
Min-Sum Clustering of Protein Sequences with
Limited Distance Information

Konstantin Voevodski1, Maria-Florina Balcan2, Heiko Röglin3, Shang-Hua
Teng4, and Yu Xia5

1 Department of Computer Science, Boston University, Boston, MA 02215, USA
2 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

3 Department of Computer Science, University of Bonn, Bonn, Germany
4 Computer Science Department, University of Southern California, Los Angeles, CA

90089, USA
5 Bioinformatics Program and Department of Chemistry, Boston University, Boston,

MA 02215, USA

Abstract. We study the problem of efficiently clustering protein se-
quences in a limited information setting. We assume that we do not
know the distances between the sequences in advance, and must query
them during the execution of the algorithm. Our goal is to find an ac-
curate clustering using few queries. We model the problem as a point
set S with an unknown metric d on S, and assume that we have access
to one versus all distance queries that given a point s ∈ S return the
distances between s and all other points. Our one versus all query rep-
resents an efficient sequence database search program such as BLAST,
which compares an input sequence to an entire data set. Given a natural
assumption about the approximation stability of the min-sum objective
function for clustering, we design a provably accurate clustering algo-
rithm that uses few one versus all queries. In our empirical study we
show that our method compares favorably to well-established cluster-
ing algorithms when we compare computationally derived clusterings to
gold-standard manual classifications.

1 Introduction

Biology is an information-driven science, and the size of available data continues
to expand at a remarkable rate. The growth of biological sequence databases
has been particularly impressive. For example, the size of GenBank, a biologi-
cal sequence repository, has doubled every 18 months from 1982 to 2007. It has
become important to develop computational techniques that can handle such
large amounts of data. Clustering is very useful for exploring relationships be-
tween protein sequences. However, most clustering algorithms require distances
between all pairs of points as input, which is infeasible to obtain for very large
protein sequence data sets. Even with a one versus all distance query such as
BLAST (Basic Local Alignment Search Tool) [AGM+90], which efficiently com-
pares a sequence to an entire database of sequences, it may not be possible to

use it n times to construct the entire pairwise distance matrix, where n is the
size of the data set. In this work we present a clustering algorithm that gives
an accurate clustering using only O(k log k) queries, where k is the number of
clusters.

We analyze the correctness of our algorithm under a natural assumption
about the data, namely the (c, ε) approximation stability property of [BBG09].
Balcan et al. assume that there is some relevant “target” clustering CT , and
optimizing a particular objective function for clustering (such as min-sum) gives
clusterings that are structurally close to CT . More precisely, they assume that
any c-approximation of the objective is ε-close to CT , where the distance be-
tween two clusterings is the fraction of misclassified points under the optimum
matching between the two sets of clusters. Our contribution is designing an
algorithm that given the (c, ε)-property for the min-sum objective produces an
accurate clustering using only O(k log k) one versus all distance queries, and has
a runtime of O(k log(k)n log(n)). We conduct an empirical study that compares
computationally derived clusterings to those given by gold-standard classifica-
tions of protein evolutionary relatedness. We show that our method compares
favorably to well-established clustering algorithms in terms of accuracy. More-
over, our algorithm easily scales to massive data sets that cannot be handled by
traditional algorithms.

The algorithm presented here is related to the one presented in [VBR+10].
The Landmark-Clustering algorithm presented there gives an accurate clustering
if the instance satisfies the (c, ε)-property for the k-median objective. However, if
the property is satisfied for the min-sum objective the structure of the clustering
instance is quite different, and the algorithm given in [VBR+10] fails to find an
accurate clustering in such cases. Indeed, the analysis presented here is also quite
different. The min-sum objective is also considerably harder to approximate.
For k-median the best approximation guarantee is (3 + ε) given by [AGK+04].
For the min-sum objective when the number of clusters is arbitrary there is
an O(δ−1 log1+δ n)-approximation algorithm with running time nO(1/δ) for any
δ > 0 due to [BCR01]. In addition, min-sum clustering satisfies the consistency
property of Kleinberg [Kle03,ZBD09], while k-median does not [Kle03]. The min-
sum objective is also more flexible because the optimum clustering is not always
a Voronoi decomposition (unlike the optimum k-median clustering).

There are also several other clustering algorithms that are applicable in our
limited information setting [AV07,AJM09,MOP01,CS07]. However, because all
of these methods seek to approximate an objective function they will not neces-
sarily produce an accurate clustering in our model if the (c, ε)-property holds for
values of c for which finding a c-approximation is NP-hard. Other than [VBR+10]
we are not aware of any results providing both provably accurate algorithms and
strong query complexity guarantees in such a model.

