
The Snowball Effect of Uncertainty in Potential Games

Maria-Florina Balcan, Florin Constantin, and Steven Ehrlich

College of Computing, Georgia Institute of Technology
{ninamf,florin,sehrlich}@cc.gatech.edu

Abstract. Uncertainty is present in different guises in many settings,
in particular in environments with strategic interactions. However, most
game-theoretic models assume that players can accurately observe in-
teractions and their own costs. In this paper we quantify the effect on
social costs of two different types of uncertainty: adversarial perturba-
tions of small magnitude to costs (effect called the Price of Uncertainty
(PoU) [3]) and the presence of several players with Byzantine, i.e. arbi-
trary, behavior (effect we call the Price of Byzantine behavior (PoB)).
We provide lower and upper bounds on PoU and PoB in two well-studied
classes of potential games: consensus games and set-covering games.

1 Introduction

Uncertainty, in many manifestations and to different degrees, arises naturally
in applications modeled by games. In such settings, players can rarely observe
accurately and assign a precise cost or value to a given action in a specific state.
For example a player who shares costs for a service (e.g. usage of a supercomputer
or of a lab facility) with others may not know the exact cost of this service.
Furthermore, this cost may fluctuate over time due to unplanned expenses or
auxiliary periodic costs associated with the service. In a large environment (e.g.
the Senate or a social network), a player may only have an estimate of the
behaviors of other players who are relevant to its own interests. Another type of
uncertainty arises when some players are misbehaving, i.e., they are Byzantine.

The main contribution of this paper is to assess the long-term effect of small
local uncertainty on cost-minimization potential games [7]. We show that uncer-
tainty can have a strong snowball effect, analogous to the increase in size and
destructive force of a snowball rolling down a snowy slope. Namely, we show
that small perturbations of costs on a per-player basis or a handful of players
with Byzantine (i.e. adversarial) behavior can cause a population of players to
go from a good state (even a good equilibrium state) to a state of much higher
cost. We complement these results highlighting the lack of robustness under un-
certainty with guarantees of resilience to uncertainty. We assess the effects of
uncertainty in two important classes of potential games using the framework
introduced by [3]. The first class we analyze is that of consensus games [2, 6]
for which relatively little was previously known on the effect of uncertainty. The
second class we analyze is that of set-covering games [5], for which we improve
on the previously known bounds of Balcan et al. [3]. We review in detail the
uncertainty models and these classes of games, as well as our results below.

We consider both improved-response (IR) dynamics in which at each time
step exactly one player may update strategy in order to lower his (apparent)
cost and best-response (BR) dynamics in which the updating player chooses what
appears to be the least costly strategy. Any state is assigned a social cost, which
for most of our paper is defined as the sum of all players’ costs in that state.
We measure the effect of uncertainty as the maximum multiplicative increase in
social cost when following these dynamics. We instantiate this measure to each
type of uncertainty.

For the first uncertainty type, we assume adversarial perturbations of costs
of magnitude at most 1+ε for ε > 0 (a small quantity that may depend on game
parameters). That is, a true cost of c may be perceived as any value within
[1
1+εc, (1 + ε)c]. Consider a game G and an initial state S0 in G. We call a

state S (ε, IR)-reachable from S0 if there exists a valid ordering of updates in
IR dynamics and corresponding perturbations (of magnitude at most ε) leading
from S0 to S. The Price of Uncertainty [3] (for IR dynamics) given ε of game G
is defined as the ratio of the highest social cost of an (ε, IR)-reachable state S
to the social cost of starting state S0.

PoUIR(ε,G) = max
{ cost(S)
cost(S0)

: S0; S (ε, IR)-reachable from S0

}
For a class G of games and ε > 0 we define PoUIR(ε,G) = supG∈G PoUIR(ε,G)
as the highest PoU of any game G in G for ε. PoUBR is defined analogously.

For the second uncertainty type, we assume B additional players with ar-
bitrary, or Byzantine [8] behavior. We define the Price of Byzantine behavior
(PoB(B)) as the effect of the B Byzantine players on social cost, namely the
maximum ratio of the cost of a state reachable in the presence of B Byzantine
agents to that of the starting state.

PoB(B,G) = max
{ cost(S)
cost(S0)

: S0; S B-Byz-reachable from S0

}
where state S of G is B-Byz-reachable from S0 if some valid ordering of updates
by players (including the B Byzantine ones) goes from S0 to S. PoB(B,G) =
supG∈G PoB(B,G) for class G. PoB, like PoU, may depend on the dynamics1.

