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Abstract

In the conclusion of his monumental paper on optimal inapproximability results, Hastad [13]
suggested that Fourier analysis of Dictator (Long Code) Tests does not seem universally appli-
cable in the study of CSPs. His main open question was to determine if the technique could
resolve the approximability of satisfiable 3-bit constraint satisfaction problems. In particular,
he asked if the “Not Two” (NTW) predicate is non-approximable beyond the random assignment
threshold of 5/8 on satisfiable instances. Around the same time, Zwick [30] showed that all
satisfiable 3-CSPs are 5/8-approximable, and conjectured that the 5/8 is optimal.

In this work we show that Fourier analysis techniques can produce a Dictator Test based on
NTW with completeness 1 and soundness 5/8. Our test’s analysis uses the Bonami-Gross-Beckner
hypercontractive inequality. We also show a soundness lower bound of 5/8 for all 3-query Dic-
tator Tests with perfect completeness. This lower bound for Property Testing is proved in part
via a semidefinite programming algorithm of Zwick [30].

Our work precisely determines the 3-query “Dictatorship Testing gap”. Although this rep-
resents progress on Zwick’s conjecture, current PCP “outer verifier” technology is insufficient
to convert our Dictator Test into an NP-hardness-of-approximation result.

*Supported in part by NSF CAREER grant CCF-0747250.



1 Introduction: Dictator Testing, and its motivation

1.1 Dictator Testing

In this paper we study a Property Testing problem called Dictator Testing. Dictator Testing is
strongly motivated by its applications to proving NP-hardness-of-approximation results (in which
context it is often called “Long Code Testing”). We describe the Dictator Testing problem infor-
mally in this section; for formal definitions, see Section [4.1

In Dictator Testing, we have black-box query access to an unknown boolean function f :
{0,1}" — {0,1}. The goal is to test the extent to which f is close to a “dictator” function;
i.e., one of the n functions of the form

flz1,...,2p) = ;.

Recall that a “test” is a randomized algorithm which makes a very small number of queries to f and
then either “accepts” or “rejects”. It is “nonadaptive” if it determines all query strings before seeing
the responses. The Dictator Testing problem was first studied by Bellare, Goldreich, and Sudan [,
with hardness-of-approximation as the motivation. It was later independently introduced, with the
“dictator” terminology, by Parnas, Ron, and Samorodnitsky [24].

Definition 1.1. A Dictator Test has completeness c if all n dictator functions are accepted with
probability at least c. We say a Dictator Test has perfect completeness if it has completeness 1.

In this paper we consider only nonadaptive Dictator Tests with perfect completeness, unless
otherwise specified. As for the “soundness” of a Dictator Test, we briefly discuss several possible
criteria one could require:

Local testability: In this model of soundness, any function f which is e-far from every dictator
should be accepted with probability at most 1 — Q(e). Here we hope to make a very small constant
number of queries, such as 3 or 4. Bellare, Goldreich, and Sudan [I] (BGS) implicitly gave a 4-query
(indeed, 3-query adaptive) such test; for a simple 3-query construction, see e.g. [22]. Such “Local
Dictator Tests” play a useful role in Dinur’s proof of the PCP Theorem [4].

Usual Property Testing soundness: In this model, the tester is also given a parameter €; any
function f which is e-far from every dictator should be accepted with probability at most, say, 1/3.
Here we hope to make few queries as a function of e. Note that by repeating a local test O(1/¢)
times, we get an O(1/e)-query Dictator Test with the usual Property Testing soundness.

Rejecting very far functions: In this model, soundness is only concerned with functions f
which are (1/2—o0(1))-far from every dictator; i.e., have correlation at most o(1) with every dictator.
The goal is to accept such functions with as low a probability as possible, while making a very
small constant number of queries. For example, the 4-query BGS test accepts these functions with
probability at most 17/20 + o(1). The major contribution of BGS was showing that Dictator Tests
with this kind of soundness can yield strong NP-hardness-of-approximation results for constraint
satisfaction problems (“CSPs”).



Rejecting “quasirandom” functions. Hastad [12] [I3] introduced this relaxation of the above.
One can think of it as only requiring soundness for functions f which have correlation at most o(1)
with every “unta” (function depending on only O(1) coordinates). We refer to such f’s as “quasir-
andom”, and such tests as “Dictator-vs.-Quasirandom Tests”.

Definition 1.2. (Informal.) A Dictator-vs.-Quasirandom Test has soundness at most s if every
quasirandom function is accepted with probability at most s + o(1).

For example, Hastad [I3] gave a (nonadaptive) 3-query Dictator-vs.-Quasirandom Test with
soundness 3/4. As Hastad and others have demonstrated, Dictator-vs.-Quasirandom Tests can
often be used to prove optimal inapproximability results for CSPs.

1.2 Optimal approximability for k-CSPs

The major motivation for Dictator Testing is proving hardness-of-approximation results for CSPs.
We discuss this connection in Section however first let us describe k-CSPs. A (boolean) “k-
CSP” is a system of constraints over n boolean-valued variables v; in which each constraint involves
at most k of the variables. We also assume each constraint has a nonnegative weight, with the
sum of all weights being 1. Given a k-CSP, the natural algorithmic task, called “Max-kCSP”, is
to find an assignment to the variables such that the total weight of satisfied constraints is as large
as possible. We write “Opt” to denote the weight satisfied by the best possible assignment. We
also say that a CSP is “satisfiable” if Opt = 1. Our main motivation in this paper is studying the
difficulty of satisfiable Max-3CSP instances, of which the following is a small example:

weight: ‘ constraint:
1/4 v1 A =03 A vy
1/4 | IF vy THEN vy ELSE —ws
1/2 () 75 Vs

Each constraint in a k-CSP is of a certain “type”; more precisely, it is a certain predicate of
arity at most k over the variables. If we specialize Max-kCSP by restricting the type of constraints
allowed, we get some of the most canonical NP optimization problems. For example:

e Max-2Sat: only the four predicates v; Vv;, v; V—vj, —v; Vuj, —v; V -y,
e Max-3Lin: only the two predicates v; @ v; @ v, —(v; ®vj D vg);
e Max-Cut: only the predicate v; # v;.

If we restrict the allowed predicates to some set ®, we call the associated algorithmic problem
Max-®.

Determining Opt for these CSP problems is NP-hard, but there is an enormous literature on
polynomial-time approximation algorithms. To complement this, we can also look for NP-hardness-
of-approximation results. As we describe in the next section, all of the best known inapproximability
results rely critically on Dictator Testing.

We now have optimal (i.e., matching) approximation algorithms and NP-hardness-of-approximation
results for some key problems: Max-kLin(mod ¢) for k£ > 3 [13], Max-3Sat [13], 15, B1], and a few
other Max-kCSP problems with & > 3 [13, B0, 29, ©]. However, many basic problems remain
unresolved; for example, we do not know if 90%-approximating Max-Cut is in P or is NP-hard.
Similarly, given a satisfiable 3-CSP, we do not know if satisfying 2/3 of the constraint-weight is in
P or is NP-hard.