2 Preliminaries

Given a metric space M = (X, d) with point set X, an unknown distance function
d satisfying the triangle inequality, and a set of points S ⊆ X, we would like to

find a k-clustering C that partitions the points in S into k sets C1, . . . , Ck by
using one versus all distance queries.

The min-sum objective function for clustering is to minimize
Φ(C) =

∑k
i=1

∑
x,y∈Ci

d(x, y). We reduce the min-sum clustering problem to
the related balanced k-median problem. The balanced k-median objective func-
tion seeks to minimize Ψ(C) =

∑k
i=1 |Ci|

∑
x∈Ci

d(x, ci), where ci is the me-
dian of cluster Ci, which is the point y ∈ Ci that minimizes

∑
x∈Ci

d(x, y). As
pointed out in [BCR01], in metric spaces the two objective functions are related
to within a factor of 2: Ψ(C)/2 ≤ Φ(C) ≤ Ψ(C). For any objective function Ω
we use OPTΩ to denote its optimum value.

In our analysis we assume that S satisfies the (c, ε)-property of [BBG09]
for the min-sum and balanced k-median objective functions. To formalize the
(c, ε)-property we need to define a notion of distance between two k-clusterings
C = {C1, . . . , Ck} and C ′ = {C ′

1, . . . , C
′
k}. As in [BBG09], we define the distance

between C and C ′ as the fraction of points on which they disagree under the
optimal matching of clusters in C to clusters in C ′:

dist(C,C ′) = min
σ∈Sk

1
n

k∑
i=1

|Ci − C ′
σ(i)|,

where Sk is the set of bijections σ: {1, . . . , k} → {1, . . . , k}. Two clusterings C
and C ′ are said to be ε-close if dist(C,C ′) < ε.

We assume that there exists some unknown relevant “target” clustering CT

and given a proposed clustering C we define the error of C with respect to CT as
dist(C,CT). Our goal is to find a clustering of low error. The (c, ε) approximation
stability property is defined as follows.

Definition 1. We say that the instance (S, d) satisfies the (c, ε)-property for
objective function Ω with respect to the target clustering CT if any clustering
of S that approximates OPTΩ within a factor of c is ε-close to CT , that is,
Ω(C) ≤ c ·OPTΩ ⇒ dist(C,CT) < ε.

We note that because any (1 + α)-approximation of the balanced k-median
objective is a 2(1 + α)-approximation of the min-sum objective, it follows that
if the clustering instance satisfies the (2(1 + α), ε)-property for the min-sum
objective, then it satisfies the (1 + α, ε)-property for balanced k-median.

3 Algorithm Overview

In this section we present a clustering algorithm that given the (1+α, ε)-property
for the balanced k-median objective finds an accurate clustering using few dis-
tance queries. Our algorithm is outlined in Algorithm 1 (with some implementa-
tion details omitted). We start by uniformly at random choosing n′ points that
we call landmarks, where n′ is an appropriate number. For each landmark that we
choose we use a one versus all query to get the distances between this landmark
and all other points. These are the only distances used by our procedure.

Our algorithm then expands a ball Bl around each landmark l one point
at a time. In each iteration we check whether some ball Bl∗ passes the test in

line 7. Our test considers the size of the ball and its radius, and checks whether
their product is greater than the threshold T . If this is the case, we consider all
balls that overlap Bl∗ on any points, and compute a cluster that contains all the
points in these balls. Points and landmarks in the cluster are then removed from
further consideration.

Algorithm 1 Landmark-Clustering-Min-Sum(S, d, k, n′, T)
1: choose a set of landmarks L of size n′ uniformly at random from S;
2: i = 1, r = 0;
3: while i ≤ k do
4: for each l ∈ L do
5: Bl = {s ∈ S | d(s, l) ≤ r};
6: end for
7: if ∃l∗ ∈ L : |Bl∗ | · r > T then
8: L′ = {l ∈ L : Bl ∩ Bl∗ 6= ∅};
9: Ci = {s ∈ S : s ∈ Bl and l ∈ L′};

10: i = i + 1;
11: remove points in Ci from consideration;
12: end if
13: increment r to the next relevant distance;
14: end while
15: return C = {C1, . . . Ck};

A complete description of this algorithm can be found in the next section.
We now present our theoretical guarantee for Algorithm 1.

Theorem 1. Given a metric space M = (X, d), where d is unknown, and a
set of points S, if the instance (S, d) satisfies the (1 + α, ε)-property for the
balanced-k-median objective function, we are given the optimum objective value
OPT, and each cluster in the target clustering CT has size at least (6+240/α)εn,
then Landmark-Clustering-Min-Sum(S, d, k, n′, αOPT

40εn) outputs a clustering that
is O(ε/α)-close to CT with probability at least 1 − δ. The algorithm uses n′ =

1
(3+120/α)ε ln k

δ one versus all distance queries, and has a runtime of O(n′n log n).