A low PoU or PoB shows resilience of a system to small errors by players in
estimating costs or behavior of others. In the games we study, social costs cannot
increase much without uncertainty (namely PoU(0) = PoB(0) are small), yet
modest instances of uncertainty (in terms of ε or B) can lead to significant
increases in costs (i.e. large PoU(ε) and PoB(B)). We introduce in the following
the classes of games we study and summarize our results.
Consensus games [6] model a basic strategic interaction: choosing one side or
the other (e.g. in a debate) and incurring a positive cost for interacting with
each agent that chose the other side. More formally, there are two colors (or
strategies), white (w) and red (r), which each player may choose; hence IR and

1 We omit parameters from PoU and PoB when they are clear from context.

2

BR dynamics coincide. Each player occupies a different vertex in an undirected
graph G with vertices {1, . . . , n} and edges E(G) (without self-loops). A player’s
cost is defined as the number of neighbors with the other color. We establish
PoU(ε) = Ω(n2ε3) for ε = Ω(n−1/3) and PoU(ε) = O(n2ε) for any ε. These
bounds are asymptotically tight for constant ε. We exactly quantify PoB(B)
as Θ(n

√
nB) by exhibiting an instance with Θ(n

√
nB) edges that is flippable

(i.e. it can flip from one monochromatic state to the other given B Byzantine
players) and then reducing any other consensus game to this instance.

Set-covering games [5] model many applications where all users of a resource
share fairly its base cost. These natural games fall in the widely studied class
of fair-cost sharing games [1]. In a set-covering game, there are m sets, each
set j with its own fixed weight (i.e. base cost) wj . Each of the n players must
choose exactly one set j (different players may have access to different sets)
and share its weight equally with its other users, i.e incur cost wj/nj(S) where
nj(S) denotes the number of users of set j in state S. We prove PoUIR(ε) =
(1 + ε)O(m2)O(logm) for ε = O(1

m) — this it is small for a small number of
resources even if there are many players. This improves over the previous bounds
of [3], which had an additional dependence on the number of players n. We also
improve the existing lower bound for these games (due to [3]) to PoUIR(ε) =
Ω(logpm) for ε = Θ(1

m) and any constant p > 0. Our new lower bound is
a subtle construction that uses an intricate “pump” gadget with finely tuned
parameters. A pump replaces, in a non-trivial recursive manner with identical
initial and final pump states, one chip of small cost with one chip of high cost.
Finally, we show a lower bound of PoUBR(ε) = Ω(εn1/3/ log n) for ε = Ω(n−1/3)
and m = Ω(n) which is valid even if an arbitrary ordering of player updates is
specified a priori, unlike the existing lower bound of [3].

We note that our lower bounds use judiciously tuned gadgets that create the
desired snowball effect of uncertainty. Most of them hold even if players must
update in a specified order, e.g. round-robin (i.e. cyclically) or the player to
update is the one with the largest reduction in (perceived) cost. Our upper
bounds on PoU hold no matter which player updates at any given step.

Due to the lack of space we only provide sketches for most proofs in this paper.
Full proofs appear in the long version of the paper [4].

2 Consensus Games

In this section, we provide lower and upper bounds regarding the effect of uncer-
tainty on consensus games. Throughout the section, we call an edge good if its
endpoints have the same color and bad if they have different colors. The social
cost is the number of bad edges (i.e. half the sum of all players’ costs) plus one,
which coincides with the game’s potential. Thus PoU(0) = PoB(0) = 1. Since
the social cost is in [1, n2], PoU(ε) = O(n2),∀ε and PoB(B) = O(n2),∀B.

3

2.1 Lower Bound and Upper Bound for Perturbation Model

Perturbation model. The natural uncertainty here is in the number of neighbors
of each color that a vertex perceives. We assume that if a vertex i has n′ neighbors
of some color, then a perturbation may cause i to perceive instead an arbitrary
integer in [1

1+εn
′, (1+ε)n′]. Since each action’s cost is the number of neighbors of

the other color, this is a cost perturbation model. In this model, only an ε = Ω(1
n)

effectively introduces uncertainty.2 We also assume ε ≤ 1 in this section.

Theorem 1. PoU(ε, consensus) = Ω(n2ε3) for ε = Ω(n−1/3) even for arbitrary
orderings of player updates.

