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ABSTRACT
In this work we use techniques from the study of sample-
complexity in machine learning to reduce revenue maxi-
mizing auction problems to standard algorithmic questions.
These results are particularly relevant to designing good
pricing mechanisms for sponsored search. In particular we
apply our results to two problems: profit maximizing com-
binatorial auctions, and auctions for pricing semantically
related goods. Auctions for sponsored search can be viewed
as combinatorial auctions in that bidders have combinato-
rial (in the search terms and the location of the ad on the
search results page) preferences for having ads placed. Fur-
thermore since the space of all searches is much larger than
the set of advertisers, it is useful to use the semantic re-
lationship of search terms within pricing algorithms. Our
main results show how to take algorithms that solve these
pricing problems and convert them into auctions with good
game-theoretic properties and provably good performance.

1. INTRODUCTION
The typical approach to auctions for sponsored search is to
run a separate auction for every search. This has the poten-
tial not to perform optimally as it ignores implicit compe-
tition between advertisers bidding on semantically similar
keywords. This effect is more pronounced when keywords
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have only a few advertisers bidding on them but the se-
mantic space of similar keywords has many advertisers. In
the case where the advertisers preferences are all common
knowledge, this motivates the algorithmic problem of pricing
semantically related items. One of the main results of this
paper is to show, when the advertisers preferences are pri-
vate, how to use semantic pricing algorithms to construct
an auction that takes advantage of the available semantic
information.1

In this work, we use techniques from sample-complexity in
machine learning theory to reduce the design of revenue-
maximizing incentive-compatible mechanisms to algorithmic
pricing questions relevant to sponsored search. When the
number of agents is sufficiently large as a function of an ap-
propriate measure of complexity of the class of solutions be-
ing compared to, this reduction produces only a 1+ ǫ loss in
solution quality; that is, an algorithm (or β-approximation)
for the standard algorithmic problem can be converted to a
(1 + ǫ)-approximation (or β(1 + ǫ)-approximation) for the
incentive-compatible design problem. We do this in a fairly
general setting that includes the following as special cases:

Auction of digital goods to indistinguishable bidders.

In this problem, studied in [7, 4], we have a digital good
(a good of unlimited supply with zero marginal cost)
and n bidders, where each bidder i has some valuation
vi between 1 and h. Our goal is to sell our good so as
to make profit comparable to the best fixed price: the
price p maximizing p × |{i : vi ≥ p}|.

Attribute Auctions. Consider auctions for advertisements
based on search keys. As mentioned above, a problem
with having a separate auction for each key is that
this might not produce enough competition to achieve
good prices. Instead, we may want to group keys into
categories, say having one auction for all keys related
to sporting equipment, another for transportation, and
so on. Given some taxonomy (or just a collection of
possible groupings of keywords), we model the prob-
lem of determining the best partitioning of keywords
into markets as something we call an attribute auction.

1This is a fundamentally different approach from what is
known as “broad match” or “semantic match” where adver-
tisers are automatically entered into auctions for keywords
that are semantically related to their desired keyword. In
particular, we will never show an advertisers ad with any
keywords other than the ones they have explicitly selected.



In this problem, bidders are not indistinguishable but
instead have a set of publicly-known attributes, such
as the keywords they are interested in, and the goal
is to achieve revenue comparable to the best pricing
function over these attributes from some class G. For
example, [3] considers the special case of the attribute
auction problem with 1-dimensional attributes and a
comparison class G of functions that partition bidders
into k contiguous “markets” and offer a separate price
in each.

In the case of advertisements, G might correspond to
partitions of keywords in the taxonomy into k cate-
gories.

Item-pricing in combinatorial auctions. Profit maximiz-
ing combinatorial auctions are another generalization
of the digital good auction problem [8, 9]. In this set-
ting we have m different items, each in unlimited sup-
ply (like a supermarket), and bidders have valuations
on subsets of items. Our goal is to achieve revenue
nearly as large as the best auction that uses item prices
(assigns a separate price to each item), which is a natu-

ral comparison class. Our results imply that Õ(mh/ǫ2)
bidders are sufficient to achieve revenue close to the
optimum item-pricing (assuming the algorithmic prob-
lem can be solved for the given bidders), no matter how
complicated those bidders’ valuations are. In fact, our
bounds only require that the optimal revenue be large
compared to mh/ǫ2, which improves by roughly a fac-
tor of m over the results of [8].