We note that n′ = O(k ln k
δ) if the sizes of the target clusters are balanced.

In addition, if we do not know the value of OPT, we can still find an accurate
clustering by running Algorithm 1 from line 2 with increasing estimates of T
until enough points are clustered. Theorem 2 states that we need to run the
algorithm n′n2 times to find a provably accurate clustering in this setting, but
in practice much fewer iterations are sufficient if we use larger increments of T . It
is not necessary to recompute the landmarks, so the number of distance queries
that are required remains the same. We next give some high-level intuition for
how our procedures work.

Given our approximation stability assumption, the target clustering must
have the structure shown in Figure 1. Each target cluster Ci has a “core” of
well-separated points, where any two points in the cluster core are closer than
a certain distance di to each other, and any point in a different core is farther

C1

C2

C3

d1

d2

d3

Fig. 1. Cluster cores C1, C2 and C3 are shown with diameters d1, d2 and d3, respec-
tively. The diameters of the cluster cores are inversely proportional to their sizes.

than cdi, for some constant c. Moreover, the diameters of the cluster cores are
inversely proportional to the cluster sizes: there is some constant θ such that
|Ci| · di = θ for each cluster Ci. Given this structure, it is possible to classify the
points in the cluster cores correctly if we extract the smaller diameter clusters
first. In the example in Figure 1, we can extract C1, followed by C2 and C3 if
we choose the threshold T correctly and we have selected a landmark from each
cluster core. However, if we wait until some ball contains all of C3, C1 and C2

may be merged.

4 Algorithm Analysis

In this section we give a complete description of our algorithm and present
its formal analysis. We describe the structure of the clustering instance that
is implied by our approximation stability assumption, and give the proof of
Theorem 1. We also state and prove Theorem 2, which concerns what happens
when we do not know the optimum objective value OPT and must estimate one
of the parameters of our algorithm.

4.1 Algorithm Description

A detailed description of our algorithm is given in Algorithm 2. In order to ef-
ficiently expand a ball around each landmark, we first sort all landmark-point
pairs (l, s) by d(l, s) (not shown). We then consider these pairs in order of in-
creasing distance (line 7), skipping pairs where l or s have already been clustered;
the clustered points are maintained in the set S̄.

In each iteration we check whether some ball Bl∗ passes the test in line 19.
Our actual test, which is slightly different than the one presented earlier, con-
siders the size of the ball and the next largest landmark-point distance (denoted
by r2), and checks whether their product is greater than the threshold T . If this
is the case, we consider all balls that overlap Bl∗ on any points, and compute
a cluster that contains all the points in these balls. Points and landmarks in
the cluster are then removed from further consideration by adding the clustered
points to S̄, and removing the clustered points from any ball.

Our procedure terminates once we find k clusters. If we reach the final
landmark-point pair, we stop and report the remaining unclustered points as
part of the same cluster (line 12). If the algorithm terminates without parti-
tioning all the points, we assign each remaining point to the cluster containing
the closest clustered landmark (not shown). In our analysis we show that if the
clustering instance satisfies the (1 + α, ε)-property for the balanced k-median
objective function, our procedure will output exactly k clusters.

The most time-consuming part of our algorithm is sorting all landmark-
points pairs, which takes O(|L|n log n), where n is the size of the data set and
L is the set of landmarks. With a simple implementation that uses a hashed
set to store the points in each ball, the total cost of computing the clusters and
removing clustered points from active balls is at most O(|L|n) each. All other
operations take asymptotically less time, so the overall runtime of our procedure
is O(|L|n log n).

Algorithm 2 Landmark-Clustering-Min-Sum(S, d, k, n′, T)
1: choose a set of landmarks L of size n′ uniformly at random from S;
2: for each l ∈ L do
3: Bl = ∅;
4: end for
5: i = 1, S̄ = ∅;
6: while i ≤ k do
7: (l, s) = GetNextActivePair();
8: r1 = d(l, s);
9: if ((l′, s′) = PeekNextActivePair()) ! = null then

10: r2 = d(l′, s′);
11: else
12: Ci = S − S̄;
13: break;
14: end if
15: Bl = Bl + {s};
16: if r1 == r2 then
17: continue;
18: end if
19: while ∃l ∈ L − S̄ : |Bl| > T/r2 and i ≤ k do
20: l∗ = argmaxl∈L−S̄ |Bl|;
21: L′ = {l ∈ L − S̄ : Bl ∩ Bl∗ 6= ∅};
22: Ci = {s ∈ S : s ∈ Bl and l ∈ L′};
23: for each s ∈ Ci do
24: S̄ = S̄ + {s};
25: for each l ∈ L do
26: Bl = Bl − {s};
27: end for
28: end for
29: i = i + 1;
30: end while
31: end while
32: return C = {C1, . . . Ck};

