e.g., Majority in the case of mean1/2) are
the “worst” examples. In particular,

Theorem 2.11 The Ain’t Over Till It’s Over Conecture,
Conjecture 1.2 is true.

3 Proof Sketches

3.1 The invariance principle

The proof of the invariance principle follows Lindeberg’s
proof of the CLT [33] (see also [16]). Below we will de-
note byX the vector(X1, . . . , Xn) drawn uniformly from
{−1, 1}n and byG a vector(G1, . . . , Gn) of n indepen-
dent Gaussian random variables. One standard method in
probability theory to show that two distributions are close is
the following: show that for any sufficiently smooth func-
tion, its expectation under the first distribution is close to
its expectation under the second distribution. (One then ap-
plies this for smoothed versions of indicator functions of
intervals.) In particular, in order to prove Theorem 2.1 it
is sufficient to prove the following (complete details of the
proof of Theorem 2.1 are omitted in this extended abstract):

Theorem 3.1 Let Q be a mutlilinear polynomial as in (5).
Assume further thatQ satisfiesVar[Q] ≤ 1, deg(Q) ≤ d,
andInfi(Q) ≤ τ for all i. LetΨ : R→ R be aC4 function
with |Ψ(4)| ≤ B uniformly. Then

∣∣∣E
[
Ψ(Q(X ))

]−E
[
Ψ(Q(G))

]∣∣∣ ≤ B d 9d τ.

Proof: We begin by defining intermediate sequences be-
tweenX andG. Fori = 0, 1, . . . , n, let Z(i) denote the se-
quence of random variables(G1, . . . , Gi,Xi+1, . . . , Xn)
and letQ(i) = Q(Z(i)). Our goal will be to show

∣∣∣E
[
Ψ(Q(i−1))

]−E
[
Ψ(Q(i))

]∣∣∣ ≤ B 9d Infi(Q)2 (6)

for eachi ∈ [n]. Summing this overi will complete the
proof sinceZ(0) = X , Z(n) = G and

n∑

i=1

Infi(Q)2 ≤ τ ·
n∑

i=1

Infi(Q) ≤ dτ.

Let us fix a particulari ∈ [n] and proceed to prove (6).
Write

R =
∑

S:i/∈S

cS

∏

j∈S

Z(i)
j ,

S =
∑

S:i∈S

cS

∏

j∈S\{i}
Z(i)

j .

Note thatR and S are independent of the variablesXi

andGi, and thatQ(i−1) = R+XiS andQ(i) = R+GiS.

To bound the left side of (6) — i.e.,
∣∣∣E[Ψ(R + XiS)−Ψ(R + GiS)]

∣∣∣
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— we use Taylor’s theorem: for allx, y ∈ R,

∣∣∣Ψ(x + y)−
3∑

k=0

Ψ(k)(x) yk

k!

∣∣∣ ≤ B

24
y4.

In particular,

∣∣∣E[Ψ(R + XiS)]−
3∑

k=0

E
[Ψ(k)(R) Xk

i Sk

k!

]∣∣∣

≤ B

24
E

[
X4

i S4
]

=
B

24
E

[
S4

]
, (7)

(where we used independence ofXi from S and also
E[X4

i ] = 1 in the last step), and similarly,

∣∣∣E[Ψ(R + GiS)]−
3∑

k=0

E
[Ψ(k)(R) Gk

i Sk

k!

]∣∣∣

≤ B

24
E

[
G4

i S
4
]

=
B

24
· 3E[

S4]. (8)

SinceXi andGi are independent ofR andS and since the
first 3 moments ofXi equal those ofGi it follows that for
k = 0, 1, 2, 3:

E[Ψ(k)(R) Xk
i Sk] = E[Ψ(k)(R) Sk] ·E[Xk

i ]
= E[Ψ(k)(R) Sk] ·E[Gk

i ]
= E[Ψ(k)(R) Gk

i Sk]. (9)

From (7), (8) and (9) it follows that

∣∣∣E[Ψ(R + XiS)−Ψ(R + GiS)]
∣∣∣

≤ B

24
(1 + 3)E[S4] ≤ B E[S4]. (10)

We now use hypercontractivity. By Lemma 3.2 below,

E[S4] ≤ 9dE[S2]2. (11)

But using orthonormality ofZj ’s we have

E[S2] =
∑

S:i∈S

c2
i = Infi(Q). (12)

Combining (10), (11) and (12) it follows that
∣∣∣E[Ψ(R + XiS)−Ψ(R + GiS)]

∣∣∣ ≤ B 9d Infi(Q)2,

confirming (6) and completing the proof.2

The hypercontractivity result we needed is a special case
of the Bonami-Beckner theorem [4, 2]. We include a very
short proof for completeness.

