Sample Complexity of Active Learning

Maria Florina Balcan

School of Computer Science
Georgia Institute of Technology
Passive Supervised Learning

Learning Algorithm

Data Source

Raw Unlabeled Data

Labeled examples

Algorithm outputs a classifier

Expert / Oracle
Standard Passive Supervised Learning

- **X** - instance/feature space
- **S**=\{(x, l)\} - set of labeled examples
 - labeled examples - drawn i.i.d. from distr. D over X and labeled by some target concept c*
 - labels ∈ \{-1,1\} - binary classification
- Do optimization over S, find hypothesis h ∈ C.
- Goal: h has small error over D.

\[\text{err}(h) = \Pr_{x \in D} (h(x) \neq c^*(x)) \]

\(c^* \) in C, realizable case
\(c^* \) not in C, agnostic case
Sample Complexity: Uniform Convergence Bounds

• Infinite Hypothesis Case, Realizable Case

Theorem

\[m = O \left(\frac{1}{\epsilon} \left[VCdim(C) \log \left(\frac{1}{\epsilon} \right) + \log \left(\frac{1}{\delta} \right) \right] \right) \]

labeled examples are sufficient so that with prob. \(1 - \delta \), all \(h \in C \) with \(err(h) \geq \epsilon \) have \(\hat{err}(h) > 0 \).

E.g., if \(C \) - class of linear separators in \(\mathbb{R}^d \), then need \(O(d/\epsilon) \) examples to achieve generalization error \(\epsilon \).

Non-realizable case – replace \(\epsilon \) with \(\epsilon^2 \).
Semi-Supervised Passive Learning

Learning Algorithm

Data Source

Unlabeled examples

Labeled Examples

Algorithm outputs a classifier

Expert / Oracle

Unlabeled examples
Active Learning

Learning Algorithm

Data Source

Unlabeled examples

Request for the Label of an Example

A Label for that Example

Request for the Label of an Example

A Label for that Example

... Algorithm outputs a classifier

Expert / Oracle
Active Learning

• We get to see unlabeled data first, and there is a charge for every label.

• The learner has the ability to choose specific examples to be labeled.

• The learner works harder, in order to use fewer labeled examples.

• Do we need fewer examples in this setting than in the passive learning setting?

• How many labels can we save by querying adaptively?
Outline

• **Standard PAC-style active learning analysis**

 e.g., Das04, Das05, DKM05, BBL06, Kaa06, Han07a&b, BBZ07, DHM07

• **A new analysis framework**

 Joint with Steve Hanneke and Jenn Wortman

• **Conclusions & Open Problems**
Can adaptive querying help? [CAL92, Dasgupta04]

- Consider threshold functions on the real line:
 \[h_w(x) = 1(x \geq w), \quad C = \{h_w: w \in \mathbb{R}\} \]

- Sample with \(\frac{1}{\varepsilon} \) unlabeled examples.

- Binary search – need just \(O(\log \frac{1}{\varepsilon}) \) labels.

Active setting: \(O(\log \frac{1}{\varepsilon}) \) labels to find an \(\varepsilon \)-accurate threshold.

Supervised learning provably needs \(\Omega(\frac{1}{\varepsilon}) \) labels. [Antos Lugosi, 96]

Exponential improvement in sample complexity 😊
Other Examples where Active Learning helps

- **C - homogeneous** linear separators in \(\mathbb{R}^d \), **D - uniform distribution** over unit sphere.

"Region of disagreement" ([CAL’92]):

Pick a few points at random from the current region of uncertainty, query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

Realizable: need only \(d^{3/2} \log \left(\frac{1}{\epsilon} \right) \) labeled examples to learn a classifier of error \(\epsilon \).

With \(d^{3/2} \) labeled examples can halve the region of disagreement.
Other Examples where Active Learning helps

• C - homogeneous linear separators in \mathbb{R}^d, D - uniform distribution over unit sphere.

Realizable: only $d \log \left(\frac{1}{\epsilon} \right)$ labeled examples to learn a classifier of error ϵ

[Dasgupta-Kalai-Monteleoni, COLT 2005]
[Balcan-Broder-Zhang, COLT 07]

Use $O(d)$ examples to find w_1 of error $1/8$.

iterate $k=2, \ldots, \log(1/\epsilon)$
 • rejection sample m_k samples x from D satisfying $|w_{k-1}^T \cdot x| \leq \gamma_k$;
 • label them;
 • find $w_k \in B(w_{k-1}, 1/2^k)$ consistent with all these examples.

end iterate

[Balcan-Broder-Zhang, COLT 07]
Agnostic Active Learning Results

A^2 the first algorithm which is **robust to noise**.

[Balcan, Beygelzimer, Langford, ICML’06] [Balcan, Beygelzimer, Langford, JCSS’08]

“Region of disagreement” style: Pick a few points at random from the current region of uncertainty, query their labels, throw out hypothesis if you are statistically confident they are suboptimal.

(similar to [CAL’92] realizable case)

Guarantees for A^2:

- Fall-back & exponential improvements.
- **C** – thresholds, low noise, exponential improvement.
- **C** - homogeneous linear separators in \(\mathbb{R}^d \),
 \(D \) - uniform over unit sphere, low noise, only \(d^2 \log (1/\varepsilon) \) labels to find \(h \) with error \(\varepsilon \).