4.2 Structure of the Clustering Instance

We next describe the structure of the clustering instance that is implied by
our approximation stability assumption. We denote by C∗ = {C∗

1 , . . . , C∗
k}

the optimal balanced-k-median clustering with objective value OPT=Ψ(C∗).
For each cluster C∗

i , let c∗i be the median point in the cluster. For x ∈ C∗
i ,

define w(x) = |C∗
i |d(x, c∗i) and let w = avgxw(x) = OPT

n . Define w2(x) =
minj 6=i|C∗

j |d(x, c∗j).
It is proved in [BBG09] that if the instance satisfies the (1+α, ε)-property for

the balanced k-median objective function and each cluster in C∗ has size at least
max(6, 6/α) · εn, then at most 2ε-fraction of points x ∈ S have w2(x) < αw

4ε . In
addition, by definition of the average weight w at most 120ε/α-fraction of points
x ∈ S have w(x) > αw

120ε .
We call point x good if both w(x) ≤ αw

120ε and w2(x) ≥ αw
4ε , else x is called

bad. Let Xi be the good points in the optimal cluster C∗
i , and let B = S \∪Xi be

the bad points. Lemma 1, which is similar to Lemma 14 of [BBG09], proves that
the optimum balanced k-median clustering must have the following structure:

1. For all x, y in the same Xi, we have d(x, y) ≤ αw
60ε|C∗

i
| .

2. For x ∈ Xi and y ∈ Xj 6=i, d(x, y) > αw
5ε / min(|C∗

i |, |C∗
j |).

3. The number of bad points is at most b = (2 + 120/α)εn.

4.3 Proof of Theorem 1 and Additional Analysis

We next present the proof of Theorem 1. We give an outline of our arguments,
which is followed by the complete proof. We also state and prove Theorem 2.

Proof Outline We first give an outline of our proof of Theorem 1. Our algo-
rithm expands a ball around each landmark, one point at a time, until some
ball is large enough. We use r1 to refer to the current radius of the balls, and
r2 to refer to the next relevant radius (next largest landmark-point distance).
To pass the test in line 19, a ball must satisfy |Bl| > T/r2. We choose T such
that by the time a ball satisfies the conditional, it must overlap some good set
Xi. Moreover, at this time the radius must be large enough for Xi to be entirely
contained in some ball; Xi will therefore be part of the cluster computed in line
22. However, the radius is too small for a single ball to overlap different good
sets and for two balls overlapping different good sets to share any points. There-
fore the computed cluster cannot contain points from any other good set. Points
and landmarks in the cluster are then removed from further consideration. The
same argument can then be applied again to show that each cluster output by
the algorithm entirely contains a single good set. Thus the clustering output by
the algorithm agrees with C∗ on all the good points, so it must be closer than
b + ε = O(ε/α) to CT .

Complete Proof We next give a detailed proof of Theorem 1.

Proof. Since each cluster in the target clustering has more than (6 + 240/α)εn
points, and the optimal balanced-k-median clustering C∗ can differ from the

target clustering by fewer than εn points, each cluster in C∗ must have more than
(5+240/α)εn points. Moreover, by Lemma 1 we may have at most (2+120/α)εn
bad points, and hence each |Xi| = |C∗

i \B| > (3+120/α)εn ≥ (2+120/α)εn+2 =
b + 2. We will use smin to refer to the (3 + 120/α)εn quantity.

Our argument assumes that we have chosen at least one landmark from each
good set Xi. Lemma 2 argues that after selecting n′ = n

smin
lnk

δ = 1
(3+120/α)ε ln

k
δ

landmarks the probability of this happening is at least 1 − δ. Moreover, if the
target clusters are balanced in size: maxC∈CT

|C|/ minC∈CT
|C| < c for some

constant c, because the size of each good set is at least half the size of the
corresponding target cluster, it must be the case that 2sminc ·k ≥ n, so n/smin =
O(k).

Suppose that we order the clusters of C∗ such that |C∗
1 | ≥ |C∗

2 | ≥ . . . |C∗
k |,

and let ni = |C∗
i |. Define di = αw

60ε|C∗
i
| and recall that maxx,y∈Xi

d(x, y) ≤ di.
Note that because there is a landmark in each good set Xi, for radius r ≥ di

there exists some ball containing all of Xi. We use Bl(r) to denote a ball of
radius r around landmark l: Bl(r) : {s ∈ S | d(s, l) ≤ r}.