Lemma 3.2 Let Q be a multilinear polynomial as in (5)
of degreed. Let Z1, . . . , Zn be independent real random
variables withE[Zi] = E[Z3

i ] = 0, E[Z2
i ] = 1 and

E[Z4
i ] ≤ 9 for i = 1, 2, . . . , n. Let Q = Q(Z1, . . . , Zn).

ThenE[Q4] ≤ 9dE[Q2]2.

Proof: The proof is by induction on the number of vari-
ablesn. The casen = 0 is trivial, as Q is just a con-
stant. So assumen > 0. We can expressQ(x1, . . . , xn)
asR(x1, . . . , xn−1)+xnS(x1, x2, . . . , xn−1) whereR and
S are multilinear polynomials in at mostn − 1 variables,
deg(R) ≤ d anddeg(S) ≤ d− 1. Let

R = R(Z1, . . . , Zn−1)

and
S = S(Z1, . . . , Zn−1).

Clearly,R andS are independent ofZn. We have

E[Q4] = E[(R + ZnS)4]
= E[R4] + 4E[Zn] ·E[R3S] +

6E[Z2
n] ·E[R2S2]

+4E[Z3
n] ·E[RS3] + E[Z4

n] ·E[S4]
≤ E[R4] + 6E[R2S2] + 9E[S4]

≤
(√

E[R4] + 3
√

E[S4]
)2

≤ (
3dE[R2] + 3 · 3d−1E[S2]

)2

= 9d
(
E[R2] + E[S2]

)2

= 9dE[Q2]2.

where the first inequality uses the conditions onZn’s mo-
ments, the second inequality uses Cauchy-Schwartz, the
third inequality used the induction hypothesis forR andS,
and the final equality usesE[Zn] = 0 andE[Z2

n] = 1. 2

3.2 Majority Is Stablest

In this section we sketch the proof of the Majority Is Sta-
blest conjecture. The essential idea is that continuous ana-
logues of the conjecture, on then-dimensional sphere and
in n-dimensional Gaussian space, are already known to be
true (without any assumption or notion of “influences”). For
example, in studying the Goemans-Williamson semidefinite
programming algorithm for MAX-CUT, Feige and Schecht-
man [15] produced an optimal semidefinite programming
gap essentially by showing the Majority Is Stablest ana-
logue on the Euclidean sphere. Namely, they showed that
among subsets of half of the sphere, the sets with the
most self-correlation underρ-perturbation are hemispheres
— i.e., intersections of halfspaces with the sphere. Even
more relevantly for us, the analogous (and roughly equiv-
alent) result in Gaussian space was proved in the ’80s by

7



C. Borell [5]: halfspaces have maximum “ρ-noise stability”,
and this maximal value is2π arcsin ρ, the noise stability of
Majority.

Both of the above-mentioned results have conceptu-
ally simple proofs: Given a subset of the sphere or of
Gaussian space, one shows that symmetrizing it across
lower-dimensional subspaces improves its stability under
ρ-snoise. Then sufficiently many symmetrizations bring it
close to a halfspace. (Note that all halfspaces have equal
noise stability by spherical symmetry.) One would like to
use a similar argument in the discrete setting of{−1, 1}n

— i.e., show that some symmetrization operation both
improves a function’s noise stability and brings it closer to
the Majority function (the intersection of{−1, 1}n with a
“generic” halfspace). However the presence ofn “special”
directions in{−1, 1}n make this impossible — indeed,
the halfspaces oriented in these directions, the dictator
functionsf(x) = ±xi, have maximal noise stability. This
is where our invariance principle comes into play. Under
the assumptions of the Majority Is Stablest conjecture, our
initial function f on {−1, 1}n has small influences and
is thus not particularly aligned with any special direction.
The invariance principle now allows us to replacef by a
highly similar function onn-dimensional Gaussian space,
and then Borell’s result implies that its noise stability is
bounded above by that of Mmjority.