1.3 The connection between Dictator Testing and inapproximability

There is a close connection between CSPs and the Property Testing of boolean functions. To
illustrate this, suppose 7 is a nonadaptive 3-query Dictator-vs.-Quasirandom Test on functions
f:{0,1}9 — {0,1}. Imagine we consider all possible random choices of 7, and in each case write
down the (up to) 3 strings z, y, z queried and the predicate applied to the outcomes to decide
accept/reject. The complete behavior of 7 might then look like the following:

with probability p;, accept iff flzMy v
with probability py, accept iff —f(z®) v  f(y?)
with probability ps, accept iff —f(z®) v =f(@y®)) v —f(z0)

This is precisely an instance of Max-3CSP, in which the “variables” are the f(z)’s. Note that
the weights p; indeed sum up to 1. More generally, if 7 makes at most ¢ nonadaptive queries it
can be viewed as an instance of Max-gCSP. Further, suppose that 7 “uses the predicate set ®”
— i.e., its decision to accept/reject is always based on applying a predicate from the set ® to its
query responses. Then 7 can be viewed as an instance of Max-®. The above example illustrates a
tester which uses the set of ORs on up to 3 literals; thus it can be viewed as an instance of Max-3Sat.

Suppose that 7 is a Dictator Test with completeness at least c¢. Then the Opt of the associated
CSP is at least c¢; indeed, there are n distinct solutions, the dictators, of value at least c¢. More
crucially, suppose further that 7 is a Dictator-vs.-Quasirandom Test with soundness at most s.
Taking the contrapositive of Definition this means that any solution f satisfying slightly more
than weight s of the constraints must be slightly correlated with a junta on constant number of
coordinates; i.e., it must “highlight” a small number of dictators. These two properties of the
test, taken together, make it useful as a gadget in an NP-hardness-of-approximation reduction.
Specifically, if 7 uses predicate set ®, it can be used to prove hardness for the Max-® problem.
Indeed, in the study of inapproximability, one has the following “Rule of Thumb”:

Rule of Thumb. For the Maz-® problem, to prove that distinguishing Opt > ¢ and Opt < s+¢€
1s NP-hard, construct a nonadaptive Dictator-vs.-Quasirandom Test using ®, with completeness c
and soundness s.

For example, the key step in Hastad’s famous (7/8 + €)-hardness result for satisfiable Max-
3Sat instances was his construction of a 3-query Dictator-vs.-Quasirandom Test using OR tests,
with perfect completeness and soundness 7/8. Actual theorems based on the Rule of Thumb are
discussed in Section [B.1l

2 Our contribution: optimal perfect-completeness, 3-query tests

2.1 Satisfiable 3-CSPs

One of the most notable open questions in the area of CSP approximability is that of analyzing
satisfiable 3-CSPs:

Question 1: Given a satisfiable 3-CSP, can we efficiently satisfy constraint-weight at least s?



Zwick [30] made a comprehensive study of the Max-3CSP problem and gave an efficient algo-
rithm which 5/8-satisfies any satisfiable 3-CSP instance. (This improved and built upon the earlier
.514-algorithm of Trevisan [28].) Zwick conjectured that this algorithm is optimal; i.e., obtaining
5/8 + € is NP-hard for all constant € > 0. In the language of Probabilistically Checkable Proofs,
Zwick’s conjecture states that NP C naPCPy 5/5,(O(logn), 3).

Hastad’s contemporaneous treatise on optimal inapproximability [I1] gave an NP-hardness re-
sult for s > 3/4, and improving this was left as the main open problem in his work. Almost
a decade later, no progress had been made on closing the gap, and Hastad re-posed the prob-
lem [14]. Shortly thereafter, Khot and Saket [19] achieved the first improved hardness, showing
that satisfiable 3-CSP instances are NP-hard to approximate to any factor better than 20/27 ~ .74.

In originally posing the problem, Hastad suggested that Fourier analysis of Dictator Tests does
not seem universally applicable in the study of CSPs. The associated Dictator-vs.-Quasirandom
Property Testing question here is particularly easy to state:

Question 2: What is the least possible soundness of a nonadaptive 3-query Dictator-vs.-
Quasirandom Test with perfect completeness?

Khot and Saket’s result yields an upper bound 20/27 for this question; the question of proving
a lower bound has not been explicitly considered.

The main result in this paper is an exact answer to Question 2:

Theorem 2.1. (Main results, informally stated.)

1. There is a nonadaptive 3-query Dictator-vs.-Quasirandom Test with perfect completeness and
soundness 5/8. The test uses only the “Not-Two” (NTW) predicate.

2. FEvery nonadaptive 3-query Dictator-vs.- Quasirandom Test with perfect completeness has sound-
ness at least 5/8.

Fourier analysis is the key to the proof of the upper bound.

The NTW predicate. NTW is the 3-bit predicate which is satisfied if the number of True inputs is
either zero, one, or three — i.e., not two. Our test actually uses all eight NTW predicates gotten
by allowing the query responses to be negated. Although Zwick’s algorithm satisfies 5/8 of the
constraints in any 3-CSP, even with mixed “types” of constraints, the bottleneck predicate for
him is the NTW constraint. Hastad’s open question more specifically asked whether or not the NTW
predicate is satisfiable beyond the random-assignment threshold of 5/8 on satisfiable instances.

What we don’t prove. Unfortunately, the formal theorems behind the Rule of Thumb are not
sufficient to convert our Dictator Test into a 5/8 + ¢ NP-hardness result for satisfiable Max-NTW
instances, and thus prove Zwick’s conjecture. See the discussions in Sections [3.1] and [ However
in an upcoming work building on the present paper, we will show that this result can be obtained
assuming Khot’s “d-to-1 Conjecture” ([16]) for any constant d.



2.2 Methods

Upper bound. Given the task of constructing an NTW-based Dictator-vs.-Quasirandom Test with
perfect completeness, we describe in Appendix [D] how the correct test is almost “forced” upon us.
Thus the main task is in the analysis of this test. For this we use some slightly tricky Fourier
analysis, including the hypercontractive inequality [3]. This is the first Dictator Testing result we
are aware of that uses the hypercontractive inequality without using the Invariance Principle [21].
Indeed, the Invariance Principle does not seem useful for our result, and the fact that we use the
hypercontractive inequality directly gives us an exponentially better tradeoff between soundness
and influences than those given by Invariance-based analyses.

Lower bound. The problem of proving lower bounds for Dictator Tests (of the sort needed
for inapproximability) does not seem to have been considered until extremely recently, although
Samorodnitsky and Trevisan [26] studied the problem for Linearity Tests in 2006. In [23], the
present authors observed that because of the “Rule of Thumb” described in Section the ex-
istence of strong approximation algorithms “ought to” imply Dictator-vs.-Quasirandom Testing
lower bounds. As noted by the authors [23] for Max-Cut and independently by Raghavendra [25]
for any 2-CSP, a version of this implication can be proved using the work of Khot and Vishnoi [20].
But this version loses perfect completeness, our raison d’etre, and is unproven for 3-CSPs.

