
Thesis Proposal:

The logical basis of evaluation order

Noam Zeilberger

Carnegie Mellon University

May 25, 2007

Abstract

Most type systems are agnostic regarding the evaluation strategy for
the underlying languages, with the value restriction for ML which is ab-
sent in Haskell as a notable exception. As type systems become more
precise, however, detailed properties of the underlying operational seman-
tics may become visible because properties captured by the types may be
sound under one strategy but not the other. To give an example, inter-
section types distinguish between call-by-name and call-by-value functions
because the subtyping rule (A → B) ∩ (A → C) ≤ A → (B ∩ C) is valid
for the former but not the latter in the presence of effects.

I propose to develop a unified, proof-theoretic approach to analyz-
ing the interaction of types with evaluation order, based on the notion
of polarity. Polarity was discovered and developed through linear logic,
but I seek a fresh origin in Dummett’s program of justifying the logical
laws through alternative “meaning-theories,” essentially hypotheses as to
whether the verification or use of a proposition has a canonical form. In
my preliminary work, I showed how a careful judgmental analysis of Dum-
mett’s ideas may be used to define a system of proofs and refutations, with
a Curry-Howard interpretation as a single programming language in which
the duality between call-by-value and call-by-name is realized as one of
types. After extending its type system with (both positive and negative)
union and intersection operators and a derived subtyping relationship, I
found that many operationally-sensitive typing phenomena (e.g., alterna-
tive CBV/CBN subtyping distributivity principles, value and “covalue”
restrictions) could be logically reconstructed. Here I give the technical
details of this work, and present a plan for addressing open questions and
extensions.

Thesis Committee: Frank Pfenning
Peter Lee
Robert Harper
Paul-André Melliès, Université Paris 7

1

1 Introduction

A famous essay by John Reynolds centers on the dangers of specifying the
semantics of a language by means of a definitional interpreter, when the meaning
of the defining language is itself potentially unclear [Rey72]. In a functional
programming language, the result of function application can depend on whether
evaluation order is call-by-value or call-by-name (due to the presence of non-
termination and other side-effects), and Reynolds observes that a direct style
interpreter leaves this choice only implicit in the evaluation order of the defining
language—thus carrying little explanatory power, particularly in the case of a
“meta-circular interpreter.” He then goes on to give a careful account of how to
make evaluation order explicit by writing the interpreter in continuation-passing
style. Although the field of programming language semantics has given rise to
many other styles of language definition, perhaps one of the morals to derive
from “Definitional interpreters for higher-order programming languages” is the
virtue of being fully explicit about evaluation order.

Yet a language definition includes not only the semantics of expressions, but
also their syntax. Does the lesson of Reynolds’ essay extend to the design of type
systems as well? At a trivial level, it must. Implementations of popular func-
tional languages such as ML (by default call-by-value) and Haskell (by default
call-by-name, or rather its close relative call-by-need) include support, albeit
limited, for mixing evaluation strategies—and obviously this support must have
some syntactic basis, at the very least some string telling the compiler to employ
one or the other strategy. On the other hand, this is exactly the sort of mini-
mal answer the “Definitional interpreters” paper warns against, since it leaves
the type distinction between call-by-value and call-by-name at the level of the
“meta,” i.e., wholly reliant upon a compiler’s interpretation. Instead we should
follow Reynolds’ example and ask for something stronger: a type-theoretic ex-
plication of evaluation order.

This is a somewhat shadowy goal, so let us shed some light on the path by
first examining the case of the archetypal functional language, the simply-typed
lambda calculus, which is actually a bit misleading. The Curry-Howard corre-
spondence observes that the simply-typed lambda calculus is just a reformula-
tion of intuitionistic natural deduction. Since we know that the simply-typed
lambda calculus admits soundly both call-by-name and call-by-value evaluation
strategies, naively we are drawn to the conclusion that evaluation order must be
a non-logical notion, outside the domain of the Curry-Howard correspondence.
How could logic distinguish between call-by-value and call-by-name, when they
correspond to the same system of logical deduction?

But at least one reason to doubt this pseudo-tautology is that the coinci-
dence between type systems for languages with different evaluation strategies
breaks down once these type systems become more expressive. Already this is
the case with ML’s type system. Although polymorphism—which corresponds
logically to second-order quantification—is one of its distinctive and useful fea-
tures, it has a troubled history: the original (standard) polymorphism introduc-
tion rule was unsound due to the presence of effects such as mutable storage

2

and callcc [HL91], and prompted various workarounds, the simplest being the
value restriction [Wri95, MTHM97]. It might be easy to dismiss this as an
anomaly peculiar to polymorphism and ML, but recent studies of intersection
and union types in operational settings (in the context of so-called refinement
type systems [PD01, DP04]) have produced many more examples of what could
be called operationally-sensitive typing phenomena. The usual intersection in-
troduction rule, for instance, is unsound in an effectful call-by-value language
(requiring a value restriction), as is the standard subtyping distributivity law
(A → B) ∩ (A → C) ≤ A → (B ∩ C). These are sound under call-by-name eval-
uation (even in the presence of effects), but on the other hand there unions pose
similar problems (e.g., (A → C) ∩ (B → C) ≤ (A ∪ B) → C becomes unsound).

Hence type systems for languages with differing evaluation strategies really
are distinguishable. But is there a systematic explanation for that difference?
And does it have a logical basis in the Curry-Howard correspondence? The
goal of my research is to answer this question—my thesis is that operationally-
sensitive typing phenomena can be explained by the logical notion of polarity.

Polarity is an idea that comes out of linear logic, a classification of the
connectives which opposes the positive ⊗ and ⊕ against the negative N and O. It
was first discovered by Andreoli, applied to eliminate some of the crippling (but
apparently needless) non-determinism that arises in doing proof search on the
linear sequent calculus, through a restrictive yet still complete focusing strategy
[And92]. However, my work seeks an origin for polarity that is not bound to
linearity or the sequent calculus. In fact, I propose that polarity may be traced
back to Michael Dummett’s examination (in the 1976 William James Lectures
[Dum91]) of the justification of the logical laws through alternative “meaning-
theories,” wherein the meanings of the connectives are fixed either by their
introduction or their elimination rules. I believe that this idea is at the core of
polarity, and can be elegantly formalized through the judgmental method [ML96,
PD01]. The deductive systems constructed by this approach are interesting from
a purely logical point-of-view—for example, they can compose intuitionistic
and co-intuitionistic reasoning principles, and they have modular proofs of cut-
elimination—but they also induce, through the Curry-Howard correspondence,
programming languages in which evaluation order is fully explicit. Thus they
are appropriate settings in which to study (and hopefully settle) questions about
operationally-sensitive typing phenomena.

The next section begins with a very brief summary of Dummett’s analysis of
logical rules, providing the philosophical background for my account of polar-
ity. A formalization of this analysis is then presented under the simplification
that the only sort of higher-order reasoning is inference towards contradiction
(corresponding to negation) rather than arbitrary inference (corresponding to
implication). In Section 3, I present the Curry-Howard interpretation of this
deductive system, a language that combines continuation-passing style with
pattern-matching, and in which evaluation order is reflected at the level of
types. Section 4 culminates my preliminary work, by extending this language
with intersection and union types and a derived notion of subtyping that vali-
dates the above observations. Then in Section 5, I describe some of the open

3

problems and extensions I hope to address so as to solidify the argument of my
thesis, and give a rough estimate of the time I expect to spend on them. Finally,
in Section 6 I conclude with a review of related work.

2 The logic of proofs and refutations

2.1 Dummett’s duelling definitions

In the 1976 William James Lectures [Dum91], Michael Dummett considered the
possibility of justifying the logical laws. Rather than adopting the formalist
position that the laws need no justification, or the holistic position that they
can only be considered in toto, Dummett proposed that the logical laws can
be considered individually and justified through an analysis of the meanings
of the logical connectives. But not merely through an ordinary mathematical
semantics—Dummett argued that such a meaning-theoretic analysis could be
achieved through proof theory alone, that is, the meanings of the connectives
could be fixed by (a subset of) the logical laws themselves.

Which laws determine the meanings of the connectives? Fundamentally,
there are at least two rival interpretations. Quoting [Gen35, p. 80], Dummett
motivates the first of these:

Gerhard Gentzen, who, by inventing both natural deduction and the
sequent calculus, first taught us how logic should be formalised, gave
a hint how to do this [i.e., justify the logical laws], remarking without
elaboration that “an introduction rule gives, so to say, a definition
of the constant in question,” by which he meant that it fixes its
meaning, and that the elimination rule is, in the final analysis, no
more than a consequence of this definition. [p. 251]

Seeing the introduction rules as fixing the meanings of the logical constants cor-
responds to what Dummett calls a “verificationist meaning-theory”: the mean-
ing of a logical constant is determined by the canonical ways of verifying the
truth of a proposition with that constant as principal connective. The introduc-
tion rules are therefore self-justifying (they simply repeat the definition of a con-
nective) while any other proposed logical rule must be validated by an “upwards
justification procedure”: a rule is valid if any canonical proof of its conclusion is
already included in a canonical proof of its premises. The rationale behind this
justification procedure is that if a proposition is true then it must have a canon-
ical proof (what Dummett calls the “Fundamental Assumption”)—and making
this precise of course requires giving a formal definition of “canonical,” which
Dummett attempts to do. But for now, we will simply illustrate with examples.
Recall the standard introduction rules for conjunction and disjunction:

A true B true

A × B true

A true

A + B true

B true

A + B true

These rules are now taken to define the connectives, asserting that a canonical
proof of A × B true is a canonical proof of A true together with a canonical

4

proof of B true, while a canonical proof of A + B true is a canonical proof of
A true or a canonical proof of B true. Then the standard elimination rules for
conjunction

A × B true

A true

A × B true

B true

are justified, because a canonical proof of the conclusion A true (resp. B true)
must already be part of a canonical proof of the premise A × B true. Dia-
grammatically, this argument may be represented as a pair of reductions on
derivations:

...
A true

...
B true

A × B true

A true ⇒

...
A true

...
A true

...
B true

A × B true

B true ⇒

...
B true

Moreover, this procedure can be applied to arbitrary logical inferences, not only
the standard elimination rules. For example the “large-step” elimination rule

A × (B1 + B2) true
[A true][B1 true]

C true
[A true][B2 true]

C true

C true

can be justified by the pair of transformations (for i ∈ {1, 2}) mapping

...
A true

...
Bi true

B1 + B2 true

A × (B1 + B2) true

[A true][B1 true]

...
C true

[A true][B2 true]

...
C true

C true

to

...
A true

...
Bi true

...
C true

Dummett stresses the significance of this generality. It means, for example,
that while the verification of a proposition always takes a canonical form, its
use (that is, the way one derives consequences from the proposition) need not
be prescribed.

The verificationist meaning-theory and the upwards justification procedure
are a way of vindicating Gentzen’s conceptual prioritization of the logical rules.
But Dummett argues that the notion that the introduction rules determine
the meanings of the logical constants “has no more force than the converse

5

suggestion, that they are fixed by the elimination rules,” going on to write,
“The underlying idea is that the content of a statement is what you can do
with it if you accept it.... This is, of course, the guiding idea of a pragmatist
meaning-theory” [p. 280].

If the elimination rules are taken as primitive, then the other rules may now
be justified by a dual, “downwards justification procedure”: a rule is valid if
any canonically-obtained consequence of its conclusion is already a canonically-
obtained consequence of its premises. Again we forgo giving here the necessary
definition of “canonically-obtained,” but demonstrate with some examples. Tak-
ing the standard elimination rules above as now defining conjunction, we can
justify the standard introduction rule by remarking that any use of A× B true
must begin by projecting one of the two components and thus becomes a use of
A true or B true—which are both premises of the introduction rule. Diagram-
matically, this argument amounts to the following:

A true B true

A × B true

A true
... ⇒

A true
...

A true B true

A × B true

B true
... ⇒

B true
...

And similarly, we can use this procedure to justify arbitrary logical inferences,
such as the large-step introduction rules

A true B1 true

A × (B1 + B2) true

A true B2 true

A × (B1 + B2) true

Here the intuitive argument for the validity of either rule is that any use of
A × (B1 + B2) true is either a use of A true (a premise of the rule), or else a
use of B1 + B2 true—but to draw a conclusion from B1 + B2 true one must be
able to draw it from both B1 true and B2 true (one of these being a premise
of the rule). Again, the generality of the downwards justification procedure
means that while the uses of a proposition now always take a canonical form,
its method of verification can be open-ended.

Can these two, equally legitimate ways of understanding the connectives be
related? Dummett first considers the requirement of harmony, namely that a
set of introduction and elimination rules can be validated under either interpre-
tation, by both upwards and downwards justification procedures. However, as
he puts it, harmony is an “excessively modest demand.” The upwards justifica-
tion procedure tells us only that the elimination rules are not too strong (given
evidence for the premises we can construct evidence for the conclusion), while
the downwards justification procedure tells us that the introduction rules are
not too weak (any consequence drawn from the conclusion can be drawn from
the premises). But are the elimination rules too weak, or the introduction rules
too strong? Dummett proposes a test called stability—we omit his precise for-
mulation here, but instead describe a simpler but similarly-motivated criterion
taken from [PD01]. Suppose we start from a verificationist interpretation, and
we wish to show that the elimination rules for a connective are not too weak,

6

i.e., that any consequence of a proposition with that principal connective can
be obtained by first applying the elimination rules. Assuming the cut principle,
this is equivalent to asserting that we can use the elimination rules to recon-
struct the proposition. For example, we show that the elimination rules for
conjunction are not too weak with the following transformation:1

...
A × B true ⇒

...
A × B true

A true

...
A × B true

B true

A × B true

Of course, we can also start from a pragmatist interpretation and apply the dual
transformation to check that the introduction rules are not too strong.

Now, Dummett observes (and considers it a virtue) that the standard nat-
ural deduction rules for intuitionistic logic may be validated by all of these
procedures—unlike, for example, classical natural deduction (and in particu-
lar, the rules for negation). But is that really the last word? In the following
sections, we will show how to formalize and extend Dummett’s program.

Starting from the standard introduction rules, we will use the full force of
a verificationist interpretation to derive a more powerful proof system for in-
tuitionistic logic (in particular, with large-step elimination rules). Then by
applying a pragmatist interpretation to the standard elimination rules, we will
obtain a proof system that is actually co-intuitionistic. Finally, we will show
how to combine these two systems, and relate them back to classical logic.
Throughout this section, we will rely heavily on the judgmental method, as
introduced by Martin-Löf and extensively developed by Pfenning and his col-
laborators [ML96, PD01]. Specifically, the formalism we develop will make es-
sential use of categorical distinctions between the sort of reasoning involved in
canonical proofs and in the inferences they justify, as well as between canonical
consequences and the inferences they justify. At least in part this explains why
we are able to go beyond Dummett’s analysis.

2.2 Dual systems of proofs and refutations

We begin by examining the verificationist approach. The idea is to formalize
the notion of canonical proof, concurrently with the notion of justified infer-
ence. Concurrently, because a canonical proof of an implication A → B is a
justified inference from A to B. As a simplification, however, rather than con-
sidering arbitrary inferences, we will restrict our attention to inferences towards
contradiction—that is, refutations—and thereby analyze only canonical proofs
of negations ¬A rather than of arbitrary implications (but this treatment should
generalize: see Section 5).

Let us start by defining the judgment A true, with the meaning that there
is a canonical proof of A. Repeating the definitions in the previous section, a

1In [PD01], this transformation is called a local expansion, used in combination with the
upwards justification procedure, which is called a local reduction.

7

canonical proof of a conjunction is a pair of canonical proofs of the conjuncts,
and a canonical proof of a disjunction is a proof of either disjunct:

A true B true

A × B true

A true

A + B true

B true

A + B true

A canonical proof of a negation is a justified refutation, for which we use the
judgment A untrue:

A untrue

¬A true

But what is a justified refutation? Abstractly, it is an inference from the as-
sumption that A is true towards a contradiction, justified on the grounds that
if A is true then it must have a canonical proof (Dummett’s Fundamental As-
sumption). In other words, a justified refutation of A consists of a method for
turning any canonical proof of A into a contradiction.