Before quoting Borell’s result, let us generalize the no-
tion of noise stability to the setting used in our invariance
principle, Theorem 3.1. LetY = (Y1, . . . , Yn) be a se-
quence of i.i.d. random variables withE[Yi] = 0 and
E[Y 2

i ] = 1 (think of theYi’s as either random±1 variables
or standard Gaussians). Given0 ≤ ρ ≤ 1, and a multilinear
polynomialQ as in (5) we define

(TρQ)(x1, . . . , xn) =
∑

S

cSρ|S|
∏

i∈S

xi,

and

Sρ(Q) =
∑

S⊆[n]

ρ|S|c2
S = E[Q(Y) · (TρQ)(Y)]. (13)

Note that the value ofSρ(Q) does not depend on the
sequenceY .

We now describe Borell’s result. Letγn be the n-
dimensional Gaussian measure. WhenY = G =
(G1, . . . , Gn) is a sequence of independent Gaussians, the
operatorTρ is identical with the Ornstein-Uhlenbeck oper-
atorUρ which acts onL2(Rn, γn) by

(Uρf)(x) = E
y
[f(ρx +

√
1− ρ2 y)],

where the expectation ony is with respect toγn. The op-
eratorUρ is central in the study of the heat equation and

Brownian motion inn dimensions. Since it extends the def-
inition of Tρ, it is natural to defineSρ(f) = E[fUρf ] for
all f ∈ L2(Rn, γn).

Borell [5] (see also Ledoux’s lecture notes [14]) showed
that for all ρ ∈ [0, 1] and all f ∈ L2(Rn, γn), Sρ(f) is
at mostSρ(f∗), wheref∗ denotes the so-called spherical
rearrangement off . In particular, iff ’s range is{−1, 1}
thenf∗ is simply the{−1, 1}-valued indicator function of
a halfspace with the same measure asf . A straightforward
convexity argument extends the same bound to functions
f : (Rn, γn) → [−1, 1] and thus we have the following
corollary of Borell’s result:

Theorem 3.3 Let f : Rn → [−1, 1] be a measurable func-
tion on Gaussian space withE[f ] = µ. Then for all0 ≤
ρ ≤ 1 we haveSρ(f) ≤ Sρ(χµ), whereχµ : R → {−1, 1}
is the indicator function of the interval(−∞, t], wheret is
chosen so thatE[χµ] = µ.

The proof of Majority Is Stablest goes by using our
invariance principle to reduce to the above theorem. There
is one small technical difficulty to overcome: namely, the
invariance principle can only be applied to multilinear
polynomials of bounded degree, whereas a general function
f : {−1, 1}n → [−1, 1] can have degree as high asn
when represented as a multilinear (Fourier) polynomial.
As mentioned in Section 2.1, we get around this by giving
an invariance principle for “smoothed” multilinear poly-
nomials of arbitrary degree. Specifically, this smoothed
invariance principle is very similar to Theorems 2.1
and 3.1, with the following distinction: it holds for poly-
nomialsQ of arbitrary degree; however it only shows that
(T1−γQ)(X ) and (T1−γQ)(G) are close in distribution.
The closeness bound we show isτΩ(γ) (i.e., it’s as if Q
had degreeΘ(1/γ)) and the proof involves straightforward
degree-truncation arguments. Since the Majority Is Stablest
problem involves studyingTρf anyway, we can essentially
assume that our functions are already smoothed and thus
use the smoothed invariance principle.

We now give a mostly complete sketch of the proof of
Majority Is Stablest, Theorem 2.4:

Proof: (of Theorem 2.4) Expressf as a multilinear poly-
nomial Q (i.e., in its Fourier representation) over the ran-
dom±1 variablesX = (X1, . . . , Xn). As usual, write
also G = (G1, . . . , Gn) for a sequence of independent
Gaussians. We now expressρ = ρ′ · (1 − γ)2, where
0 < γ ¿ 1 − ρ is a tiny quantity to be chosen later.
From (13) we see that

Sρ(f) = Sρ(Q(X )) =
∑

S

(ρ′ · (1− γ)2)|S|c2
S

= Sρ′((T1−γQ)(G)). (14)
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Let us writeR for the random variable(T1−γQ)(X ) and
S for the random variable(T1−γQ)(G). By the smoothed
invariance principle, we know that these two random vari-
ables are very close in distribution. In particular, letζ :
R → R denote the function withζ(t) = 0 if t ∈ [−1, 1]
andζ(t) = (|t| − 1)2 otherwise. (I.e.ζ measures theL2

