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Correlation Bounds for Polynomials

Statement: Find an explicit (i.e., in NP) function f :Fn
2 →F2 such that we

have the correlation bound |E[(−1)〈 f (x),p(x)〉]| ≤ 1/n for every F2-polynomial

p :Fn
2 →F2 of degree at most log2 n.

Source: Folklore dating back to [Raz87, Smo87]

Remarks:
• The problem appears to be open even with correlation bound 1/

p
n re-

placing 1/n.

• Define the mod3 function to be 1 if and only if the number of 1’s in

its input is congruent to 1 modulo 3. Smolensky [Smo87] showed that

mod3 has correlation at most 2/3 with every F2-polynomial of degree at

most c
p

n (where c > 0 is an absolute constant). For related bounds us-

ing his techniques, there seems to be a barrier to obtaining correlation

o(1/
p

n).

• Babai, Nisan, and Szegedy [BNS92] implicitly showed a function in P

which has correlation at most exp(−nΘ(1)) with any F2-polynomial of

degree at most .99log2 n; see also [VW08]. Bourgain [Bou05] (see

also [GRS05]) showed a similar (slightly worse) result for the mod3

function.

Tomaszewski’s Conjecture

Statement: Let a ∈Rn have ‖a‖2 = 1. Then Prx∼{−1,1}n[|〈a, x〉| ≤ 1]≥ 1/2.

Source: Question attributed to Tomaszewski in [Guy89]

Remarks:
• The bound of 1/2 would be sharp in light of a= (1/

p
2,1/

p
2).

• Holman and Kleitman [HK92] proved the lower bound 3/8. In fact they

proved Prx∼{−1,1}n[|〈a, x〉| < 1] ≥ 3/8 (assuming ai 6= ±1 for all i), which

is sharp in light of a= (1/2,1/2,1/2,1/2).

Talagrand’s “Convolution with a Biased Coin” Conjecture

Statement: Let f : {−1,1}n →R

≥0 have E[ f ] = 1. Fix any 0 < ρ < 1. Then

Pr[Tρ f ≥ t]< o(1/t).
Source: [Tal89]

Remarks:
• Talagrand in fact suggests the bound O( 1

t
p

log t
).

• Talagrand offers a $1000 prize for proving this.

• Even the “special case” when f ’s domain isRn with Gaussian measure

is open. In this Gaussian setting, Ball, Barthe, Bednorz, Oleszkiewicz,
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and Wolff [BBB+10] have shown the upper bound O( 1

t
p

log t
) for n = 1

and the bound O(
loglog t

t
p

log t
) for any fixed constant dimension.

Sensitivity versus Block Sensitivity

Statement: For any f : {−1,1}n → {−1,1} it holds that deg( f )≤ poly(sens[ f ]),

where sens[ f ] is the (maximum) sensitivity, maxx |{i ∈ [n] : f (x) 6= f (x⊕i)}|.
Source: [CFGS88, Sze89, GL92, NS94]

Remarks:
• As the title suggests, it is more usual to state this as bs[ f ]≤ poly(sens[ f ]),

where bs[ f ] is the “block sensitivity”. However the version with degree

is equally old, and in any case the problems are equivalent since it is

known that bs[ f ] and deg( f ) are polynomially related.

• The best known gap is quadratic ([CFGS88, GL92]) and it is suggested

([GL92]) that this may be the worst possible.

Gotsman–Linial Conjecture

Statement: Among degree-k polynomial threshold functions f : {−1,1}n →
{−1,1}, the one with maximal total influence is the symmetric one f (x) =
sgn(p(x1 + ·· · + xn)), where p is a degree-k univariate polynomial which al-

ternates sign on the k+1 values of x1 +·· ·+ xn closest to 0.

Source: [GL94]

Remarks:
• The case k = 1 is easy.

• Slightly weaker version: degree-k PTFs have total influence O(k) ·
p

n.

• Even weaker version: degree-k PTFs have total influence Ok(1) ·
p

n.

• The weaker versions are open even in the case k = 2. The k = 2 case

may be related to the following old conjecture of Holzman: If g : {−1,1}n →
R has degree 2 (for n even), then g has at most

( n
n/2

)
local strict minima.