Now, each of the above sets of introduction rules for canonical proofs comes
with a corresponding inversion principle. For example, given a canonical proof
of A + B, we can recover either a canonical proof of A or a canonical proof of
B. A perspicuous way of keeping track of these inversion principles is by means
of a relation Φ ⇒ A true, between the judgment A true and a list of judgments
Φ containing only refutations B untrue and atomic truths X true. We can view
Φ as a minimal list of components needed to construct a canonical proof of
A, and the set (A true)−1 = {Φ |Φ ⇒ A true} as providing a decomposition of
the hypothesis A true. Thus for example, we have (X + (Y × Z) true)−1 =
{(X true), (Y true, Z true)}, since a canonical proof of X + (Y × Z) is either
a canonical proof of X (which cannot be further decomposed), or a canonical
proof of Y together with a canonical proof of Z. We have (¬A×¬B true)−1 =
{(A untrue, B untrue)}, since a canonical proof of ¬A × ¬B is a refutation of
A together with a refutation of B. By unpacking the above introduction rules,
we can give the following axiomatization of Φ ⇒ A true:

Φ1 ⇒ A true Φ2 ⇒ B true

Φ1, Φ2 ⇒ A × B true

Φ ⇒ A true

Φ ⇒ A + B true

Φ ⇒ B true

Φ ⇒ A + B true

X true ⇒ X true A untrue ⇒ ¬A true

where Φ1, Φ2 is the usual concatenation of contexts.
We can now state the procedure for justified refutation. To refute A, we

must be able to derive a contradiction from the hypotheses Φ, for any Φ such
that Φ ⇒ A true. And to derive a contradiction from Φ (written Φ ` contra),
we must find some hypothesis B untrue ∈ Φ, and prove that B is true. Since the
proof of B true may itself require hypotheses in Φ (e.g., consider how one refutes
X ×¬X), we actually need to generalize to hypothetical judgments Φ ` A true
and Φ ` A untrue. This is done in Figure 1, which summarizes the foregoing
verificationist analysis. Again, the three hypothetical judgments may be glossed
as follows:

8

Formulas A, B ::= X | 1 | A × B | 0 | A + B | ¬A

Contexts Φ ::= · | Φ, X true | Φ, A untrue

Φ ` A true

X true ∈ Φ

Φ ` X true
�X

Φ ` A untrue

Φ ` ¬A true
�¬

Φ ` 1 true
�1

Φ ` A true Φ ` B true

Φ ` A × B true
�×

(no rule for 0)

Φ ` A true

Φ ` A + B true

Φ ` B true

Φ ` A + B true
�+

Φ ` A untrue

∀Φ′ ∈ (A true)−1 Φ, Φ′ ` contra

Φ ` A untrue
blur�

Φ ` contra

Φ ` A true A untrue ∈ Φ

Φ ` contra
focus�

. .

Φ ⇒ A true

X true ⇒ X true A untrue ⇒ ¬A true

· ⇒ 1 true

Φ1 ⇒ A true Φ2 ⇒ B true

Φ1, Φ2 ⇒ A × B true

(no rule for 0)

Φ ⇒ A true

Φ ⇒ A + B true

Φ ⇒ B true

Φ ⇒ A + B true

(A true)−1 = {Φ |Φ ⇒ A true}

Figure 1: Canonical proofs and justified refutations

9

Φ ` A true A has a canonical proof (assuming Φ)
Φ ` A untrue A has a justified refutation (assuming Φ)

Φ ` contra Φ is contradictory

It is also worth observing that in terms of provability, the system of deduction
defined here is intuitionistic.

There is clearly a close connection between Φ ` A true, which asserts that
A has a canonical proof, and Φ ⇒ A true, which merely “inverts” that judg-
ment. Indeed, this connection is what makes our method of refutation justified.
Formally, we can describe the connection with the following converse properties:

Property (Inversion-reduction). If Φ ` A true then ∃Φ′ ∈ (A true)−1 such
that Φ ` Φ′ (meaning Φ ` J for all J ∈ Φ′).

Property (Inversion-expansion). If Φ′ ∈ (A true)−1 and Φ ` Φ′ then Φ `
A true.

It is trivial to check both properties by induction on A. Moreover, we con-
tend that these are exactly the properties needed to justify the rule for refuta-
tion: inversion-reduction guarantees that it is not too strong, while inversion-
expansion that it is not too weak. We demonstrate this by proving that the
system defined by Figure 1 satisfies “identity” and “cut” principles. We ob-
serve, first, that Φ ⇒ A true satisfies a subformula property: the hypotheses
in Φ mention only subformulas of A. Moreover, we note that weakening is ad-
missible for each of the hypothetical judgments Φ ` A true, Φ ` A untrue, and
Φ ` contra.

Principle (Identity). If A untrue ∈ Φ then Φ ` A untrue.

Principle (Cut). If Φ ` A true and Φ ` A untrue then Φ ` contra.

Proof (of identity). We reduce this to the identity principle on subformulas of
A, proving it simultaneously with a “context identity” principle:

Principle (Context identity). For all Φ, Φ ` Φ.

Now assume A untrue ∈ Φ. The derivation of Φ ` A untrue begins as follows:2

∀Φ′ ∈ (A true)−1

Φ, Φ′ ` A true A untrue ∈ Φ

Φ, Φ′ ` contra
focus�

Φ ` A untrue
blur�

So that we must show Φ, Φ′ ` A true for all Φ′ ∈ (A true)−1. But Φ′ ` Φ′

holds by the context identity principle, which implies Φ′ ` A true by inversion-
expansion, and finally Φ, Φ′ ` A true by admissible weakening.

By definition, context identity Φ ` Φ reduces to the identity principle on
hypotheses B untrue in Φ (it is trivial for atomic truth hypotheses). Since the
Φ′ ∈ (A true)−1 used above contain only subformulas of A, the induction is
well-founded.

2The funny names labelling the rules will eventually be explained.

10

Proof (of cut). Likewise we reduce to the cut principle on subformulas of A,
proving cut simultaneously with a substitution principle:

Principle (Substitution). If Φ ` Φ′ and Φ, Φ′ ` J then Φ ` J

Now assume Φ ` A true and Φ ` A untrue. By applying inversion-reduction on
the first premise we find a Φ′ ∈ (A true)−1 such that Φ ` Φ′. Since the second
premise was derived using blur�, we have Φ, Φ′ ` contra, and Φ ` contra follows
by substitution.

The proof of substitution uses a secondary induction on the derivation of
Φ, Φ′ ` J , but appeals back to the cut principle in the following case:

Φ, Φ′ ` B true B untrue ∈ Φ′

Φ, Φ′ ` contra
focus�

Here Φ ` B true by the i.h., and Φ ` B untrue by the hypothesis that Φ ` Φ′;
hence we obtain Φ ` contra by the cut principle. Again the induction is well-
founded because above we applied substitution with Φ′ ∈ (A true)−1, which
contains only subformulas of A.

(We should remark, incidentally, that while admissibility of identity and cut
are standard theorems for deductive systems (usually for sequent calculi), both
of the proofs exhibited above are entirely modular, in the sense that interactions
between different connectives need not be considered. In particular, the proof
of cut admissibility avoids the usual quadratic explosion of cases, relying only
upon the inversion-reduction property.)

With these basic facts established, let us now see how to obtain a “pragma-
tist” interpretation, fixing the meanings of the logical constants by their elimi-
nation rules and formalizing the notion of “canonically-obtained consequence.”
Again, rather than considering arbitrary consequences, we will confine ourselves
to a distinguished one—and the elimination rules thereby become introduction
rules for canonical refutations.

Let us illustrate first with disjunction. The usual elimination rule states
that to show some conclusion from a disjunction, one must show it from both
disjuncts. As a special case, then, to refute a proposition A+B one must refute
both A and B:

A false B false

A + B false

By the same line of reasoning, the two elimination rules for conjunction become
two falsehood-introduction rules:

A false

A × B false

B false

A × B false

These rules define conjunction by the slogan, “A refutation of A × B is a refu-
tation of A or a refutation of B.” Now, while both rules are certainly sound
if we interpret falsehood as intuitionistic falsehood (i.e., as untrue), this “co-
disjunction property” obtained as an inversion principle is not intuitionistically

11

Formulas A, B ::= X | 1 | A × B | 0 | A + B | ¬A

Contexts Φ ::= · | Φ, X false | Φ, A unfalse

Φ ` A false

X false ∈ Φ

Φ ` X false
X�

Φ ` A unfalse

Φ ` ¬A false
¬�

(no rule for 1)

Φ ` A false

Φ ` A × B false

Φ ` B false

Φ ` A × B false
×�

Φ ` 0 false
0�

Φ ` A false Φ ` B false

Φ ` A + B false
+�

Φ ` A unfalse

∀Φ′ ∈ (A false)−1 Φ, Φ′ ` contra

Φ ` A unfalse
�blur

Φ ` contra

A unfalse ∈ Φ Φ ` A false

Φ ` contra
�focus

. .

Φ ⇒ A false

X false ⇒ X false A unfalse ⇒ ¬A false

(no rule for 1)

Φ ⇒ A false

Φ ⇒ A × B false

Φ ⇒ B false

Φ ⇒ A × B false

· ⇒ 0 false

Φ1 ⇒ A false Φ2 ⇒ B false

Φ1, Φ2 ⇒ A + B false

(A false)−1 = {Φ |Φ ⇒ A false}

Figure 2: Canonical refutations and justified proofs-by-contradiction

legitimate: consider the law of contradiction A × ¬A untrue. Instead what we
have here is the stronger notion of “constructible falsity” [Nel49], which in turn
may be deconstructed to justify a co-intuitionistic notion of truth: a proposition
is co-intuitionistically true just in case its falsehood entails a contradiction.

Figure 2 presents a system of canonical refutations and justified proofs-by-
contradiction, again by making use of three judgments:

Φ ` A false A has a canonical refutation (assuming Φ)
Φ ` A unfalse A has a justified proof-by-contradiction (assuming Φ)

Φ ` contra Φ is contradictory

If we define the dualization operator (−)◦ on formulas by

X◦ = X 1◦ = 0 0◦ = 1

12

(A × B)
◦

= A◦ + B◦ (A + B)
◦

= A◦ × B◦ (¬A)
◦

= ¬A◦

and extend it to judgments and contexts with

(A true)
◦

= A◦ false contra◦ = contra (A untrue)
◦

= A◦ unfalse
(A false)

◦
= A◦ true (A unfalse)

◦
= A◦ untrue

(·)◦ = (·) (J, Φ)◦ = (J◦, Φ◦)

then the following observation is obvious:

Observation (Principle of Duality). Φ ` J iff Φ◦ ` J◦

In particular, the pragmatist system must admit identity and cut principles.

Principle (Identity). If A unfalse ∈ Φ then Φ ` A unfalse.

Principle (Cut). If Φ ` A unfalse and Φ ` A false then Φ ` contra.

2.3 The unity of duality

Given the formal duality between verificationist and pragmatist interpretations,
it seems that a choice of one over the other has, to use Dummett’s phrase,
“no more force than the converse suggestion.” On the other hand, the two
interpretations are different—A true cannot be equated with A unfalse, nor
A untrue with A false.3 Some notable counterexamples:

` A + ¬A unfalse but 0 A + ¬A true
` A × ¬A untrue but 0 A × ¬A false

But to say that the two interpretations of the logical constants are different
is another way of saying that they define different logical constants. In other
words, much like linear logic recognizes two conjunctions ⊗ and N with very
different properties, we should distinguish “verificationist conjunction” from
“pragmatist conjunction,” and so forth with the other connectives.

Indeed, so long as we realize that this is not suddenly imposing linearity
constraints, it is convenient to distinguish them using the notation of linear
logic. Thus we write ⊗ and ⊕ for verificationist conjunction and disjunction,
N and O for pragmatist. With a bit of foreshadowing, we write ¬v and ¬n for
the respective forms of negation. The verificationist and pragmatist approaches
correspond, respectively, to positive and negative polarity. As per the technique
of polarized linear logic, we can define two independent classes of formulas:

P, Q ::= X | 1 | P ⊗ Q | 0 | P ⊕ Q | ¬v P

M, N ::= X | > | MNN | ⊥ | MON | ¬nM

3Or to put it another way, taking this unjustified step would make the system collapse to
classical logic.

13

Figures 1 and 2 should now be suitably reinterpreted with, respectively, P s and
Qs, or Ms and Ns, in place of As and Bs. The reader may keep in mind the
following mnemonic: the verificationist connectives are defined positively, i.e., in
terms of truth, while the pragmatist connectives are defined negatively, i.e., in
terms of falsehood.

This syntactic separation makes it easy to see that there is no harm in
combining the two interpretations, i.e., allowing contexts to contain a mix of
hypotheses X true, X false, P untrue, N unfalse, and considering the union of
the rules in Figures 1 and 2. However, it is also not clear that this gains us
anything—indeed, the syntactic separation ensures that there are no possible
interactions between the two sets of rules! But to break this impasse we can
(following [Gir01]) add a pair of mediating connectives:

P, Q ::= · · · | ↓N
M, N ::= · · · | ↑P

With these operators (Girard’s “shift” operators), we may now interpret (the
more permissive) co-intuitionistic truth as a modality of intuitionistic truth

Φ ` N unfalse

Φ ` ↓N true
�↓

N unfalse ⇒ ↓N true

and intuitionistic falsehood as a modality of co-intuitionistic falsehood

Φ ` P untrue

Φ ` ↑P false
↑�

P untrue ⇒ ↑P false

The two fragments now can interact in interesting ways. For example, we can
show (with the initial premise by the identity principle)

P untrue,¬v Puntrue ` P untrue

P untrue,¬v P untrue ` ¬v P true
�¬v

P untrue,¬v P untrue ` contra
focus�

` ↑PO ↑¬v P unfalse
�blur

` ↓(↑PO ↑¬v P) true
�↓

By a more complicated derivation, we can show ↓↑(P ⊕ ¬v P) true. In fact,
one can show ↓↑P true whenever P untrue ` contra, and ↑↓N false whenever
N unfalse ` contra, so that the composition of the shift operators is essentially
double-negation.4 The reader is invited to play with the shift operators and try
to gain some intuition for their logical content—but their meaning will become

4Note that we can now also define another, involutive negation (−)⊥, such that N⊥ true

iff N false and P⊥ false iff P true, essentially internalizing the dualization operator. Then ¬
v
P

could be decomposed as ↓(P⊥) (as is done in [Gir01, §9.2]) and ¬
n

N as ↑(N⊥). While (−)⊥ is
interesting as a tool of analysis, its operational value is at present unclear to me, and it will
be left out of the language defined in the sequel. However, see the discussion in Sections 5
and 6.

14

much more mundane once we develop the Curry-Howard interpretation. There,
we will see that they indicate the presence of control effects: ↓N is the type of
a suspended expression of type N , while ↑P the type of a captured continuation
of type P .

We hold off on defining the programming language for just a while longer,
in order to explain the relationship of this unified logic of intuitionistic and co-
intuitionistic reasoning to Andreoli’s notion of “focusing” strategies for sequent
calculi.