Proof sketch. We sketch below the three components of our construction assum-
ing that the adversary can choose which player updates at any step. We can
show that the adversary can reduce an arbitrary ordering (that he cannot con-
trol) to his desired schedule by compelling any player other than the next one
in his schedule not to move.

– The output component has kout = Θ(1
ε (log n − 2 log 1

ε)) levels, where any
level i ≥ 0 has 1

ε (1 + ε)i nodes. Each node on level i ≥ 1 is connected to all
the nodes on levels i− 1 and i+ 1.

– The input component consists of two cliques, Kred and Kwhite, each of size
1/ε2, and each of these nodes is connected to the first output level. The
dynamics are “seeded” from the input component.

– There is an initializer gadget3 with kinit = 1
ε log 2

ε levels, where level i has
1
ε (1+ ε)i nodes. Again, each node on level i ≥ 1 is connected to all the nodes
on levels i − 1 and i + 1. Every node of the final level of the initializer is
connected to all nodes in the clique Kred.

We require ε ≥ n−1/3 so that the number Θ(1
ε3) of initializer nodes is at most

a constant fraction of the total n nodes. Then the number Θ(1
ε2 (1 + ε)kout) of

output nodes will be a large fraction of the n nodes.
The initial coloring is: all output nodes white, Kred and Kwhite white, and

all initializer nodes white except for the first two levels which are red. We thus
initially have (1+ε)3

ε2 bad edges, all in the initializer. Throughout the dynamics, for
both the initializer and output components, the nodes in each level have the same
color, except for the level that is currently being updated. The schedule consists
of two epochs. The first epoch is for all the initializer nodes and the clique Kred

2 If ε < 1/3n, consider a node with r red neighbors, w white neighbors, and r > w.
Since r and w are both integers, r ≥ w+ 1. For a cost increasing move to occur, we
must have (1 + ε)2w ≥ r ≥ w+ 1. This implies that n ≥ w ≥ 1/(2ε+ ε2) ≥ 1/3ε > n.

3 Without this initializer, we can get a worse lower bound PoU(ε, consensus) =
Ω(n2ε4), for a wider range of ε = Ω(n−1/2), again for an arbitrary ordering. The
main difference is that Kred is initially red and the initial state has Θ(1

ε3
) bad edges.

In the long version of our paper, we additionally show that when the adversary can
control the ordering of updates to match its schedule, we can improve both this lower
bound and that of Theorem 1 to Ω(n2ε3) for the range ε = Ω(n−1/2).

4

to change color. Thereafter they are left alone. At this point, the adversary can
prevent the clique nodes from changing their color, and he can change the color
of nodes in the first output level at will. Indeed, these nodes have 1

ε2 neighbors
of either color in each clique and Θ(1

ε) neighbors in the second output level,
difference small enough to be overcome by a (1 + ε)-factor perturbation. The
second epoch has a phase for each two consecutive output levels i and i + 1 in
which these levels obtain their final color and then are never considered again.
This is achieved by changing all prior levels to the intended color of i and i+ 1.

In the final state we have the first two output levels colored red, the next two
colored white, then the next two red, and so on. The final number of bad edges
is Ω(n2ε). Since we started with only Θ(1

ε2) bad edges the number of bad edges
has increased by a factor of Ω(n2ε3). Thus PoU(ε, consensus) = Ω(n2ε3).

We note that the previously known lower bound of Ω(1 + nε) due to Balcan
et. al [3] was based on a much simpler construction. Our new bound is better by a
factor of at least n1/3 for ε = Ω(1/n3). We also note that since PoU(ε) = O(n2)
for any ε, it implies a tight PoU bound of Θ(n2) for any constant ε. We also
provide a PoU upper bound for consensus games that depends on ε. It implies
that the existing Θ(n2) lower bound cannot be replicated for any ε = o(1). The
proof is based on comparing the numbers of good and bad edges at the first
move that increases the social cost.

Theorem 2. PoU(ε, consensus) = O(n2ε).

2.2 Tight Bound for Byzantine Players

As described earlier, Byzantine players can choose their color ignoring their
neighbors’ colors (and therefore their own cost). Note however the Byzantine
players cannot alter the graph4. In this section we show a tight bound on the
effect of B Byzantine players, for any B: the effect of one Byzantine player is very
high, of order n

√
n and that the subsequent effect of B ≤ n Byzantine players

is proportional to the square root of B. As was the case for PoU , the effect of
uncertainty is decomposed multiplicatively into a power of n and a power of the
extent of uncertainty (ε for PoU, B for PoB).