• It is known that bounding total influence by c(k) ·
p

n is equivalent to

a bounding δ-noise sensitivity by O(c(k)) ·
p
δ.

• The “Gaussian special case” was solved by Kane [Kan09].

• The best upper bounds known are 2n1−1/2k
and 2O(k)·n1−1/O(k) [DHK+10].

Polynomial Freiman–Ruzsa Conjecture (in the Fn
2 setting)

Statement: Suppose ; 6= A ⊆Fn
2 satisfies |A+ A| ≤ C|A|. Then A can be cov-

ered by the union of poly(C) affine subspaces, each of cardinality at most |A|.
Source: Attributed to Marton in [Ruz93]; for theFn

2 version, see e.g. [Gre05b]

Remarks:
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• The following conjecture is known to be equivalent: Suppose f :Fn
2 →

F

n
2 satisfies Prx,y[ f (x)+ f (y) = f (x+ y)] ≥ ǫ, where x and y are in-

dependent and uniform on Fn
2 . Then there exists a linear function

f :Fn
2 →Fn

2 such that Pr[ f (x)= ℓ(x)]≥ poly(ǫ).

• The PFR Conjecture is known to follow from the Polynomial Bo-

golyubov Conjecture [GT09]: Let A ⊆ Fn
2 have density at least α.

Then A+A+A contains an affine subspace of codimension O(log(1/α)).

One can slightly weaken the Polynomial Bogolyubov Conjecture by re-

placing A+ A+ A with kA for an integer k > 3. It is known that any

such weakening (for fixed finite k) is enough to imply the PFR Conjec-

ture.

• Sanders [San10b] has the best result in the direction of these conjec-

tures, showing that if A ⊆Fn
2 has density at least α then A+A contains

99% of the points in a subspace of codimension O(log4(1/α)), and hence

4A contains all of this subspace. This suffices to give the Freiman–

Ruzsa Conjecture with 2O(log4 C) in place of poly(C).

• Green and Tao [GT09] have proved the Polynomial Freiman–Ruzsa

Conjecture in the case that A is monotone.

Mansour’s Conjecture

Statement: Let f : {−1,1}n → {−1,1} be computable by a DNF of size s> 1 and

let ǫ ∈ (0,1/2]. Then f ’s Fourier spectrum is ǫ-concentrated on a collection F

with |F | ≤ sO(log(1/ǫ)).

Source: [Man94]

Remarks:
• Weaker version: replacing sO(log(1/ǫ)) by sOǫ(1).

• The weak version with bound sO(1/ǫ) is known to follow from the Fourier

Entropy–Influence Conjecture.

• Proved for “almost all” polynomial-size DNF formulas (appropriately

defined) by Klivans, Lee, and Wan [KLW10].

• Mansour [Man95] obtained the upper-bound (s/ǫ)O(loglog(s/ǫ) log(1/ǫ)).

Bernoulli Conjecture

Statement: Let T be a finite collection of vectors in Rn. Define b(T) =
Ex∼{−1,1}n[maxt∈T〈t, x〉], and define g(T) to be the same quantity except with x∼
R

n Gaussian. Then there exists a finite collection of vectors T ′ such that

g(T ′)≤O(b(T)) and ∀t ∈ T ∃t′ ∈ T ′ ‖t− t′‖1 ≤O(b(T)).

Source: [Tal94]
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Remarks:
• The quantity g(T) is well-understood in terms of the geometry of T,

thanks to Talagrand’s majorizing measures theorem.

• Talagrand offers a $5000 prize for proving this, and a $1000 prize for

disproving it.

Fourier Entropy–Influence Conjecture

Statement: There is a universal constant C such that for any f : {−1,1}n →
{−1,1} it holds that H[ f̂ 2] ≤ C · I[ f ], where H[ f̂ 2] =

∑
S f̂ (S)2 log2

1

f̂ (S)2
is the

spectral entropy and I[ f ] is the total influence.

Source: [FK96]

Remarks:
• Proved for “almost all” polynomial-size DNF formulas (appropriately

defined) by Klivans, Lee, and Wan [KLW10].