Auctions for sponsored search can be viewed as a spe-
cial case of this problem where the items on which the
bidders have combinatorial preferences are the differ-
ent positions that ads can be shown on the result page
of a web search.

The generic type of reduction used in these settings is that
given an algorithm A (exact or approximate) for the non-
incentive-compatible optimization problem and given a set
of bidders S, we will split bidders randomly into two sets S1

and S2, run the algorithm separately on each set (perhaps
adding an additional penalty term to the objective to penal-
ize solutions that are too “complex” according to some mea-
sure), and then apply the solution found on S1 to S2 and the
solution found on S2 to S1. Sample-complexity results from
machine learning theory can then give a guarantee on the
quality of the results if the number of bidders is sufficiently
large compared to some notion of the complexity of the com-
parison class or proposed solution. However, from a learning
perspective, these mechanism-design settings present a num-
ber of technical challenges: in particular, the loss function is
discontinuous and asymmetric, and the range of bid values
may be large.

2. DEFINITIONS
We will be considering mechanism design problems of the
following general form. We have a set S of n bidders, and we
assume that each bidder i has some private information privi

(like how much they are willing to pay for a digital good),
as well as public information pubi (such as their location in
a network). The game itself will be defined by an abstract
space of legal offers (like an offer to sell a good at $17)

together with a mapping ρ that defines how much profit a
given offer yields from a given bidder. For example, in the
case of auctioning a digital good, ρ(“offer $17”, privi) = 17
if privi ≥ 17 and 0 otherwise. We can think of ρ as defining
the assumption about how agents behave as a function of
their private values.

Definition 1. A comparison class G of pricing func-

tions is a set of functions g that map the public informa-

tion of a bidder to an offer. The profit of a function g is
∑

i ρ(g(pubi), privi). Note that we are implicitly considering

only unlimited supply mechanism design problems, because

the profit from bidder i does not depend on whether g received

profit from other bidders j.

Given a comparison-class G, the algorithm design problem
is: given both the public and private information in S, find
the g ∈ G of highest total profit OPTG . In our reductions,
we may also want to perform “structural risk minimization”,
which adds additional fake penalties to different functions g
based on some measure of their complexity, in which case
we will need to assume we have an algorithm that optimizes
revenue minus penalty. The reason for adding these penal-
ties is that they will help to prevent the algorithm from
“over-fitting” to its input: this will be important when, in
our reduction, we run an algorithm on some set S1 and apply
its results to a different set of bidders S2.

We now need to define what we mean by an incentive com-
patible mechanism. An incentive-compatible mechanism is
a function that takes in the public information of all the
bidders, plus the private information of all bidders except

the given bidder i and outputs an offer. Our goal will be
to design such a mechanism whose total profit is nearly as
large as the profit of the best function in comparison class
G.

While we look to compare our profit to the profit of the
best function from some class, our auction’s outcome will
not typically be representable as the result of using such a
function. Since the auction is based on randomly partition-
ing the bids into two sets, the function used for each set will
generally be different. This observation is not a drawback of
the technique we propose nor of our performance measures.2

One final point at this level of generality: we will assume
that we are given an upper bound h on the value of ρ; that
is, no individual bidder can influence profit by more than
h. This term will then come into our sample-complexity
bounds.

2.1 Examples
2In the special case of digital-good auctions Goldberg et
al. [6] give substantial justification for comparing auctions
which can use multiple prices (analogously pricing functions)
to an optimal single price profit: from a large class of nat-
ural auctions for profit maximization, none can beat the
profit of the optimal single sale price. Furthermore, as shown
by Goldberg and Hartline [5], multiple prices are inherently
necessary for profit maximizing auctions: there is no truth-
ful auction that always uses a single pricing function for
all bidders and obtains an profit comparable to the optimal
single price profit in worst case.



Auction of digital goods to indistinguishable bid-

ders: As described in the introduction, in this setting the
bidders have no public information (equivalently, all the bid-
ders have the same public information pub) and the private
information of bidder i is exactly its valuation vi for the dig-
ital good, which is a real number between 1 and h. Here, a
natural comparison class G = {gp} is the class of all func-
tions that offer a fixed price p, and ρ is a function defined
by ρ(p, privi) = p if p ≤ privi and ρ(p, privi) = 0 otherwise.