Theorem 3. PoB(B, consensus) = Θ(n
√
n ·B).

The proof of the O(n
√
n ·B) upper bound follows from Lemmas 1, 2 and 3

below. The key to this bound is the notion of a flippable graph. For any consensus
game, let Sred be the configuration where all nodes are red, and similarly let
Swhite be the configuration where all nodes are white.

4 For the lower bound, we assume that a player will break ties in our favor when he
chooses between two actions of equal cost. With one more Byzantine player the same
bound holds even if players break ties in the worst possible way for us. For the upper
bound, we assume worst possible players’ moves from the social cost point of view.

5

Definition 1 (B-Flippable graph). Consider graph G on n vertices of which B
are designated special nodes and the other n − B nodes are called normal. We
say G is B-flippable (or just flippable when B is clear from context) if in the
consensus game defined on G where the special nodes are the Byzantine agents,
the state Swhite is B-Byz-reachable from Sred.

We now describe the concept of a conversion dynamics in a consensus game
which we use in several of our proofs. In such a dynamics, we start in a state
where all vertices are red and have Byzantine players change their color to white.
Then all normal nodes are allowed in a repeated round-robin fashion to update,
so long as they are currently red. This ends when either every vertex is white or
no vertex will update its color.

We note that in a flippable graph the conversion dynamics induces an order-
ing of the normal vertices: nodes are indexed by how many other white nodes
are present in total at the state when they change color to white. We note
that there may be more than one valid ordering. In the following with each
B-flippable graph, we shall arbitrarily fix a canonical ordering (by running the
conversion dynamics). Where there is sufficient context, we shall use v a vertex
interchangeably with its index in this ordering. Using this ordering we induce
a canonical orientation by orienting edge uv from u to v if and only if u < v.
We also orient all edges away from the B special nodes. To simplify notation,
we shall write vin = |δ−(v)| and vout = |δ+(v)| for a vertex v’s in-degree and
out-degree respectively. We note that by construction, for a flippable graph we
have vin ≥ vout. One can easily show the following:

Claim 1. A graph is B-flippable if and only if there exists an ordering on the
n−B normal vertices of the graph such that, in the canonical orientation of the
edges, every normal vertex v has vin ≥ vout. A graph is B-flippable if and only
if for every pair of states S, S′, S is B-Byz-reachable from S′.

Lemma 1. Fix a game G on n vertices, B of which are Byzantine, and a
pair of configurations S0 and ST such that ST is B-Byz-reachable from S0. If
cost(S0) ≤ n, then there exists a B-flippable graph F with at most 3n nodes and
at least cost(ST) edges (in total).

Proof Sketch. The proof has two stages. In the first stage, we construct a consen-
sus game G′ and configuration S′T such that cost(S′T) ≥ k, S′T is B-Byz-reachable
from Sred, but V (G′) ≤ 3n. In the second stage, we delete some edges of G′ to
create a graph G′′, showing that Swhite is B-Byz-reachable from Sred in G′′ (thus
G′′ is flippable) while ensuring that E(G′′) ≥ k.

We first describe the construction of G′. We separate the nodes of G into two
sets Ir and Iw based on their color in the initial configuration S0. For each edge
that is bad in S0 we introduce a ‘mirror’ gadget. A mirror consists of a single
node whose color the adversary can easily control and a helper node to change
the color. The nodes of G′ are all the nodes of G and at most 2n nodes from
mirror gadgets. The edges of G′ are all edges that are good in state S0 of G, and
at most 5n edges introduced by the mirrors.

6

In G′, the nodes of Ir and Iw interact with each other only indirectly, via
mirrors that are controlled by the adversary. Using this fact, the adversary can
simulate the dynamics from S0 to ST on Ir. For any state S, let S̄ be the state
in which every node has the opposite color from in S. The adversary can also
simulate the dynamics over states in which the color of every node has been
reversed. Thus the adversary can simulate dynamics from S̄0 to S̄T in Iw.

At the end of this process, every edge that was bad in ST is also bad in this
final state S′T . Note that the initial state is one in which all nodes in Ir are red,
and all nodes in Iw are red (since they are red in S̄0). Thus the dynamics lead
to S′T from Sred. Thus we have created G′ and a state ST where cost(S′T) ≥ k
and G′ is flippable, but |V (G′)| ≤ 3n.