Applying Lemma 3 with all the clusters in C∗, we can see that as long as
r ≤ 3d1, a ball cannot contain points from more than one good set and balls
overlapping different good sets cannot share any points. Also, when r ≤ 3d1 and
r < di, a ball Bl(r) containing points from Xi does not satisfy |Bl(r)| ≥ T/r. To
see this, consider that for r ≤ 3d1 any ball containing points from Xi has size at
most |C∗

i |+ b < 3ni

2 ; for r < di the size bound T/r > T/di = αw
40ε/

αw
60ε|C∗

i
| = 3ni

2 .
Finally, when r = 3d1 some ball Bl(r) containing all of X1 does satisfy |Bl(r)| ≥
T/r. For r = 3d1 there is some ball containing all of X1, which must have size
at least |C∗

1 | − b ≥ n1/2. For r = 3d1 the size bound T/r = n1/2, so this ball
is large enough to satisfy this conditional. Moreover, for r ≤ 3d1 the size bound
T/r ≥ n1/2. Therefore a ball containing only bad points cannot pass our test
for r ≤ 3d1 because the number of bad points is at most b < n1/2.

Consider the smallest radius r∗ for which some ball Bl∗(r∗) satisfies |Bl∗(r∗)| ≥
T/r∗. It must be the case that r∗ ≤ 3d1, and Bl∗ overlaps with some good set Xi

because we cannot have a ball containing only bad points for r∗ ≤ 3d1. Moreover,
by our previous argument because Bl∗ contains points from Xi, it must be the
case that r∗ ≥ di, and therefore some ball contains all the points in Xi. Consider
a cluster Ĉ of all the points in balls that overlap Bl∗ : Ĉ = {s ∈ S | s ∈ Bl and
Bl ∩Bl∗ 6= ∅}, which must include all the points in Xi. In addition, Bl∗ cannot
share any points with balls that overlap other good sets because r∗ ≤ 3d1, there-
fore Ĉ does not contain points from any other good set. Therefore the cluster Ĉ
entirely contains some good set and no points from any other good set.

These facts suggest the following conceptual algorithm for finding a clustering
that classifies all the good points correctly: increment r until some ball satisfies
|Bl(r)| ≥ T/r, compute the cluster containing all points in balls that overlap
Bl(r), remove these points, and repeat until we find k clusters. We can argue
that each cluster output by the algorithm entirely contains some good set and
no points from any other good set. Each time we consider the clusters C ⊆ C∗

whose good sets have not yet been output, order them by size, and consider

the diameters di of their good sets. We apply Lemma 3 with C to argue that
while r ≤ 3d1 the radius is too small for the computed cluster to overlap any
of the remaining good sets. As before, we argue that by the time we reach 3d1

we must output some cluster. In addition, when r ≤ 3d1 we cannot output a
cluster of only bad points and whenever we output a cluster overlapping some
good set Xi, it must be the case that r ≥ di. Therefore each computed cluster
must entirely contain some good set and no points from any other good set.
If there are any unclustered points upon the completion of the algorithm, we
can assign the remaining points to any cluster. Still, we are able to classify
all the good points correctly, so the reported clustering must be closer than
b + dist(C∗, CT) < b + ε = O(ε/α) to CT .

It suffices to show that even though our algorithm only considers discrete
values of r corresponding to landmark-point distances, the output of our proce-
dure exactly matches the output of the conceptual algorithm described above.
Consider the smallest (continuous) radius r∗ for which some ball Bl1(r

∗) satisfies
|Bl1(r

∗)| ≥ T/r∗. We use dreal to refer to the largest landmark-point distance
that is at most r∗. Clearly, by the time our algorithm reaches r1 = dreal it
must be the case that Bl1 passes the test on line 19: |Bl1 | > T/r2, and this
test is not passed by any ball at any prior time. Moreover, Bl1 must be the
largest ball passing our test at this point because if there is another ball Bl2

that also satisfies our test when r1 = dreal it must be the case that |Bl1 | > |Bl2 |
because Bl1 satisfies |Bl1(r)| ≥ T/r for a smaller r. Finally because there are
no landmark-point pairs (l, s) with r1 < d(l, s) < r2, Bl(r1) = Bl(r∗) for each
landmark l ∈ L. Therefore the cluster that we compute on line 22 for Bl1(r1)
is equivalent to the cluster the conceptual algorithm computes for Bl1(r

∗). We
can repeat this argument for each cluster output by the conceptual algorithm,
showing that Algorithm 2 finds exactly the same clustering.

We note that when there is only one good set left the test in line 19 may
not be satisfied anymore if 3d1 ≥ maxx,y∈S d(x, y), where d1 is the diameter of
the remaining good set. However, in this case if we exhaust all landmark-points
pairs we report the remaining points as part of a single cluster (line 12), which
must contain the remaining good set, and possibly some additional bad points
that we consider misclassified anyway.