Attribute Auctions: This is the same as the setting above
except now each bidder i is associated a public attribute

pubi ∈ X where X is the attribute space. We view X as an
abstract space, but one can envision it as R

d, for example.
G is then a class of pricing functions from X to R+, such as
all linear functions or all functions that partition X into k
markets (say based on distance to k cluster centers) and offer
a different price in each. The mapping ρ is a function from
R+×[1, h] to [0, h] defined (as in the case of indistinguishable
bidders) by ρ(p, privi) = p if p ≤ privi and ρ(p, privi) = 0
otherwise. We will give analyses of several interesting classes
of comparison functions in section 4.

Combinatorial Auctions: Here we have a set J of m
distinct items, each in unlimited supply. Each consumer
has a valuation vi(s) for each bundle s ⊆ J of items, which
measures how much receiving bundle s would be worth to
the consumer i. The private information of bidder i is given
by the vector of all its valuations on subsets of J (typically
bidders are assumed to be indistinguishable with no public
information). A natural class of comparison functions G
(studied in [9]) is the class of functions that assign a separate
price to each item, such that the price of a bundle is just the
sum of the prices of the items in it (called item-pricing). The
mapping ρ is then defined by assuming bidders will buy the
bundle (if any) with largest positive gap between its value
to them and its cost.

3. GENERIC REDUCTIONS
We are interested in reducing incentive-compatible mecha-
nism design to the standard algorithm design problem. Our
reductions will be based on Random Sampling. Let A be
an algorithm for the (non incentive-compatible) algorithmic
problem. The simplest mechanism that we consider, which
we call RSOPF(G,A) (Random Sampling Optimal Pricing
Function), is the following generalization of the random sam-
pling digital-goods auction from [7]:

1. Randomly split the bidders into two groups S1 and S2,
flipping a fair coin for each.

2. Run A to determine the best (or approximately best)
function g1 ∈ G over S1, and similarly the best (or
approximately best) g2 ∈ G over S2.

3. Finally, apply g1 over S2 and g2 over S1.

We will also consider variants of RSOPF(G,A)that discretize
G or perform some type of SRM (in which case we will need
to assume A can optimize over the given class).

Now, fix a setting (defined by ρ and G). In order to sim-
plify notation, for a given pricing function g and bidder i,

define g(i) to be the profit made by g from bidder i, i.e.,
ρ(g(pubi), privi). Similarly, for a set of bidders S′ ⊆ S, let
g(S′) =

∑

i∈S′ g(i). So, OPTG = maxg∈G g(S).

The following lemma is key to our analysis.

Lemma 1. Consider a fixed pricing function g and a profit

level p. If we randomly partition S into S1 and S2, then the

probability that |g(S1) − g(S2)| ≥ ǫ max [g(S), p] is at most

2e−ǫ2p/(2h).

We can now give our simplest generic reduction, for the case
that G is finite. Note that for particular settings, such as the
basic auction of a digital good (see [2]), we can get stronger
guarantees by a more refined analysis.

Theorem 2. Given comparison class G and a β-approximation

algorithm A for optimizing over G, then so long as OPTG ≥
βn and the number of bidders n satisfies

n ≥
8h

ǫ2
ln(2|G|/δ),

then with probability at least 1− δ, the profit of RSOPF(G,A)

is at least (1 − ǫ) OPTG /β.

In many natural cases, G consists of functions at different
“levels of complexity” k, such as partitioning bidders into k
markets. One natural approach to such a setting is to per-
form structural risk minimization (SRM), that is, to assign
a penalty term to functions based on their complexity and
then to run a version of RSOPF(G,A) in which A optimizes
profit minus penalty. Specifically, let Ḡ be a series of pricing
function classes G1 ⊆ G2 ⊆ . . ., and let pen be a penalty func-
tion defined over these classes. Also for simplicity assume
β = 1 (we have an exact algorithm for the underlying prob-
lem). We then define the procedure RSOPF-SRM(Ḡ,pen)as
follows:

1. Randomly partition the bidders into two sets, S1 and
S2, flipping fair coin for each.

2. Compute g1 to maximize maxk maxg∈Gk
[g(S1) − pen(Gk)]

and similarly compute g2 from S2.

3. Use price function g1 for bidders in S2 and g2 for bidders
in S1.

A straightforward extension of Theorem 2 to this case would
introduce a quadratic dependence in h, but we will be able
to reduce this to nearly linear. Define OPTk = OPTGk

.