In the second stage, we identify a set of edges in G′, and delete them to form
G′′. This set of edges are precisely those whose endpoints both remain red in the
conversion dynamics. We show that these edges are not bad in any state, hence
none of these edges are bad in S′T , and secondly in G′′, Swhite is B-Byz-reachable
from Sred. The first statement implies that cost(S′T) ≤ |E(G′′)|, and the second
statement implies that G′′ is flippable, which was what we wanted.

Definition 2 (Fseq(n,B)). Let Fseq(n,B) be the B-flippable graph with n − B
normal nodes with labels {1, 2, . . . , n−B}. There is an edge from each special
node to each normal node. Every normal node v satisfies vout = min(vin, (n −
B)− v), and v is connected to the nodes of {v + 1, . . . , v + vout}. This is called
the no-gap property. In general, if k = min(vin, n − v) then v has out-arc set
{v + 1, . . . , v + k}.

By claim 1 we immediately get that Fseq is B-flippable. Our upper bound
follows by showing |E(F)| ≤ |E(Fseq(n,B))| for any flippable graph F on n
vertices. For this, we take a generic flippable graph and transform it into Fseq
without reducing the number of edges. We say there is a gap(a, b, c) for a < b < c
if vertex a does not have an edge to b but does have an edge to c. Note that this
is defined in terms of an ordering on the vertices; we use the conversion ordering
for each graph.

Lemma 2. A flippable graph on n vertices has at most as many edges as
Fseq(n,B).

Proof sketch. We prove this by inducting on the lexicographically minimal gap
of flippable graphs. If a gap is present, then we can either add or move edges
to create a lexicographically greater gap. Eventually this eliminates all gaps
without reducing the number of edges. Since a graph with no gaps is a subgraph
of Fseq(n,B), we have bounded the number of edges in any flippable graph.

Our last lemma tightly counts the number of edges in Fseq(n,B) via an
inductive argument and thus, by Lemma 2, it also upper bounds the number of
edges in any flippable graph.

Lemma 3. If B ≤ n
2 , the flippable graph Fseq(n,B) has Θ(n

√
nB) edges.

7

Proof sketch. We count the edges by counting the number of in-edges to a given
node. By induction, we show that the first node to have jB in-edges has index(
j+1
2

)
B + 1. This implies that any node k ∈ [n] has Θ(

√
kB) in-edges. Summing

over all n nodes, we find there are Θ(n
√
nB) edges in the graph in total.

Proof of Theorem 3. We first argue that the PoB(B, consensus) = O(n
√
nB).

Consider a consensus graph G on n nodes, and a pair of configurations S0 and
ST B-Byz-reachable from S0. If B ≥ n/2, then the statement is trivial, so we
may assume that B < n/2. We assume cost(S0) < n: if cost(S0) ≥ n, since G has
fewer than n2 edges, we get PoB(B,G) ≤ n2/n = n. Denote by k := cost(ST)−1
the number of bad edges in ST . By Lemma 1, we demonstrate a flippable graph
F on fewer than 3n nodes, with at least k edges. By Lemma 2, F has at most
as many edges as Fseq(3n,B), which has only O(n

√
nB) edges by Lemma 3. We

get PoB(B) = O(n
√
nB).

It will now be enough to prove that PoB(B,Fseq(n,B)) = Ω(n
√
nB). We

claim now that if G is a flippable graph with m edges, then PoB(B,G) ≥ m
2 .

We get this via the following probabilistic argument using the fact that the
adversary can color G arbitrarily (by claim 1). Consider a random coloring of
the graph, where each node is colored white independently with probability 1/2.
The probability an edge is bad is 1/2, so in expectation, there are m/2 bad edges.
Thus some state has at least m/2 bad edges and it is reachable via dynamics
from any other state (claim 1) since G is a flippable graph. This establishes
PoB(B,G) ≥ m

2 . Since Fseq(n,B) is flippable and it has m = Θ(n
√
nB) edges,

we get PoB(B,Fseq(n,B)) = Ω(n
√
nB).

In contrast to the existing bound PoB(1) = Ω(n), our bound is parametrized
by B, sharper (by a Θ(

√
n) factor for B = 1) and asymptotically tight.