In any case, passing through either the Rule of Thumb or Khot-Vishnoi seems like a highly
roundabout way to analyze Property Testing algorithms. Instead we work directly, as was done in
a much simpler context in [23]. Our proof of the soundness lower bound in Theorem involves
using Zwick’s algorithm to show the existence a quasirandom function passing any given perfect-
completeness Dictator Test with probability at least 5/8 — o(1); this quasirandom function is either
a random threshold function or a random odd parity. Zwick’s algorithm in part uses semidefinite
programming, and we feel that the use of semidefinite programming in Property Testing lower
bounds is an interesting method.

3 Related work

3.1 Formal encapsulations of the Rule of Thumb

There are essentially two known formalizations of the Rule of Thumb from Section[I.3] The original
formalization is due to Bellare, Goldreich, and Sudan [I] and was developed by Hastad [13]. It pro-
duces the desired NP-hardness-of-approximation result, but requires more than just the Dictator-
vs.-Quasirandom Test. Without getting into precise details, it requires a “two-function” version of
Dictator-vs.-Quasirandom Tests, in which one has query-access to an unknown f : {0,1}¢ — {0,1}
and ¢ : {0,1}9¢ — {0,1}, where d should be thought of as polynomially-related to Q. Roughly
speaking, one needs a test (using ®) which checks the extent to which f is close to a dictator i, g
is close to a dictator j, and d(i — 1) + 1 < j < di. A formal statement appears in, e.g., [I0]. The
difficulty of generalizing our Dictator-vs.-Quasirandom Test in this way is discussed in Section [6]
The second formalization of the Rule of Thumb appears implicitly in the work of Khot, Kindler,
Mossel, and O’Donnell [17]. It gives the desired hardness-of-approximation immediately from the
appropriate Dictator-vs.-Quasirandom Test, but there are two deficiencies: First, it requires as-
suming Khot’s Unique Games Conjecture [16]. Second, it has a slight loss in completeness: one
only gets hardness of distinguishing Opt > ¢ — € and Opt < s+ ¢, for all constant € > 0. Note that
even if we are willing to assume the Unique Games Conjecture, this formalization of the Rule of



Thumb is useless to us — it converts our Dictator-vs.-Quasirandom Test from Theorem into a
1 — € vs. 5/8 + € hardness result for Max-NTW. However Hastad [13] has already shown this result
without assuming the Unique Games Conjecture. Further, for the question of nearly-satisfiable
Max-3CSPs, Hastad [13] showed 1 — € vs. 1/2 + € hardness (for Max-3Lin) and Zwick [30] showed
that the 1/2 is optimal.

3.2 Other related work

Besides the connection mentioned in Section Raghavendra [25] proves other links between
Dictator-vs.-Quasirandom Testing and semidefinite programming (SDP). His main result is that
SDP gaps for a CSP can be translated into nearly-equivalent Dictator-vs.-Quasirandom Test. Un-
fortunately, this does not help us for several reasons. The main reason is again the loss of an € in
the completeness, transforming an SDP gap of ¢ vs. s into a Dictator-vs.-Quasirandom Test with
completeness ¢ — € and soundness s. As mentioned in Section the distinction between perfect
and near-perfect completeness is crucial for us. In addition to this, we are not aware of any explicit
SDP gaps for 3-CSPs, certainly not for Max-NTW and not of the strengthened SDP-type needed for
Raghavendra’s reduction.

As mentioned, progress has been slow for Hastad and Zwick’s open problem on the hardness
of satisfiable CSPs. An early work of Guruswami, Lewin, Sudan, and Trevisan [I0] gave a 3-
query adaptive Dictator-vs.-Quasirandom Test with soundness 1/2. This translated into a 1/2 + €
NP-hardness result for satisfiable CSPs with depth-3-decision-tree constraints. They also gave a
4-query non-adaptive Dictator-vs.-Quasirandom Test with soundness 1/2. Much later, Engebret-
sen and Holmerin [5] considered the NP-hardness-of-approximation for satisfiable g-ary Max-kCSP;
they generalized Hastad’s 3/4-hardness and [10]’s 1/2-hardness for 3-CSPs and 4-CSPs, respectively.

Finally, Khot and Saket [19] directly tackled the problem of NP-hardness for satisfiable Max-
3CSP. Because they wanted to use the unconditional formalization of the Rule of Thumb described
at the beginning of Section [3.1] they had to use a more complicated, p-biased Dictator Test based on
multiple predicates. As mentioned, they achieved 20/27 4+ ¢ NP-hardness for satisfiable Max-3CSP
with a mix of predicate types.

4 Definitions and preliminaries

The reader is assumed familiar with the basics of Fourier analysis of boolean functions; see, e.g., [27].
As is standard in Fourier analysis, our default representation for bits will be +1 and —1 rather
than 0 and 1. However the reader is warned that this will change in some places.

4.1 Dictator-vs.-Quasirandom Tests

As mentioned in Section to get Dictator Tests useful for optimal inapproximability, Hastad [12]
relaxed the usual Property Testing soundness notion. In particular, he considered tests that are
only required to reject quasirandom functions with high probability. Hastad effectively considered
the following definition:

Definition 4.1. For 0 <¢,6 <1, we say a function f:{—1,1}" — [-1,1] is (¢, d)-quasirandom if

f(8)?<e forall0<|S|<1/6.



Let us make a few comments on this notion. We have chosen the terminology by analogy
with quasirandom graphs, which are graphs that have close to the “expected” number of copies
of each small subgraph: one can check that an (¢, §)-quasirandom function has covariance at most
V21/4¢ with every “junta” function on at most 1/§ coordinates. Note also that the definition be-
comes stricter as € and § decrease. Some common quasirandom functions include the two constant
functions, the Majority function, and parity functions on large numbers of bits. A further short
discussion of quasirandom functions — and a related notion of “Gaussianic” functions — appears

in Appendix

Let us now formally define Dictator-vs.-Quasirandom Tests:

Definition 4.2. A k-query nonadaptive Dictator-vs.-Quasirandom Test 7 for functions f : {—1,1}" —
{—1,1}, using predicates from the set ®, is a probability distribution over constraints

o(f(21), ., faw)),

where k' < k and ¢ € ®. The completeness ¢ of T is the minimum probability of passing among
dictator functions f(x) = x;. We say T has perfect completeness if all n dictators pass with
probability 1.

The (e, 0)-soundness of 7 is the mazimum probability s(e,d) of passing among (e, §)-quasirandom
functions f. We say that a family of tests (7y,), parameterized by n, has soundness s if for alln > 0
there exist €,0 > 0 such that for all sufficiently large n, the test T, has (€,d)-soundness at most
s+ n.