2.4 A focused look at classical sequent calculus

Consider the following transformation taking a context of hypotheses Φ to a
pair of multisets of formulas (ΓΦ; ∆Φ):� If X true ∈ Φ then X ∈ ΓΦ; if N unfalse ∈ Φ then N ∈ ΓΦ� If X false ∈ Φ then X ∈ ∆Φ; if P untrue ∈ Φ then P ∈ ∆Φ

For example, corresponding to Φ = (X true, X⊕¬v X untrue) we have ΓΦ = (X)
and ∆Φ = (X ⊕ ¬v X). Note that we retain the syntactic distinction between
positive and negative formulas. Now, we locate five kinds of sequents—four
styles of focused sequents (which have a single polarized formula “in focus” on
either the left or right) as well as ordinary, unfocused sequents:

Γ → ∆ � P P � Γ → ∆
Γ → ∆ � N N � Γ → ∆

Γ → ∆

where Γ contains (arbitrary) negative formulas and (only) atomic positive for-
mulas, while ∆ contains (arbitrary) positive formulas and (only) atomic negative
formulas. Each of our hypothetical judgments transforms (bijectively) into one
of these five sequents:

Φ ` P true ⇐⇒ ΓΦ → ∆Φ � P
Φ ` P untrue ⇐⇒ P � ΓΦ → ∆Φ

Φ ` N unfalse ⇐⇒ ΓΦ → ∆Φ � N
Φ ` N false ⇐⇒ N � ΓΦ → ∆Φ

Φ ` contra ⇐⇒ ΓΦ → ∆Φ

Now, if we look at Figures 1 and 2 through the lens of this transformation,
we see the reason behind the rule names. For example the truth-introduction
rules �op introduce the connective op in right-focus, as in

Γ → ∆ � P Γ → ∆ � Q

Γ → ∆ � P ⊗ Q
�⊗

P � Γ → ∆

Γ → ∆ � ¬v P
�¬v

whereas the falsehood-introduction rules op� introduce op in left-focus. The
blur rules, read as proof-search directives from bottom to top, “blur” a focused
goal sequent into a set of unfocused goals, while the focus rules focus on a
particular formula in an unfocused goal:

15

∀(Γ′, ∆′) ∈ (P)−1 Γ′, Γ → ∆, ∆′

P � Γ → ∆
blur�

∀(Γ′, ∆′) ∈ (N)−1 Γ′, Γ → ∆, ∆′

Γ → ∆ � N
�blur

Γ → ∆, P � P

Γ → ∆, P
focus�

N � N, Γ → ∆

N, Γ → ∆
�focus

The identity and cut principles become:

Principle (Identity). (pos.) P � Γ → ∆, P ; (neg.) N, Γ → ∆ � N

Principle (Cut). (pos.) if Γ → ∆ � P and P � Γ → ∆ then Γ → ∆; (neg.)
if Γ → ∆ � N and N � Γ → ∆ then Γ → ∆

Consider as an example the derivation of X ⊕ ¬v X untrue ` contra. Via
this notational transformation the derivation becomes the following proof of
· → X ⊕ ¬v X :

X → X ⊕ ¬v X � X
�X

X → X ⊕ ¬v X � X ⊕ ¬v X
�⊕

X → X ⊕ ¬v X
focus�

X � · → X ⊕ ¬v X
blur�

· → X ⊕ ¬v X � ¬v X
�¬v

· → X ⊕ ¬v X � X ⊕ ¬v X
�⊕

· → X ⊕ ¬v X
focus�

And now if we “forget” about polarity (i.e., replace ⊕ and ¬v by + and ¬) and
erase the symbols “�” and “�”:

X → X + ¬X, X

X → X + ¬X, X + ¬X

X → X + ¬X

X → X + ¬X

· → X + ¬X,¬X

· → X + ¬X, X + ¬X

· → X + ¬X

The derivation has become more or less an ordinary classical sequent calculus
proof, where truth-introduction rules have been replaced by ordinary right rules,
focus� by right-contraction, and blur� by a sequence (in this case empty) of
left rules. If we continue carrying out this transformation, we will find that
falsehood-introduction rules map to sequent calculus left rules, �focus to left-
contraction, �blur to a sequence of right rules. The punchline here is that

16

while we derived Figures 1 and 2 judgmentally as refinements of intuitionistic
and co-intuitionistic natural deduction, based on dual verificationist/pragmatist
readings of the connectives, it is also possible to view them as a focusing strategy
for the classical sequent calculus.

For a full background on focusing, the reader is referred to Andreoli’s tuto-
rial [And01]. The technique was originally invented as a way of guiding proof
search in linear logic [And92], based on the observation that the order of ap-
plication of rules need not be entirely unconstrained, but instead can be made
to alternate between very narrow focused and unfocused stages. Starting from
an unfocused sequent, the first action must be to choose some formula to focus
on. Classifying the linear connectives ⊗,⊕, 1, 0 as positive, N, O,>,⊥ as neg-
ative,5 the chosen formula is either one on the right side of the sequent with
positive outermost connective, or one on the left side with negative outermost
connective.6 Proof search must continue by analyzing the focused formula, up
to the point of a polarity mismatch (i.e., a positive connective in left-focus, or
a negative connective in right-focus). At that point the formula is decomposed
in one step by applying a sequence of invertible rules, converting the goal into
a set of unfocused sequents.

From the point of view of proof search, the crucial fact is that this strategy
is complete: a linear logic sequent has an ordinary proof just in case it has a
focusing proof. Since there are far fewer focusing proofs, the efficiency of proof
search is greatly improved. Yet, our rational reconstruction of focusing argues
that it is much more than optimization.

For classical logic, this effect is particularly striking. Whereas the polarity
of each linear connective (save negation) is forced by its resource-awareness,
the classical connectives are fundamentally ambivalent. As demonstrated by
different authors, many of the degeneracies of classical logic—non-confluence,
lack of a non-trivial theory of type isomorphisms—may be traced back to this
ambivalence [Gir91, DJS97, Lau05]. On the other hand, from the standpoint of
classical provability, nothing is lost by the focusing discipline, in the sense that
we can prove (see Section 3.4) a completeness theorem:

|Γ| →c |∆| implies Γ → ∆

where →c stands for classical provability, and |−| is the operator which forgets
polarity. Moreover, it should be intuitively clear from the preceding judgmen-
tal analysis that focusing completeness is essentially a refined statement of the
completeness of alternative double-negation translations, and accordingly we
can expect that the focusing proof has a better-defined, more explicit compu-
tational content than the classical sequent calculus proof. In fact, we will find
that focusing proofs are even more explicit than ordinary proofs of intuitionistic

5Andreoli uses the classification “synchronous”/“asynchronous,” making the dichotomy
“verificationist ≈ positive ≈ synchronous ≈ call-by-value” vs. “pragmatist ≈ negative ≈ asyn-
chronous ≈ call-by-name”. This surfeit of names for the same thing is certainly confusing,
but on the other hand perhaps encouraging.

6The innovation of keeping positive and negative formulas syntactically distinct but com-
posable via the shift operators was introduced in [Gir01].

17

Positive types P, Q ::= X | 1 | P ⊗ Q | 0 | P ⊕ Q | ¬v P | ↓N

Negative types M, N ::= X | > | MNN | ⊥ | MON | ¬nM | ↑P

Contexts Φ ::= · | Φ, x
val
: X | Φ, u

cnt
: P | Φ, u

exp
: N | Φ, x

cov
: X

Judgments

Φ ` V
val
: P value V has type P

Φ ` K
cnt
: P continuation K has type P

Φ ` E
exp
: N expression E has type N

Φ ` C
cov
: N covalue C has type N

Φ ` S
stm
: · statement S is well-typed

Figure 3: CU types, contexts and typing judgments

logic, in the sense that evaluation order is completely determined by the polar-
ities of the connectives. We now explore this phenomenon, turning to the task
of giving polarized logic a Curry-Howard interpretation.

3 The language of values and continuations (and
their duals)

Based on the forgoing logical analysis, in this section we define a program-
ming language called the calculus of unity,7 or CU, which seamlessly com-
bines strict and lazy evaluation. The verificationist or positive connectives be-
come constructors for strict types, the pragmatist or negative connectives lazy
type constructors, and the five logical judgments (intuitionistic/co-intuitionistic
truth/falsehood and contradiction) typing judgments for five distinct program-
ming constructs (values, continuations, expressions, covalues, and statements),
as exhibited in Figure 3.

We begin by defining a canonical fragment of CU, translating each logical
rule mechanically into a typing rule. The rules for justified refutation and
proof-by-contradiction now become rules for type-checking continuations and
expressions defined by pattern-matching. This canonical fragment is sufficient
for resolving many interesting questions about typing (in particular the question
of subtyping for refinement types, as we will see in Section 4), but it is insufficient
as a theoretical framework for studying computation, because for one, every term
is already fully evaluated. Thus we internalize the principles of identity and cut
as typing rules, and give a reduction relation on cuts as the operational semantics
of CU. But this is still not enough, because (by the consistency of logic!) there
are no closed programs to execute. Following [Gir01], we solve this problem by
adding a single closed statement representing successful termination. This may
appear exotic from a logical perspective (it internalizes inconsistency), but from

7With apologies to [Gir93].

18

an operational standpoint, all that is going on is we are specifying an observable
result. We then finish this section with a simple statement and proof of type
safety as a special case of cut-elimination on “closed sequents.”

3.1 Canonical CU

Figure 4 gives the positive fragment of CU, including call-by-value continua-
tions, strict products and sums. The value typing judgment Φ ` V

val
: P is simply

an annotation of the truth judgment Φ ` P true of Figure 1 with proof terms.
It should also be mostly recognizable, for example the rule

Φ ` V1
val
: P Φ ` V2

val
: Q

Φ ` 〈V1, V2〉
val
: P ⊗ Q

�⊗

which constructs a strict product out of a pair of values. The reader can with-
out much danger take our use of the word “value” in its usual programming
languages sense, and these typing rules thus impose a “value restriction” of
sorts—but in Section 4.2 we will show how to derive rules for the more general
case. Slightly less standard (but still straightforward) is the rule

Φ ` K
cnt
: P

Φ ` con(K)
val
: ¬v P

�¬v

which constructs a value out of a continuation, deferring to the continuation
typing judgment Φ ` K

cnt
: P .

The main novelty of the positive fragment is in the method for checking
continuations, encoded as the rule blur�:

∀v ∈ ‖P‖ ∀Φ′ ∈ (v
val
: P)−1 Φ, Φ′ ` K(v)

stm
: ·

Φ ` K
cnt
: P

A continuation K may be thought of as a partial map from patterns to state-
ments, and K(v) represents the statement K would execute given a value match-
ing pattern v. We write K = {v1 7→ S1 | · · · | vn 7→ Sn} to describe a continua-
tion defined on finitely many patterns (so K(v) = Si if v = vi modulo renaming
of variables, and K(v) is undefined otherwise), but abstractly continuations need
not satisfy this finiteness restriction. Operationally, when K receives a value V
matching pattern v, it will execute K(v) (assuming K(v) is defined), after sub-
stituting the components of V for the variables bound by v. Intuitively, then,
the premise of the continuation checking rule says that K can handle any value
of type P : for all patterns v matching values of type P , for any Φ′ ∈ (v

val
: P)−1

decomposing the pattern hypothesis, K(v) is defined and well-typed under the
additional assumptions Φ′. (In the usual terminology of pattern-matching, we
can see the premise that K(v) be defined as requiring that K is exhaustive. The
fact that K is a function guarantees it is non-redundant.)

Observe that in the world defined by Figure 4, (v
val
: P)−1 is always a single-

ton, i.e., a pattern hypothesis can always be decomposed uniquely into types for

19

Values V ::= x | 〈〉 | 〈V1, V2〉 | inl(V) | inr(V) | con(K)
Value patterns v ::= x | 〈〉 | 〈v1, v2〉 | inl(v) | inr(v) | con(u)
Continuations K ::= {v1 7→ S1 | · · · | vn 7→ Sn}
Statements S ::= V B u

Φ ` V
val
: P

x
val
: X ∈ Φ

Φ ` x
val
: X

�X
Φ ` K

cnt
: P

Φ ` con(K)
val
: ¬v P

�¬v

Φ ` 〈〉
val
: 1

�1
Φ ` V1

val
: P Φ ` V2

val
: Q

Φ ` 〈V1, V2〉
val
: P ⊗ Q

�⊗

(no rule for 0)

Φ ` V
val
: P

Φ ` inl(V)
val
: P ⊕ Q

Φ ` V
val
: Q

Φ ` inr(V)
val
: P ⊕ Q

�⊕

Φ ` K
cnt
: P

∀v ∈ ‖P‖ ∀Φ′ ∈ (v
val
: P)−1 Φ, Φ′ ` K(v)

stm
: ·

Φ ` K
cnt
: P

blur�

Φ ` S
stm
: ·

Φ ` V
val
: P u

cnt
: P ∈ Φ

Φ ` V B u
stm
: ·

focus�

. .

Φ ⇒ v
val
: A

x
val
: X ⇒ x

val
: X u

cnt
: A ⇒ con(u)

val
: ¬v A

· ⇒ 〈〉
val
: 1

Φ1 ⇒ v1
val
: A Φ2 ⇒ v2

val
: B

Φ1, Φ2 ⇒ 〈v1, v2〉
val
: A ⊗ B

(no rule for 0)

Φ ⇒ v
val
: A

Φ ⇒ inl(v)
val
: A ⊕ B

Φ ⇒ v
val
: B

Φ ⇒ inr(v)
val
: A ⊕ B

‖P‖ =
n

v |∃ Φ.Φ ⇒ v
val
: P

o

(v
val
: P)−1 =

n

Φ |Φ ⇒ v
val
: P

o

Figure 4: Canonical CU (positive fragment)

20

its variable bindings (e.g., (〈inr(con(u)), x〉
val
: (P⊕¬v Q)⊗X)−1 = {(u

cnt
: Q, x

val
: X)}).

Another way of putting this is that each context in (P true)−1 corresponds to
a unique pattern. However, we will not rely on this fact—and indeed, it will
cease to hold once we extend the type system with positive unions.

Finally, in the canonical fragment, we distinguish continuation variables u
from continuations K, and use the former in statements V B u. Intuitively, this
statement represents the action of throwing V to the continuation instantiated
for u. It is checked with rule focus�

Φ ` V
val
: P u

cnt
: P ∈ Φ

Φ ` V B u
stm
: ·

which finds a type for u in the context, and verifies that the value has the same
type. Again, it is a fact of the present system that if a type for u exists then it
is unique—but again, we will eventually extend the type system (with positive
intersections) so that this property fails.

We now turn to the negative fragment of CU, given in Figure 5. Of course,
the negative constructs are simply dual to the negative ones. . . but perhaps de-
serving of their own explanation. Whereas positive types are defined by their
value constructors, negative types are defined by their destructors, or, to put it
more symmetrically, by their continuation constructors. We call these continu-
ations in restricted form covalues. So for example, the covalue for a lazy pair is
either of the form fst(−) or snd(−):

Φ ` C
cov
: M

Φ ` fst(C)
cov
: MNN

Φ ` C
cov
: N

Φ ` snd(C)
cov
: MNN

N�

So to speak, this pair of rules forces the continuation to “choose” whether to
project the first or the second component. Now, laziness comes from the fact
that expressions can be defined by pattern-matching against these choices. We
can think of the lazy pair expression E = {fst(c) 7→ S1 | snd(c) 7→ S2} as “ask-
ing” its continuation to make a decision between the two branches S1 and S2.
Since they are only conditionally executed, in spirit S1 and S2 are completely
unrestricted. For instance, they could be non-terminating or effectful (although
we have not yet described how to write down such statements).

As we saw for the corresponding logical systems, perhaps the most interesting
behavior arises from the interaction of the positive and negative fragments. In
Section 2.3, we interpreted the shift operators as modalities, embedding co-
intuitionistic truth-by-contradiction into direct intuitionistic truth, and likewise
intuitionistic falsehood-by-contradiction into direct co-intuitionistic falsehood.
They now have a very concrete operational reading: a lazy expression E

exp
: N

can be suspended and treated as a value exp(E)
val
: ↓N , while a continuation

K
cnt
: P can be captured and treated as a covalue con(K)

cov
: ↑P . With these

coercions (typing rules given in Figure 6) we can now directly mix the two
fragments in a controlled manner.

Let us begin by considering callcc, which has long been associated with
Curry-Howard interpretations of classical logic (cf. [Gri90]). Given a statement
abstracting in a P -continuation, we can construct an expression of type ↑P :

21

Covalues C ::= x | [] | [C1, C2] | fst(C) | snd(C) | exp(E)
Covalue patterns c ::= x | [] | [c1, c2] | fst(c) | snd(c) | exp(u)
Expressions E ::= {c1 7→ S1 | · · · | cn 7→ Sn}
Statements S ::= u C C

Φ ` C
cnt
: N

x
cov
: X ∈ Φ

Φ ` x
cov
: X

X�
Φ ` E

exp
: N

Φ ` exp(E)
cov
: ¬nN

¬n�

(no rule for >)

Φ ` C
cov
: M

Φ ` fst(C)
cov
: MNN

Φ ` C
cov
: N

Φ ` snd(C)
cov
: MNN

N�

Φ ` []
cov
: ⊥

⊥�
Φ ` C1

cov
: M Φ ` C2

cov
: N

Φ ` [C1, C2]
cov
: MON

O�

. .

Φ ` E
exp
: N

∀c ∈ ‖N‖ ∀Φ′ ∈ (c
cov
: N)−1 Φ, Φ′ ` E(c)

stm
: ·

Φ ` E
exp
: N

�blur

Φ ` S
stm
: ·

u
exp
: N ∈ Φ Φ ` C

cov
: N

Φ ` u C C
stm
: ·

�focus

. .

