Robust Interactive Learning

Maria-Florina Balcan
Georgia Institute of Technology

Joint with Steve Hanneke
Classic Statistical Learning Paradigm: passive supervised learning (labeled data only)
Massive Amounts of Raw Data

Only a tiny fraction can be annotated by human experts.

Protein sequences Billions of webpages Images

Major Efforts Recently: Unlabeled Data and Interaction for Learning
Semi-Supervised Learning

Unlabeled data

Labeled data

Learning Algorithm

Expert Labeler

Classifier
Active Learning

Unlabeled data

raw data

face

not face

Classifier

Learning Algorithm

Expert Labeler
Important direction: richer interactions with the expert.

Better Accuracy

Natural interaction

Fewer queries
New Types of Interaction

Class Conditional Query

- Raw data
 - Learning Algorithm
 - Classifier

Mistake Query

- Raw data
 - Learning Algorithm
 - Classifier
 - Expert Labeler
 - Wolf, Dog, Cat, Penguin
Class Conditional & Mistake Queries

- Used in practice, e.g. Faces in iPhoto.
- Lack of theoretical understanding.
- Realizable (Folklore): much fewer queries than label requests.

This work:

Tight bounds on the # of CCQs to learn with noise (agnostic, bounded noise, one-sided noise).

Preliminary results for more general queries.
Formal Model

- **X** instance space, **Y** = \{1,2, ..., k\} label space.
- **D_{X,Y}** fixed target distribution, **D_{X}** marginal over **X**.
- An i.i.d sequence \((x_1,y_1), (x_2,y_2), (x_3,y_3), ...\), each with distr **D_{X,Y}**.
- **Algo** can access \(x_i\) values; info about \(y_i\) obtained via **CCQs**.
 - **CCQ**\((S = \{x_{i1}, ..., x_{im}\}, \text{ label } l)\)
 - If \(y_{ij} \neq 1\), for all \(j\), expert says “none”;
 - otherwise, returns an arbitrary \(x_{ij}\) s.t. \(y_{ij} = 1\)
- **FindMistake**\((S,h)\) based on **k** **CCQs**
 - For each \(l\), query the set \(\{x \in S: h(x) \neq l\}\) for label \(l\)
 - If received back an example \((x,l)\), return \((x,l)\)
- \(C, Ndim(C) = d\) (Natarajan dimension)
 largest \(m\) s.t. \(\exists (a_1,b_1,c_1), ..., (a_m,b_m,c_m) \in X \times Y \times Y, b_i \neq c_i\) s.t.
 \(\{b_1,c_1\} \times \cdots \times \{b_m,c_m\} \subseteq \{h(a_1), ..., h(a_m)\}\)
Class Conditional Query

Folklore Result (Realizable Case):

\[kd \log \left(\frac{k}{\epsilon} \right) \] queries sufficient to learn an \(\epsilon \)–accurate classifier, assuming that the target belongs to \(C \) of dimension \(d \).

- Run halving algorithm
Agnostic Case

Agnostic(C, η) = \{DX,Y: \inf_{h \in C} \text{err(h)} \leq \eta\}

For any class C, QC(ε, δ, C, Agnostic(C, η)) = \tilde{\Theta}\left(d \left(\frac{\eta}{\epsilon}\right)^2\right) [\text{Const } k]

Upper bound: \tilde{\Theta}\left(kd \left(\frac{\eta}{\epsilon}\right)^2\right)

Phase 1: Robust halving algorithm

Output h, \text{err(h)} \leq 10(\eta + \epsilon); only \tilde{\Theta}\left(kd \log \left(\frac{1}{\epsilon}\right)\right) queries.

Phase 2: A simple refining algorithm

\tilde{\Theta}\left(kd \left(\frac{\eta}{\epsilon}\right)^2\right) queries to turn h into one of error \eta + \epsilon
Agnostic Case, Upper Bound

Phase 1: Output \(h \) of error \(10(\eta + \epsilon) \) with \(\tilde{O}\left(kd\log\left(\frac{1}{\epsilon}\right)\right) \) queries.