3 Set-Covering Games and Extensions

Set-covering games (SCG) are a basic model for fair division of costs, and have
wide applicability, ranging e.g. from a rental car to advanced military equipment
shared by allied combatants. A set-covering game admits the potential function
Φ(S) =

∑m
j=1

∑nj(S)
i=1

wj
i =

∑m
j=1 Φ

j(S) where Φj(S) =
∑nj(S)
i=1

wj
i . Φj(S) has

an intuitive representation as a stack of nj(S) chips, where the i-th chip from
the bottom has a cost of wj/i. When a player i moves from set j to j′ one can
simply move the topmost chip for set j to the top of stack j′. This tracks the
change in i’s costs, which equals by definition the change in potential Φ. We will
only retain the global state (number of players using each set) and discard player
identities. This representation has been introduced for an existing PoUIR upper
bound of [3]; we refine it for our improved upper bound.

SCGs have quite a small gap between potential and cost [1]: cost(S)≤Φ(S)≤
cost(S)Θ(log n),∀S. Hence without uncertainty, the social cost can only increase
by a logarithmic factor: PoU(0) = PoB(0) = Θ(log n).

8

3.1 Upper Bound for Improved-Response

We start with an upper bound on PoUIR in set-covering games that only depends
on the number m of sets.

Theorem 4. PoUIR(ε, set-covering) = (1 + ε)O(m2)O(logm) for ε = O(1
m).

In particular for ε = O(1
m2) we obtain a logarithmic PoUIR(ε).

Proof of Theorem 4. We let J0 denote the sets initially occupied and W0 =
cost(S0) =

∑
j∈J0

wj be their total weight. We discard any set not used during
the dynamics.

With each possible location of a chip at some height i (from bottom) in some
stack j, we assign a position of value5 wj/i. Thus a chip’s cost equals the value of
its position in the current state. We will bound the cost of the m most expensive
chips by bounding costs of expensive positions and moves among them.

It is easy to see that any set has weight at most W0(1 + ε)2(m−1) (clearly the
case for sets in J0). Indeed, whenever a player moves to a previously unoccupied
set j′ from a set j, the weight of j′ is at most (1 + ε)2 times the weight of j; one
can trace back each set to an initial set using at most m− 1 steps (there are m
sets in all). We also claim that at most mi(1+ε)2mpositions have value at least
W0
i ,∀i: indeed positions of height i(1 + ε)2m or more on any set have value less

than W0
i since any set has weight at most W0(1 + ε)2(m−1).

Fix a constant C > (1 + ε)2m (recall ε = O(1
m)). Note that any chip on a

position of value less than W0
m in S0 never achieves a cost greater than W0

m (1 +
ε)2Cm

2
. Indeed, by the reasoning above for i = m, there are at most m · m ·

(1 + ε)2m ≤ Cm2 positions of greater value. Thus the chip’s cost never exceeds
W0
m (1 + ε)2Cm

2
as it can increase at most Cm2 times (by an (1 + ε)2 factor).

We upper bound the total cost of the final m most expensive chips, as it
is no less than the final social cost: for a set, its weight equals the cost of its
most expensive chip. We reason based on chips’ initial costs. Namely, we claim
h(i) ≤ W0

i−1 · (1 + ε)2Cm
2
,∀i ∈ [m], where h(i) denotes the cost of ith most

expensive chip in the final configuration. If this chip’s initial cost is less than
W0
m then the bound follows from the claim above. Now consider all chips with

an initial cost at least W0
m . As argued above, at most Cm2 positions have value

W0
m or more, and any of these chips increased in cost by at most (1 + ε)2Cm

2
.

A simple counting argument6 shows that for any i, there are at most i chips of
initial cost at least W0

i and thus h(i) ≤ W0
i−1 · (1 + ε)2Cm

2
,∀i.

5 We refer to the weight of a set, the cost of a chip and the value of a position
6 We claim that for any k, there are at most k chips of initial cost at least W0

k
. Let J0,

be the set of initially used resources. For each j ∈ J0, let rj be set j’s fraction of the
initial weight (i.e. wj = rjW0), and let pj be the number of initial positions with value

greater than W0
k

in set j. We have
wj
pj

=
rjW0
pj
≥ W0

k
, implying pj ≤ krj . Counting the

number of initial positions with sufficient value yields
P
j pj ≤

P
j krj = k

P
j rj = k

since
P
j rj = 1.

9

As the ith most expensive chip has cost at most W0
i−1 (1+ε)2Cm

2
(at most i−1

chips have higher final cost),∑m
i=1 h(i) = h(1) +

∑m
i=2 h(i) ≤ h(1) +

∑m
i=2

W0
i−1 (1 + ε)2Cm

2

= O(W0(1 + ε)2m +W0(1 + ε)2Cm
2

logm) = W0 · (1 + ε)O(m2)O(logm)

As desired, PoUIR(ε, set-covering) = (1+ε)O(m2)O(logm) as the final social cost
is at most

∑m
i=1 h(i).