Φ ⇒ c
cov
: A

x
cov
: X ⇒ x

cov
: X u

exp
: A ⇒ exp(u)

cov
: ¬nA

(no rule for >)

Φ ⇒ c
cov
: A

Φ ⇒ fst(c)
cov
: ANB

Φ ⇒ c
cov
: B

Φ ⇒ snd(c)
cov
: ANB

· ⇒ []
cov
: 0

Φ1 ⇒ c1
cov
: A Φ2 ⇒ c2

cov
: B

Φ1, Φ2 ⇒ [c1, c2]
cov
: AOB

‖N‖ =
˘

c |∃ Φ.Φ ⇒ c
cov
: N

¯

(c
cov
: N)−1 =

˘

Φ |Φ ⇒ c
cov
: N

¯

Figure 5: Canonical CU (negative fragment)

22

Value V ::= · · · | exp(E)
Covalue C ::= · · · | con(K)
Value pattern v ::= · · · | exp(u)
Covalue pattern c ::= · · · | con(u)

Φ ` E
exp
: N

Φ ` exp(E)
val
: ↓N

�↓ Φ ` K
exp
: P

Φ ` con(K)
cov
: ↑P

↑�

u
exp
: N ⇒ exp(u)

val
: ↓N u

cnt
: P ⇒ con(u) : ↑P

Figure 6: Canonical CU (shift operators)

Φ, u
cnt
: P ` S

stm
: ·

Φ ` {con(u) 7→ S}
exp
: ↑P

�blur

As will be formalized in the operational semantics, once this expression is thrown
a captured continuation con(K), evaluation proceeds on [K/u]S, so that the
expression truly has the behavior of callcc. But here the shift explicitly marks
the presence of a “control effect.”

Now as we explained in Section 2.4, although the logic encoded by canonical
CU is not classical in the traditional sense, being rather a careful combination
of intuitionistic and co-intuitionistic reasoning, it may be seen as a focusing
system for the classical sequent calculus. Suppose we had tried to include callcc
directly in the language with a rule similar to that in [CH00]:

Φ, u
cnt
: P ` S

stm
: ·

Φ ` µu.S : P
callcc??

Given a statement abstracting in a P -continuation, this rule constructs a (is it
a “value”?...“expression”?...let’s just say) term of type P . The fact that this
construct does not quite fit our terminology should already be a warning—it
is not a value in the ordinary sense because it is effectful, but nor is it an ex-
pression in our sense because it has positive type. Perhaps if we had included
callcc we may have adopted a more “value”-neutral terminology—but this mis-
match reflects a deeper logical problem. Ignoring proof terms, the rule’s premise
establishes that the assumption P untrue entails a contradiction—hence if we
read the conclusion as P true, it destroys the interpretation of that judgment as
representing intuitionistic truth, distinct from co-intuitionistic truth. Likewise
if we rewrite the rule in sequent form (via the translation of Section 2.4):

Γ → ∆, P

Γ → ∆ � P

Now it violates the focusing restriction: it illegally loses right-focus on a positive
formula. Conceivably, we could read the conclusion as P unfalse, but this would
just make the coercion from positive to negative formulas implicit.

23

In general, loosely speaking we can treat expressions of type ↑P as “effectful
computations computing a value of type P .” We should emphasize that this
is different from the standard monadic encoding, using the double-negation
monad. Whereas the type system enforces that the only way to use an expression
of type ↑P is to pass it a captured continuation con(K)

cov
: ↑P , one must explicitly

maintain a monadic discipline on values of type ¬v¬v P . We can make a similar
observation for the mixing of strict and lazy sums and products. There is a well-
known monadic encoding of lazy pairs using strict pairs: a lazy pair of suspended
computations could be represented as ¬v¬v P⊗¬v¬v Q. But using the shift operators,
we also have a more direct encoding as ↑PN↑Q. As first observed by Filinski,
there is a dual phenomenon for sums [Fil89]. Note that what we call lazy
sums (following Filinski’s example) are not what most call-by-need languages
(e.g., Haskell) call sums: upon pattern-matching, the latter are eagerly reduced
down to a tag before computation can proceed. Filinski shows how to simulate
this behavior, effectively by encoding sums as ¬n¬nMO¬n¬nN [Fil89, §2.5.3]. But
the shift operators enable a more direct encoding as ↑(↓M ⊕ ↓N). Intuitively,
this is the type of a computation computing a tagged, lazy expression.

3.2 Computation in CU

The type system thus far presented is in perfect isomorphism with the deductive
system of Section 2, in the sense that it was obtained simply by annotating
the logical rules with proof terms. Let us therefore examine the two identity
principles and two cut principles identified in Section 2.2:� if P untrue ∈ Φ then Φ ` P untrue� if N unfalse ∈ Φ then Φ ` N unfalse� if Φ ` P true and Φ ` P untrue then Φ ` contra� if Φ ` N true and Φ ` N untrue then Φ ` contra

In canonical CU, these identity principles are analogues of full η-expansion.
For example, the identity X ⊕ Y untrue ` X ⊕ Y untrue is witnessed by the
following proof-term:

u
cnt
: X ⊕ Y ` {inl(x) 7→ inl(x) B u | inr(y) 7→ inr(y) B u}

cnt
: X ⊕ Y

The cut principles are analogues of full β-reduction. For example, a cut of Φ `
inr(con(K))

val
: X ⊕ ¬v Q against Φ ` {inl(x) 7→ S1, inr(con(u)) 7→ V ′ B u}

cnt
: X ⊕ ¬v Q

is reduced (assuming u is not free in V ′) to a cut of Φ ` V ′ val: Q against
Φ ` K

cnt
: Q, which is then further reduced based on the structure of V ′ and

K, eventually yielding a canonical statement S such that Φ ` S
stm
: ·.

Terms of canonical CU are therefore always “η-expanded, β-reduced.” While
this makes for an exceptionally simple type theory (see [WCPW02] for the ben-
efits derived from this property in a logical framework), it is problematic from
the point of view of a programming language. Forcing expansion means that pro-
grams may get much larger (consider the expansion of u

cnt
: (P1 ⊕ Q1) ⊗ · · · ⊗ (Pn ⊕ Qn)

24

Continuations K ::= · · · | u

Expressions E ::= · · · | u

Statements S ::= · · · | V B K | E C C

u
cnt
: P ∈ Φ

Φ ` u
cnt
: P

id�
Φ ` V

val
: P Φ ` K

cnt
: P

Φ ` V B K
stm
: ·

cut�

u
exp
: N ∈ Φ

Φ ` u
exp
: N

�id
Φ ` E

exp
: N Φ ` C

cov
: N

Φ ` E C C
stm
: ·

�cut

Figure 7: CU identity and cut

for example). Forcing reduction is even worse—it means that programs are al-
ready evaluated!

So, we must internalize the identity and cut principles within the type
system—these rules are given in Figure 7. The two identity rules then allow
more compact proof terms, while the process of eliminating the two cut rules
turns into a notion of evaluation for CU statements. To explain the latter,
let us start by explaining the form of pattern-matching and substitution used
implicitly above.

Definition. A substitution σ is a mapping from variables to terms, such that σ
maps (co)value variables to (co)value variables, and continuation (expression)
variables to continuations (expressions).

Proposition (Factorization). Any value V factors uniquely as V = σ(v), for
some pattern v and substitution σ. Likewise, any covalue C factors uniquely as
C = σ(c) for some c and σ. (Uniqueness is modulo renaming, since patterns
bind variables.)

One way of understanding factorization is that values and covalues are just
trees with leaves labelled by (co)value variables, continuations, or expressions.
The proposition says that any tree can be represented uniquely by its internal
nodes (a pattern) and a list of labels for the leaves (a substitution). Using this
factorization, we can state very simple rules for reducing cuts:

σ(v) B K 7→ σ(K(v)) if K(v) defined
E C σ(c) 7→ σ(E(c)) if E(c) defined

By iterating the reduction relation, we have a small-step operational semantics
for closed CU statements.

But now we come to a paradox. In the language we have defined, every closed
statement has the form V B{v1 7→ S1 | · · · | vn 7→ Sn} or {c1 7→ S1 | · · · | cn 7→ Sn}C
C, and thus either reduces to a new (closed) statement, or else gets stuck on
pattern-matching failure. Repeating the argument, every closed statement ei-
ther eventually gets stuck or else does not terminate. Yet certainly well-typed

25

Statements S ::= · · · | done | fail

Φ ` done
stm
: ·

done
(no rule for fail)

Figure 8: CU termination and failure

closed statements should not get stuck—and it would be bizarre if they all failed
to terminate.

The answer to this paradox is simple: we have not yet defined any closed well-
typed statements! This is actually obvious when we consider that well-typed
statements of CU (as we have described it so far) correspond to proofs (possibly
using the admissible cut and identity principles) of contradiction through intu-
itionistic and co-intuitionistic reasoning. A closed well-typed statement would
therefore be a proof of the inconsistency of logic. One might react to this logi-
cal barrier to programmer productivity by considering open reduction (e.g., by
adding a “top-level continuation”), but an easier solution is to simply augment
the language with a single, closed well-typed statement representing successful
termination. This statement is named “done”, and for symmetry we can also
add a single, ill-typed statement “fail”, representing pattern-matching failure:8

σ(v) B K 7→ fail if K(v) undefined
E C σ(c) 7→ fail if E(c) undefined

The typing rules for both statements are given in Figure 8. Of course, a real pro-
gramming language would have a richer set of statements—but for our purposes
these two are enough.

3.3 Type safety and cut-elimination

We now prove type safety and a “partial” cut-elimination theorem for the com-
plete language defined thus far, i.e., the union of Figures 4–8. The proof is just
a slight modification of the proof of cut-admissibility from Section 2.2—but first
we need some notation.

We use t : τ to stand for an arbitrary conclusion V
val
: P , K

cnt
: P , E

exp
: N ,

C
cov
: N , or S

stm
: ·, and l : τ for an arbitrary hypothesis x

val
: X , u

cnt
: P , u

exp
: N , or

x
cov
: X .

Definition. Let σ be a substitution with domain disjoint from Φ. We say that
Φ ` σ : Φ′ if for all hypotheses l : τ ∈ Φ′, Φ ` σ(l) : τ .

Now we can restate the inversion properties of Section 2.2 in terms of CU:

8A reader familiar with Ludics may recognize these as alternative spellings of “daimon”
and “faith”.

26

σ(v) B K 7→ σ(K(v)) if K(v) defined
σ(v) B K 7→ fail if K(v) undefined
E C σ(c) 7→ σ(E(c)) if E(c) defined
E C σ(c) 7→ fail if E(c) undefined

Figure 9: Small-step semantics (closed cut-elimination)

Property (Inversion). (pos.) Φ ` σ(v)
val
: P iff ∃Φ′ ∈ (v

val
: P)−1 such that

Φ ` σ : Φ′; (neg.) Φ ` σ(c)
cov
: N iff ∃Φ′ ∈ (c

cov
: N)−1 such that Φ ` σ : Φ′.

Proof. Both directions immediate by induction on P (resp. N).

For the proof of safety, in fact we only need the forward direction of inversion
(reduction). We also need a substitution lemma.

Lemma (Substitution). If Φ, Φ′ ` t : τ and Φ ` σ : Φ′ then Φ ` σ(t) : τ .

Proof. By induction on the derivation of Φ, Φ′ ` t : τ . There are essentially two
ways to use a hypothesis in Φ′: either by using it directly in one of the hypothesis
rules (�X , X�, id�, or �id)—in this case substitution is trivial—or else by
focusing on it, for example like so:

Φ, Φ′ ` V
val
: P u

cnt
: P ∈ Φ′

Φ, Φ′ ` V B u
stm
: ·

focus�

By the i.h., Φ ` σ(V)
val
: P , and moreover Φ ` σ(u)

cnt
: P by the assumption that

Φ ` σ : Φ′. Hence we can replace the focus with a cut:

Φ ` σ(V)
val
: P Φ ` σ(u)

cnt
: P

Φ ` σ(V) B σ(u)
stm
: ·

cut�

These two facts are enough to prove type safety. For reference, the reduction
rules described in the previous section are included together in Figure 9, defining
a small-step operational semantics for the focusing calculus. Let us refer to
throws V B K or E C C, where K and E are not variables, as serious cuts (so
that, e.g., V B u is not a serious cut, even though a derivation of V B u

stm
: ·

may end in cut�). Because of the reification of pattern-matching failure, it is
immediate that the transition relation is total on serious cuts.

Proposition (Progress). If S is a serious cut then there exists an S′ such
that S 7→ S′.

The transition relation is actually deterministic on well-typed cuts, but we do
not need this fact. Indeed, later we will explicitly extend the language with
non-determinism.

Lemma (Preservation). If Φ ` S
stm
: · and S 7→ S′ then Φ ` S′ stm: ·.

27

done ⇓ done

S 7→ S′ S′ ⇓ S∗

S ⇓ S∗ fail ⇓ fail

V ⇓ V ∗

V B u ⇓ V ∗
B u

C ⇓ C∗

u C C ⇓ u C C∗

x ⇓ x 〈〉 ⇓ 〈〉

V1 ⇓ V ∗

1 V2 ⇓ V ∗

2

〈V1, V2〉 ⇓ 〈V ∗

1 , V ∗

2 〉

V ⇓ V ∗

inl(V) ⇓ inl(V ∗)

V ⇓ V ∗

inr(V) ⇓ inr(V ∗)

x ⇓ x [] ⇓ []

C1 ⇓ C∗

1 C2 ⇓ C∗

2

[C1, C2] ⇓ [C∗

1 , C∗

2]

C ⇓ C∗

fst(C) ⇓ fst(C∗)

C ⇓ C∗

snd(C) ⇓ snd(C∗)

K ⇓ K∗

con(K) ⇓ con(K∗)

E ⇓ E∗

exp(E) ⇓ exp(E∗)

Si ⇓ S∗

i i = 1..n

{vi 7→ Si}i=1..n
⇓ {vi 7→ S∗

i }i=1..n
u ⇓ u u ⇓ u

Si ⇓ S∗

i i = 1..n

{ci 7→ Si}i=1..n
⇓ {ci 7→ S∗

i }i=1..n

Figure 10: Big-step semantics (general cut-elimination)

Proof. S is a serious cut, either positive (S = σ(v) B K) or negative (S =
E C σ(c)). Consider the positive case: we must show that S′ = σ(K(v)) is
well-typed in Φ. By hypothesis that S is well-typed, there exists a P such that
Φ ` σ(v)

val
: P and Φ ` K

cnt
: P . The former implies (by inversion-reduction) that

there exists a Φ′ ∈ (v
val
: P)−1 such that Φ ` σ : Φ′. The latter implies that

Φ, Φ′ ` K(v)
stm
: ·. Hence by the substitution lemma, Φ ` σ(K(v))

stm
: ·. The

negative case is symmetric.

Corollary (Type safety). If S is a closed well-typed statement, then either
S = done or else there is an S′ such that S 7→ S′, and moreover any such S′ is
well-typed.

Proof. If S 6= done, we can apply progress (since all closed well-typed statements
are serious cuts) to obtain S 7→ S′, and then preservation for S′ stm: ·.

Type safety is effectively a cut-elimination theorem for closed sequents—although
only “partial” cut-elimination, as it does not explicitly guarantee that the cut-
elimination procedure terminates, only that if it terminates it yields a cut-free
proof. Generalizing this to the open case is not difficult, after we lift the small-
step transition relation on serious cuts to a big-step relation on arbitrary proof
terms, written t ⇓ t∗ (Figure 10).

Theorem (Partial cut-elimination). If Φ ` t : τ and t ⇓ t∗ then Φ ` t∗ : τ ,
and moreover the latter derivation is cut-free.

Proof. By induction on the derivation of t ⇓ t∗. In most cases we can simply
invert the last rule of Φ ` t : τ , apply the induction hypothesis, and then reapply
the rule. For example, suppose 〈V1, V2〉 ⇓ 〈V ∗

1 , V ∗

2 〉 for some V ∗

1 and V ∗

2 such

28

that V1 ⇓ V ∗

1 and V2 ⇓ V ∗

2 . Well Φ ` 〈V1, V2〉
val
: P ⊗ Q implies Φ ` V1

val
: P

and Φ ` V2
val
: Q, and we can apply the i.h. to obtain cut-free derivations of

Φ ` V ∗

1

val
: P and Φ ` V ∗

2

val
: Q, whence Φ ` 〈V ∗

1 , V ∗

2 〉
val
: P ⊗ Q. In the case of a

throw V Bu ⇓ V ∗Bu, then the derivation of Φ ` V Bu
stm
: · ends in either focus�

with premises Φ ` V
val
: P and u

cnt
: P ∈ Φ, or cut� with premises Φ ` V

val
: P

and Φ ` u
cnt
: P . But the latter must have been derived by the id� rule with

u
cnt
: P ∈ Φ, and so in both cases we can apply the i.h. to obtain Φ ` V ∗ val

: P and
then focus� on u

cnt
: P to obtain a cut-free derivation Φ ` V ∗Bu

stm
: ·. Finally, in

the case of S ⇓ S∗ derived from S 7→ S′ and S′ ⇓ S∗, we apply the preservation
lemma to obtain Φ ` S′ stm: · and then the i.h. for Φ ` S∗ stm

: ·.