4.2 Constraint predicates

For us, a k-ary predicate is a function ¢ : {—1,1}* — {0,1}. We say a string u satisfies ¢ if
¢(u) = 1, and call the set of strings satisfying ¢ the support of ¢. The convention of having {0, 1}-
outputs for predicates is to make the Fourier analysis and semidefinite programming most natural.
For inputs, we continue to represent logical “True” and “False” by —1 and 1 respectively; this is
done so that logical XOR, corresponds to real-valued multiplication. In particular, we have

AND3(—1,-1,—1) =1, ANDs(—1,—1,1)=0, XORg(—1,—1,—1)=1, NTW(—1,1,—1)=0,

etc. For the remained of the paper, whenever we refer to a test using predicates from a set &,
we assume ® is closed under input negations. In particular, we will henceforth not distinguish the
predicates ¢(+xq,...,txr). Note that for some problems (e.g., Max-Cut) this distinction would
be important.

For our Property Testing lower bound we are concerned with general 3-query tests and hence
must consider all possible predicates of arity at most 3. As described by Zwick [30], there are
twenty-two possible predicates on up to 3 bits:

TRUp, FLSo, IDNy, ANDy, OR2, XORg, {AND3, EQUs, AXR3, . . ., OXR3, OR3}.

Here the subscript denotes arity. TRUg is the always-satisfied 0-ary predicate; FLSq is the never-
satisfied O-ary predicate. IDN; is the identity predicate. The 2-ary predicates are familiar, as are
some of the sixteen 3-ary predicates. We will henceforth drop the subscripts indicating 3-arity;
e.g., “XOR” means XOR3 unless written as XORy. The precise definitions of the 3-ary predicates do
not much concern us: the main ones we will need to know are NTW, XOR, and EQU. The last of these
is the “all-equal” predicate with support on the two strings {(—1,—1,—1),(1,1,1)}. A point that
will be important for us is that the support of NTW is the union of the supports of XOR and EQU.



4.3 Testing averages

A trick introduced in [1l [I7] is that of testing averages of functions. This is described fully in
Appendix [C| A special case of this trick is the notion of “folding” from [I]; suffice it to say, this
lets us reduce any tester for a function f : {—1,1}" — {—1,1} to a tester for f’s “odd part”,
fedd 1,13 — [~1,1] defined by fo4(x) = (f(z) — f(—x))/2 = 215 odd f(S)zg. For the
definition of testing functions with range [—1, 1], again see Appendix

5 Dictator-vs.-Quasirandom Testing upper bound with NTW

In this section we prove the upper bound in Theorem i.e., we give a family (7,,) of Dictator-vs.-
Quasirandom Tests, using the predicate NTW, with perfect completeness and soundness 5/8. Our
test is based on the following mixture distribution over {—1,1}3:

Ds = (1 — 8)Dxor + 0 Degu. (1)

Here 0 < § < 1/8 is a parameter and D, denotes the uniform distribution on the support of the
predicate ¢. Notice that the support of Dy is the support of the NTW predicate. We can now state
our test:

Test 7,, on function f:{-1,1}" — [-1, 1], with parameter 0 < § < 1/8:

1. Form a triple of strings («,y, z) by choosing each bit-triple (x;, y;, z;) independently
from Ds.

2. Test NTW(fodd (), fodd(y), fodd(2)).

Figure 1 Our test 7,.

(In this paper we use boldface to denote random variables.)

Here is another way of looking at the test: Essentially, the tester first picks a “random restric-
tion fy with s-probability 1 — 0” (in the sense of [6]), and then runs the BLR linearity test [2] on
fw- This description differs from our actual test in three small ways: a) our test applies the NTW
predicate in the end, rather than XOR, and hence accepts the extra answer (1,1,1); b) the BLR
test uses —XOR, not XOR, according to our notations; c) we also include the trick of testing only fodd.

In Appendix [D] we describe why the test given above is almost forced. We also explain in-
tuitively why it should be a good Dictator-vs.-Quasirandom Test. In particular we explain why
the prototypical quasirandom functions — constants, Majority, and large parities — all pass with
probability only around 5/8.

5.1 The hypercontractive inequality

Our analysis uses the “hypercontractive inequality” for {—1,1}", proved originally by Bonami [3]
and independently by Gross [§]:



Theorem 5.1. Suppose 0 < p <1 and q > 2 satisfy p < 1/\/q—1. Then for all f: {—1,1}" — R,

1T fllq < I1f2-

Here T}, is the “noise operator” defined by 7}, f = ng[n] ,0|S|f(S)Xg. Equivalently, (T,f)(z) =
E,[f(y)], where y is defined to be a random string “p-correlated to ”; i.e., y; = z; with probability
p, and y; is uniformly random otherwise.

We will actually need a strengthening of this inequality which addresses the scenario in which p
is strictly smaller than 1/4/¢ — 1. In this case, one can obtain an extra fractional power of ||T),f||2
on the right-hand side:

Corollary 5.2. Suppose 0 < p <1, ¢ > 2, and 0 < X\ < 1 satisfy p* < 1/\/q— 1. Then for all
fA{-11}" =R,
ITpfllg < ITpf 3~ 1115

(By taking A\ = 1, one recovers the usual hypercontractive inequality.)

The following short proof of Corollary was communicated to us by an anonymous reviewer:

Proof.

1T, flg = I TpaTp-xfl;
||Tp17>‘f||% (by Theorem [5.1)
Z p2(1—)\)\3|f(5)2

SC[n)

> ISR (f(5)H)

SC[n]

IN

IN

1-A A
< > p2sf(5)2) . (SE f(S)2> (by Holder’s inequality)

SCln) Cln]
= AT, flI £

5.2 Analyzing our test
We now formally present and prove the testing upper bound stated in our main Theorem

Theorem 5.3. The Dictator-vs.-Quasirandom Test T, with parameter § described in Figure 1 has
perfect completeness and (8,5/1n(1/8))-soundness at most 5/8 + 6+/6.

Proof. The completeness is clear. Suppose then f is (J,0/1n(1/))-quasirandom. We may also
assume f = f°dd. Our goal is to show that f passes 7, with probability at most 5/8 + 6v/9.
As usual in such proofs, we arithmetize the probability the test passes using Fourier analysis.
Recalling , we have



Note that the marginal on each of x, y, z is uniform; since we are assuming f odd, E[f(x)] =
E[f(y)] = E[f(2z)] = 0. In addition, it is easy to see that the joint distribution on (x,y) is that of
d-correlated strings — we get correlation 0 from Dygr with probability 1 — § and correlation 1 from
Dequ with probability 6. Hence

E[f(2)f(y)] = Elf() - (T5)(@)] = Y _6¥If(5)? = Y a¥If(5)* <4,

x
S |S| odd

where we again used the fact that f is odd. By symmetry, the above holds also for E[f(y)f(2)]
and E[f(x)f(z)]. Thus we have established

ENTW(f(x), f(y), f(2))] < § + §0 — RELf (=) f(y) (2)] (2)

and it remains to show that —E[f(x)f(y)f(z)] is small.
By the Fourier decomposition we have