Input \(U = (x_1, x_2, ..., x_{ps}) \), \(V\)-\(\epsilon\)-cover. \(s = \frac{1}{16\eta} \), \(N = \log\left(\frac{\log|V|}{\delta}\right) \); \(b = 1 \)

While \(b \).

• Draw \(S_1, ..., S_N \) of size \(s \) uniformly from \(U \).
• For each \(i \), Find-Mistake \((S_i, \text{plur}(V)) \). If mistake record it \((\tilde{x}_i, \tilde{y}_i) \).
• If mistakes on more than \(N/3 \) sets, remove from \(V \) every \(h \) that makes a mistake on more than \(N/9 \) examples \((\tilde{x}_i, \tilde{y}_i) \); else \(b = 0 \).

Output \(\text{plur}(V) \).

I.e., eliminate \(h \) when makes at least one mistake in some number out of several sets chosen at random from \(U \).

• rather than eliminating \(h \) for a mistake, as in halving.
Agnostic Case, Upper Bound

Phase 1: Output h of error $10(\eta + \epsilon)$ with $\tilde{O}\left(kd \log \left(\frac{1}{\epsilon}\right)\right)$ queries.

Input $U = (x_1, x_2, \ldots, x_{ps})$, V-ϵ-cover. $s = \frac{1}{16\eta}$, $N = \log \left(\frac{\log |V|}{\delta}\right)$; $b = 1$

While b.

- Draw S_1, \ldots, S_N of size s uniformly from U.
- For each i, Find-Mistake $(S_i, \text{plur}(V))$. If mistake record it $(\tilde{x}_i, \tilde{y}_i)$.
- If mistakes on more than $N/3$ sets, remove from V every h that makes a mistake on more than $N/9$ examples $(\tilde{x}_i, \tilde{y}_i)$; else $b = 0$.

Output $\text{plur}(V)$.

Proof Sketch

- Best h in V survives (does not make mistakes on too many sets).

- If $\text{err}(\text{plur}(V)) \geq 10 \eta$, then $\text{plur}(V)$ make mistakes on enough sets; so, a constant fraction of V will make mistakes on more sets than the best classifier & eliminate a constant fraction of V.
Upper Bound, Agnostic Case

$\text{Agnostic}(C, \eta) = \{D_{X,Y}: \inf_{h \in C} \text{err}(h) \leq \eta\}$

For any class C, $\text{QC}(\epsilon, \delta, C, \text{Agnostic}(C, \eta)) = \tilde{\Theta}\left(d \left(\frac{\eta}{\epsilon}\right)^2\right)$ [Const k]

Phase 1: Robust halving algorithm

Output h, $\text{err}(h) \leq 10(\eta + \epsilon)$; only $\tilde{\Theta}\left(kd \log \left(\frac{1}{\epsilon}\right)\right)$ queries.

Phase 2: A simple refining algorithm

$\tilde{\Theta}\left(kd \left(\frac{\eta}{\epsilon}\right)^2\right)$ queries to turn h into one of error $\eta + \epsilon$

Pick $\tilde{\Theta}\left(d \frac{\eta}{\epsilon^2}\right)$ unlabeled samples, and repeatedly run FindMistake to find all the mistakes h makes.

We recover the true labels of this unlabeled sample and run ERM.
Agnostic Case, Lower Bound

For \(0 < 2\varepsilon \leq \eta \leq \frac{1}{4} \), \(QC\left(\varepsilon, \frac{1}{4}, C, \text{Agnostic}(C, \eta)\right) = \Omega \left(d \left(\frac{\eta}{\varepsilon} \right)^2 \right) \)

Proof Sketch: Reduction from (binary) AL to multiclass CCQs for AL hard case.