Naturally, one may ask whether cut-elimination really is total, i.e., whether
Φ ` t : τ implies that there exists a t∗ such that t ⇓ t∗. But this question is
somewhat against the spirit of our present aim—although we have not explicitly
included recursion in the language, the whole point is that our methodology is
robust in the presence of effects such as non-termination. Thus we leave aside
the question of totality for this fragment.9

In Section 4, we will see how our methodology extends in a straightforward
way to intersection and union types. Before setting to that task, though, let
us apply CU for a new spin on the old logical technique of double-negation
translation.

3.4 Application: the computational content of classical
focusing

In this section we use CU in order to give a computational proof of the com-
pleteness of the focusing strategy for classical sequent calculus, as claimed in
Section 2.4.

Figure 11 gives the classical sequent calculus. We use Kleene’s G3 presen-
tation, and omit nullary products and sums since their treatment is essentially
the same as their binary versions. To make the relationship to CU visually
evocative, we will adopt the sequent notation of Section 2.4, augmenting it with
proof terms:

Φ ` V
val
: P ⇐⇒ V : (ΓΦ → ∆Φ � P)

Φ ` K
cnt
: P ⇐⇒ K : (P � ΓΦ → ∆Φ)

Φ ` E
exp
: N ⇐⇒ E : (ΓΦ → ∆Φ � N)

Φ ` C
cov
: N ⇐⇒ C : (N � ΓΦ → ∆Φ)

Φ ` S
stm
: · ⇐⇒ S : (ΓΦ → ∆Φ)

The erasure operator |−| converts a polarized (positive or negative) formula
to an ordinary one by collapsing ⊗ and N to ×, ⊕ and O to +, ¬v and ¬n

to ¬, and erasing all shifts.10 For example, |X ⊗ ↓(Y O>)| = X × (Y + 1).

9But see Section 5.
10The erasure operator does not collapse positive and negative atoms. To understand why

it does not, think of polarity as a partitioning of the set of atoms.

29

X, Γ →c ∆, X
init

Γ →c ∆, A A, Γ →c ∆

Γ →c ∆
cut

A, A × B, Γ →c ∆

A × B, Γ →c ∆
×L1

B, A × B, Γ →c ∆

A × B, Γ →c ∆
×L2

Γ →c ∆, A × B, A Γ →c ∆, A × B, B

Γ →c ∆, A × B
×R

A,A + B, Γ →c ∆ B, A + B,Γ →c ∆

A + B, Γ →c ∆
+L

Γ →c ∆, A + B, A

Γ →c ∆, A + B
+R1

Γ →c ∆, A + B, B

Γ →c ∆, A + B
+R2

¬A, Γ →c ∆, A

¬A, Γ →c ∆
¬L

A, Γ →c ∆,¬A

Γ →c ∆,¬A
¬R

Figure 11: Classical sequent calculus

This operator is obviously not injective—many different polarized formulas map
to the same ordinary formula (in fact infinitely many, because shifts can be
arbitrarily composed). The focusing completeness theorem states that if |Γ| →c

|∆|, then there exists a proper S such that S : (Γ → ∆), where a proof term
is proper if it contains no uses of done. More or less, this means that if a
sequent of ordinary formulas is classically provable, then it has a focusing proof
given any polarization of the formulas. Technically, some polarizations result in
sequents containing non-atomic positive formulas in Γ, or non-atomic negative
formulas in ∆, which are outside the syntax of CU. Thus, we use the following
convention:

Definition. An extended context may contain assumptions x
val
: P or x

cnt
: N

with P and N non-atomic. We write Φ, x
val
: P ` t : τ iff ∀v ∈ ‖P‖, ∀Φ′ ∈

(v
val
: P)−1, we have Φ, Φ′ ` [v/x]t : τ . Similarly for Φ, x

cnt
: N ` t : τ .

This is a purely syntactic convention, but it is compatible with the rules of infer-
ence of CU, i.e., each rule is valid for extended contexts under the above reading.
As a convenience, we will also use variable patterns at non-atomic types to define
continuations and expressions, being syntactic sugar for their expansions. For
example, Φ ` {x 7→ S}

cnt
: P should be read as Φ ` {v 7→ [v/x]S | v ∈ ‖P‖}

cnt
: P .

Theorem (Focusing Completeness). If |Γ| →c |∆| then there exists a proper
S such that S : (Γ → ∆).

Proof. By induction on the classical derivation, with a side induction on the
formulas in Γ and ∆. We give a few of the cases for positive polarizations:

Case: (cut) By the inductive hypothesis we have an S1 : (Γ → ∆, u
cnt
: P) and

an S2 : (x
val
: P, Γ → ∆). Take S = S1[{x 7→ S2} /u]. By the substitution

lemma, we have S : (Γ → ∆).

30

Case: (×R) By the i.h. we have S1 : (Γ → ∆, u
cnt
: P ⊗ Q, u1

cnt
: P) and S2 : (Γ →

∆, u
cnt
: P ⊗ Q, u2

cnt
: Q). We define S by:

S = [{x1 7→ [{x2 7→ 〈x1, x2〉 B u} /u2]S2} /u1]S1

The computational gloss of this proof term: “Begin by executing S1, until
possibly a call to u1 is made—if so, remember the argument x1 and execute
S2 until (possibly) a call to u2 is made with argument x2. Now we have

x1
val
: P and x2

val
: Q, so we can finish by throwing 〈x1, x2〉 to u.” Note the

choice of “left-to-right evaluation order” here is arbitrary. We could as
well have taken

S′ = [{x2 7→ [{x1 7→ 〈x1, x2〉 B u} /u1]S1} /u2]S2

Case: (¬R) By the i.h., we have S1 : (x
val
: P, Γ → ∆, u

cnt
: ¬v P). Then take S =

con({x 7→ S1}) B u.

Case: (+L) We have S1 : (x1
val
: P, x

val
: P ⊕ Q, Γ → ∆) and S2 : (x2

val
: Q, x

val
: P ⊕ Q, Γ →

∆). Take S = x B {inl(x1) 7→ S1 | inr(x2) 7→ S2}.

Case: (↓R) Suppose |Γ| →c |∆|, | ↓N |. Then by definition |Γ| →c |∆|, |N |, and
by the i.h. there exists a S1 : (Γ → ∆, x

cov
: N). Therefore we have

exp({x 7→ S1}) B u : (Γ → ∆, u
cnt
: ↓N).

Letting `c stand for classical truth, the following corollaries are immediate:

Corollary (Glivenko’s Theorem). if `c |P | then there is a proper V such

that ` V
val
: ↓↑P .

Proof. Let V = exp({con(u) 7→ S}), where S : (· → u
cnt
: P).

Corollary. if `c |N | then there is a proper E such that ` E
exp
: N .

Proof. Let E = {x 7→ S}, where S : (· → x
cov
: N).

From these corollaries, one could reasonably claim that negative polarization
allows a more direct encoding of classical truth—though of course the counter-
claim would be that positive polarization allows a more direct encoding of clas-
sical falsehood.

4 Intersections, unions, and subtyping

With the methodology of Section 3 in place, adding intersections and unions to
CU is a relatively simple exercise—they are encoded analogously to products
and sums, without the associated term constructors. This implies, naturally,
that there are two forms of intersection—one positive and one negative—just as

31

there are two forms of product, and likewise two forms of union In either case,
we define the connective by its value/covalue introduction rules, and deduce
the pattern-decomposition rule so as to satisfy the inversion property. Subtyp-
ing is not a part of this definition—rather, it is a derived notion, indeed the
generalization of the identity principle.

In the below, positive and negative intersections and unions are distinguished
by a polarity marker (e.g., C vs. -∩), but sometimes the marker is left out when
clear from context (e.g., we write P ∩ Q rather than P C Q).

4.1 Preliminaries

Much of the work on intersection and union types for practical programming has
imposed a refinement restriction [FP91], viz. that the extended type system is
only used to verify richer properties of programs that are already typable in the
base type system (e.g., ML’s), rather than to make additional programs typable.
This restriction is achieved syntactically, by allowing only intersections/unions
of types that are refinements of a common type. So for example, although
the function λx.xx could be given type (X ∩ (X → X)) → X in a general
intersection type system, that type is ill-formed in a refinement system for the
simply-typed lambda calculus.

In the setting of CU, an intermediate stance appears to be reasonable: an
intersection/union is well-formed so long as it combines types that have the same
set of patterns. Thus ¬v P ∩¬v¬v P is still well-formed, because ‖¬v P‖ = ‖¬v¬v P‖ =
{con(u)}, and we take ‖¬v P ∩ ¬v¬v P‖ = {con(u)}. However, X ∪ (X ⊗ Y) is an
illegal refinement type, since ‖X‖ = {x} but ‖X ⊗ Y ‖ = {〈x, y〉}. Explicitly,
we do not take ‖X ∪ (X ⊗ Y)‖ = {x, 〈x, y〉}. In order to be able to define
‖−‖ in the case of empty intersections and unions, the syntax of types includes
pattern-set annotations: >>V,⊥⊥V. Other than in the definition of ‖−‖, though,
these annotations do not play an explicit role in the type system and we will
usually write them invisibly. There is an implicit side condition that to be able
to assert V

val
: P , we must have V = σ(v) for some v ∈ ‖P‖ (and similarly to

assert C
cov
: N). In particular, it is a presupposition that for all types τ appearing

in judgments, ‖τ‖ is defined.
To decompose pattern hypotheses involving (positive) intersections and (neg-

ative) unions, we will find it necessary to allow multiple type assumptions for
the same variable in a context. For example, a continuation variable u might
have two types P1 and P2, or no types. Abusing notation, we will alternately
write such sets of hypotheses either as (u

cnt
: P1, u

cnt
: P2) and (·), or (u

cnt
: P1, P2)

and (u
cnt
: ·)—in general, we alternately write (l : τ1, . . . , l : τn), or (l : τ1, . . . , τn).

The former allows us to treat contexts as sets and keep the notation l : τ ∈ Φ
to test whether τ is included among any of the types for l, while the latter
is more honest about binding structure and conveniently locates all the types
for a variable in one place. We write Φ1 ∧ Φ2 for the operation of combining
two contexts mentioning the same variables, distinguished from the previously
employed operation Φ1, Φ2 which combines disjoint contexts.

32

Positive type P, Q ::= · · · | >>V
+ | P C Q | ⊥⊥+

V
| P] Q

Φ ` V
val
: >>+

�>>+
Φ ` V

val
: P Φ ` V

val
: Q

Φ ` V
val
: P C Q

�C

(no rule for ⊥⊥+)

Φ ` V
val
: P

Φ ` V
val
: P] Q

Φ ` V
val
: Q

Φ ` V
val
: P] Q

�]

. .

· ⇒ v
val
: >>+

Φ1 ⇒ v
val
: P Φ2 ⇒ v

val
: Q

Φ1 ∧ Φ2 ⇒ v
val
: P C Q

(no rule for ⊥⊥+)

Φ ⇒ v
val
: P

Φ ⇒ v
val
: P] Q

Φ ⇒ v
val
: Q

Φ ⇒ v
val
: P] Q

‖>>V
+ ‖ = ‖⊥⊥+

V
‖ = V ‖P C Q‖ = ‖P] Q‖ = V if ‖P‖ = ‖Q‖ = V

Figure 12: Positive intersections and unions

4.2 The positive (strict) case

Figure 12 describes positive intersection and union types. With the foregoing
preface about the refinement restriction, the introduction rules are completely
standard—or are they? They impose a value restriction, which did not figure in
intersection type systems until [DP00] found that one was necessary for effectful,
call-by-value languages. Of course all of the introduction rules for positive types
in CU are value-typing rules, so what does this “value restriction” really mean?
As we observed at the end of Section 3.1, expressions of type ↑P may be seen as
“possibly effectful computations” of type P—literally, they are expressions with
access to their continuation. Now, the value-typing rules of Figure 4 may, in the
case of products and sums, be lifted to expression-typing rules. For example,
the following rule for introducing ↑(P ⊗ Q) is derivable:

Φ ` E1
exp
: ↑P Φ ` E2

exp
: ↑Q

Φ ` 〈E1, E2〉
exp
: ↑(P ⊗ Q)

where 〈E1, E2〉 is an abbreviation for the left-to-right evaluation 〈E1, E2〉 =
{con(u) 7→ E1 C con({x 7→ E2 C con({y 7→ 〈x, y〉 B u})})}. Now, we may per-
form a similar transformation to lift the union introduction rule to expressions:

Φ ` E
exp
: ↑P

Φ ` {con(u) 7→ E C con({x 7→ x B u})}
exp
: ↑(P] Q)

By the premise, it suffices to check con({x 7→ x B u}) at type ↑P under assump-
tion u

cnt
: P] Q, which reduces to checking xBu

stm
: · under additional assumption

33

x
val
: P . This is possible, because from x

val
: P we can derive x

val
: P] Q. Note that

the expression in the conclusion is just an η-expansion of E, and indeed (as we
will eventually prove) the following rule is admissible:

Φ ` E
exp
: ↑P

Φ ` E
exp
: ↑(P] Q)

However, both the binary and empty intersection introduction rules can not be
lifted to expression typing rules. Suppose we try the following:

Φ ` E
exp
: ↑P Φ ` E

exp
: ↑Q

Φ ` {con(u) 7→ E C con({x 7→ x B u})}
exp
: ↑(P C Q)

??

From the premises, we know that it suffices to check con({x 7→ x B u}) under
assumption u

cnt
: P C Q at either type ↑P or ↑Q, which reduces to showing x B

u
stm
: · under an additional assumption of either x

val
: P or x

val
: Q. But individually,

either assumption is insufficient for verifying the statement—we require having
both assumptions simultaneously. Since we do not, there is no way to derive the
conclusion. Correspondingly, the “unrestricted” intersection-introduction rule
is not admissible:

Φ ` E
exp
: ↑P Φ ` E

exp
: ↑Q

Φ ` E
exp
: ↑(P C Q)

??

In the case of empty intersection, this is even more obvious. An unrestricted
>>+-introduction rule would let us assert {con(u) 7→ fail}

exp
: ↑>>+ and then check

{con(u) 7→ fail} C con({x 7→ done})
stm
: ·, a statement that immediately reduces

to fail, violating type-safety.
Let us turn now to the rules for decomposing pattern hypotheses. The def-

initions given are exactly those required for preserving the inversion property,
which, recall, states that Φ ` σ(v)

val
: P iff ∃Φ′ ∈ (v

val
: P)−1 such that Φ ` σ : Φ′.

For example, the decomposition (con(u) : ¬P ∩ ¬Q)−1 =
{

(u
cnt
: P, Q)

}

reflects

that a value con(K) has type ¬P ∩ ¬Q just when both K
cnt
: P and K

cnt
: Q,

while (con(u) : ¬P ∪ ¬Q)−1 =
{

(u
cnt
: P), (u

cnt
: Q)

}

reflects that con(K) has

type ¬P ∪ ¬Q just when either K
cnt
: P or K

cnt
: Q. We should observe that in-

tersection and union types increase the complexity of type-checking in orthog-
onal directions. As was mentioned in the preliminaries, intersection pattern-
decomposition makes it no longer the case that contexts always contain just a
single type for each variable. Union decomposition, on the other hand, makes
it no longer the case that the set (v

val
: P)−1 is always a singleton.

For a taste of the added expressivity that intersections and unions afford,
let us define the type of booleans B = 1 ⊕ 1, along with refinements T = 1 ⊕⊥⊥
and F = ⊥⊥ ⊕ 1 and syntactic sugar t = inl 〈〉, f = inr 〈〉. Note that by our
convention ‖B‖ = ‖T‖ = ‖F‖ = {t, f}, while

(t : B)−1 = (t : T)−1 = {(·)} = (f : B)−1 = (f : F)−1

(t : F)−1 = ∅ = (f : T)−1

34

Negative type M, N ::= · · · | >>C
− | M -∩ N | ⊥⊥−

C
| M -∪ N

(no rule for >>−)

Φ ` C
cov
: M

Φ ` C
cov
: M -∩ N

Φ ` C
cov
: N

Φ ` C
cov
: M -∩ N

� -∩

Φ ` C
cov
: ⊥⊥−

�⊥⊥−
Φ ` C

cov
: M Φ ` C

cov
: N

Φ ` C
cov
: M -∪ N

� -∪

. .

