1 The rationality of weakly symmetric social choice functions

Lemma 1.1 Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be weakly symmetric (transitive). Then $\hat{f}(i)$ is the same for all $i \in[n]$.

Proof: Let $i \neq i^{\prime}$. Since f is weakly symmetric, we can pick a permutation π on $[n]$ such that $\pi(i)=i^{\prime}$ and

$$
f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

for all $x \in\{-1,1\}^{n}$. Now

$$
\hat{f}(i)=\mathbf{E}\left[f(\boldsymbol{x}) \boldsymbol{x}_{i}\right]=\mathbf{E}\left[f\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(n)}\right) \boldsymbol{x}_{\pi(i)}\right],
$$

since a uniformly random string hit by a permutation is still uniformly random. But the above equals $\mathbf{E}\left[f(\boldsymbol{x}) \boldsymbol{x}_{i^{\prime}}\right]=\hat{f}\left(i^{\prime}\right)$.

Proposition 1.2 (Kalai 2002) If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is a weakly symmetric social choice function, Rationality $(f) \leq \frac{7}{9}+\frac{4}{9 \pi}+O(1 / n) \approx .919$.

Proof: Since f is weakly symmetric, the lemma implies that $\hat{f}(i)$ is the same for all i 's. Hence

$$
W_{1}(f)=\sum_{i=1}^{n} \hat{f}(i)^{2}=\frac{1}{n}\left(\sum_{i=1}^{n} \hat{f}(i)\right)^{2} .
$$

But we proved that for any $f, \sum_{i=1}^{n} \hat{f}(i)$ is at most that of Majority, namely $\sqrt{2 / \pi} \sqrt{n}+O(1 / \sqrt{n})$. Hence

$$
W_{1}(f) \leq \frac{2}{\pi}+O(1 / n)
$$

and the result follows from our proposition bounding Rationality (f) in terms of $W_{1}(f)$.

