1 Learning low-degree \mathbb{F}_{2} polynomials

Lemma 1.1 Let \boldsymbol{X} be a (multi)set of $m:=2^{e} \cdot O\left(\log \left(2^{n^{e}} / \delta\right)\right)=n^{e} \cdot O\left(2^{e} \log (1 / \delta)\right)$ points drawn uniformly and independently from \mathbb{F}_{2}^{n}. Then except with probability at most δ it holds that for all nonzero \mathbb{F}_{2}-multilinear polynomials q of degree at most $e, q(x) \neq 0$ for at least one $x \in \boldsymbol{X}$.

Proof: By a problem from Homework \#2 (modified for \mathbb{F}_{2}-multilinear polynomials as opposed to \mathbb{R}-multilinear polynomials), for any specific q of degree at most $e, \operatorname{Pr}_{\boldsymbol{x} \in \mathbb{F}_{2}^{n}}[q(\boldsymbol{x}) \neq 0] \geq 2^{-e}$. Hence

$$
\operatorname{Pr}_{\boldsymbol{X}}[q(x)=0 \forall x \in \boldsymbol{X}] \leq\left(1-2^{-e}\right)^{m} \leq \delta / 2^{n^{e}} \leq \delta /(\# \text { degree } \leq e \text { polys }) .
$$

The result now follows from the union bound.

Lemma 1.2 Let \boldsymbol{X} be a (multi)set of the same number of examples, $(x, f(x))$, where x is drawn uniformly from \mathbb{F}_{2}^{n} and f is expressible as some \mathbb{F}_{2}-multilinear polynomial of degree at most e. Then except with probability at most δ over the choice of \boldsymbol{X}, there is only one polynomial p of degree at most e consistent with the data \boldsymbol{X}, namely f.

Proof: Otherwise, if $p \not \equiv p^{\prime}$ are both consistent with \boldsymbol{X}, then $q:=p-p^{\prime}$ is a nonzero polynomial of degree at most e which is 0 on all the points in \boldsymbol{X}. The result follows from the previous lemma.