(no rule for >>−)

Φ ⇒ c
cov
: M

Φ ⇒ c
cov
: M -∩ N

Φ ⇒ c
cov
: M

Φ ⇒ c
cov
: M -∩ N

· ⇒ c
cov
: ⊥⊥−

Φ1 ⇒ c
cov
: M Φ2 ⇒ c

cov
: N

Φ1 ∧ Φ2 ⇒ c
cov
: M -∪ N

‖>>C
− ‖ = ‖⊥⊥−

C
‖ = C ‖M -∩ N‖ = ‖M -∪ N‖ = C if ‖M‖ = ‖N‖ = C

Figure 13: Negative intersections and unions

Now consider the exclusive-or function encoded in continuation-passing-style, a
continuation of type (B ⊗ B) ⊗ ¬v B:

xor ={〈〈t, t〉 , con(u)〉 7→ f B u
| 〈〈t, f〉 , con(u)〉 7→ t B u
| 〈〈f, t〉 , con(u)〉 7→ t B u
| 〈〈f, f〉 , con(u)〉 7→ f B u}

As the reader can easily verify, more precise typing ascriptions additionally hold:

xor
cnt
: (T ⊗ T) ⊗ ¬v F xor

cnt
: (T ⊗ F) ⊗ ¬v T

xor
cnt
: (F ⊗ T) ⊗ ¬v T xor

cnt
: (F ⊗ F) ⊗ ¬v F

Indeed, abbreviating ¬v (P ⊗¬v Q) by P →v Q, we can give con(xor) an intersection
type:

(T ⊗ T) →v F ∩ (T ⊗ F) →v T ∩ (F ⊗ T) →v T ∩ (F ⊗ F) →v F

4.3 The negative (lazy) case

Figure 13 defines negative intersections and unions, dually (of course) to posi-
tive unions and intersections. One perhaps surprising implication of this duality
is the necessity of a covalue restriction for call-by-name. Essentially this recon-
structs the fact that in effectful settings, unions may only be eliminated in
evaluation position [DP04], and whereas every call-by-value continuation cor-
responds to an evaluation context, not every call-by-name continuation does.
The restriction is required, at least for empty unions, even when the only ef-
fect is non-termination. There are no values of type ⊥⊥+, but a non-terminating

35

expression could inhabit the type ⊥⊥−—and so the call-by-name continuation
{exp(u) 7→ fail}, which simply ignores its expression argument and crashes,
should not be allowed to have type ↓⊥⊥−, although it can have type ⊥⊥+.

On the other hand, intersection introduction does not require a value re-
striction in call-by-name languages, even effectful ones. In CU, this is reflected
by the admissibility of the following rule:

Φ ` E
exp
: M Φ ` E

exp
: N

Φ ` E
exp
: M -∩ N

4.4 Subtyping: theory

We purposefully left subtyping out of the above discussion, on the philosophy
that intersection and union types—like any other logical type constructors—
should be defined solely by their value or covalue introduction rules. Given that
starting point, how do we recover a notion of subtyping? The answer should
not be too surprising. Already in Section 3.2, we observed that the logically
admissible identity principles were witnessed by η-expansion in CU, and then
added the identity rules id� and �id simply to cut short this process of η-
expansion. Subtyping is no different.

Let us first demonstrate with some examples. We define the identity coercion
idB

u, a continuation which takes a boolean argument and passes it along to the
continuation u:

idB

u = {t 7→ t B u | f 7→ f B u}

We also define id¬B

u , which takes a boolean-continuation as argument, composes
it with idB, and passes it along to u:

id¬B

u =
{

con(u′) 7→ con(idB

u′) B u
}

The reader may easily verify that u
cnt
: B ` idB

u

cnt
: B, as well as u

cnt
: B ` idB

u

cnt
: T,

u
cnt
: B ` idB

u

cnt
: F, and u

cnt
: T, F ` idB

u

cnt
: B. Then we also have:11

u′ cnt
: B ` idB

u′

cnt
: T

u′ cnt
: B ` con(idB

u′)
val
: ¬v T

u′ cnt
: B ` idB

u′

cnt
: F

u′ cnt
: B ` con(idB

u′)
val
: ¬v F

u′ cnt
: B ` con(idB

u′)
val
: ¬v T ∩ ¬v F

u
cnt
: ¬v T ∩ ¬v F, u′ cnt

: B ` con(idB

u′) B u
stm
: ·

u
cnt
: ¬v T ∩ ¬v F ` id¬B

u

cnt
: ¬v B

as well as:

11For clarity, here we have removed hypotheses from the context once they are focused
upon, since identity coercions use foci linearly.

36

P ≤ Q u
cnt
: Q ∈ Φ

Φ ` u
cnt
: P

sub�
u

exp
: M ∈ Φ M ≤ N

Φ ` u
exp
: N

�sub

where
P ≤ Q iff ∀v ∈ ‖P‖, Φ ∈ (v

val
: P)−1 ∃Q ∈ Q, Φ′ ∈ (v

val
: Q)−1.Φ ` Φ′

M ≤ N iff ∀c ∈ ‖N‖, Φ ∈ (c
cov
: N)−1 ∃M ∈ M, Φ′ ∈ (c

cov
: M)−1.Φ ` Φ′

Figure 14: CU subtyping

u′ cnt
: T, F ` idB

u′

cnt
: B

u′ cnt
: T, F ` con(idB

u′)
val
: ¬v B

u
cnt
: ¬v B, u′ cnt

: T, F ` con(idB

u′) B u
stm
: ·

u
cnt
: ¬v B ` id¬B

u

cnt
: ¬v T ∩ ¬v F

From these derivations, the reader may surmise (respectively) that ¬v B ≤ ¬v T ∩
¬v F and ¬v T ∩ ¬v F ≤ ¬v B—and indeed that η-expansion now witnesses general
subtyping relationships, beyond mere reflexivity.

In essence, this is our definition of subtyping. In the positive case, P ≤ Q
just when u

cnt
: Q ` idu

cnt
: P for an appropriate identity coercion idu, while in the

negative case, M ≤ N when u
exp
: M ` idu

exp
: N . Figure 14 now internalizes this

process of building identity coercions, via the subtyping rules sub� and �sub—
replacements for our previous id� and �id. We use a slightly more convenient
but equivalent definition of subtyping, basically expanding what it would mean
to type-check identity coercions. The relations P ≤ Q and M ≤ N (where Q
and M are sets of types) are defined inductively using the inversion operator,
referring back to the judgment Φ ` Φ′, which just means that Φ ` l : τ for all
l : τ ∈ Φ′, and which can be further expanded by the following proposition:

Proposition. Φ ` Φ′ iff all of the following hold: (i) x
val
: X ∈ Φ′ implies

x
val
: X ∈ Φ; (ii) u

cnt
: P ∈ Φ′ implies u

cnt
: Q ∈ Φ and P ≤ Q; (iii) u

exp
: N ∈ Φ′

implies u
exp
: M ∈ Φ and M ≤ N ; (iv) x

cov
: X ∈ Φ′ implies x

cov
: X ∈ Φ.

Now we can easily prove that subtyping satisfies reflexivity (i.e., the identity
principle) and transitivity.

Proposition (Reflexivity). (i) P ≤ P ; (ii) N ≤ N ; (iii) Φ ` Φ

Proof. Simultaneously by induction on P , N , and Φ.

Lemma (Transitivity). (i) if P ≤ Q and for all Q ∈ Q, Q ≤ R then P ≤ R;
(ii) if M ≤ N and for all M ∈ M, L ≤ M , then L ≤ N ; (iii) if Φ ` Φ′ and
Φ′ ` Φ′′ then Φ ` Φ′′.

Proof. Simultaneously by induction on Q, M, and Φ′.

37

4.5 Type safety, cut-elimination, and decidability

Since we designed the new type constructors to satisfy the inversion property,
the proofs of type safety and partial cut-elimination from Section 3.3 go through
almost completely unchanged for CU extended with intersection and union
types and subtyping. In particular, those proofs did not rely on the coincidence
that (v

val
: P)−1 and (c

cov
: N)−1 were singleton sets or that contexts contained

exactly one type for each bound variable. The main additional burden comes
from the use of hypotheses through arbitrary subtyping (rather than merely
reflexivity), which necessitates proving a few minor lemmas.

Lemma (Replacement). If Φ, Φ2 ` t : τ and Φ1 ` Φ2 then Φ, Φ1 ` t : τ .

Proof. By induction on the derivation of Φ, Φ2 ` t : τ . The interesting case is
when Φ, Φ2 ` u

cnt
: P is derived by application of sub� (or analogously �sub)

with u
cnt
: Q ∈ Φ2, P ≤ Q. By assumption, there exists u

cnt
: R ∈ Φ1 such that

for all Q ∈ Q, Q ≤ R. Then P ≤ R by transitivity, and we can again apply
sub�.

Lemma (Continuation reverse-inclusion). If Φ ` K
cnt
: Q for all Q ∈ Q

and P ≤ Q then Φ ` K
cnt
: P .

Lemma (Expression inclusion). If Φ ` E
exp
: M for all M ∈ M and M ≤ N

then Φ ` E
exp
: N .

Proof. We show the positive case. If K = u, this is immediate by transitivity.
Otherwise, we check Φ ` K

cnt
: P by application of blur�. Let v ∈ ‖P‖, Φ′ ∈

(v
val
: P)−1. By definition of P ≤ Q, there exists Q ∈ Q and Φ′′ ∈ (v

val
: Q)−1

such that Φ′ ` Φ′′. By inverting Φ ` K
cnt
: Q, we have that there is a (v 7→

S) ∈ K and that Φ, Φ′′ ` S
stm
: ·. Then Φ, Φ′ ` S

stm
: · by replacement, and thus

Φ ` K
cnt
: P .

Now we can reprove the substitution lemma for the extended type system.

Lemma (Substitution). If Φ, Φ′ ` t : τ and Φ ` σ : Φ′ then Φ ` σ(t) : τ .

Proof. The only additional case to consider is when a continuation or expression
variable in the domain of σ is used through subtyping, like so:

P ≤ Q u
cnt
: Q ∈ Φ′

Φ, Φ′ ` u
cnt
: P

sub�

By assumption Φ ` σ(u)
cnt
: Q for all Q ∈ Q, hence Φ ` σ(u)

cnt
: P by the contin-

uation reverse-inclusion lemma.

Since the proofs of progress, preservation, and type safety from Section 3.3 relied
entirely on the inversion property and the substitution lemma, they go through
without modification.

Proposition (Progress). If S is a serious cut then there exists an S′ such
that S 7→ S′.

38

Lemma (Preservation). If Φ ` S
stm
: · and S 7→ S′ then Φ ` S′ stm: ·.

Corollary (Type safety). If S is a closed well-typed statement, then either
S = done or else there is an S′ such that S 7→ S′, and moreover any such S′ is
well-typed.

Finally, to extend partial cut-elimination, we first show the following:

Lemma (Substitution inclusion). If Φ ` σ : Φ1 and Φ1 ` Φ2 then Φ ` σ : Φ2.

Proof. This immediately reduces to continuation reverse-inclusion and expres-
sion inclusion.

Lemma (Value inclusion). If Φ ` V
val
: P and P ≤ Q then ∃Q ∈ Q such that

Φ ` V
val
: Q.

Lemma (Covalue reverse-inclusion). If Φ ` C
cov
: N and M ≤ N then ∃M ∈

M such that Φ ` C
cov
: M .

Proof. Value inclusion: Let V = σ(v). By inversion-reduction on Φ ` σ(v)
val
: P ,

there exists Φ′ ∈ (v
val
: P)−1 such that Φ ` σ : Φ′. Since P ≤ Q, there exists

Φ′′ ∈ (v
val
: Q)−1 such that Φ′ ` Φ′′. Hence Φ ` σ : Φ′′ by substitution inclusion,

and Φ ` σ(v)
val
: Q by inversion-expansion.

Theorem (Partial cut-elimination). If Φ ` t : τ and t ⇓ t∗ then Φ ` t∗ : τ ,
and moreover the latter derivation is cut-free.

Proof. By induction on the derivation of t ⇓ t∗, now with a secondary induction
on the derivation of Φ ` t : τ . As in Section 3.3, almost every case is immediate
by appealing to the induction hypothesis. For example if Φ ` V

val
: P ∩ Q and

V ⇓ V ∗, then Φ ` V
val
: P and Φ ` V

val
: Q implies Φ ` V ∗ val

: P and Φ ` V ∗ val
: Q,

whence Φ ` V ∗ val
: P ∩ Q. The more interesting case is when the typing deriva-

tion was obtained by a cut against a use of subtyping:

Φ ` V
val
: P

P ≤ Q u
cnt
: Q ∈ Φ

Φ ` u
cnt
: P

�sub

Φ ` V B u
stm
: ·

cut�

Then Φ ` V ∗ val
: P by the i.h., but by value inclusion there must be a Q ∈ Q

such that Φ ` V ∗ val
: Q. So we can replace the cut� with a focus�:

Φ ` V ∗ val
: Q u

cnt
: Q ∈ Φ

Φ ` V ∗ B u
stm
: ·

focus�

Finally, we make a few remarks about decidability. Type-checking the cut-
free fragment of the language is manifestly decidable, since every rule other
than cut� and �cut satisfies the subformula property and has finitely many
premises. For the same reason, subtyping is likewise manifestly decidable.12 We

12And indeed has a fairly simple axiomatization, which I elide here. The trick is to axiom-
atize the relation between two sets, A 6 B.

39

(P ⊗ Q) ∩ (P ⊗ R) ≡ P ⊗ (Q ∩ R) (P ⊗ Q) ∪ (P ⊗ R) ≡ P ⊗ (Q ∪ R)

(LNM) ∩ (LNN) ≡ LN(M ∩ N) (LNM) ∪ (LNN) ≡ LN(M ∪ N)

(P ⊕ Q) ∩ (P ⊕ R) ≡ P ⊕ (Q ∩ R) (P ⊕ Q) ∪ (P ⊕ R) ≡ P ⊕ (Q ∪ R)

(LOM) ∩ (LON) ≡ LO(M ∩ N) (LOM) ∪ (LON) ≡ LO(M ∪ N)

P ⊗⊥⊥+ ≤ ⊥⊥+ >>− ≤ MO>>−

Figure 15: Distributivity laws for products and sums

¬v (P ∪ Q) ≡ ¬v P ∩ ¬v Q ¬v P ∪ ¬v Q ≤ ¬v (P ∩ Q)

¬n (M ∪ N) ≤ ¬nM ∩ ¬nN ¬nM ∪ ¬n N ≡ ¬n (M ∩ N)

↓(M ∩ N) ≡ ↓M ∩ ↓N ↓M ∪ ↓N ≤ ↓(M ∪ N)

↑(P ∩ Q) ≤ ↑P ∩ ↑Q ↑P ∪ ↑Q ≡ ↑(P ∪ Q)

Figure 16: Distributivity laws for negations and shifts

conjecture, however, that type-checking the full language (with subtyping and
cuts) is undecidable, in analogy with the well-known correspondence between
typeability in intersection type systems and normalizability. For example, the
expression E = {exp(u) 7→ u C exp(u)} can be given type ¬N ∪¬¬N for any N .
The statement E C exp({exp(u) 7→ done}) type-checks, and normalizes in two
steps. But the self-application E C exp(E) does not normalize—and does not
check. In any event, we expect that type-checking could be made decidable by
the requirement of type annotations on cuts, though the precise form of these
annotations is a question for investigation (cf. [DP04] for some of the issues
involved).

4.6 Subtyping: examples (and counterexamples)

In addition to a few unsurprising facts—such as that strict pairs are strict
(P ⊗ ⊥⊥+ ≤ ⊥⊥+) but lazy pairs are not (in general NN⊥⊥− 6≤ ⊥⊥−)—the subtyp-
ing relationship reveals a surprising amount about the world of CU. In this
concluding section we investigate some of the most interesting distributivity
principles and non-principles induced by CU’s syntactically-defined subtyping
relationship.

We give some basic distributivity laws for products and sums in Figure 15
(strict and lazy versions satisfy most of the same laws), and then for the pos-
itive/negative negations and shift operators in Figure 16. We stress that by
definition, each one of these laws is witnessed by an identity coercion. For ex-
ample, corresponding to ¬v P ∩¬v Q ≤ ¬v (P ∪Q) we have the following derivation:

40

...
u′ cnt

: P, Q ` idu′

cnt
: P ∪ Q

u′ cnt
: P, Q ` con(idu′)

val
: ¬v (P ∪ Q)

u
cnt
: ¬v (P ∪ Q), u′ cnt

: P, Q ` con(idu′) B u
stm
: ·

u
cnt
: ¬v (P ∪ Q) ` {con(u′) 7→ con(idu′) B u}

cnt
: ¬v P ∩ ¬v Q

Where a law is one-sided (e.g., ¬n (M ∪ N) ≤ ¬nM ∩ ¬nN) and the converse law
is missing (¬nM ∩ ¬nN ≤ ¬n (M ∪ N)), the corresponding identity coercion fails
to type-check.