(C)E[zaypzc]. (3)

e
=
8
S~—
~
—~~
&
~~
—~
N
=
I
=
=
h>
—~
s
~—
>

As we have already seen, E[z;| = E[y;] = E[z;] = 0 and E[z;y;] = E[y;2z;] = E[z;2z;] = §; further,
it is clear from that E[x;y;z;] = —(1 — 0) (the Dxgr part contributes —1 and the Dgqy part
contributes 0). Hence in we get a contribution only if A, B, C cover each index exactly 0, 2, or
3 times, with contributions of 1, 4, and —(1 — ¢), respectively. This means that the sets must be
expressible as SUPUQ, SUQU R, and SU P U R for disjoint S, P,Q, R. Hence becomes

S (=pBla—glst N GIPHRRIRIfFSUPUQ)F(SUQUR)F(SUPUR).  (4)
SEIn] an(lij 7géffrdol§1 S

Since f is odd, the product of Fourier coefficients is 0 unless each of the sets SUPUQ, SUQ U R,
S'UPU R have odd cardinality; it is easy to see that this forces |S| to be odd (and also |P|, |Q|, | R]
to be even, but we will not use this).

Next, let us write S = [n] \ S and introduce the function Fg : {—1,1}% — [~1, 1] defined by

—

Fs(u) = f,_5(5);

i.e., Fg(u) is the correlation with parity-on-S of the restriction of f given by substituting u into
the coordinates S. One can check that for any V C 5,

—

Fs(V)=f(SUV).
Thus we may write as

SNoo=pBla—alt N §IPIHCIHEIE(PUQ)Fs(QU R)Fs(PUR)

|S| odd P,Q,R disj
and disj from S

= - > a-9B Y TFs(PUQT;Fs(QUR)T ;Fs(PUR)
|S| odd P,Q,R disj
and disj from S

= = > -9 E(T5F) w)),
|S| odd
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where in the final expression u has the uniform distribution on {—1, 1}§. Summarizing, we have

~Elf(@)f@f(=)]= )Y (-0 E(T;Fs)(u)]. ()

|S| odd

So far we have made only elementary Fourier manipulations; we now come to the more inter-
esting part of the proof. Recall that

TsFs = Fs(@) + V0 3 Fs(Vixv +6 > Fs(V)xv + -
VI=1 |V|=2
For 4 very small, one feels that T’ /;Fs should almost be a constant function; specifically, the
constant ]/?E(@) =f (S). If this were correct we would get that is at most

Yo @=9)FfS)P. (6)

S| odd

This is precisely the critical term in Hastad’s Dictator-vs.-Quasirandom Test based on XOR, so we
know it will be small. Specifically,

©) < max {(1-9) WIS Do 9

[S] o
S| odd

< max

f _ s\n(/8)/s | o _
{0<S|I§2€§/5)/6‘f(5)|7(1 5) } S rnax{\/gy 5} \/37 (7)

where we used Parseval, and the second-to-last step used that f is (d,d/1n(1/6))-quasirandom.
We now need to make this more precise and understand the deviation of Fg from its mean.
Write Fg = Fg — f(S), so that E[Fs] = 0. Then

B = > @-)¥E[f(S)+ (T 5Fs)(w)’]

|S| odd

< Y A=9)Fa(f (9P +ENT5F)@)P])  (using (a+0)° < 4(jaf® + b))
|S| odd

= 4 Y @=-9NFSP+4 Y -0 T 5Fs|3
|S| odd |S| odd

Wo+4 ) (10871 5Fs]3,
|S] odd

IN

where we used . Combining this with , we conclude
ENTW(f(2), f(y), [ < 3+ 36 +3Vo+ 5 > (1-0) T 5Fs|3, (8)
|S] odd
and it remains to analyze the final term,
> =T 5Fs3. 9)
|S] odd

To do this we will use Corollary First, though, we point out why a more naive bound would
not be useful. Suppose we were to use

IT/5F53 = BT 5F51%] < 1T 5Fsllo - BIT,5F5 1) < 2IIT,/5F 53,

11



where we invoked the simple bound

IT5Fslloo < 1T y5Fslloo + 1F(S)] < 1 Fslloo + IF(S)] < M1f oo + [ flloo < 2-

Now
IT5Fsl3= Y oVIEs(v)2= Y VIf(suv) (10)
0£VCS 0AVCS
and thus we would get
@<2 > 1= Y dVfsuv) Z rUUS\ odd and S £ U]  (11)
15| odd 04V CS UCn 0

where S Cy_5 U means S is a subset of U chosen by including each coordinate with probability
1—46. But for |U| > 1/6,

Pr UHS\ odd and S # U] = 1/2,

1-96

and there is no way we could get an upper bound better than 1 on Z|U|>>1/5 f(U)Q, even assuming

[ is quasirandom. We can also note that it is extremely important not to increase the V4 in any

estimation on |7 \/ngHg; if we had any ¢ > ¢ in the above failed estimate, we wouldn’t have a

probability distribution on subsets of U, and wouldn’t even be able to get an upper bound of 1.
With these issues explained, we now proceed with applying Corollary to @D Let A be such

that
Vo =1/V3-1=1/V2 (12)
By our assumption that 0 < 6 < 1/8 we have 0 < X\ < 1/3. Now the corollary implies
@ < > = FIT5E 3 1Fs]13 (13)
S| odd
We use
30/2
IFs|3* = (I1Fs13)? = | > f(suv)? < ([Ifllz)** <1
0AVCS
and
ITsFsl5™ = 1 TsFsl3 - IT5Es),
< Z SVIFsuvy?| - \/5173/\ (using and A\ < 1/3)
O£V CS
2%/2\/5 - Z sVIf(suv)? (using (12)).
£V CS

Substituting these into and using the calculation in yields
@) <23/*Vs- Z f(U)? o (18] odd and 8 # U] < 2325 > f(U)? < 2%2V6.

UCn UCln]
Finally, substituting this into yields
ENTW(f(x), f(y), f(2))] < 3 + 26+ 36 + 3v2V6 < § +6V/5,

as claimed. O



6 Future work

Despite constructing the required Dictator-vs.-Quasirandom Test, we are unable to prove that sat-
isfiable Max-NTW instances are (5/8 + €)-hard to approximate. There is strong evidence that the
formal encapsulation of the Rule of Thumb described at the beginning of Section cannot be
used in our case. The reason is as follows: Our Dictator-vs.-Quasirandom Test from Section [5| has
the property that under Dy, each pair of bits has small but nonzero correlation §. As discussed in
Appendix[D] the correct test seems forced and thus it appears there is no way to avoid this pairwise
correlation. But this would seem to rule out constructing the necessary two-function Dictator-vs.-
Quasirandom Test. To see this, suppose we try to generalize Ds to a distribution on (2d+ 1)-tuples
(a,b,8) € {—1,1} x {=1,1}¢ x {—1,1}%. One can sce that the marginal on each triple (a, by, )
must be Ds: this is because the g function could always “ignore” all but the /th index in each of
its index groups J;. But recall that each by has correlation & with a. If d = |J;| > 1/, then by
taking a majority over each of its index groups J;, the g function can effectively “know” the bit a
and hence confound the test.