The existing bound [3] is PoUIR(ε) = O((1+ε)2mn log n). Unlike our bound,
it depends on n (exponentially) and it does not guarantee a small PoUIR(ε) for
ε = Θ(1

m2) and m = o(n). This bound uses chips in a less sophisticated way,
noting that any chip can increase its cost (by (1 + ε)2) at most mn times.

Our technique also yields a bound of PoUBR(ε) = (1 + ε)O(m2)O(logm) for
ε = O(1

m) in matroid congestion games [3] – see the full version for details [4].
These games are important in that they precisely characterize congestion games
for which arbitrary BR dynamics (without uncertainty) converge to a Nash equi-
librium in polynomial time.

3.2 Lower Bound for Improved-Response

Our upper bound showed that PoUIR(ε) is logarithmic for ε = O(1
m2). A basic

example (one player hopping along sets of cost 1, (1 + ε)2, . . . , (1 + ε)2(m−1)),
applicable to many classes of games, yields the lower bound (1 + ε)2(m−1) ≤
PoUIR(ε, set-covering). In fact, this immediate lower bound was the best known
on PoUIR(ε). For ε = ω(1

m), we get that PoUIR(ε) is large. An intriguing ques-
tion is what happens in the range [ω(1

m2), Θ(1
m)], in particular for natural un-

certainty magnitudes such as ε = Θ(1
m) or ε = Θ(1

n).
In this section we show that for ε = Θ(1

min(m,n)), PoU can be as high as
polylogarithmic. We provide a construction that repeatedly uses the snowball
effect to locally increase one chip’s cost, without other changes to the state.
Our main gadget is a pump, which is used as a black box in the proof. A pump
increases a chip’s cost by α = log n′, where n′ = min(m,n). We use p pumps to
increase each chip’s cost by a Ω(logp n′) factor. As pumps are “small”, the total
cost increase is Ω(logp n′).

Theorem 5. PoUIR(ε, set-covering) = Ω(logp min(m,n)), for ε = Θ(1
min(m,n))

and constant p > 0.

Before providing a sketch of Theorem 5, we provide the formal definition of
a pump. An (α,W)-pump uses O(1

ε) sets and O(2α) players to increase, one by
one, an arbitrary number of chip costs by an α factor from W/α to W . For ease
of exposition, we assume m = Θ(n) and we only treat p = 2, i.e. how to achieve
PoUIR(1

n) = Ω(log2 n). For general p, we use p pump gadgets instead of two.

Definition 3 (Pump). An (α,W)-pump P is an instance of a set-covering game
specified as follows:

10

– The number mP of sets used is O(1
ε). For our choice of ε, mP = O(n). The

total weight WP of all sets in P that are initially used is in (2αW, e2αW).
The number of players used is nP = 2α+1 − 2.

– Within O(n3) moves of IR dynamics contained within the pump, and with a
final state identical to its initial state, a pump can consume any chip of cost
at least W/α to produce a chip of cost W .

Proof sketch of Theorem 5. Let N :=α22α. The number of players will be n :=
N + nP1 + nP2 . Thus α=Θ(log n). Note that each player can use any set.

We use two pumps, an (α, 1/α) pump P1, and a (α, 1) pump P2. Aside
from the pumps, we have Type-I, Type-II and Type-III sets, each with a weight
of 1/α2, 1/α and 1 respectively. At any state of the dynamics, each such set
will be used by no player or exactly one player. In the latter case, we call the
set occupied. We have N Type-I sets, 1 Type-II set, and N Type-III sets, i.e.
m := 2N + 1 +mP1 +mP2 = Θ(n) sets in all.

Let cfg(i, j, k) refer to the configuration with i Type-I sets occupied, j Type-
II sets occupied, and k Type-III sets occupied. We shall use 2N +1 intermediate
states, denoted statei. Our initial state is state0 = cfg(N, 0, 0), and our final
configuration will be state2N = cfg(0, 0, N). In general, state2i = cfg(N − i, 0, i)
and state2i+1 = cfg(N − i − 1, 1, i). Thus we want to move each player on a
Type-I set (initially) to a corresponding Type-III set, an α2 increase in cost. To
this purpose, we will pass each such player through the first pump and move it
on the Type-II set. This achieves the transition from state2i to state2i+1. Since
the player’s cost is increased by an α factor (from 1

α2 to 1
α), we can pass it

through the second pump and then move it on the Type-III set. This achieves
the transition from state2i+1 to state2i+2.