With this bit of data, we can provide logical explanations for many of the
anomalies uncovered in the literature on refinement type systems. The fact that
↑P ∩↑Q 6≤ ↑(P ∩Q) may be seen as another explanation of the value restriction
on intersection introduction from [DP00], while ↓(M ∪ N) 6≤ ↓M ∪ ↓N explains
the “evaluation-context restriction” for union elimination in [DP04]. Using the
CPS encodings P →v Q := ¬v (P ⊗¬v Q), M →n N := ¬nMON , we may inspect the
thorny issue of distributivity principles for function types. As first observed in
[DP00], the standard rule (A → B) ∩ (A → C) ≤ A → (B ∩ C) is not valid
under call-by-value:

(P →
v

Q) ∩ (P →
v

R) := ¬
v
(P ⊗ ¬

v
Q) ∩ ¬

v
(P ⊗ ¬

v
R)

≡ ¬
v
((P ⊗ ¬

v
Q) ∪ (P ⊗ ¬

v
R))

≡ ¬
v
(P ⊗ (¬

v
Q ∪ ¬

v
R))

6≤ ¬
v
(P ⊗ ¬

v
(Q ∩ R))

:= P →
v

(Q ∪ R)

However, it is valid for call-by-name functions:

(L →
n

M) ∩ (L →
n

N) := (¬
n
LOM) ∩ (¬

n
LON)

≡ ¬
n
LO(M ∩ N)

:= L →
n

(M ∩ N)

And dually, the distributivity rule (P →v R) ∩ (Q →v R) ≤ (P ∪ Q) →v R is valid,
but not its negative counterpart.

The restrictions in [DP00] and [DP04] were found to be necessary in order to
preserve type safety in call-by-value languages with effects. The fact that these
observations have a purely type-theoretic explanation in CU—through a sub-
typing relationship that still validates many interesting distributivity principles—
is both surprising and reassuring. But one may still be unsatisfied by this ex-
planation, as it is not self-contained. The subtyping principles that we have
shown to be logically invalid lead to safety violations in at least some effectful
languages, but do they have actual counterexamples in CU? To make pre-

41

cise what is meant by a “counterexample,” we define a notion of orthogonality,
adapting that of [Gir01] and [VM04].13

Definition (Orthogonality). We say that V ⊥ K if V BK 67→∗ fail. Likewise,
E ⊥ C if E C C 67→∗ fail.

We can use orthogonality to define a “semantic” subtyping relationship.

Definition (Semantic subtyping). (pos.) P 4 Q iff for all closed V
val
: P and

K
cnt
: Q, we have V ⊥ K; (neg.) M 4 N iff for all closed E

exp
: M and C

cov
: N ,

we have E ⊥ C.

This relation satisfies a few basic properties:

Proposition (Reflexivity). P 4 P and N 4 N .

Proof. By type safety.

Proposition (Subtyping soundness). P ≤ Q implies P 4 Q, and M ≤ N
implies M 4 N .

Proof. Both implications follow in two ways: by value inclusion, P 4 Q reduces
to Q 4 Q, and by continuation reverse-inclusion it reduces to P 4 P .

Semantic subtyping is effectively the largest possible relation we can use while
preserving type safety, so it is natural to ask: how close is ≤ to 4?

This question does not have a straightforward answer, however. The virtue
of the syntactic subtyping relationship is that it is defined modularly, in terms
of the inversion operator. Yet the semantic subtyping relationship depends
heavily on whether we are considering the entire language CU, a fragment, or
an extension. For instance, since F = ⊥⊥+ ⊕ 1 is logically equivalent to “truth”,
which is irrefutable, there are no closed proper (i.e. done-free) continuations
of type F. So if we restricted our attention to CU without done, we could
conclude that B 4 F. Even weaker semantic notions of subtyping, such as value
inclusion, suffer from this lack of modularity—there are no closed proper values
of type ¬v 1, so should one conclude that ¬v 1 is a subtype of ⊥⊥+? Despite the fact
that identity coercions reside purely within the canonical fragment, somehow
they are “aware” of the possibility of extension, and hence that only certain
inferences are permissible.

Indeed, we can construct counterexamples to some invalid subtyping princi-
ples by considering the following extension to CU:

Definition (Non-deterministic CU). For any pair of statements S1 and S2,
we can build the statement S1 ‖ S2 (read “S1 or maybe S2”). S1 ‖ S2 is well-
typed in any context if both S1 and S2 are well-typed, and it has reduction rules
S1 ‖ S2 7→ S1 and S1 ‖ S2 7→ S2.

13The definition in [Gir01] is slightly different: V ⊥ K if V BK ⇓ done. We follow [VM04]
in encoding orthogonality as type-safety rather than termination.

42

Our proofs of type safety and partial cut-elimination extend modularly and im-
mediately to non-deterministic CU—the reader is welcome to check that these
proofs made absolutely no use of the happenstance that evaluation was de-
terministic, and again, this was part of the point of the methodology. Now,
let us begin by giving an expression Ebit

exp
: ↑B to compute a boolean non-

deterministically:

Ebit = {con(u) 7→ (t B u) ‖ (f B u)}

Observe that by the reduction rules, for any continuation K, Ebit C con(K)
reduces to either tBK or f BK. Now, B ≡ T∪F, so that ↑B ≡ ↑(T∪F) ≡ ↑T∪↑F

by the distributivity laws, and hence exp(Ebit) : ↓(↑T ∪ ↑F). However, we do
not have exp(Ebit) : ↓↑T ∪ ↓↑F: for that to be the case, we would require that
Ebit accepts either a T-continuation or an F-continuation as argument—which
it does not, since it must be able to pass it either a t or f .

As a value inclusion, then, the principle ↓(M ∪ N) ≤ ↓M ∪ ↓N is definitely
invalid in general (here with M = ↑T, N = ↑F). But can we actually construct
a continuation that distinguishes between these two types? We start by defining
Keq

cnt
: (T ⊗ T) ∪ (F ⊗ F), a continuation that only successfully terminates if its

pair of arguments are equal:

Keq = {〈t, t〉 7→ done | 〈f, f〉 7→ done | 〈t, f〉 7→ fail | 〈f, t〉 7→ fail}

Now consider the following continuation:

Ktest = {exp(u) 7→ u C con({x 7→ u C con({y 7→ 〈x, y〉 B Keq})})}

Ktest takes an expression computing a boolean as argument, runs it twice, and
then passes the pair of results to Keq. Execution is therefore always safe so long
as the expression is guaranteed to compute the same boolean on both calls. That
is, we have Ktest

cnt
: ↓↑T ∪ ↓↑F. The pair exp(Ebit) 6⊥ Ktest is then our desired

counterexample to ↓(↑T ∪ ↑F) 4 ↓↑T ∪ ↓↑F, as at least under some executions
exp(Ebit) B Ktest ⇓ fail.

We could of course dualize this counterexample to obtain one for ↑P ∩↑Q 4

↑(P ∩ Q), though it necessitates use of the perhaps unfamiliar “co-booleans.”
But intuitively, the reason why ↓(M ∪N) ≤ ↓M ∪↓N is unsound and a “covalue
restriction” is needed is that our language allows effectful expressions to be used
any number of times—the continuation Ktest duplicates its argument u, which
can compute a different result at each instance. Therefore if we dualize Ktest,
we obtain an expression that duplicates its continuation—just like the original
example of the unsoundness of ML with callcc without a value restriction [HL91].

5 Proposed work

I have argued that evaluation order is a logical concept—polarity—and have
presented a language, CU, in which strict and lazy types may be combined
freely—including intersections and unions, and even in the presence of effects.

43

Still, as I mentioned throughout the text, various theoretical questions about
CU remain open, and I hope to resolve these in my thesis work. Moreover, I
believe that the value of CU is not in the language itself, but in the methodol-
ogy used to construct it: each connective/type constructor was defined purely
through a single judgment (i.e., truth/value typing, or falsehood/covalue typ-
ing), while the rules for the other judgments were derived through inversion. In
particular, I intend to show that the methodology extends to a richer language
and type system.

5.1 Open questions about CU� Normalization. At the end of Section 3.3, I side-stepped the question
of termination for the unrefined fragment of CU, since it was somewhat
tangential to the aim of my preliminary work. Termination should be
provable by standard techniques—though it would be interesting if the
discipline of focusing enables alternative proofs. Known techniques for
proving strong normalization of intersection type systems (cf. [Bak04])
could also be applied to CU with unions and intersections, though such a
result seems even more tangential, since my main interest is in refinement
types for general-purpose programming languages.� Refinement restriction and type annotations. The “relaxed” re-
finement restriction described in Section 4.1 is not completely satisfying.
Does it have a logical basis? Is there a reason to adopt a full refine-
ment restriction? Or to abandon the refinement restriction altogether?
This question deserves some exploration. Likewise, I should investigate
the precise form of type annotations required on cuts (and whether the
contextual annotations of [DP04] are applicable).� Subtyping completeness. At the end of Section 4.6, I showed that cer-
tain syntactically invalid subtyping schemas are in general operationally
unsound, but I did not prove that subtyping completeness holds for non-
deterministic CU—and in fact this does not appear to be the case. One
could ask, is there a natural extension of CU for which subtyping com-
pleteness holds? Or is incompleteness in some sense fundamental? At
least we should be able the question of when P 4 Q implies P ≤ Q to
some simpler criterion on the inhabitants (i.e., values and continuations)
of types P and Q.� Purity and involutive negation. A question that is a sort of converse to
subtyping completeness: if we restrict CU to more “pure” fragments, can
we reconstruct a stronger syntactic subtyping relationship? This question
is significant, because although we have analyzed call-by-name evaluation
with effects, most of the interest in call-by-name comes from Haskell, a
mostly pure, actually call-by-need language. The typing and subtyping
principles we have derived are therefore conservative—and as we have
observed, deal correctly with the presence of non-termination—but are

44

they overly conservative? Is it possible to logically recover a pure fragment
by defining a set of restricted connectives? The analysis of the value and
covalue restrictions in Section 4.6 leads naturally to the suggestion of
linearity—but that does not seem like it would help at least in so far
as subtyping, because identity coercions (in addition to being canonical)
are already linear. A more promising direction is to use the involutive
negation (−)⊥, mentioned in Footnote 4. For example, if implication is
CPS encoded as P → N := P⊥

ON , then it satisfies both the distributivity
laws (P → N) ∩ (Q → N) ≤ (P ∪ Q) → N and (P → M) ∩ (P → N) ≤
P → (M ∩ N). Is this the (CPS encoding of the) pure function space?

5.2 Extensions of CU� Implication. Although the CPS encodings of call-by-value and call-by-
name function spaces are faithful, they are only “full” in the presence
of control operators. That is, not every continuation of type P ⊗ ¬v Q
corresponds to a call-by-value function (unless it can have control effects),
nor every expression of type ¬nNOM to a call-by-name function. A first-
class treatment of functions is therefore desirable from not only a practical
but also a theoretical point-of-view. I conjecture that such an analysis
could also lead (through duality) to a logical reconstruction of delimited
continuations [DF90].� (Co)Inductive types. This is another extension of obvious practical
value. The main theoretical question is how inversion interacts with in-
duction. For example, if inductive types are added to CU in a straight-
forward way, then it seems to make sense for continuations to be defined
by arbitrary, infinite sets of pattern branches. Essentially, the form of
CU’s continuation-typing rule is highly reminiscent of the so called Ω-rule
[BFPS81]. Certainly a restriction could be mandated so as to avoid includ-
ing in the language continuations that may not even be computable—but
is there a logical way to impose such a restriction? Is it reflected in the
definition of subtyping?� Polymorphic and existential types. Note that the “standard” polar-
izations for quantifiers are universal-negative and existential-positive. In
[Gir01, §6.2], Girard identifies several “shocking equalities” for the positive
universal quantifier (e.g., ∀X.P ⊕Q = ∀X.P ⊕∀X.Q). I suspect these may
become less shocking as statements about polymorphism in a call-by-value
language, and in particular I see no barrier to extending my logical analy-
sis of the value restriction on intersection introduction to the usual value
restriction on polymorphism in ML. I plan to investigate the full matrix of
second-order quantifiers—positive/negative universal/existential—in both
explicit and implicit (i.e., refinement type) style.� First-order quantifiers, index refinements, and modal types. The
same questions could be asked about the matrix of first-order quanti-

45

fiers. For one, this would address the interaction of index refinements
[XP99] with evaluation order. Interestingly, this should also shed some
light on modal types, given their Kripke reading as quantification over
worlds. Since � corresponds to universal quantification, its standard in-
terpretation is lazy: for example in [VCHP04], the S5 � is given a Curry-
Howard reading as a suspended computation that can be run at any node
on a network. But what about universally valid values? A “�-like” type
operator internalizing such values clearly has its own use, distinct from
the standard �, and indeed Park proposes one in [Par06]. This very much
looks like a polarity distinction.� Dependent types. Even more interesting, but more difficult, would
be a polarized dissection of the dependent quantifiers Π and Σ. Doing
so in CU might give (via focusing) a non-degenerate interpretation of
dependent types for classical logic, in response to [Her05]. It may also
shed some light on CLF, an extension of LF with linear connectives that
makes essential use of a polarity distinction—but in a slightly different
way from that described here [WCPW02].

6 Related Work

This work began as a study of subtyping in refinement type systems, but evolved
to incorporate ideas from many other areas of programming languages and logic,
as it turned that these were useful in giving a satisfactory answer to the origin of
operationally-sensitive typing phenomena. A brief survey of these related fields
follows.

Refinement types. Refinement types attempt to increase the expressive
power of type systems for practical programming languages so as to capture
more invariants, without changing the languages’ fundamental character [FP91].
Although this research drew from very old theoretical foundations on intersec-
tion types [BCDC83], those foundations were found to be shaky in this more
operational setting. Davies and Pfenning found examples showing the necessity
of a value restriction on intersection introduction, as well as the unsoundness of
the standard subtyping distributivity rule for function types [DP00]. The design
of a refinement system with union types [DP04] uncovered further dissonance
with prior theoretical studies [BDCD95]. Recent work by Vouillon and Melliès
[VM04, MV05] attempts to address some of the issues involved in subtyping
intersection and union types in an operational setting. In [Vou04], Vouillon
proves that a particular subtyping relationship for union types is sound and
complete with respect to arbitrary evaluation order. While this result is inter-
esting (and we adopted their elegant machinery of biorthogonality), we see it
as somewhat in the wrong spirit from a logical perspective. For although it is
possible to give a conservative subtyping relationship that is “agnostic” as to
evaluation strategy, it is impossible to formulate evaluation order-agnostic typ-
ing rules for refinement types (witness the value and covalue restrictions)—and

46

we have argued that subtyping comes logically after typing.
Duality of computation. Beginning with Filinski’s master’s thesis [Fil89],

a line of work has explored a duality between call-by-value and call-by-name
evaluation in the presence of first-class continuations. Filinski was inspired by
categorical duality; logical studies of this duality have been done largely in
the setting of classical logic, particularly based upon the λµ-calculus [Par92].
For example in [CH00], Curien and Herbelin define a programming language
with control operators (the λµµ̃-calculus) as a Curry-Howard interpretation of
a sequent calculus for implicational classical logic, while in [Wad03], Wadler
reformulates this language as a “dual calculus” for propositional classical logic
(with implication defined via De Morgan translation). Both papers analyze
the duality between call-by-value and call-by-name as one of alternative cut-
reduction strategies—without explicitly using polarity to encode these strategies
at the level of types. On the other hand, Curien and Herbelin come very close to
defining dual focusing calculi as “well-behaved subsyntaxes” of the λµµ̃-calculus
(cf. [CH00, §5]), as does Shan in a recent extension of Wadler’s calculus [Sha05].
In even more recent work, Dyckhoff and Lengrand define a positive focusing
system and use the implication fragment to encode call-by-value lambda calculus
[DL06]. The key technical concept that seems to be missing from all these
works is the notion of inversion, which arises naturally from the judgmental
interpretation, and as we have seen is fundamental to the definition of subtyping.

From a more semantic front, Streicher and Reus give a domain-theoretic
interpretation of call-by-name based on “negative domains” and continuation
semantics [SR98], an extension of earlier work with Lafont [LRS93], which was
itself inspired by Girard’s polarized deconstruction of classical logic (see be-
low). Perhaps closest in spirit to CU is Paul-Blain Levy’s call-by-push-value
language [Lev01], which maintains separate syntactic categories of “value types”
and “computation types” that may in retrospect be seen as a polarity distinc-
tion. Recently, Levy has defined a “jumbo” λ-calculus with pattern-matching
constructs—essentially for their inversion properties—arguing that this is nec-
essary to obtain the right type isomorphisms [Lev06].