Thus it seems there is little hope for proving the desired NP-hardness result with today’s PCP
technology. Further, proving the result based on the Unique Games Conjecture is also out of the
question, since Unique-Games inherently has imperfect completeness. Only one window of op-
portunity remains: trying to prove the hardness result assuming Khot’s “d-to-1 Conjecture” [16]
for some constant d. This would give us both the perfect completeness we need and let us make
d < 1/d in order to overcome the small pairwise correlation in the test. However, the Dictator-vs.-
Quasirandom Testing needed would become significantly more complicated to analyze.

In a forthcoming paper, we will indeed show Zwick’s conjecture NP C naPCP; 5 /3. (O(logn), 3),
assuming the d-to-1 Conjecture for any constant d.
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A Dictator-vs.-Quasirandom Testing lower bound

In this section we prove our Dictator-vs.-Quasirandom Testing lower bound, completing the proof
of our main Theorem The proof is by viewing any 3-query Dictator-vs.-Quasirandom Test with
perfect completeness as a satisfiable instance of Max-3CSP over the “variables” f(z), as discussed
in Section We then use a variation of Zwick’s algorithm [30] to construct a quasirandom (even
Gaussianic) function f passing the test with probability at least 5/8 — o(1).

Interestingly, the quasirandom function f : {—1,1}" — {—1,1} we construct will always be
either:

(a) an odd-size parity, chosen uniformly from among the 2"~! possibilities; or,
(b) a random threshold function, negated if necessary so that f(1,1,...,1) = 1.

In (b), we mean f is chosen as

flxi, ... zp) =sgn(>i | Gy) -sgn(d i Gixy), (14)

where the G;’s are independent standard Gaussians.

Let’s first note that these two possibilities are indeed quasirandom (and even Gaussianic) with
high probability:

Lemma A.1. Let f : {—1,1}"" — {—1,1} be an odd-size parity, chosen uniformly from among
the 2"~ possibilities. Assuming n > O(1/8) we have that f is (0,8)-quasirandom except with
probability at most 2= . Assuming n > O(In(e/€)/8) we have that f is (e,6)-Gaussianic except
with probability at most 27",

15



Lemma A.2. Let f : {—1,1}" — {—1,1} be a random threshold function chosen as in (14).
Assuming n > O(1/€*) we have that f is both (e,0)-quasirandom and (e,0)-Gaussianic except with
probability at most 9,

The proofs of these lemmas are straightforward probabilistic considerations and appear in Ap-
pendix [E| (A variant of the latter appears in the full version of [23].) We can now give the proof of
our Dictator-vs.-Quasirandom/Gaussianic testing lower bound:

Theorem A.3. Let ¢,6,n > 0. Then for all n > poly(1l/e,1/6,log(1/n)), any dictator-vs.-
Gaussianic test T on functions f : {—=1,1}" — {—=1,1} with perfect completeness has (e,d)-
soundness at least 5/8 — 1.

Proof. Let the test 7 be given. As mentioned, in the end we will consider choosing f to be a
random odd parity, and will also consider choosing f to be a random threshold function, negated
if necessary so that f(1,1,...,1) = 1. We will show that at least one of these two options has the
property that in expectation, f satisfies at least 5/8 of the constraints tested by 7. If we then
condition on f being (€, §)-Gaussianic, Lemmas and the condition on n imply that the
conditional expectation of the fraction of constraints f satisfies is at least 5/8 — 7. Thus there
exists an (e, d)-Gaussianic function passing the test with probability at least 5/8 — 1, as necessary.

Let us also mention that with this strategy, every f we might end up choosing is odd and
satisfies f(1,1,...,1) = 1. Given this, we will begin by altering 7 so that it “assumes oddness
of f7; i.e., we “fold” it. More precisely, whenever a constraint in 7 involves some f(—1,2’) (for
2 € {~1,1}"1), we replace it with —f(1, —2'). This preserves the perfect completeness of 7 on
dictators since they are odd. Further, it does not change the probability of satisfaction for any f
we eventually select, since all such f’s will be odd. Henceforth, we think of 7 as a 3-CSP only over
the 271 “variables” f(1,z), z € {—1,1}"L

We emphasize that 7 could use any mixture of the twenty-two constraints on up to 3 bits.
Actually, 7 cannot use FLSy, since it has perfect completeness. As an illustration, 7 might query
and test. ..

ANDy( —f(zM),  —f(yM) ) with probability py,
AOR( —f(z®), —f(u?®),  f(z?)) with probability ps,
MAI( —f(@®),  fy®), —f(z?)) with probability ps,
AXR( —f(z™), —f(y™),  f(z)) with probability py,
Let’s say 7 uses m different constraints, Cy, ..., Cp.

Similar to Zwick’s algorithm, we can begin by quickly eliminating the constraints that “force
identities”: namely, the constraints TRUp, IDNj, ANDo, XORo, AND, EQU, AXR, AOR, and AOA. The first
seven of these have the following property: Any constraint in 7 using one of them is automatically
satisfied by any f with f(1,1,...,1) = 1. As an example, consider the constraint

AXR(—f(aW), —f(yW), () = =f @) A (= f(yP) @ F(zV)).

Since all dictators satisfy this constraint, we must have z; ) =1 and —y§4)2£4) = —1 for all i;

i.e., it must be the case that z™® = (1,...,1), y® = 2. But then f(z¥) = 1 whenever

(4
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f(1,1,...,1) = 1, and of course f(y™*) = f(2); hence the AXR constraint is automatically
satisfied whenever f(1,1,...,1) = 1. Notice that we could not have had the constraint, say,

ANDy(—f (M), F(y™M));

by our folding convention :cgl) = y%l) = 1, and then the first dictator would not satisfy this con-

straint. Showing that TRUg, IDNy, AND,, XORo, AND, and EQU constraints are also automatically
satisfied by any f with f(1,1,...,1) =1 is easier and is left to the reader.

The other two constraints mentioned, AOR and AOA, have a related property. Consider a test
like
AOR(— (2%, = F(y®), f(z')) = = @) A (—=f ) v (2)).

Again, as all dictators pass this test, (® must be (1,...,1). Thus assuming f(1,1,...,1) = 1, we
may safely replace this constraint with

OR2(—f(¥'), F(z@)).

A similar consideration lets us replace all AOA constraints to ORs constraints. In conclusion, after
this initial stage, we may assume 7 has no TRUp, IDN;, ANDy, XORy, AND, EQU, AXR, AOR, or AOA
constraints, just as in Zwick’s algorithm.

