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Analysis and Design of Algorithms

Classic algo design: solve a worst case instance.

Easy domains, have optimal poly Tlme algos
E.g., sorting, shortest paths

Most domains are hard.

E.g., clustering, partitioning, subset selection, auction design, ...

Data driven algo design: use learning & data for algo design.

Suited when repeatedly solve instances of the same algo problem.



Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

« Different methods work better in different settings.

« Large family of methods - what's best in our application?

Prior work: largely empirical.

 Artificial In’relligence: E.g., [Xu-Hutter-Hoos-LeytonBrown, JAIR 2008]

« Computational Biology: E.g., [DeBlasio-Kececioglu, 2018]

« Game Theory: E.g., [Likhodedov and Sandholm, 2004]




Data Driven Algorithm Design

Data driven algo design: use learning & data for algo design.

Different methods work better in different settings.

Large family of methods - what's best in our application?

Prior work: largely empirical.

This talk: Data driven algos with formal guarantees.

 Several cases studies of widely used algo families.

« General principles: push boundaries of algorithm design
and machine learning.

Related in spirit to Hyperparameter tuning, AutoML, Metalearning.



Structure of the Talk

 Data driven algo design as batch learning.

« A formal framework.

 Case studies: clustering, partitioning pbs, auction pbs.

 Data driven algo design via online learning.

* Online learning of non-convex (piecewise Lipschitz) fns.



Example: Clustering Problems
Clustering: Given a set objects organize then into natural groups.

E.g., cluster news articles, or web pages, or search results by topic.

Or, cluster images by who is in them.

Often need do solve such problems repeatedly.

+ E.g., clustering news articles (Google news).



Example: Clustering Problems

Clustering: Given a set objects organize then into natural groups.

Objective based clustering

k-means

Input: Set of objects S, d
Output: centers {c;, cy, ..., Ci}

To minimize Y, min d*(p, ¢;)
1

k-median: min Y, mind(p, ¢;) .

k-center/facility location: minimize the maximum radius.

Finding OPT is NP-hard, so no universal efficient algo that works
on all domains.



Algorithm Selection as a Learning Problem

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Dynamic Programming

Large family F of algorithms

Farthest Location

Sample of typical inputs

Clustering: ITPUT N: |:
Input N:
| Tnput N:
Facility
location:




Sample Complexity of Algorithm Selection

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Approach: find A near optimal algorithm over the set of samples.

Key Question: Will A d% well on future i/ns'rances? Py
v v v
Seen:
?
New:

Sample Complexity: How large should our sample of typical instances be
in order to guarantee good performance on new instances?



Sample Complexity of Algorithm Selection

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Approach: find A near optimal algorithm over the set of samples.

Key tools from learning theory

« Uniform convergence: for any algo in F, average performance
over samples "close” to its expected performance.

« Imply that A has high expected performance.

« N = 0(dim(F) /€?) instances suffice for e-close.



Sample Complexity of Algorithm Selection

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Key tools from learning theory

N = O0(dim(F) /€?) instances suffice for e-close.

dim(F) (e.g. pseudo-dimension): ability of fns in F o fit complex patterns

y
Overfitting

X1 Xy X3 X4 @ Xs @ Xg X7

Training set




Sample Complexity of Algorithm Selection

Goal: given family of algos F, sample of typical instances from domain
(unknown distr. D), find algo that performs well on new instances from D.

Key tools from learning theory

N = 0(dim(F) /€?) instances suffice for e-close.

Challenge: analyze dim(F), due to combinatorial & modular nature,
"nearby"” programs/algos can have drastically different behavior.

.

Classic machine learning Our work

Challenge: design a computationally efficient meta-algorithm.



Formal Guarantees for Algorithm Selection

Prior Work: [6upta-Roughgarden, ITCS'16 &sIcOMP17] proposed model; analyzed
greedy algos for subset selection pbs (knapsack & independent seft).
Our results:

« New algorithm classes applicable for a wide range of problems
(e.g., clustering, partitioning, auctions).

 General techniques for sample complexity based on properties of
the dual class of fns.



Formal Guarantees for Algorithm Selection

Our results: New algo classes applicable for a wide range of pbs.

* Clustering: Linkage + Dynamic Programming

[Balcan-Nagarajan-Vitercik-White, COLT'17]

| CLUSTERING |

 Clustering: Greedy Seeding + Local Search

[Balcan-Dick-White, NeruIPS'18]

Parametrized Lloyds methods

CLUSTERING




Formal Guarantees for Algorithm Selection

Our results: New algo classes applicable for a wide range of pbs.