Using a hashed set to keep track of the points in each ball, our procedure
can be implemented in time O(|L|n log n), which is the time necessary to sort all
landmark-point pairs by distance. All other operations take asymptotically less
time. In particular, over the entire run of the algorithm, the cost of computing
the clusters in lines 21-22 is at most O(n|L|), and the cost of removing clustered
points from active balls in lines 23-28 is also at most O(n|L|). ut
Theorem 2. If we are not given the optimum objective value OPT, then we can
still find a clustering that is O(ε/α)-close to CT with probability at least 1− δ by
running Landmark-Clustering-Min-Sum at most n′n2 times with the same set of
landmarks, where the number of landmarks n′ = 1

(3+120/α)ε ln k
δ as before.

Proof. If we are not given the value of OPT then we have to estimate the thresh-
old parameter T for deciding when a cluster develops. Let us use T ∗ to refer to

its correct value (T ∗ = αOPT
40εn). We first note that there are at most n · n|L|

relevant values of T to try, where L is the set of landmarks. Our test in line 19
checks whether the product of a ball size and a ball radius is larger than T , and
there are only n possible ball sizes and |L|n possible values of a ball radius.

Suppose that we choose a set of landmarks L, |L| = n′, as before. We then
compute all n′n2 relevant values of T and order them in ascending order: Ti ≤
Ti+1 for 1 ≤ i < n′n2. Then we repeatedly execute Algorithm 2 starting on
line 2 with increasing estimates of T . Note that this is equivalent to trying all
continuous values of T in ascending order because the execution of the algorithm
does not change for any T ′ such that Ti ≤ T ′ < Ti+1. In other words, when
Ti ≤ T ′ < Ti+1, the algorithm will give the same exact answer for Ti as it would
for T ′.

Our procedure stops the first time we cluster at least n − b points, where b
is the maximum number of bad points. We give an argument that this gives an
accurate clustering with an additional error of b.

As before, we assume that we have selected at least one landmark from each
good set, which happens with probability at least 1− δ. Clearly, if we choose the
right threshold T ∗ the algorithm must cluster at least n− b points because the
clustering will contain all the good points. Therefore the first time the algorithm
clusters at least n− b points for some estimated threshold T , it must be the case
that T ≤ T ∗. Lemma 4 argues that if T ≤ T ∗ and the number of clustered points
is at least n−b, then the reported partition must be a k-clustering that contains
a distinct good set in each cluster. This clustering may exclude up to b points, all
of which may be good points. Still, if we arbitrarily assign the remaining points
we will get a clustering that is closer than 2b + ε = O(ε/α) to CT . ut

Lemma 1. If the balanced k-median instance satisfies the (1 + α, ε)-property
and each cluster in C∗ has size at least max(6, 6/α) · εn we have:

1. For all x, y in the same Xi, we have d(x, y) ≤ αw
60ε|C∗

i
| .

2. For x ∈ Xi and y ∈ Xj 6=i, d(x, y) > αw
5ε / min(|C∗

i |, |C∗
j |).

3. The number of bad points is at most b = (2 + 120/α)εn.

Proof. For part 1, since x, y ∈ Xi ⊆ C∗
i are both good, they are at distance of

at most αw
120ε|C∗

i
| to c∗i , and hence at distance of at most αw

60ε|C∗
i
| to each other.

For part 2 assume without loss of generality that |C∗
i | ≥ |C∗

j |. Both x ∈ C∗
i

and y ∈ C∗
j are good; it follows that d(y, c∗j) ≤ αw

120ε|C∗
j
| , and d(x, c∗j) > αw

4ε|C∗
j
|

because |C∗
j |d(x, c∗j) ≥ w2(x) > αw

4ε . By the triangle inequality it follows that

d(x, y) ≥ d(x, c∗j)− d(y, c∗j) ≥
αw

ε|C∗
j |

(
1
4
− 1

120
) >

αw

5ε
/ min(|C∗

i |, |C∗
j |),

where we use that |C∗
j | = min(|C∗

i |, |C∗
j |).

Part 3 follows from the maximum number of points that may not satisfy each
of the properties of the good points and the union bound. ut

Lemma 2. After selecting n
s ln k

δ points uniformly at random, where s is the
size of the smallest good set, the probability that we did not choose a point from
every good set is smaller than 1− δ.

Proof. We denote by si the cardinality of Xi. Observe that the probability of
not selecting a point from some good set Xi after nc

s samples is (1 − si

n)
nc
s ≤

(1− si

n)
nc
si ≤ (e−

si
n)

nc
si = e−c. By the union bound the probability of not selecting

a point from every good set after nc
s samples is at most ke−c, which is equal to

δ for c = lnk
δ . ut

Lemma 3. Given a subset of clusters C ⊆ C∗, and the set of the corresponding
good sets X, let smax = maxCi∈C |Ci| be the size of the largest cluster in C, and
dmin = αw

60εsmax
. Then for r ≤ 3dmin, a ball cannot overlap a good set Xi ∈ X and

any other good set, and a ball containing points from a good set Xi ∈ X cannot
share any points with a ball containing points from any other good set.