- **AL hard case [BDL'09].**

 \[
 \begin{array}{c|c|c|c}
 x_0 & x_1 & \ldots & x_{d-1} \\
 \hline
 1 - \beta & \beta/d-1 & \ldots & \beta/d-1 \\
 \end{array}
 \]

 \(\gamma = \frac{2\varepsilon}{\beta} = \frac{\varepsilon}{\eta+2\varepsilon} \)

 At \(x_0 \), \(Y = y_0 \). At \(x_i \), is \(Y = z_i \) with prob. \(1/2 + \gamma b_i \) and \(Y = y_i \) with prob. \(1/2 - \gamma b_i \).

 BDL'09: set \(b_i \) s.t. any algo makes \(\Omega \left(d \left(\frac{\eta}{\varepsilon} \right)^2 \right) \) AL queries for \(\delta = 1/2 \).

- Convert a CCQ algo into an AL algo for this case.

 - answer CCQs using \(\leq 1/(1/2 - \gamma) \) AL requests (for label \(y_i \), \(i \geq 1 \), \(1/2 - \gamma \) prob. to get desired label).
Bounded Noise

Bounded Noise: \(\text{BN}(C, \alpha) = \{D_{X,Y} : \exists h^* \in C, P_{D_{X,Y}}[Y \neq h^*(X)|X] \leq \alpha \} \)

For any class \(C \), \(\text{QC}(\varepsilon, \delta, C, \text{BN}(C, \alpha)) \approx \alpha \text{ AL}_\text{QC}(\varepsilon, \delta, C, \text{BN}(C, \alpha)) \)

Lower bound:

- reduction from multi-class AL (as for the agnostic case)

Upper bound: many existing AL algos batch based

- reduction to multi-class (batch based) AL algos
Bounded Noise, Upper Bound

For any class C, $\text{QC}(\epsilon, \delta, C, \text{BN}(\alpha)) \approx \alpha \text{AL}_\text{QC}(\epsilon, \delta, C, \text{BN}(\alpha))$

Many existing AL algos batch based

A^2 (Balcan, Beygelzimer, Langford’06), K’s algo (Koltchinski’10)

For $t=1,2,...$

Region R_t, m & expects back m labeled examples from the cond. distr. given R.

E.g, in A^2, V_t set of surviving classifiers, $R_t = \text{DIS}(V_t)$
Bounded Noise, Upper Bound

For any class C, $\text{QC}(\epsilon, \delta, C, \text{BN}(\alpha)) \approx \alpha \text{ ALQC}(\epsilon, \delta, C, \text{BN}(\alpha))$

Many existing AL algs batch based

A^2 (Balcan, Beygelzimer, Langford'06), K's algo (Koltchinski'10)

For $t=1,2,...$

Region R_t, m & expects back m labeled examples from the cond. distr. given R.

Use our agnostic algo to only make $\alpha \cdot m$ CCQ's
Conclusions, Open Questions

Nearly tight upper and lower bounds on the # of CCQs for the agnostic, bounded noise, one sided noise.

Open Questions

- Efficient algorithms for CCQs.
- Tight bounds for general queries.
Other General Abstract Queries

- Queries that allow to prune down the set of consistent labellings [Balcazar et al 2010].

 E.g., ask for two examples of opposite labels within a distance of each other in a set S, and for their labels.

- Bounds in terms of IAdim, related to the complexity of verification (generalization of teaching dimension for label requests)

 - $\text{IAdim}(f,V,U)$ the smallest #of queries s. t. any valid answers consistent with f will leave at most one equivalence class in $V[U]$ consistent with answers.

 - when target in V, number of queries to verify it is the target (in a non-adaptive way).
Other General Abstract Queries

For any \(C, QC(\epsilon, \delta, C, \text{Agnostic}(C, \eta)) = O \left(\text{IAdim} \left(\frac{\eta}{\epsilon} \right)^2 d \log \frac{1}{\epsilon} \right) \)

Proof Sketch

- Replace \(\text{FindMistake}(S, h, V) \) with the queries in the def. of \(\text{IAdim} \).
- If there exists \(h \) in \(V \) that coincides with the true labels this behaves like \(\text{FindMistake} \).
- Take small enough sample so that there is a function in the class with this property.