• Proved for symmetric functions and functions computable by read-once

decision trees by O’Donnell, Wright, and Zhou [OWZ11].

• An explicit example showing that C ≥ 60/13 is necessary is known.

(O’Donnell, unpublished.)

• Weaker version: the “Min-Entropy–Influence Conjecture”, which states

that there exists S such that f̂ (S)2 ≥ 2−C·I[f ]. This conjecture is strictly

stronger than the KKL Theorem, and is implied by the KKL Theorem

in the case of monotone functions.

Majority Is Least Stable Conjecture

Statement: Let f : {−1,1}n → {−1,1} be a linear threshold function, n odd.

Then for all ρ ∈ [0,1], Stabρ[ f ]≥Stabρ[Majn].

Source: [BKS99]

Remarks:
• Slightly weaker version: If f is a linear threshold function then NSδ[ f ]≤

2
π

p
δ+ o(

p
δ).

• The best result towards the weaker version is Peres’s Theorem [Per04],

which shows that every linear threshold function f satisfies NSδ[ f ] ≤√
2
π

p
δ+O(δ3/2).

• By taking ρ → 0, the conjecture has the following consequence, which

is also open: Let f : {−1,1}n → {−1,1} be a linear threshold function

with E[ f ] = 0. Then
∑n

i=1 f̂ (i)2 ≥ 2
π

. The best known lower bound here

is 1
2 , which follows from the Khinchine–Kahane inequality; see [GL94].
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Optimality of Majorities for Non-Interactive Correlation

Distillation

Statement: Fix r ∈N, n odd, and 0 < ǫ< 1/2. For f : {−1,1}n → {−1,1}, define

P( f )=Pr[ f (y(1))= f (y(2))= ·· · f (y(r))], where x∼ {−1,1}n is chosen uniformly

and then each y(i) is (independently) an ǫ-noisy copy of x. Is it true that P( f )

is maximized among odd functions f by the Majority function Majk on some
odd number of inputs k?

Source: [MO05] (originally from 2002)

Remarks:
• It is possible (e.g., for r = 10, n = 5, ǫ = .26) for neither the Dictator

(Maj1) nor full Majority (Majn) to be maximizing.

Noise Sensitivity of Intersections of Halfspaces

Statement: Let f : {−1,1}n → {−1,1} be the intersection (AND) of k linear

threshold functions. Then NSδ[ f ]≤O(
√

log k) ·
p
δ.

Source: [KOS02]

Remarks:
• The bound O(k)·

p
δ follows easily from Peres’s Theorem and is the best

known.

• The “Gaussian special case” follows easily from the work of Nazarov [Naz03].

• An upper bound of the form polylog(k) ·δΩ(1) holds if the halfspaces are

sufficiently “regular” [HKM10].

Non-Interactive Correlation Distillation with Erasures

Statement: Let f : {−1,1}n → {−1,1} be an unbiased function. Let z ∼
{−1,0,1}n be a “random restriction” in which each coordinate zi is (indepen-

dently) ±1 with probability p/2 each, and 0 with probability 1− p. Assuming

p < 1/2 and n odd, is it true that Ez[| f (z)|] is maximized when f is the ma-

jority function? (Here we identify f with its multilinear expansion.)

Source: [Yan04]

Remarks:
• For p ≥ 1/2, Yang conjectured that Ez[| f (z)|] is maximized when f is a

dictator function; this was proved by O’Donnell and Wright [OW12].

• Mossel [Mos10] shows that if f ’s influences are assumed at most τ then

Ez[| f (z)|]≤Ez[|Majn(z)|]+ oτ(1).

Triangle Removal in Fn
2

Statement: Let A ⊆ Fn
2 . Suppose that ǫ2n elements must be removed

from A in order to make it “triangle-free” (meaning there does not exist
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x, y, x+ y ∈ A). Is it true that Prx,y[x, y, x+ y ∈ A] ≥ poly(ǫ), where x and y

are independent and uniform on Fn
2 ?

Source: [Gre05a]

Remarks:
• Green [Gre05a] showed the lower bound 1/(2↑↑ǫ−Θ(1)).