* Partitioning pbs via IQPs: SDP + Rounding

[Balcan-Nagarajan-Vitercik-White, COLT 2017]

Integer Quadratic
Programming (IQP)

Semidefinite Programming
Relaxation (SDP)

s-linear
rounding

6W
rounding

1-linear
roundig

| Feasible solution to IQP |

- Automated mechanism design

[Balcan-Sandholm-Vitercik, EC 2018]

Generalized parametrized VCG
auctions, posted prices, lotteries.




Formal Guarantees for Algorithm Selection

Our results: New algo classes applicable for a wide range of pbs.

 Branch and Bound Techniques for solving MIPs

[Balcan-Dick-Sandholm-Vitercik, ICML'18]

Max ¢ - x
st. Ax=b
X € {0,1}, Viel

MIP instance

12,0,0,0,0,1
Best-bound Depth-first © s e
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1332 116 120 120
Product Most fractional a-linear
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Fathom if possible and terminate if possible 133
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Clustering Problems

Clustering: Given a set objects (news articles, customer surveys, web
pages, ...) organize then into natural groups.

Objective based clustering

k-means
Input: Set of objects S, d

Output: centers {cq,cy, ..., Ci}

To minimize ¥, min d(p, ;)

k-median: min ¥, mind(p,c;) .
k-center: minimize the maximum radius.

Finding OPT is NP-hard, so no universal efficient algo that works
on all domains.



Clustering: Linkage + Dynamic Programming
Family of poly time 2-stage algorithms:

1. Use a greedy linkage-based algorithm to organize data into a
hierarchy (tree) of clusters.

2. Dynamic programming over this tree to identify pruning of
tree corresponding to the best clustering.




Clustering: Linkage + Dynamic Programming
1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best pruning.

Both steps can be done efficiently.

CLUSTERING




Linkage Procedures for Hierarchical Clus’rer'ing

Bottom-Up (agglomerative)

Start with every point in its own cluster.

Repeatedly merge the "closest” two
clusters.

Different defs of "closest” give different algorithms.



Linkage Procedures for Hierarchical Clustering

Have a distance measure on pairs of objects. @
d(x,y) - distance between x and y CORNGCD
E.g., # keywords in common, edit distance, etc Gemd) Coucd)

« Single linkage: dist(A,B) = min dist(x,x")

x€Ax'eEB

« Complete linkage: dist(A,B) = max dist(x,x")

x€EAx'eB

« Average linkage: dist(A,B) = avg dist(x, x’)

xeAx'eB

* Parametrized family, a-weighted linkage:

dist(A,B) = a min dist(x,x’) + (1 —a) max dist(x,x")
x€EAx'€B x€Ax'€B



Clustering: Linkage + Dynamic Programming
1. Use a linkage-based algorithm to get a hierarchy.

2. Dynamic programming to the best prunning.

k-meang] | k-medi

CLUSTERING
« Used in practice.
E.g., [Filippova-Gadani-Kingsford, BMC Informatics] JRLLAAALD ., R .
. ': ; G+ -““ .0' X a 0:.
* Strong properties. e a S reraneet :
E.g., best known algos for perturbation resilient ™, (S e
instances for k-median, k-means, k-center. RELTPTEL T, R T O

[Balcan-Liang, STCOMP 2016]  [Awasthi-Blum-Sheffet, IPL 2011]
[Angelidakis-Makarychev-Makarychev, STOC 2017]

PR: small changes to input distances shouldn't move optimal solution by much.
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Clustering: Linkage + Dynamic Programming

Our Results: a-weighted linkage+DP

Pseudo-dimension is O(log n),
so small sample complexity.

CLUSTERING

Given sample S, find best algo from this family in poly time.

Input 2: Input m:

E Input 1: ! & I:I I:I

r-_: § = = ¥ .
'!E:E"“ n‘r@ DI:I

o
Key Technical Challenge: small changes to the parameters of the algo

can lead to radical changes in the tree or clustering produced.
|

- |

Problem: a single change to an early decision by the linkage algo, can
snowball and produce large changes later on.



Clustering: Linkage + Dynamic Programming
Claim: Pseudo-dimension of a-weighted linkage + DP is O(log n), so
small sample complexity.

Key fact: If we fix a clustering instance of n pts and vary «, at most

0(n®) switching points where behavior on that instance changes.

R < | ——t—t—

a5 Al

So, the cost function is piecewise-constant with at most 0(n®) pieces.

———————

——————————————————

AER € l l l




Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dimension of a-weighted linkage + DP is O(log n), so
small sample complexity.

Key fact: If we fix a clustering instance of n pts and vary «, at most
0(n®) switching points where behavior on that instance changes.