Theorem 3. Assuming that we have an exact algorithm

for solving the optimization problem required by RSOPF-

SRM(Ḡ,pen) then for any given value of n, ǫ, and δ, with

probability at least 1− δ, the revenue of RSOPF-SRM(Ḡ,pen)

for pen(Gk) = 6
(1−ǫ)2

72h
ǫ2

ln(8k2|Gk|/δ) is

max
k

((1 − ǫ) OPTk −pen(Gk)).



Finally, in some cases, |G| is not a very good measure of the
true complexity of the class G (e.g., even for the simplest
case of fixed-price functions, if we do not discretize then G
is infinite). In that case we can use the notion of ǫ-covers.
To address this we need one more technical definition. For
g ∈ G let ρg be the profit function induced by g and let
ρ(G) = {ρg : g ∈ G}. That is, while g outputs an offer, ρg

outputs the profit made from the given bidder using that
offer. An ǫ-cover of ρ(G) with respect to L∞ is a set of
functions Cov(ǫ, ρ(G)) such that for every ρg ∈ ρ(G) there
exists f in the cover such that for every bidder i, |ρg(i) −
f(i)| ≤ ǫ. Let N(ǫ, ρ(G)) denote the size of the smallest
ǫ-cover. Now one can prove:

Theorem 4. If we randomly partition S into S1 and S2,

then n ≥ 8h2

ǫ2

(

ln
(

2
δ

)

+ lnN(ǫ/2, ρ(G))
)

bidders are suffi-

cient so that with probability at least 1− δ, for all functions

g ∈ G we have |g(S1) − g(S2)| ≤ ǫn.

Using standard results from learning theory [1] one can bound
the size of the ǫ-cover using notions such as fat-shattering di-
mension. However, for the special case of attribute auctions,
we will get better bounds — see Section 4.2.

4. ATTRIBUTE AUCTIONS
We begin by instantiating the results in Section 3 for market
pricing auctions, and then we give an analysis for general
pricing functions over the attribute space that improves on
the bounds of Section 3.

4.1 Market Pricing
For Attribute Auctions, one natural class of comparison
functions are those that partition bidders into markets in
some simple way and then apply a separate price in each
market. For example, suppose we define Gk to be the set of
functions that choose k bidders b1, . . . , bk, use these as clus-
ter centers to partition the entire set S into k markets based
on distance in attribute space to the nearest center, and
then offer a fixed price in each market. In that case, if we
discretize prices to powers of (1+ǫ), then clearly the number
of functions in Gk is at most nk(log1+ǫ h)k, so Theorem 2 im-

plies that so long as n ≥ 8h
ǫ2

[

ln(2/δ) + k lnn + k ln
(

log1+ǫ h
)]

and we can solve the algorithmic problem then with proba-
bility at least 1− δ, we can get profit at least (1− ǫ)OPTGk

.

Another interesting and general way to do market pricing
is the following. Let C be a class of subsets of X , which
we will call feasible markets. For k a positive integer, we
consider Fk+1(C) to be the set of all pricing functions of the
following form: pick k disjoint subsets s1,...,sk from C, and
k + 1 prices p0,...,pk discretized to powers of 1 + ǫ. Assign
price pi to bidders in si, and price p0 to bidders not in any
of s1,...,sk . For example, if X = R

d a natural C might be
the set of axis-parallel rectangles in R

d. The specific case of
d = 1 was studied in [3].

We can apply the results in Section 3 by using the machin-
ery of VC-dimension to count the number of distinct such
functions over any given set of bidders S. In particular,
let D = V Cdim(C) be the VC-dimension of C and assume
D < ∞. Define C[S] to be the number of distinct subsets

of S induced by C. Then, Sauer’s Lemma [1] states that

C[S] ≤
(

en
D

)D
, and therefore the number of different pric-

ing functions in Fk(C) over S is at most
(

log1+ǫ h
)k (

en
D

)kD
.

Thus applying Theorem 2 here we get:

Corollary 5. Given a β-approximation algorithm A for

optimizing over G = Fk(C), then so long as OPTG ≥ βn and

the number of bidders n satisfies

n ≥
16h

ǫ2

[

ln

(

2

δ

)

+ k ln

(

1

ǫ
ln h

)

+ kD ln

(

4kh

ǫ2

)]

,

then with probability at least 1 − δ, the profit of RSOPFG,A

is at least (1 − ǫ) OPTG /β.