• Bhattacharyya and Xie [BX10] constructed an A for which the proba-

bility is at most roughly ǫ3.409.

Subspaces in Sumsets

Statement: Fix a constant α > 0. Let A ⊆Fn
2 have density at least α. Is it

true that A+ A contains a subspace of codimension O(
p

n)?

Source: [Gre05a]

Remarks:
• The analogous problem for the group ZN dates back to Bourgain [Bou90].

• By considering the Hamming ball A = {x : |x| ≤ n/2−Θ(
p

n)}, it is easy

to show that codimension O(
p

n) cannot be improved. This example is

essentially due to Ruzsa [Ruz93], see [Gre05a].

• The best bounds are due to Sanders [San10a], who shows that A+ A
must contain a subspace of codimension ⌈n/(1+ log2( 1−α

1−2α
))⌉. Think-

ing of α as small, this means a subspace of dimension roughly α
ln2 ·

n. Thinking of α = 1/2− ǫ for ǫ small, this is codimension roughly

n/ log2(1/ǫ). In the same work Sanders also shows that if α ≥ 1/2−
.001/

p
n then A+ A contains a subspace of codimension 1.

• As noted in the remarks on the Polynomial Freiman–Ruzsa/Bogolyubov

Conjectures, it is also interesting to consider the relaxed problem where

we only require that A+ A contains 99% of the points in a large sub-

space. Here it might be conjectured that the subspace can have codi-

mension O(log(1/α)).

Aaronson–Ambainis Conjecture

Statement: Let f : {−1,1}n → [−1,1] have degree at most k. Then there

exists i ∈ [n] with Infi[ f ]≥ (Var[ f ]/k)O(1).

Source: [Aar08, AA11]

Remarks:
• True for f : {−1,1}n → {−1,1}; this follows from a result of O’Donnell,

Schramm, Saks, and Servedio [OSSS05].

• The weaker lower bound (Var[ f ]/2k)O(1) follows from a result of Dinur,

Kindler, Friedgut, and O’Donnell [DFKO07].
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Bhattacharyya–Grigorescu–Shapira Conjecture

Statement: Let M ∈Fm×k
2 and σ ∈ {0,1}k. Say that f :Fn

2 → {0,1} is (M,σ)-
free if there does not exist X = (x(1), . . . , x(k)) (where each x( j) ∈ Fn

2 is a row

vector) such that MX = 0 and f (x( j)) = σ j for all j ∈ [k]. Now fix a (possi-

bly infinite) collection {(M1,σ1), (M2,σ2), · · · } and consider the property Pn

of functions f : Fn
2 → {0,1} that f is (M i,σi)-free for all i. Then there is a

one-sided error, constant-query property-testing algorithm for Pn.

Source: [BGS10]

Remarks:
• The conjecture is motivated by a work of Kaufman and Sudan [KS08]

which proposes as an open research problem the characterization of

testability for linear-invariant properties of functions f : Fn
2 → {0,1}.

The properties defined in the conjecture are linear-invariant.

• Every property family (Pn) defined by {(M1,σ1), (M2,σ2), · · · }-freeness

is subspace-hereditary; i.e., closed under restriction to subspaces. The

converse also “essentially” holds. [BGS10].

• For M of rank one, Green [Gre05a] showed that (M,1k)-freeness is

testable. He conjectured this result extends to arbitrary M; this was

confirmed by Král’, Serra, and Vena [KSV08] and also Shapira [Sha09].

Austin [Sha09] subsequently conjectured that (M,σ)-freeness is testable

for arbitrary σ; even this subcase is still open.

• The conjecture is known to hold when all M i have rank one [BGS10].

Also, Bhattacharyya, Fischer, and Lovett [BFL12] have proved the con-

jecture in the setting of Fp for affine constraints {(M1,σ1), (M2,σ2), . . .}

of “Cauchy–Schwarz complexity” less than p.

Symmetric Gaussian Problem

Statement: Fix 0≤ ρ,µ,ν≤ 1. Suppose A,B ⊆Rn have Gaussian measure µ,

ν respectively. Further, suppose A is centrally symmetric: A =−A. What is

the minimal possible value of Pr[x ∈ A, y ∈ B], when (x, y) are ρ-correlated

n-dimensional Gaussians?