Proof. By part 2 of Lemma 1, for x ∈ Xi and y ∈ Xj 6=i we have

d(x, y) >
αw

5ε
/ min(|C∗

i |, |C∗
j |).

It follows that for x ∈ Xi ∈ X and y ∈ Xj 6=i we must have d(x, y) >
αw
5ε / min(|C∗

i |, |C∗
j |) ≥ αw

5ε /|C∗
i | > αw

5ε /smax = 12dmin, where we use the fact
that |Ci| ≤ smax. So a point in a good set in X and a point in any other good
set must be farther than 12dmin.

To prove the first part, consider a ball Bl of radius r ≤ 3dmin around land-
mark l. In other words, Bl = {s ∈ S | d(s, l) ≤ r}. If Bl overlaps a good set
in Xi ∈ X and any other good set, then it must contain a point x ∈ Xi and a
point y ∈ Xj 6=i. It follows that d(x, y) ≤ d(x, l) + d(l, y) ≤ 2r ≤ 6dmin, giving a
contradiction.

To prove the second part, consider two balls Bl1 and Bl2 of radius r ≤ 3dmin

around landmarks l1 and l2. Suppose Bl1 and Bl2 share at least one point:
Bl1 ∩ Bl2 6= ∅, and use s∗ to refer to this point. It follows that the distance
between any point x ∈ Bl1 and y ∈ Bl2 satisfies d(x, y) ≤ d(x, s∗) + d(s∗, y) ≤
[d(x, l1) + d(l1, s∗)] + [d(s∗, l2) + d(l2, y)] ≤ 4r ≤ 12dmin.

If Bl1 overlaps with Xi ∈ X and Bl2 overlaps with Xj 6=i, and the two balls
share at least one point, there must be a pair of points x ∈ Xi and y ∈ Xj 6=i

such that d(x, y) ≤ 12dmin, giving a contradiction. Therefore if Bl1 overlaps with
some good set Xi ∈ X and Bl2 overlaps with any other good set, Bl1 ∩Bl2 = ∅.

ut

Lemma 4. If T ≤ T ∗ = αw
40ε and the number of clustered points is at least n− b,

then the clustering output by Landmark-Clustering-Min-Sum using the threshold
T must be a k-clustering that contains a distinct good set in each cluster.

Proof. Our argument considers the points that are in each cluster that is output
by the algorithm. Let us call a good set covered if any of the clusters C1, . . . , Ci−1

found so far contain points from it. We will use C̄∗ to refer to the clusters in

C∗ whose good sets are not covered. It is critical to observe that if T ≤ T ∗ then
if Ci contains points from an uncovered good set, Ci cannot overlap with any
other good set.

To see this, let us order the clusters in C̄∗ by decreasing size: |C∗
1 | ≥ |C∗

2 | ≥
. . . |C∗

j |, and let ni = |C∗
i |. As before, define di = αw

60ε|C∗
i
| . Applying Lemma 3

with C̄∗ we can see that for r ≤ 3d1, a ball of radius r cannot overlap a good set
in C̄∗ and any other good set, and a ball containing points from a good set in
C̄∗ cannot share any points with a ball containing points from any other good
set. Because T ≤ T ∗ we can also argue that by the time we reach r = 3d1 we
must output some cluster.

Given this observation, it is clear that the algorithm can cover at most one
new good set in each cluster that it outputs. In addition, if a new good set
is covered this cluster may not contain points from any other good set. If the
algorithm is able to cluster at least n − b points, it must cover every good set
because the size of each good set is larger than b. So it must report k clusters
where each cluster contains points from a distinct good set. ut

5 Experimental Results
We present some preliminary results of testing our Landmark-Clustering-Min-
Sum algorithm on protein sequence data. Instead of requiring all pairwise sim-
ilarities between the sequences as input, our algorithm is able to find accurate
clusterings by using only a few BLAST calls. For each data set we first build
a BLAST database containing all the sequences, and then compare only some
of the sequences to the entire database. To compute the distance between two
sequences, we invert the bit score corresponding to their alignment, and set the
distance to infinity if no significant alignment is found. In practice we find that
this distance is almost always a metric, which is consistent with our theoretical
assumptions.