Corollary 5 gives a guarantee in the revenue of RSOPFFk(C),A

so long as we have enough bidders n. In the following, k ≥ 0,
denote by OPTk = OPTFk(C). We can also show a bound
that holds for all n, but with an additive loss term, as follows
(we assume for simplicity here that β = 1):

Theorem 6. For any given value of n, k, ǫ, and δ, with

probability 1 − δ, the revenue of RSOPFFk(C),A is

(1 − ǫ) OPTk −h · rF (k, D, h, ǫ, δ)

where rF (k, D, h, ǫ, δ) = O
(

kD
ǫ2

ln
(

kDh
ǫδ

))

Finally, we can extend our results to the setting of Structural
Risk Minimization, where we want the algorithm to opti-
mize over k, by viewing the additive loss term as a penalty
function.

Theorem 7. Let Ḡ be the sequence of pricing function

classes F1(C), F2(C), . . . , Fn(C), and let pen(Fk(C)) be de-

fined appropriately. Then for any value of n with probability

1 − δ the revenue of RSOPF-SRMḠ,pen is

max
k

(

(1 − ǫ)OPTk −h · r′F (k, D, h, ǫ, δ)
)

where r′F (k, D, h, ǫ, δ) = O
(

kD
ǫ2

ln
(

kDh
ǫδ

))

.

4.2 General Pricing Functions over the At-
tribute Space

In this section we generalize the results in section 4.1 in
two ways: to general classes of pricing functions (not just
functions defined over the markets) and second, we remove
the need for discretization (note that we could use results in
section 3, but using the structure of the problem we show
here how we can get better bounds). For example, we might
want to consider a comparison class of linear functions over
the attributes, or quadratic functions, or perhaps functions
that divide the space into markets and are linear (rather
than constant) in each market.

Assume that X ⊆ Rd, and let G be a class of pricing func-
tions over the attribute space X . For g ∈ G let ρg : X ×
[1, h] → R be its associated profit function. Let’s denote
by ρ(G) be the class of the profit functions corresponding
to G. Consider OPTG = OPT(S,G) to be the profit of the



optimal pricing function in G over S. Now, let Gd be the
class of decision surfaces (in R

d+1) induced by G: that is, to
each g ∈ G we associate the set of all (x, v) ∈ X × [1, h] such
that g(x) ≤ v. Finally, let D = V Cdim(Gd). Assume in the
following that D < ∞. Then we can prove that ([2]):

Theorem 8. Given class G and a β-approximation algo-

rithm A for optimizing over G, then so long as OPTG ≥ βn
and the number of bidders n satisfies

n ≥
64h

ǫ2

[

ln

(

2

δ

)

+ D ln

(

64h

ǫ2

(

16

ǫ
ln h + 1

))]

,

then with probability at least 1− δ, the profit of RSOPF(G,A)

is at least (1 − ǫ) OPTG /β.

5. COMBINATORIAL AUCTIONS
For the case of combinatorial auctions described in Sec-
tion 2.1, where we want to achieve revenue nearly as high as
the best set of item-prices, we can directly apply Theorem
2. Specifically, let G be the class of item prices, discretized
to powers of (1 + ǫ). Then we have:

Corollary 9. Given a β-approximation algorithm A for

optimizing over G, then so long as OPTG ≥ βn and the

number of bidders n satisfies

n ≥
8h

ǫ2
(

m ln(log1+ǫ h) + ln(2/δ)
)

,

then with probability at least 1 − δ, the profit of RSOPFG,A

is at least (1 − ǫ) OPTG /β.

Auctions for sponsored search are combinatorial in nature.
Often several advertisements are shown with the outcome of
a search and advertisers may have a preference over the rel-
ative position of their ad. Furthermore, an advertiser might
also have their ad shown on searches for several different key-
words and may have a preference over the keywords. Item
pricing is natural for these settings and the results above
apply.

6. CONCLUSIONS
In this work we have made the connection between ma-
chine learning and mechanism design explicit. In doing
so, we obtain a unified approach to considering a variety
of profit maximizing mechanism design problems including
many that have been previously considered in the litera-
ture. These results are particularly relevant to designing
good pricing mechanisms for sponsored search.
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