The next step of the proof (based on an idea of [28]) also appears in Zwick’s algorithm, albeit
at a later stage. To describe this step, we temporarily switch our representation convention for
False and True: instead of 1,—1 € R, we view them as 0,1 € o, the field with two elements.
Our variable space is now Fé_l’l}n. Let P be the affine subspace consisting of all 2"~ ! odd-sized
parity functions; this includes the dictators, which we denote by x;. One can think of P as be-
ing x1®V, where V is the the (n—1)-dimensional subspace spanned by x1®x2, X1BX3, - - -, X1DXn-

Consider choosing an odd parity f uniformly randomly from P. We claim that in doing so,
each constraint C; has at least a certain probability of being satisfied based on its type, as shown
in the following table:

TWO | XOR | MAJ | XAD | SEL | OAD | XOA | NTW | ORy | NAE | OXR | OR
3/4 1 [1/2]1/21/25/8|5/8 |5/8|3/4]3/4]|3/4]3/4

(Zwick has 7/8 in his table for OR; we are using a different argument.) To see this claim, con-
sider some constraint in 7, perhaps C; = ¢(f(u), ~f(v), 7 f(w)). (Assume for now that ¢ # ORs,
so ¢ has arity 3.) Since P is an affine subspace and f is chosen uniformly from P, the induced
distribution on (f(u), =f(v), ~f(w)) will also be uniform on some affine subspace @Q of F3. Fur-
thermore, since each choice of f is an odd parity, this () will be precisely the “affine span” of the
triples {(u;, =i, ~w;) }ien)- Note also that each of these triples satisfies ¢, since x; satisfies C;. It
is now easy to see that for each of the possible constraints (including the 2-ary ORg), the uniform
distribution on any affine span of satisfying assignments leads to an acceptance probability which
is at least what’s shown in the table. The key point is that for TWO and XOR, the affine subspace @)
cannot be all of F3.

This concludes our analysis of choosing f to be a random odd parity; let us revert back to

+1 notation. We now come to the analysis of choosing f to be a random threshold function. For
this, we follow the semidefinite programming part of Zwick’s algorithm. As in his algorithm, we
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formulate the “canonical semidefinite programming relaxation” [I5] of the weighted 3-CSP 7', but
we have a few slight differences. The canonical SDP introduces a unit vector vy, for each variable
f(x) (with z € {1} x {—1,1}""1). Tt also introduces a unit vector representing the negation of each
variable; for us, we can simply extend the notation vy, to each z € {—1} x {—1, 1}"~! and include
the canonical constraint vy) = —vp(_z). The SDP relaxation also introduces a unit vector “vg”
intended to represent False{f'| we will instead take this vector to be vy (), where e denotes (1,1,...,1)
(since we want f(e) = 1 anyway). Finally, the SDP relaxation includes a scalar variable Z; for each
constraint, intended to represent whether the constraint is satisfied.

The critical observation is this: The fact that all dictators satisfy every constraint in 7 implies
that setting vg(,) = x//n for each x € {~1,1}" and Z; = 1 for each j yields a feasible solution to
the SDP relaxation with value 1. (One normally thinks of the vectors as having dimension equal
to the number of variables, but it is okay if they have smaller dimension.) To see this, consider an
inequality in the SDP arising from the jth constraint in 7; it might look something like this:

3
1

1 1 1
Ufe) " Vi) T g VW) " VHE) T g V@) VR T W) V)

Z; <

N | =

(This example occurs when the jth constraint is MAJ(—f(z), —f(v), f(2)).) We would like to show
our claimed solution satisfies this inequality; i.e., to show

1Y e n 130 im0 iz n 13705, Yizi

1<
- 2 n 4 n 4 n 4 n

(15)

=~

But by design of the relaxation, the inequality

3 1 1 1
1<Z_Z.1-b+=-b-c—Z.q- Z.b-
S17 5 + 1 c 1 a-c+ 1 c
is satisfied whenever (a, b, ¢) is a triple of bits satisfying the jth constraint. Since all dictators pass
this constraint, (x;,y;, z;) is satisfying and hence we conclude

3 1 1 1 1
1< 1 Gt Yz — gzt iz
for each i € [n]. Averaging this inequality across i confirms The fact that the value of this

solution is 1 follows immediately from the fact that all Z;’s are 1.

Given this optimal feasible solution to the SDP relaxation we may apply the randomized
rounding analysis of Zwick. This involves choosing a random hyperplane — say with normal
G = (G4, ...,G,), where the G;’s are independent standard Gaussians — and then rounding vy,
to sgn(G - vy(e))sgn(G - vy(y). In other words, one chooses the solution

f(z) =sgn(3>_Gi) - sgn(>_Giz;),
just as promised. Zwick’s SDP-rounding analysis shows that the expected fraction of constraints

of each type that f satisfies is as shown in the following table:

TWO | XOR | MAJ | XAD | SEL | OAD | XOA | NTW | ORy | NAE | OXR | OR
649 | 1/2 | .736 | .736 | 5/6 | .824 | .824 | 5/8 | .912 | .912 | 3/4 | 7/8

n [30] it represents True, but his convention is that True is 1.
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Finally, we use Zwick’s observation that by choosing f to be a random odd parity with prob-
ability 1/4 and to be a random threshold as above with probability 3/4, each constraint type is
satisfied with probability at least 5/8. Hence at least a 5/8 fraction of all constraints are satisfied
in expectation for this mixed distribution on f, and hence one of the two distributions indeed is
expected to satisfy at least 5/8 of the constraints. O

B Quasirandom and Gaussianic functions

Functions which are (e,0)-quasirandom — i.e., satisfy f(S)2 < e for every S # () — are some-

times called “pseudorandom”, “regular”, or “uniform”; see, e.g., [7]. Functions which are (e,1)-
quasirandom — i.e., satisfy f(i)2 < € for all i € [n] — were called “flat” in [I8], and when f is
monotone this notion is equivalent to having all “influences” at most /e. In the full version of [23]
the present authors introduced a related notion of a function being “(e, §)-Gaussianic”; this means
the function satisfies

Z (1=0)°I71f(S)2 <e forallie[n]

SC[n]

€S
Being (e, §)-Gaussianic is very similar to having all “(1/§)-low-degree influences” at most €, a con-
dition introduced and studied in [I7, 2I]. Note that being Gaussianic is essentially a stronger
property than being quasirandom: it is easy to check that an (e,d)-Gaussianic function is also
(e - €,0)-quasirandom. The converse is not true, though: for example, the function f(z) =
z1 @ Majority(zs, ..., 2y) is (©(1/y/n),0)-quasirandom but is not even (25,1 — n)-Gaussianic for
any n > 0.

We define Dictator-vs.-Gaussianic tests and their completeness and soundness by analogy with
our definitions of Dictator-vs.-Quasirandom Tests.

C Testing averages

In this section we explain the trick of testing averages of functions, introduced in [T}, [17].