Source: [CR10]

Remarks:
• It is equivalent to require both A =−A and B =−B.

• Without the symmetry requirement, the minimum occurs when A and

B are opposing halfspaces; this follows from the work of Borell [Bor85].

• A reasonable conjecture is that the minimum occurs when A is a cen-

tered ball and B is the complement of a centered ball.
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Standard Simplex Conjecture

Statement: Fix 0≤ ρ ≤ 1. Then among all partitions of Rn into 3 ≤ q ≤ n+1

parts of equal Gaussian measure, the maximal noise stability at ρ occurs

for a “standard simplex partition”. By this it is meant a partition A1, . . . , Aq

satisfying A i ⊇ {x ∈Rn : 〈ai, x〉 > 〈a j, x〉 ∀ j 6= i}, where a1, . . . ,aq ∈Rn are unit

vectors satisfying 〈ai,a j〉 = − 1
q−1

for all i 6= j. Further, for −1 ≤ ρ ≤ 0 the

standard simplex partition minimizes noise stability at ρ.

Source: [IM09]

Remarks:
• Implies the Plurality Is Stablest Conjecture of Khot, Kindler, Mossel,

and O’Donnell [KKMO04]; in turn, the Plurality Is Stablest Conjecture

implies it for ρ ≥− 1
q−1

.

Linear Coefficients versus Total Degree

Statement: Let f : {−1,1}n → {−1,1}. Then
∑n

i=1 f̂ (i)≤
√

deg( f ).

Source: Parikshit Gopalan and Rocco Servedio, ca. 2009

Remarks:
• More ambitiously, one could propose the upper bound k ·

(k−1
k−1

2

)
21−k,

where k = deg( f ). This is achieved by the Majority function on k bits.

• Apparently, no bound better than the trivial
∑n

i=1 f̂ (i)≤ I[ f ]≤ deg( f ) is

known.

k-wise Independence for PTFs

Statement: Fix d ∈N and ǫ ∈ (0,1). Determine the least k = k(d,ǫ) such that

the following holds: If p :Rn →R is any degree-d multivariate polynomial,

and X is anyRn-valued random variable with the property that each X i has

the standard Gaussian distribution and each collection X i1 , . . . , X ik is inde-

pendent, then |Pr[p(X ) ≥ 0]−Pr[p(Z) ≥ 0]| ≤ ǫ, where Z has the standard

n-dimensional Gaussian distribution.

Source: [DGJ+09]

Remarks:
• For d = 1, Diakonikolas, Gopalan, Jaiswal, Servedio, and Viola [DGJ+09]

showed that k = O(1/ǫ2) suffices. For d = 2, Diakonikolas, Kane, and

Nelson [DKN10] showed that k =O(1/ǫ8) suffices. For general d, Kane [Kan11]

showed that Od(1) ·ǫ−2O(d)
suffices and that Ω(d2/ǫ2) is necessary.

ǫ-biased Sets for DNFs

Statement: Is it true for each constant δ > 0 that s−O(1)-biased densities
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δ-fool size-s DNFs? I.e., that if f : {0,1}n → {−1,1} is computable by a size-

s DNF and ϕ is an s−O(1)-biased density on {0,1}, then |Ex∼{0,1}n[ f (x)] −
Ey∼ϕ[ f (y)]| ≤ δ.

Source: [DETT10], though the problem of pseudorandom generators for

bounded-depth circuits dates back to [AW85]

Remarks:
• De, Etesami, Trevisan, and Tulsiani [DETT10] show the result for

exp(−O(log2(s) loglog s))-biased densities. If one assumes Mansour’s

Conjecture, their result improves to exp(−O(log2 s)). More precisely,

they show that exp(−O(log2(s/δ) loglog(s/δ)))-biased densities δ-fool size-

s DNF. They also give an example showing that s−O(log(1/δ))-biased den-

sities are necessary. Finally, they show that s−O(log(1/δ))-biased densi-

ties suffice for read-once DNFs.