Interesting subsequent work. [Hanneke’07, DHM’07]
Active Learning might not help [Dasgupta04]

$C = \{\text{intervals on the line}\}$.

E.g., suppose D is uniform on $[0,1]$

In this case: learning to accuracy ε requires $1/\varepsilon$ labels…
Intervals on the line

Suppose D is uniform on [0,1]

Suppose the target labels everything “-1”

Need $\Omega(1/\epsilon)$ label requests to guarantee the target isn’t one of these.

Active Learning does not help.
Non-verifiable and Target Dependent Sample Complexity

Definition: An algorithm \(A(n, \delta) \) achieves *sample complexity* \(S(\epsilon, \delta, f) \) for \((\mathcal{C}, \mathcal{D})\) if it outputs a classifier \(h_n \) after at most \(n \) label requests, and for any target function \(f \in \mathcal{C}, \epsilon > 0, \delta > 0 \), for any \(n \geq S(\epsilon, \delta, f) \),

\[
P[er(h_n) \leq \epsilon] \geq 1 - \delta.
\]
Intervals on the line

Algorithm

Take a large number of unlabeled examples.

Phase 1: Query random examples until we find a +1 example.
 (if use all n label requests before finding a +1 example, return the empty interval)

Phase 2: Do binary searches to the left and right of the +1 point.

After n total label requests, return the smallest consistent $h \in C$.
Intervals on the line

Algorithm

Take a large number of unlabeled examples.

Phase 1: Query random examples until we find a +1 example.
 (if use all n label requests before finding a +1 example, return the empty interval)

Phase 2: Do binary searches to the left and right of the +1 point.
 After n total label requests, return any consistent $h \in C$.

Asymptotic analysis:

Case 1: If the target f has $\mathbb{P}[f(X) = +1] = w > 0$,
 we find a +1 after $\propto \frac{1}{w} \log \frac{1}{\delta}$ requests.
 The binary searches need only $O(\log \frac{1}{\epsilon})$ to approximate the boundaries.
 Sample Complexity: $S(\epsilon, \delta, f) \propto \frac{1}{w} \log \frac{1}{\delta} + \log \frac{1}{\epsilon} = O(\log \frac{1}{\epsilon})$.

Case 2: If $\mathbb{P}[f(X) = +1] = 0$,
 we will return an h with $er(h) = 0$ for any $n \geq 0$.
 Sample Complexity: $S(\epsilon, \delta, f) = 0$
Subtle Variation on the traditional model

Non-verifiable and Target Dependent Sample Complexity

Definition: An algorithm $A(n, \delta)$ achieves sample complexity $S(\epsilon, \delta, f)$ for $(\mathcal{C}, \mathcal{D})$ if it outputs a classifier h_n after at most n label requests, and for any target function $f \in \mathcal{C}$, $\epsilon > 0$, $\delta > 0$, for any $n \geq S(\epsilon, \delta, f)$,

$$\mathbb{P}[er(h_n) \leq \epsilon] \geq 1 - \delta.$$
Can Active Learning Always Help?
Active Learning Always Helps!

Theorem: For any pair $(\mathcal{C}, \mathcal{D})$, and any passive learning sample complexity $S_p(\epsilon, \delta, f)$ for $(\mathcal{C}, \mathcal{D})$, there exists an active learning algorithm achieving a sample complexity $S_a(\epsilon, \delta, f)$ s.t., for all targets $f \in \mathcal{C}$ for which $S_p(\epsilon, \delta, f) = \omega(1)$,

$$S_a(\epsilon, \delta, f) = o(S_p(\epsilon/4, \delta, f)).$$

Corollary: For any pair $(\mathcal{C}, \mathcal{D})$, there is an active learning algorithm that achieves a sample complexity $S_a(\epsilon, \delta, f)$ such that

$$\forall f \in \mathcal{C}, S_a(\epsilon, \delta, f) = o(1/\epsilon).$$
Proof Outline

- Claim 1: The result is certainly true for “threshold-esc” problems – where the problem gets easier the longer we work at it (based on [Hanneke07], “disagreement coefficient” analysis)

- Claim 2: Any C can be partitioned into C_1, C_2, C_3, \ldots with this property.

- Claim 3: There is an aggregation algorithm that uses all of C_1, C_2, C_3, \ldots but is never much worse than using just the C_i that contains the target f.
Exponential Improvements

It is often possible to achieve \textit{polylogarithmic} sample complexity for all targets.

\[S(\epsilon, \delta, f) = \gamma_f \cdot \text{polylog}(1/(\epsilon \delta)), \]

For example:

- linear separators, under uniform distributions on an \(r \)-sphere
- Axis-aligned rectangles, under uniform distributions on \([0,1]^r\)
- Finite unions of intervals on the real line (arbitrary distributions)

Can also preserve polylog sample complexities under some transformations:

- Unions, “close” distributions, mixtures of distributions
Conclusions

• Lots of exciting work recently.

• [BHW]: Active learning can always achieve a strictly superior asymptotic sample complexity compared to passive learning.
Big Open Directions

- Efficient and practical active learning algorithms that work in the presence of certain types of noise.

- Incorporate other type of interaction in the learning process.
Thank You