The social cost of our initial configuration is W0 = N · 1
α2 + WP1 + WP2 ≤

2α + e · 1
α2α + e · 2α ≤ 7 · 2α. The final social cost (excluding the pumps) is at

least N = α22α. Thus PoU = Ω(α2), and α = Θ(log n).
Finally, we note that the pump is constructed using 1 + 1/ε sets s0, . . . , s 1

ε

where set si has weight W (1 + ε)i. Additionally there are α ‘storage’ sets tj
with weight 2W/j. In the initial configuration, the sets s1, . . . , s2α are occupied,
with set si having max(0, α − dlog2 1 + ie) players on it, for i ≥ 1. s0 also
has α − 1 players. The pump is activated by a chip of cost W/α moving onto
set s0. The chips then advance into a configuration where set si has precisely
max(0, α−d 1ε−i+1e) chips. Note that this roughly doubles the cost of each chip.
The chips on set s 1

ε
then use the storage sets to capture their current cost. The

chip in storage with cost 2W exits the pump, and the other chips in storage fill
up set s0. All the other chips can return to the initial configuration by making
only cost decreasing moves. Note that the chip to leave the pump is not the same
chip that entered.

In the full version of the paper, we show how our pump gadget can be tweaked
to provide a polylogarithmic lower bound on PoU for generalized set-covering
games with increasing delay functions, as long as they have bounded jumps,

11

i.e. if an additional user of a resource cannot increase its cost by more than a
constant factor.

3.3 Lower Bound for Best-Response
We also show that a significant increase in costs is possible for a large range of
ε even if players follow best-response dynamics with arbitrary orderings. This
construction will use more sets than players, and so will not contradict Theorem 4

Theorem 6. PoUBR(ε, set-covering) = Ω(εn1/3/ log n), for any ε = Ω(n−1/3).
This holds for any arbitrary ordering of the dynamics, i.e. no matter which player
is given the opportunity to update at any time step.

Proof sketch. The proof has two stages. Our first step provides a construction
which shows that in a set-covering game with best-response dynamics, the ad-
versary can compel an increase of social cost that is polynomial (of fractional
degree) in n. With our new construction, we then separately show that the ad-
versary can cause this increase even when it cannot control which players update
– we show that the adversary can cause only the relevant players to update.

We note that previous work provided a stronger lower bound ofΩ(εn1/2/ log n) [3],
but which only works for a specific ordering of the updates.

4 Open Questions

It would be interesting to close our gap on PoU for consensus games. It would
also be interesting to study a model where the perturbations are not completely
adversarial, but instead chosen from some distribution of bounded magnitude.
Acknowledgements. This work was supported by NSF grants CCF-0953192
and CCF-1101215, by ONR grant N00014-09-1-0751, and by a Microsoft Re-
search Faculty Fellowship.

References

1. E. Anshelevich, A. Dasgupta, J. M. Kleinberg, É. Tardos, T. Wexler, and T. Rough-
garden. The price of stability for network design with fair cost allocation. In FOCS,
pages 295–304, 2004.

2. B. Awerbuch, Y. Azar, A. Epstein, V. S. Mirrokni, and A. Skopalik. Fast convergence
to nearly optimal solutions in potential games. In EC, 2008.

3. M.-F. Balcan, A. Blum, and Y. Mansour. The price of uncertainty. In EC, 2009.
4. M.-F. Balcan, F. Constantin, and S. Ehrlich. The snowball effect of uncertainty in

potential games. www.cc.gatech.edu/~ninamf/papers/snowball-long.pdf, 2011.
5. N. Buchbinder, L. Lewin-Eytan, J. Naor, and A. Orda. Non-cooperative cost sharing

games via subsidies. In SAGT, pages 337–349, 2008.
6. G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos. Convergence and approxi-

mation in potential games. In STACS, 2006.
7. D. Monderer and L. Shapley. Potential games. Games and Economic Behavior,

14:124–143, 1996.
8. T. Moscibroda, S. Schmid, and R. Wattenhofer. When selfish meets evil: byzantine

players in a virus inoculation game. In PODC, pages 35–44, 2006.

12