PTF Sparsity for Inner Product Mod 2

Statement: Is it true that any PTF representation of the inner product

mod 2 function on 2n bits, IP2n :F2n
2 → {−1,1}, requires at least 3n monomi-

als?

Source: Srikanth Srinivasan, 2010

Remarks:
• Rocco Servedio independently asked if the following much stronger

statement is true: Suppose f , g : {−1,1}n → {−1,1} require PTFs of

sparsity at least s, t, respectively; then f ⊕ g : {−1,1}2n → {−1,1} (the

function (x, y) 7→ f (x)g(y)) requires PTFs of sparsity at least st.

Servedio–Tan–Verbin Conjecture

Statement: Fix any ǫ > 0. Then every monotone f : {−1,1}n → {−1,1} is

ǫ-close to a poly(deg( f ))-junta.

Source: Elad Verbin (2010) and independently Rocco Servedio and Li-Yang

Tan (2010)

Remarks:
• One can equivalently replace degree by decision-tree depth or maxi-

mum sensitivity.

• RESOLVED (in the negative) by Daniel Kane, 2012.

Average versus Max Sensitivity for Monotone Functions

Statement: Let f : {−1,1}n → {−1,1} be monotone. Then I[ f ]< o(sens[ f ]).

Source: Rocco Servedio, Li-Yang Tan, 2010

Remarks:
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• The tightest example known has I[ f ] ≈ sens[ f ].61; this appears in a

work of O’Donnell and Servedio [OS08].

Approximate Degree for Approximate Majority

Statement: What is the least possible degree of a function f : {−1,1}n →
[−1,−2/3]∪ [2/3,1] which has f (x) ∈ [2/3,1] whenever

∑n
i=1 xi ≥ n/2 and has

f (x)∈ [−1,−2/3] whenever
∑n

i=1 xi ≤−n/2?

Source: Srikanth Srinivasan, 2010

Remarks:
• Note that f (x) is still required to be in [−1,−2/3]∪ [2/3,1] when −n/2<∑n

i=1 xi < n/2.

Uncertainty Principle for Quadratic Fourier Analysis

Statement: Suppose q1, . . . , qm :Fn
2 →F2 are polynomials of degree at most 2

and suppose the indicator function of (1, . . .,1) ∈ Fn
2 , namely AND : Fn

2 →
{−1,1}, is expressible as AND(x) =

∑m
i=1 ci(−1)qi(x) for some real numbers ci.

What is a lower bound for m?

Source: Hamed Hatami, 2011

Remarks:
• Hatami can show that m ≥ n is necessary but conjectures m ≥ 2Ω(n) is

necessary. Note that if the q i ’s are of degree at most 1 then m = 2n is

necessary and sufficient.

• The Constant-Degree Hypothesis is a similar conjecture made by Bar-

rington, Straubing, and Thérien [BST90] in 1990 in the context of fi-

nite fields.
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progressions in sums of sets of integers, pages 105–109. Cam-

bridge University Press, 1990.

[Bou05] Jean Bourgain. Estimation of certain exponential sums aris-

ing in complexity theory. Comptes Rendus Mathematique,

340(9):627–631, 2005.

[BST90] David Mix Barrington, Howard Straubing, and Denis Thérien.

Non-uniform automata over groups. Information and Computa-
tion, 89(2):109–132, 1990.

[BX10] Arnab Bhattacharyya and Ning Xie. Lower bounds for testing

triangle-freeness in Boolean functions. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms, pages

87–98, 2010.

[CFGS88] Fan Chung, Zoltán Füredi, Ronald Graham, and Paul Seymour.

On induced subgraphs of the cube. J. Comb. Theory A, 49:180–

187, 1988.

[CR10] Amit Chakrabarti and Oded Regev. An optimal lower bound on

the communication complexity of Gap-Hamming-Distance. In

Electronic Colloquium on Computational Complexity TR10-140,

2010.

[DETT10] Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tul-

siani. Improved pseudorandom generators for depth 2 circuits.



BIBLIOGRAPHY 14

In Proceedings of the 14th Annual International Workshop on
Randomized Techniques in Computation, pages 504–517, 2010.