R < | ——t—t—

Key idea:
« For a given «, which will merge
first, Ny and V5, or V3 and ]\f4

° Depends on which of (1 —a)d(p,q) + ad(p’,q") Or (1 —a)d(r,s) + ad(r’,s") is smaller.

* An interval boundary an equality for 8 points, so 0(n®) interval boundaries.



Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dimension of a-weighted linkage + DP is O(log n), so
small sample complexity.

Key idea: For m clustering instances of n points, 0(mn®) patterns.

zeR € —— >
AT AN
Jors A
* Pseudo-dim largest m for which 2™ patterns achievable.

* So, solve for 2™ < m n®. Pseudo-dimension is O(log n).



Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dimension of a-weighted linkage + DP is O(log n), so
small sample complexity.

For N = O(logn /€*), w.h.p. expected performance cost of best a over the
sample is e-close to optimal over the distribution

Claim: Given sample S, can find best algo from this family in poly time.

Algorithm
« Solve for all a intervals over the sample

CER <€ : : : '| " : '| " >

« Find the a interval with the smallest empirical cost



Clustering: Linkage + Dynamic Programming

Claim: Pseudo-dimension of a-weighted linkage + DP is O(log n), so
small sample complexity.
High level learning theory bit

Want to prove that for all algorithm parameters a:

1

5 Y1es cost, (1) close to E[cost,(D)].

Function class whose complexity want to control: {cost,: parameter a}.
Proof takes advantage of structure of dual class {cost;: instances I}.

costy(a) = cost,(I)

aE]R< >

e =
AN 2, Y
Jrs, Y K=



Partitioning Problems via IQPs

IQP formulation
Max XTAX — Zi,j ai,inXj
st.xe{-11}"

Many of these pbs are NP-hard.

E.g., Max cut: partition a graph into two pieces to
maximize weight of edges crossing the partition.

Input: Weighted graph G, w

. L 1—VjV; i
Output: Max gjee wiy (—;):

kit .. 1if v;, v opposite sign,
, O if same sign
var v; for node i, either +1 or -1



Partitioning Problems via IQPs

IQP formulation
Max XTAX — Zi,j ai,inXj
st.xe{-11}"

Algorithmic Approach: SDP + Rounding

1. Semi-definite programming (SDP) relaxation:
Associate each binary variable x; with a vector u;.
Max Zi,j ai,j(ui,u]-)
subject to|lu;|| = 1

2. Rounding procedure [soemans and Williamson '95]

« Choose a random hyperplane. L

« (Deterministic thresholding.) Set x; to -1 or 1 based on
which side of the hyperplane the vector u; falls on.



Parametrized family of rounding procedures

IQP formulation
Max XTAX — Zi,j ai,inXj
st.xe{-1,1}"
Algorithmic Approach: SDP + Rounding

1. SDP relaxation:

Associate each binary variable x; with a vector u;. Tnfeger Quadrafic
Programming (IQP)

Max Zi,j ai,j <ui’ ll]> Semidefini*e' Programming
SUbJCCT 1'0||lli|| =1 Relaxation (SDP)
. 5 6w 1-li s-li
2. S"Llnear' Round|n9 ........ , rounding po;:fj?; roul:jic;; )

[Feige&Landberg'06] u; [ margin s N/

Inside margin, Feasible solution to IQP
randomly round\, = /S /..

J outside margin,
round to -1.



Partitioning Problems via IQPs

Our Results: SDP + s-linear rounding

Pseudo-dimension is O(log n), so small sample complexity.

Key idea: expected IQP objective value is piecewise quadratic
in % with n boundaries.

IQP
objective
value L~
N—— \_
S

Given sample S, can find best algo from this family in poly time.

+ Solve for all ¢ intervals over the sample, find best parameter
over each interval, output best parameter overall.



Data driven mechanism design

 Similar ideas to provide sample complexity guarantees for
data-driven mechanism design for revenue mC(XImIZC(TIOH
for multi-item multi-buyer scenarios. "

[Balcan-Sandholm-Vitercik, EC'18]

« Analyze pseudo-dim of {revenuey: M € M} for multi-item multi-
buyer scenarios.

Many families: second-price auctions with reserves, posted pricing,
two-part tariffs, parametrized VCG auctions, lotteries, etc.



Sample Complexity of data driven mechanism design

« Analyze pseudo-dim of {revenuey: M € M} for multi-item multi-
buyer' scenarios. [Balcan-Sandholm-Vitercik, EC'18]

*  Many families: second-price auctions with reserves, posted pricing,
two-part tariffs, parametrized VCG auctions, lotteries, etc.