Definition C.1. Let F = {f1,..., fi} be a collection of functions {—1,1}" — {—1,1}, and let
T be a Dictator-vs.-Quasirandom Test for such functions. We define the notion of T testing the
average of F as follows: whenever T is about to query and test ¢(f(x1),..., f(xk)), it first chooses
i1,. .., uniformly and independently from [t] and then queries and tests ¢(fi, (x1),..., fi, (Tk))-
In the special case that F = {f, fT}, where f1(x) := —f(—x), we say that T tests f°I. Note that
T only needs query-access to f in order to test 4.

The trick of testing f°4¢ is precisely the idea of “folding” introduced by [I]. To understand the
probability of F passing test 7 we extend all predicates to maps ¢ : [—1,1] — [0, 1] via multilinear
extension:

XOR(a,b,c) = & — Jabe, NTW(a,b,c) =3+ (a+b+c)+ £(ab+ be + ac) — abe, (16)
etc. Then by linearity of expectation one can easily check that that 7 passes F with probability

E  [¢(f(z1),.... flz)],

¢7w17“'7wkNT
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where f: {—1,1}" — [~1,1] is the (pointwise) average of the functions in F. When F = {f, £}
we write the average f as
=37 f(S)xs:

SCln]

|S| odd
Since Dictator-vs.-Quasirandom Testing upper-bound analysis invariably uses Fourier analysis, al-
most nothing changes if the function f being tested is of the form f :{—1,1}" — [—1,1]. Indeed,
all of our tests will allow for such functions, and hence allow for the testing averages.

D Intuition for our Dictator-vs.-Quasirandom Test

In this section, we give an explanation as to how the distribution Dy was chosen, and also explain
why the prototypical quasirandom functions — constants, Majority, and large parities — pass our
test with probability only with probability about 5/8.

Since dictators are to pass our test with probability 1, clearly whatever distribution Ds we
choose should have support only on the five triples in NTW’s support. We need to keep symmetry
between x, y, and z: otherwise f could “recognize” which string it is operating on. Thus Dy should
give the same probability to each of the triples (1,1,—1), (1,—1,1), and (—1,1,1). Thus we are led
to look for a distribution of the form:

x; | y; | z; | probability
+1 | +1 | +1 P
+1 | +1| -1 q
+1|-1|+41 q
-1 |+1|+1 q
-1 -1] -1 r

We have the constraint p + 3¢ + r = 1. Next, there seems to be no way to reject constant
functions except by using the trick of testing f°44, and that trick only works assuming the uniform
probability distribution. This leads to the additional constraint ¢ + r = 1/2. Together the two
constraints imply ¢ = 1/4 — p/2, r = 1/4 + p/2. Thus we are forced into the distribution Ds,
except that it is not yet clear that p = ¢ should be “small” but nonzero. This smallness is forced
by the fact that the prototypical quasirandom function Majority must be rejected with fairly high
probability. Note that

E'[z,y] = E'ly;zi] = E'[z;zi] =0,

where E’ denotes expectation with respect to Ds. If p = 0 were quite large then Maj(x), Maj(y),
and Maj(z) would be quite correlated, and since NTW(1,1,1) = NTW(—1,—1,—1) = 1, this would
lead to a high acceptance probability. On the other hand, we also cannot have p = 0; in that case,
we would be reduced to the BLR test based on XOR predicate, and one can check that the other
prototypical quasirandom function parity, on an odd number of bits, would pass with probability
1. Luckily, the extreme noise sensitivity of parity means that even a small § weight outside the
support of XOR is enough to confound large parities.

Now given that we’ve settled on Ds and hence the test described in Section [p, why should this

be a good Dictator-vs.-Quasirandom Test? More specifically, why should it have soundness as low
as 5/87 Again, we check the prototypical quasirandom functions:
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First, the test evades the constant functions f = 1, f = —1 by using the trick of testing f°dd:
the two constant functions each pass with probability 5/8.

More interestingly, the test evades the prototypical odd quasirandom function Majority. To
see this, first suppose that 6 = 0, so we are picking (x,y,z) as in the (negated) BLR linear-
ity test. Ome can show (using the CLT) that from Majority’s point of view, correlating three
strings according to XOR is not much different from just picking three independent uniform in-
puts. Le., (Maj(zx), Maj(y), Maj(—z o y)) has a distribution close to uniform on {—1,1}® and
thus NTW(Maj(x), Maj(y), Maj(—x oy)) would be true with probability close to 5/8. Now for small
0 > 0, the “random restriction” first effectively converts Majority into a different symmetric thresh-
old function; say, f., = Maj’. Its bias will be only O(v/9), and similar reasoning can show (proof
omitted) that NTW(Maj(x), Maj(y), Maj(—x o y)) is true with probability only 5/8 + O(9).

Finally, the test evades the other prototypical quasirandom functions, large odd Parities. To see
this, again consider the “random restriction” function f,,. Sometimes f,, is again a parity function,
and otherwise it is the negation of a parity function. In the former case it will pass the (negated)
BLR test (and hence the NTW test) with probability 1; however, in the latter case (f(x), f(y), f(2))
will have the uniform distribution on the support of =X0R and thus pass NTW only with probability
1/4 (when it is (1,1,1)). Further, when the original parity f is large enough compared to 9, the
random restriction f,, will be a parity or a negated parity with roughly equal probability; hence
the original parity f will pass with probability roughly (1/2) -1+ (1/2)-(1/4) =5/8.

E Proofs of quasirandomness and Gaussianicity

Proof. (Lemma ) We prove the latter statement, leaving the former to the reader. When f is
the odd parity xr we have

S (1= O)SLf()? < (1 )1
SC[n]
ieS

for each i. Now the random odd set R will have cardinality at least n/3 except with probability at
most 2~ Then
(1- 5)\RI—1 <(1- 5)n/3—1 <(1- 5)1n(e/e)/5_1 <e

as necessary. [

Proof. (Lemma[A.2]) As mentioned, a variant of this lemma was proven in the full version of [23];
the proof here is mostly the same. By a comment in Section[4.1] it suffices to show that f is (e/e, 0)-
Gaussianic except with probability at most 21" " Standard probabilistic arguments show that

all of the following simultaneously hold, except with probability at most 27" over the choice of
the vector G = (G1,...,Gy):

|Gy <!/t for all i, and, in < |G| < 3n. (17)

Fix G = (Gi,...,Gy) satisfying these conditions; we will show the associated f is (¢/e,0)-
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Gaussianic. We need to show that for each i,

efe = Y f(S)
SCln]
€S
= Pr[f(xi,...,xn) # f(®1,..., Tim1, —Ti, Tit1,. .., Tp)] (a well-known identity)
€

- nl|goe| <l

By (17),
Pr[

5 Gimi| < fel] <2
J#i

S Gyas|fo <nlli/o],
J#i

where we have written o = .G%? = O(y/n) (using (17)). But the Berry-Esseen theorem
JFL g

implies that (ZJ 4 Gjzj)/o has distribution close to that of a standard Gaussian, up to error
max |G| /o < O(n~1/4) (using once more). So the probability above is at most O(n'/4/a) +
O(n=Y*) = O(n='/*%). This is at most €/e by our assumption that n > O(1/€%). O
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