[DFKO07] Irit Dinur, Ehud Friedgut, Guy Kindler, and Ryan O’Donnell.

On the Fourier tails of bounded functions over the discrete cube.

Israel Journal of Mathematics, 160(1):389–412, 2007.

[DGJ+09] Ilias Diakoniokolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco

Servedio, and Emanuele Viola. Bounded independence fools

halfspaces. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science, pages 171–180, 2009.

[DHK+10] Ilias Diakonikolas, Prahladh Harsha, Adam Klivans, Raghu

Meka, Prasad Raghavendra, Rocco Servedio, and Li-Yang Tan.

Bounding the average sensitivity and noise sensitivity of poly-

nomial threshold functions. In Proceedings of the 42nd Annual
ACM Symposium on Theory of Computing, pages 533–542, 2010.

[DKN10] Ilias Diakonikolas, Daniel Kane, and Jelani Nelson. Bounded

independence fools degree-2 threshold functions. In Proceedings
of the 51st Annual IEEE Symposium on Foundations of Com-
puter Science, pages 11–20, 2010.

[FK96] Ehud Friedgut and Gil Kalai. Every monotone graph property

has a sharp threshold. Proceedings of the American Mathemati-
cal Society, 124(10):2993–3002, 1996.

[GL92] Craig Gotsman and Nathan Linial. The equivalence of two prob-

lems on the cube. Journal of Combinatorial Theory, Series A,

61(1):142–146, 1992.

[GL94] Craig Gotsman and Nathan Linial. Spectral properties of

threshold functions. Combinatorica, 14(1):35–50, 1994.

[Gre05a] Ben Green. A Szemerédi-type regularity lemma in abelian

groups, with applications. Geometric And Functional Analysis,

15(2):340–376, 2005.

[Gre05b] Ben Green. Finite field models in additive combinatorics. In

London Mathematical Society Lecture Notes, volume 327, pages

1–27. , Cambridge University Press, 2005.



BIBLIOGRAPHY 15

[GRS05] Frederic Green, Amitabha Roy, and Howard Straubing. Bounds

on an exponential sum arising in boolean circuit complexity.

Comptes Rendus Mathematique, 341(5):279–282, 2005.

[GT09] Ben Green and Terence Tao. Freiman’s theorem in finite fields

via extremal set theory. Combinatorics, Probability and Com-
puting, 18(3):335–355, 2009.

[Guy89] Richard Guy. Any answers anent these analytical enigmas?

American Mathematical Monthly, 93(4):279–281, 1989.

[HK92] Ron Holzman and Daniel Kleitman. On the product of sign vec-

tors and unit vectors. Combinatorica, 12(3):303–316, 1992.

[HKM10] Prahladh Harsha, Adam Klivans, and Raghu Meka. An invari-

ance principle for polytopes. In Proceedings of the 42nd Annual
ACM Symposium on Theory of Computing, pages 543–552, 2010.

[IM09] Marcus Isaksson and Elchanan Mossel. Maximally stable Gaus-

sian partitions with discrete applications. Technical Report

0903.3362, arXiv, 2009.

[Kan09] Daniel Kane. The Gaussian surface area and noise sensitivity of

degree-d polynomials. Technical Report 0912.2709, arXiv, 2009.

[Kan11] Daniel Kane. A small PRG for polynomial threshold functions of

Gaussians. In Proceedings of the 52nd Annual IEEE Symposium
on Foundations of Computer Science, pages 257–266, 2011.

[KKMO04] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryano’

O’Donnell. Optimal inapproximability results for MAX-CUT

and other 2-variable CSPs? In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science, 2004.

[KLW10] Adam Klivans, Homin Lee, and Andrew Wan. Mansour’s Con-

jecture is true for random DNF formulas. In Proceedings of the
23rd Annual Conference on Learning Theory, pages 368–380,

2010.

[KOS02] Adam Klivans, Ryan O’Donnell, and Rocco Servedio. Learning

intersections and thresholds of halfspaces. In Proceedings of the



BIBLIOGRAPHY 16

43rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 177–186, 2002.

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing:

the role of invariance. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pages 403–412, 2008.