2-
distance of a number from being in[−1, 1].) Then smoothed
invariance tells us that

∣∣∣E[ζ(R)]−E[ζ(S)]
∣∣∣ ≤ τΩ(γ) (15)

(cf. the statement of Theorem 3.1; althoughζ is not C4 it
can be very closely approximated byC4 functions). By as-
sumption,f(X ) = Q(X ) is always in the interval[−1, 1],
and sinceTρ is an averaging operator (see Equation (3))
the same is true ofR = (T1−γQ)(X ); in other words,
ζ(R) = 0. Hence by (15) we have|ζ(S)| ≤ τΩ(γ). An-
other way to express this is to say that‖S − S′‖22 ≤ τΩ(γ),
whereS′ is the random variable onn-dimensional Gaussian
space, dependent onS, defined to be the truncation ofS to
the interval[−1, 1]. We now have that

|Sρ′(S)− Sρ′(S′)|
= |E[S · Uρ′S]−E[S′ · Uρ′S

′]|
≤ |E[S · Uρ′S]−E[S′ · Uρ′S]|

+ |E[S′ · Uρ′S]−E[S′ · Uρ′S
′]|

≤ (‖S‖2 + ‖S′‖2)‖S − S′‖2 ≤ τΩ(γ), (16)

where we have used the fact thatUρ′ is a contraction onL2.
Now µ = E[f ] = c∅ = E[Q(G)] = E[S], and writing

µ′ = E[S′] it follows from‖S−S′‖2 ≤ τΩ(γ) and Cauchy-
Schwartz that|µ − µ′| ≤ τΩ(γ). We now apply the Borell
result Theorem 3.3 to conclude thatSρ′(S′) ≤ Sρ′(χµ′).
Combining this with (14) and (16) we get

Sρ(f) ≤ Sρ′(χµ′) + τΩ(γ).

An elementary argument can be used to show thatρ′ ≈ ρ
andµ′ ≈ µ imply that

|Sρ′(χµ′)− Sρ(χµ)| ≤ O(γ/(1− ρ)).

Further, it’s straightforward to see thatSρ(χµ) is exactly
limn→∞ Sρ(Thr(µ)

n ). Thus we have

Sρ(f) ≤ lim
n→∞

Sρ(Thr(µ)
n ) + τΩ(γ) + O(γ/(1− ρ)).

Optimizing overγ completes the proof.2

4 Other results omitted from this abstract

This short section summarizes some of the additional
material appearing in the full version [34] of this extended
abstract.

It Ain’t Over Till It’s Over. The proof of this conjecture
is similar in outline to that of the Majority Is Stablest con-
jecture. We replace the use of Borell’s result on Gaussian
space as follows: We first use the invariance principle to
convert the Ain’t problem on{−1, 1}n to a related problem
on Gaussian space. This related problem can be solved us-
ing the results of Borell; however, to achieve sharp bounds
most easily, we use the invariance principle again to bring
the related problemback into {−1, 1}n! We then use the
solution to this related problem on{−1, 1}n given by [35],
a paper on the topic of “non-interactive correlation distilla-
tion”.

Generalized domains. As alluded to in the introduction,
the invariance principle we prove in [34] holds in the full
generality of functions whose domain is any discrete prod-
uct probability space. The proof is not much more diffi-
cult although the notation becomes cumbersome. Using this
generalized invariance principle, we extend the Majority Is
Stablest result to functionsf : [q]n → [−1, 1] and the It
Ain’t Over Till It’s Over result to multiparty elections. We
use the Majority Is Stablest extension to prove the hardness
of approximation results for MAX-2LIN(q) and MAX-q-
CUT; the paper [12] uses it to prove hardness of approxi-
mation for coloring problems.

A counterexample to a conjecture of Kalai. From [29]
it is known that among functions with low influences, Ma-
jority maximizes the Fourier weight at level 1. From
the present work we also know that Majority maximizes∑

S f̂(S)2ρ|S|. Kalai [25] made the natural conjecture
that among all transitive functions, Majority maximizes∑
|S|≤d f̂(S)2. Surprisingly, we give an explicit counterex-

ample showing this conjecture is false.
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