Polarity and focusing. The discovery of linear logic [Gir87] and its crisp
symmetries led to some early attempts at explaining strict vs. lazy evaluation
within linear logic [Abr93]. Focusing [And92] greatly improved the understand-
ing of these symmetries, and sparked interest in the idea of polarity as a way
of taming misbehaved logics [Gir91, Gir93]. It was reconstructed in the “colour
protocol” of Danos et al. for studying normalization of proofs [DJS97], and used
significantly in the dependent type theory CLF in order to maintain an appro-
priate notion of canonical forms [WCPW02]. Recently the theory of polarity has
been developed in greater depth, both in Ludics [Gir01] and in Olivier Laurent’s
dissertation [Lau02]. In [Lau05], Laurent pursues an analysis in various ways
technically similar to ours, defining dual translations into polarized linear logic
and then studying the different type isomorphisms induced by η-expansion in a
purely logical setting. Subtyping becomes an interesting problem mainly with
the addition of “non-logical” type constructors such as unions and intersections,
and thus Ludics attempts to reappropriate those by broadening the definition

47

of “logic.”
Ludics. This work profited heavily from the ideas in “Locus Solum” [Gir01].

As the syntax and semantics of CU developed, we found that more and more
mysterious ludic concepts suddenly made a great deal of sense through the
operational intuitions of a programming language. In turn, we were able to
incorporate more from Ludics into CU. This is not to say that CU is the syntax
of Ludics—indeed, there are substantial differences between Girard’s “designs”
and programs of CU. For one, the use of foci is affine in designs, while it
is unrestricted in CU. Moreover, Ludics does not have designs corresponding
directly to values (or covalues), but only “positive actions,” which are analogous
to statements V Bu. It seems (at least to me) more natural to have the separate
value typing judgment—particularly from a programming point of view, but also
because it emerges out of the rational reconstruction of polarity à la Dummett,
and gives meaning to the inversion operator. In any case we intend to further
explore the connection between CU and Ludics.

Constructive negation and co-intuitionistic logic. As mentioned in
Section 2.2, the notion of constructive refutation is originally due to Nelson
[Nel49]. The system defined in that paper (via a realizability interpretation)
actually corresponds to the fragment of polarized logic with only the judgments
true and false, and negation defined as the (−)⊥ connective. What we call
co-intuitionistic logic, wherein truth is defined as unfalse, has been explored
in various formulations (alternatively called “anti-intuitionistic” or “dual intu-
itionistic” logic), first by Czermak [Cze77] and Goodman [Goo81]. In a recent
paper (and very much in line with our pragmatist interpretation), Shramko ar-
gues that co-intuitionistic logic is the “logic of scientific research,” tieing it to
Popper’s conception of science as a continual process of falsification [Shr05]. For
an extensive survey of the literature on constructive negation, see [Vak06].

Realizability. There is a suggestive formal resemblance between our Curry-
Howard interpretation of focusing and the realizability interpretation of intu-
itionistic logic [Kle45, Tv88]. Loosely, building an interpretation of logic around
the notion of realizers and abstract “methods” of transforming realizers into
other realizers, corresponds to Dummett’s verificationist meaning-theory, i.e.,
the idea that we first define canonical proofs, and then justify an arbitrary in-
ference by exhibiting a method of transforming canonical proofs of the premises
into a canonical proof of the conclusion—and therefore the judgment V

val
: P

may be roughly read as “V realizes P”. (A similar observation was made in
[Gir01, Appendix A, “Realisability”].) The analogy is not quite precise, because
our interpretation makes more distinctions than does realizability—for example,
the latter defines the realizer for ¬P as a function from realizers of P to real-
izers of absurdity, whereas we view continuations abstractly as functions from
patterns of type P to well-typed statements. Still, it seems likely that in the
extensive literature on realizability there is something to say about the ques-
tions in this thesis. As one example strengthening this connection, the idea that
a type system is sound under extensions (related to the question of subtyping
completeness) was explored within a realizability setting by Howe (and more
recently by Tsukada) under the heading of “computational open-endedness”

48

[How91, Tsu01].
The logic of logic. While we have traced our judgmental reconstruction

of polarity to Dummett’s especially insightful account in “The Logical Basis of
Metaphysics,” many others have considered similar questions about the meaning
and the justification of the logical laws. Dummett’s work is in part a response
to a well-known exchange between Prior and Belnap [Pri67, Bel67]. (In par-
ticular, while agreeing with Belnap’s analysis of the “Tonk” puzzle, Dummett
denies Belnap’s contention that if an entire set of introduction and elimination
rules satisfies some “harmony” conditions, it is self-justifying [Dum91, p. 251].)
Belnap eventually refined and formalized his ideas in the form of Display Logic
[Bel82], which has seen a recent resurgence of interest. Part of its appeal is
a general cut-admissibility theorem that Belnap proved for any displayed logic
satisfying a particular set of (eight) conditions (cf. [DG02]). Likewise, Avron
and Lev derive a general cut-elimination theorem for “canonical” sequent cal-
culi, given that each pair of left- and right-rules for a connective satisfies a “co-
herence” property [AL01]. Both of these approaches have similarities to ours
that deserve investigation—but the primary difference may again be traced to
Dummett’s insight, that defining a connective requires a bias towards one side
(introduction/right-rules) or the other (elimination/left-rules), thus giving rise
to polarity.

Gentzen’s idea of biasing towards introduction rules and justifying the elim-
ination rules was first explored philosophically by Prawitz [Pra65, Pra74]. As
with Belnap’s work, Prawitz’s has seen a burst of renewed interest, following von
Plato’s analysis of natural deduction and the framework of “general elimination
rules” [Pla01]. While Dummett bases his notion of proof-theoretic justifica-
tion on Prawitz’s, it is a proper extension since he considers the justification
of arbitrary inferences, rather than merely the elimination rules for a particular
connective. This is what makes his analysis so closely related to focusing.

Of course another famous investigation of the justification of the logical laws
is Martin-Löf’s [ML96]. While his 1983 Siena Lectures lack some of the impor-
tant ideas of Dummett’s earlier analysis,14 they elucidate the very notion of
judgment, which we have taken for granted. And also “Locus Solum,” subtitled
“From the rules of logic to the logic of rules,” resulted from a long meditation
on the meanings of the connectives and the nature of logical deduction. We
have gone back to Dummett not only because his was an early exposition of the
idea of polarity, but so as to tie together these somewhat disparate works.

References

[Abr93] Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111(1–2):3–57, 1993.

14Although apparently Dummett and Martin-Löf were in close correspondence, and dis-
cussed the subject of the William James Lectures (Peter Hancock, personal communication).

49

[AL01] Arnon Avron and Iddo Lev. Canonical propositional Gentzen-type
systems. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow,
editors, Automated Reasoning, First International Joint Confer-
ence, IJCAR 2001, Siena, Italy, June 18-23, 2001, Proceedings,
volume 2083 of Lecture Notes in Computer Science, pages 529–544.
Springer, 2001.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[And01] Jean-Marc Andreoli. Focussing and proof construction. Annals of
Pure and Applied Logic, 107(1):131–163, 2001.

[Bak04] Steffen van Bakel. Cut-elimination in the strict intersection type
assignment system is strongly normalizing, January 2004.

[BCDC83] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-
Ciancaglini. A filter lambda model and the completeness of type
assignment. The Journal of Symbolic Logic, 48(4):931–940, 1983.

[BDCD95] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo
De’Liguoro. Intersection and union types: syntax and semantics.
Information and Compution, 119(2):202–230, 1995.

[Bel67] N. D. Belnap. Tonk, plonk and plink. In P. F. Strawson, editor,
Philosophical Logic, pages 132–137. Oxford University Press, 1967.
First appeared in Analysis Vol. 22 pp. 130–134 1962.

[Bel82] Nuel D. Belnap, Jr. Display logic. Journal of Philosophical Logic,
11(4):375–417, 1982.

[BFPS81] W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg. Iterated
Inductive Definitions and Subsystems of Analysis: Recent Proof-
Theoretical Studies. Springer-Verlag, 1981.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computa-
tion. In ICFP ’00: Proceedings of the fifth ACM SIGPLAN in-
ternational conference on Functional programming, pages 233–243.
2000.

[Cze77] J. Czermak. A remark on Gentzen’s calculus of sequents. Notre
Dame Journal of Formal Logic, 18:471–474, 1977.

[DF90] Olivier Danvy and Andrzej Filinski. Abstracting control. In LFP
’90: Proceedings of the 1990 ACM conference on LISP and func-
tional programming, pages 151–160, New York, NY, USA, 1990.
ACM Press.

50

[DG02] Jeremy E. Dawson and Rajeev Goré. Formalised cut admissibil-
ity for display logic. In Victor Carreño, César Muñoz, and Sofiène
Tashar, editors, TPHOLs, volume 2410 of Lecture Notes in Com-
puter Science, pages 131–147. Springer, 2002.

[DJS97] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new
deconstructive logic: Linear logic. The Journal of Symbolic Logic,
62(3):755–807, 1997.

[DL06] Roy Dyckhoff and Stephane Lengrand. LJQ: A strongly focused
calculus for intuitionistic logic. In Arnold Beckmann, Ulrich Berger,
Benedikt Löwe, and John V. Tucker, editors, CiE, volume 3988 of
Lecture Notes in Computer Science, pages 173–185. Springer, 2006.

[DP00] Rowan Davies and Frank Pfenning. Intersection types and compu-
tational effects. In ICFP ’00: Proceedings of the fifth ACM SIG-
PLAN international conference on Functional programming, pages
198–208, 2000.

[DP04] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking.
In POPL ’04: Proceedings of the 31st ACM Conference on Princi-
ples of Programming Languages, pages 281–292, 2004.

[Dum91] Michael Dummett. The Logical Basis of Metaphysics. The William
James Lectures, 1976. Harvard University Press, Cambridge, Mas-
sachusetts, 1991.

[Fil89] Andrzej Filinski. Declarative continuations and categorical duality.
Master’s thesis, University of Copenhagen, 1989. Computer Science
Department.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In
PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation, pages 268–277,
1991.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. English
translation in M. E. Szabo, editor, The Collected Papers of Gerhard
Gentzen, pages 68–131, North-Holland, 1969.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science,
50(1):1–101, 1987.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Math-
ematical Structures in Computer Science, 1:255–296, 1991.

[Gir93] Jean-Yves Girard. On the unity of logic. Annals of pure and applied
logic, 59(3):201–217, 1993.

51

[Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the logic
of rules. Mathematical Structures in Computer Science, 11(3):301–
506, 2001.

[Goo81] Nelson D. Goodman. The logic of contradiction. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 27(2):119–
126, 1981.

[Gri90] Timothy G. Griffin. The formulae-as-types notion of control. In
POPL ’90: Proceedings of the 17th ACM Conference on Principles
of Programming Languages, pages 47–57. 1990.

[Her05] Hugo Herbelin. On the degeneracy of sigma-types in presence of
computational classical logic. In Pawel Urzyczyn, editor, TLCA
’05: Proceedings of the Seventh International Conference on Typed
Lambda Calculi and Applications, volume 3461 of Lecture Notes in
Computer Science, pages 209–220. Springer, 2005.

[HL91] Bob Harper and Mark Lillibridge. ML with callcc is unsound, 1991.
Post to TYPES mailing list, July 8, 1991.

[How91] Douglas J. Howe. On computational open-endedness in martin-
Löf’s type theory. In LICS, pages 162–172. IEEE Computer Society,
1991.

[Kle45] S.C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10:109–124, 1945.

[Lau02] Olivier Laurent. Etude de la polarisation en logique. Thèse de
doctorat, Université Aix-Marseille II, March 2002.

[Lau05] Olivier Laurent. Classical isomorphisms of types. Mathematical
Structures in Computer Science, 15(5):969–1004, October 2005.

[Lev01] Paul B. Levy. Call-by-push-value. PhD thesis, Queen Mary, Uni-
versity of London, 2001.

[Lev06] Paul B. Levy. Jumbo λ-calculus. In Proceedings of the 33rd Inter-
national Colloquium on Automata, Languages and Programming,
Venice, 2006, volume 4052 of Lecture Notes in Computer Science,
2006.

[LRS93] Yves Lafont, Bernhard Reus, and Thomas Streicher. Continuation
semantics or expressing implication by negation. Technical Report
93-21, University of Munich, 1993.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11–60, 1996.

52

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML, Revised edition. MIT Press, 1997.

[MV05] Paul-André Melliès and Jérôme Vouillon. Recursive polymorphic
types and parametricity in an operational framework. In LICS
’05: Proceedings of the 20th annual IEEE symposium on Logic in
Computer Science, pages 82–91, 2005.

[Nel49] David Nelson. Constructible falsity. Journal of Symbolic Logic,
14(1):16–26, 1949.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of clas-
sical natural deduction. In LPAR ’92: Proceedings of the Interna-
tional Conference on Logic Programming and Automated Reason-
ing, pages 190–201, London, UK, 1992. Springer-Verlag.

[Par06] Sungwoo Park. A modal language for the safety of mobile values.
In Naoki Kobayashi, editor, Programming Languages and Systems,
4th Asian Symposium, APLAS 2006, Sydney, Australia, November
8-10, 2006, Proceedings, volume 4279 of Lecture Notes in Computer
Science, pages 217–233. Springer, 2006.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction
of modal logic. Mathematical Structures in Computer Science,
11(4):511–540, 2001.

[Pla01] Jan von Plato. Natural deduction with general elimination rules.
Archive for Mathematical Logic, 40(7), oct 2001.

[Pra65] Dag Prawitz. Natural Deduction: A Proof Theoretical Study.
Almquist and Wiksell, Stockholm, 1965.

[Pra74] Dag Prawitz. On the idea of a general proof theory. Synthese,
27:63–77, 1974.

[Pri67] A. N. Prior. The runabout inference ticket. In P. F. Strawson,
editor, Philosophical Logic, pages 129–131. Oxford University Press,
1967. First appeared in Analysis Vol. 21 pp. 38–39 1960.

[Rey72] John C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. In ACM ’72: Proceedings of the ACM annual
conference, pages 717–740, 1972.

[Sha05] Chung-chieh Shan. A computational interpretation of classical S4
modal logic. In IMLA ’05: Intuitionistic Modal Logics and Appli-
cations Workshop, 2005.

[Shr05] Yaroslav Shramko. Dual intuitionistic logic and a variety of nega-
tions: The logic of scientific research. Studia Logica, 80(2-3):347–
367, sep 2005.

53

[SR98] Thomas Streicher and Bernhard Reus. Classical logic, continuation
semantics and abstract machines. Journal of Functional Program-
ming, 8(6):543–572, November 1998.

[Tsu01] Yasuyuki Tsukada. Martin-Löf’s type theory as an open-ended
framework. Int. Journal of Foundations of Computer Science,
12(1):31–67, 2001.

[Tv88] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics.
An Introduction., volume 121 of Studies in Logic and the Founda-
tions Mathematics. North-Holland, Amsterdam, 1988.

[Vak06] Dimiter Vakarelov. Non-classical negation in the works of Helena
Rasiowa and their impact on the theory of negation. Studia Logica,
84(1):105–127, 2006.

[VCHP04] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning.
A symmetric modal lambda calculus for distributed computing. In
LICS, pages 286–295. IEEE Computer Society, 2004.

[VM04] Jérôme Vouillon and Paul-André Melliès. Semantic types: a fresh
look at the ideal model for types. In POPL ’04: Proceedings of the
31st ACM Conference on Principles of Programming Languages,
pages 52–63, 2004.

[Vou04] Jérôme Vouillon. Subtyping union types. In CSL: 18th Workshop
on Computer Science Logic. LNCS, Springer-Verlag, 2004.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. In ICFP ’03:
Proceedings of the eighth ACM SIGPLAN International Conference
on Functional Programming, pages 189–201, 2003.

[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David
Walker. A concurrent logical framework I: Judgments and proper-
ties. Technical Report CMU-CS-02-101, Department of Computer
Science, Carnegie Mellon University, 2002. Revised May 2003.

[Wri95] Andrew K. Wright. Simple imperative polymorphism. Lisp and
Symbolic Computation, 8(4):343–355, 1995.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. In POPL ’99: Proceedings of the 26th ACM Con-
ference on Principles of Programming Languages, pages 214–227,
New York, NY, USA, 1999. ACM Press.

54