[KSV08] Daniel Král’, Oriol Serra, and Lluís Vena. A removal lemma for

systems of linear equations over finite fields. Technical Report

0809.1846, arXiv, 2008.

[Man94] Yishay Mansour. Learning Boolean functions via the Fourier

Transform. In Vwani Roychowdhury, Kai-Yeung Siu, and Alon

Orlitsky, editors, Theoretical Advances in Neural Computation
and Learning, chapter 11, pages 391–424. Kluwer Academic

Publishers, 1994.

[Man95] Yishay Mansour. An O(nloglogn) learning algorithm for DNF un-

der the uniform distribution. Journal of Computer and System
Sciences, 50(3):543–550, 1995.

[MO05] Elchanan Mossel and Ryan O’Donnell. Coin flipping from a cos-

mic source: On error correction of truly random bits. Random
Structures & Algorithms, 26(4):418–436, 2005.

[Mos10] Elchanan Mossel. Gaussian bounds for noise correlation of func-

tions. Geometric and Functional Analysis, 19(6):1713–1756,

2010.

[Naz03] Fedor Nazarov. On the maximal perimeter of a convex set in

R
n with respect to a Gaussian measure. In Geometric Aspects of

Functional Analysis, volume 1807, pages 169–187. Israel Semi-

nar, 2003.

[NS94] Noam Nisan and Mario Szegedy. On the degree of Boolean func-

tions as real polynomials. Computational Complexity, 4(4):301–

313, 1994.

[OS08] Ryan O’Donnell and Rocco Servedio. Learning monotone deci-

sion trees in polynomial time. SIAM Journal on Computing,

37(3):827–844, 2008.



BIBLIOGRAPHY 17

[OSSS05] Ryan O’Donnell, Michael Saks, Oded Schramm, and Rocco

Servedio. Every decision tree has an influential variable. In

Proceedings of the 46th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 31–39, 2005.

[OW12] Ryan O’Donnell and John Wright. A new point of NP-hardness

for Unique-Games. In Proceedings of the 44th Annual ACM
Symposium on Theory of Computing, 2012.

[OWZ11] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds

for locality sensitive hashing (except when q is tiny). In Proceed-
ings of the 2nd Annual Symposium on Innovations in Computer
Science, 2011.

[Per04] Yuval Peres. Noise stability of weighted majority. Technical Re-

port 0412377, arXiv, 2004.

[Raz87] Alexander Razborov. Lower bounds on the dimension of schemes

of bounded depth in a complete basis containing the logical ad-

dition function. Matematicheskie Zametki, 41(4):598–607, 1987.

[Ruz93] Imre Ruzsa. An analog of Freiman’s theorem in groups. Techni-

cal Report 77, DIMACS, 1993.

[San10a] Tom Sanders. Green’s sumset problem at density one half. Tech-

nical Report 1003.5649, arXiv, 2010.

[San10b] Tom Sanders. On the Bogolyubov–Ruzsa lemma. Technical Re-

port 1011.0107, arXiv, 2010.

[Sha09] Asaf Shapira. Green’s conjecture and testing linear-invariant

properties. In Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, pages 159–166, 2009.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower

bounds for Boolean circuit complexity. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, pages 77–82,

1987.

[Sze89] Mario Szegedy. Algebraic methods in lower bounds for computa-
tional models with limited communication. PhD thesis, Univer-

sity of Chicago, 1989.



BIBLIOGRAPHY 18

[Tal89] Michel Talagrand. A conjecture on convolution operators, and

a non-Dunford–Pettis operator on L1. Israel Journal of Mathe-
matics, 68(1):82–88, 1989.

[Tal94] Michel Talagrand. Constructions of majorizing measures,

Bernoulli processes and cotype. Geometric and Functional anal-
ysis, 4(6):660–717, 1994.

[VW08] Emanuele Viola and Avi Wigderson. Norms, XOR lemmas, and

lower bounds for g f (2) polynomials and multiparty protocols.

Theory of Computing, 4:137–168, 2008.

[Yan04] Ke Yang. On the (im)possibility of non-interactive correlation

distillation. In Proceedings of the 6th Annual Latin American
Informatics Symposium, pages 222–231, 2004.