« Key insight: dual function sufficiently structured.

« For a fixed set of bids, revenue is piecewise linear fnc of parameters.

2nd-price auction with reserve Posted price mechanisms

Revenue Revenue

A

2nd

highest
bid o
1 i >
ond Highest Reserve r
highest bid

bid



Structure of the Talk

« Data driven algo design as batch learning.
* A formal framework.

 Case studies: clustering, partitioning pbs,
auction problems.

 Data driven algo design via online learning.



Online Algorithm Selection

+  So far, batch setting: collection of typical instances given upfront.

[Balcan-Dick-Vitercik, FOCS 2018] online and private alg. selection.

eeeeee

Cannot use known techniques.

+ Identify general properties (piecewise Lipschitz fns with
dispersed discontinuities) sufficient for strong bounds.

- Show these properties hold for many alg. selection pbs.



Online Algorithm Selection via Online Optimization

Online optimization of general piecewise Lipschitz functions

Oneachroundte{1,.., T}
1. Online learning algo chooses a parameter p,
2. Adversary selects a piecewise Lipschitz function u: ¢ — [0, H]
 corresponds to some pb instance and its induced scoring fnc

Payoff: score of the parameter we selected u.(p,).

3. Get feedback: Full information: observe the function u.(-)
Bandit feedback: observe only payoff u.(p,).

Goal: minimize regret: max Yie1ue(p) — E[X{Z1 uc(py)]

T Our cumulative
Performance of best performance

parameter in hindsight



Online Regret Guarantees

Existing techniques (for finite, linear, or convex case): select p;
probabilistically based on performance so far.

*  Probability exponential in performance [Cesa-Bianchi and Lugosi 2006]
- Regret guarantee: max Yiiue(p) — E[XE; u(p)] = O(VT x )
No-regret: per-round regret approaches O at rate 0(1/VT).

Challenge: if discontinuities, cannot get no-regret.

Adversary can force online algo to "play 20 questions” while hiding
an arbitrary real number.

Round 1: adversary splits parameter space in half and randomly chooses one
half to perform well, other half to perform poorly.

Round 2: repeat on parameters that performed well in round 1. Etc.

Any algorithm does poorly half the time in expectation but 3 perfect p.

To achieve low regret, need structural condition.



Dispersion, Sufficient Condition for No-Regret

Piecewise Lipschitz Not disperse
function y,
\/'\ A
/;‘/ RN
L1 IW/I L1 A_
VR A
\/ Many boundaries within interval
/
Disperse
SN P
1 I /
Lipschitz within each S \/\ d
piece —hl—l—'Il—' N
A
Few boundaries within any
interval

{u1 (), ...,ur()} is (w, k)-dispersed if any ball of radius w contains
boundaries for at most k of the u;.



Dispersion, Sufficient Condition for No-Regret

Full info: exponentially weighted forecaster [ceso-gianchi-Lugosi 20061

us(p)>
1

On each round t € {1, ..., T}
- Sample a vector p; from distr. p:  pi(p) x exp

[N

t—

S

Our Results: Disperse

/
—m\—/l—\*l—'\\l:

Disperse fns, regret O(V/Td fnc of problem)).




Dispersion, Sufficient Condition for No-Regret

Full info: exponentially weighted forecaster [ceso-gianchi-Lugosi 20061

us(p)>
1

If Y u.(-) piecewise L-Lipschitz, {u;(*),...,ur(-)} is (w,k)-dispersed.

The expected regret is O (H( /leogv—lv + k) + TLw).

For most problems:

On eachroundte {1, .., T}
- Sample a vector p; from distr. p:  P:(p) x exp

[y

t—

S

Our Results: Regreft 6(\/T_d fnc of problem)).

Set w = 1/4/T, k = +/T x (fnc of problem)



Summary and Discussion

Strong performance guarantees for data driven algorithm selection
for combinatorial problems.

Provide and exploit structural properties of dual class for good
sample complexity and regret bounds.

Also differential privacy bounds.

Learning theory: techniques of independent interest beyond
algorithm selection.



Summary and Discussion

Strong performance guarantees for data driven algorithm selection
for combinatorial problems.

Provide and exploit structural properties of dual class for good
sample complexity and regret bounds.

Future Work:
Analyze other widely used classes of algorithms.

« Branch and Bound Techniques for MIPs (sacan-bick-Sandholm-Vitercik, cML'18]

« Parametrized Lloyds methods iBalcan-bick-white, NIPs'18)

Related in spirit to Hyperparameter tuning, AutoML, Metalearning.

Use our insights for pbs studied in these settings (e.g., tuning
hyper-parameters in deep nets)






