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Abstract. Submodular functions are discrete functions that model laws
of diminishing returns and enjoy numerous algorithmic applications that
have been used in many areas, including combinatorial optimization,
machine learning, and economics. In this work we use a learning theo-
retic angle for studying submodular functions. We provide algorithms for
learning submodular functions, as well as lower bounds on their learn-
ability. In doing so, we uncover several novel structural results revealing
both extremal properties as well as regularities of submodular functions,
of interest to many areas.

Submodular functions are a discrete analog of convex functions that enjoy
numerous applications and have structural properties that can be exploited al-
gorithmically. They arise naturally in the study of graphs, matroids, covering
problems, facility location problems, etc., and they have been extensively studied
in operations research and combinatorial optimization for many years [8]. More
recently submodular functions have become key concepts both in the machine
learning and algorithmic game theory communities. For example, submodular
functions have been used to model bidders’ valuation functions in combinato-
rial auctions [12, 6, 3, 14], and for solving feature selection problems in graphical
models [11] or for solving various clustering problems [13]. In fact, submodularity
has been the topic of several tutorials and workshops at recent major conferences
in machine learning [1, 9, 10, 2].

Despite the increased interest on submodularity in machine learning, little
is known about the topic from a learning theory perspective. In this work, we
provide a statistical and computational theory of learning submodular functions
in a distributional learning setting.

Our study has multiple motivations. From a foundational perspective, sub-
modular functions are a powerful, broad class of important functions, so studying
their learnability allows us to understand their structure in a new way. To draw
a parallel to the Boolean-valued case, a class of comparable breadth would be
the class of monotone Boolean functions; the learnability of such functions has
been intensively studied [4, 5]. From an applications perspective, algorithms for
learning submodular functions may be useful in some of the applications where
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these functions arise. For example, in the context of algorithmic game theory
and economics, an auctioneer may use such an algorithm to sketch the players’
valuation functions before designing the auction, companies might want to learn
the valuation functions of their customers to in order to predict demand, etc.
More broadly, the problem of learning submodular functions is natural for a wide
range of settings where one would like to predict the value of some function over
objects described by features, where the features have positive but decreasing
marginal impact on the function’s value. Examples include predicting the rate of
growth of jobs in cities as a function of various amenities or enticements that the
city offers, predicting the sales price of a house as a function of features (such as
an updated kitchen, hardwood floors, extra bedrooms, etc.) that it might have,
and predicting the demand for a new laptop as a function of various add-ons
which might be included. In all of these settings (and many others) it is natural
to assume diminishing returns, making them well-suited to a formulation as a
problem of learning a submodular function.

To study the learnability of submodular functions, we introduce a learning
model for approximate distributional learning, which can be described as follows.
There is an underlying, fixed but unknown distribution over the subsets of the
ground set and a fixed but unknown submodular target function f∗, and the goal
is to algorithmically provide a good approximation of the target function with
respect to the underlying distribution, in polynomial time, based on a polynomial
number of samples from the underlying distribution. Formally, the goal is to
output a hypothesis function f that, with probability 1 − δ over the choice of
examples, is a good approximation of the target f∗ on most of the points coming
from D. Here “most” means a 1 − ϵ fraction and “good approximation” means
that f(S) ≤ f∗(S) ≤ α · f(S) for some approximation factor α. Our results on
learning submodular functions are presented in this new model, which we call
the PMAC model ; this abbreviation stands for “Probably Mostly Approximately
Correct”. Note that this learning model differs from the usual PAC-learning
model. In our model, one must approximate the value of a function on a set of
large measure, with high confidence. In contrast, the traditional PAC-learning
model usually studies learnability of much simpler classes of Boolean functions.
There, one must compute the value exactly on a set of large measure, with high
confidence.

We prove nearly matching α = O(n1/2) upper and α = Ω̃(n1/3) lower
bounds on the approximation factor achievable when the algorithm receives only
poly(n, 1/ϵ, 1/δ) examples from an arbitrary (fixed but unknown distribution).
We additionally provide a better constant approximation factor learning algo-
rithm for the case where the underlying distribution is a product distribution,
which is based on a new result showing a strong concentration of submodular
functions.

We start by showing that it is possible to PMAC-learn the general class
of non-negative, monotone submodular functions with an approximation factor
of

√
n+ 1. To prove this we use a structural result in [7] which shows that

any monotone, non-negative submodular function can be approximated within



a factor of
√
n+ 1 on every point by the square root of an additive function.

Using this result, we show how to convert the problem of learning a submodular
function in the PMAC model to the problem of learning a linear separator in
Rn+1 in the usual PAC model. We remark that an improved structural result for
any subclass of submodular functions immediately implies an improved analysis
of our algorithm for that subclass.

We introduce a new family of matroids to show a comparable lower bound:
any algorithm that uses a polynomial number of examples cannot PMAC-learn
the class of submodular functions with an approximation factor o(n1/3/log n).
In fact, we show that even weak PMAC-learning is not possible — any algorithm
can do only negligibly better than random guessing for this class of functions.
Moreover, this lower bound holds even if the algorithm is told the underlying
distribution and it is given the ability to query the function on inputs of its
choice and even if the queries are adaptive. In other words this lower bound
holds even in the PMAC model augmented with value queries.

This lower bound holds even for matroid rank functions, but it uses a distri-
bution on inputs which is a non-product distribution. It turns out that the use
of such a distribution is necessary: using Talagrand’s inequality, we prove that a
constant approximation factor can be achieved for matroid rank functions under
product distributions.

To prove the lower bound, we consider the following technical problem. We
would like find an injective map ρ : {0, 1}d → {0, 1}n and real numbers α ≪ β

such that every Boolean function f on {0, 1}d can be mapped to a non-negative,
monotone, submodular function f̃ on {0, 1}n satisfying f(x) = 0 ⇒ f̃(ρ(x)) ≤ α
and f(x) = 1 ⇒ f̃(ρ(x)) ≥ β. This implies a lower bound on learning submodular
functions with approximation factor β

α when d = ω(logn). A trivial construction
is obtained using partition matroids, with α = 0, β ≤ n

2 and d ≤ log(⌊n/β⌋);
here d is too small to be of interest. Another easy construction is obtained using
paving matroids, with α = n

2 , β = n
2 + 1, and any d = n−Ω(log4(n)); here d is

large, but there is only a small additive gap between α and β. Our new family of
matroids is a common generalization of partition and paving matroids. We use
them to obtain a construction with α = 16d, β = n1/3 and any d = o(n1/3); this
gives a large multiplicative gap between α and β.

Our work has several interesting by-products. One is the PMAC-learning
model, which studies both the probability mass of points on which the hypoth-
esis does well and the multiplicative approximation achieved on those points.
Another by-product of our work is our new family of matroids which reveals
interesting extremal properties of submodular functions. Roughly speaking, we
show that a small Boolean cube can be embedded into a large Boolean cube
so that any {0, 1}-valued function on the small cube maps to a function that
is submodular on the large cube but is now {α, β}-valued with α ≪ β (on the
points to which the small cube was embedded).
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