In our computational experiments we use data sets created from the Pfam
[FMT+10] (version 24.0, October 2009) and SCOP [MBHC95] (version 1.75,
June 2009) classification databases. Both of these sources classify proteins by
their evolutionary relatedness, therefore we can use their classifications as a
ground truth to evaluate the clusterings produced by our algorithm and other
methods. These are the same data sets that were used in the [VBR+10] study,
therefore we also show the results of the original Landmark-Clustering algorithm
on these data, and use the same amount of distance information for both algo-
rithms: 30k queries for each data set, where k is the number of clusters. In order
to run Landmark-Clustering-Min-Sum we need to set the parameter T . Because
in practice we do not know its correct value, we use increasing estimates of T
until we cluster enough of the points in the data set; this procedure is similar
to the algorithm for the case when we don’t know the optimum objective value
OPT and hence don’t know T . We set the k parameter using the number of
clusters in the ground truth clustering. In order to compare a computationally
derived clustering to the one given by the gold-standard classification, we use
the distance measure from the theoretical part of our work.

Because our Pfam data sets are so large, we cannot compute the full dis-
tance matrix, so we can only compare with methods that use a limited amount
of distance information. A natural choice is the following algorithm: uniformly
at random choose a set of landmarks L, |L| = d; embed each point in a d-
dimensional space using distances to L; use k-means clustering in this space
(with distances given by the Euclidian norm). This procedure uses exactly d one
versus all distance queries, so we can set d equal to the number of queries used
by the other algorithms. For SCOP data sets we are able to compute the full
distance matrix, so we can compare with a spectral clustering algorithm that
has been shown to work very well on these data [PCS06].

From Figure 2 we can see that Landmark-Clustering-Min-Sum outperforms
k-means in the embedded space on all the Pfam data sets. However, it does
not perform better than the original Landmark-Clustering algorithm on most of
these data sets. When we investigate the structure of the ground truth clusters in
these data sets, we see that the diameters of the clusters are roughly the same.
When this is the case the original algorithm will find accurate clusterings as
well [VBR+10]. Still, Landmark-Clustering-Min-Sum tends to give better results
when the original algorithm does not work well (data sets 7 and 9).

Fig. 2. Comparing the performance of k-means in the embedded space (blue),
Landmark-Clustering (red), and Landmark-Clustering-Min-Sum (green) on 10 data
sets from Pfam. Datasets 1-10 are created by uniformly at random choosing 8 families
from Pfam of size s, 1000 ≤ s ≤ 10000.

Figure 3 shows the results of our computational experiments on the SCOP
data sets. We can see that the three algorithms are comparable in performance
here. These results are encouraging because the spectral clustering algorithm
significantly outperforms other clustering algorithms on these data [PCS06].

Moreover, the spectral algorithm needs the full distance matrix as input and
takes much longer to run. When we examine the structure of the SCOP data
sets, we find that the diameters of the ground truth clusters vary considerably,
which resembles the structure implied by our approximation stability assump-
tion, assuming that the target clusters vary in size. Still, most of the time the
product of the cluster sizes and their diameters varies, so it does not quite look
like what we assume in the theoretical part of this work.

Fig. 3. Comparing the performance of spectral clustering (blue), Landmark-Clustering
(red), and Landmark-Clustering-Min-Sum (green) on 10 data sets from SCOP. Data
sets A and B are the two main examples from [PCS06], the other data sets (1-8)
are created by uniformly at random choosing 8 superfamilies from SCOP of size s,
20 ≤ s ≤ 200.

We plan to conduct further studies to find data where clusters have different
scale and there is an inverse relationship between cluster sizes and their diam-
eters. This may be the case for data that have many outliers, and the correct
clustering groups sets of outliers together rather than assigns them to arbitrary
clusters. The algorithm presented here will consider these sets to be large diam-
eter, small cardinality clusters. More generally, the algorithm presented here is
more robust because it will give an answer no matter what the structure of the
data is like, whereas the original Landmark-Clustering algorithm often fails to
find a clustering if there are no well-defined clusters in the data. The Landmark-
Clustering-Min-Sum algorithm presented here also has fewer hyperparameters
and is easier to use in practice when we do not know much about the data.

6 Conclusion

We present a new algorithm that clusters protein sequences in a limited informa-
tion setting. Instead of requiring all pairwise distances between the sequences as

input, we can find an accurate clustering using few BLAST calls. We show that
our algorithm produces accurate clusterings when compared to gold-standard
classifications, and we expect it to work even better on data who structure more
closely resembles our theoretical assumptions.

7 Acknowledgments
This work was supported in part by NSF grant CCF-0953192 and a Microsoft
Research Faculty Fellowship.

References

[AGK+04] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pan-
dit. Local search heuristics for k-median and facility location problems.
SIAM J. Comput., 33(3), 2004.

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic
local alignment search tool. J. Mol. Biol., 215(3):403–410, 1990.

[AJM09] N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approxima-
tion. In Proc. of 23rd Conference on Neural Information Processing Systems
(NIPS), 2009.

[AV07] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seed-
ing. In Proc. of 18th ACM-SIAM Symp. on Discrete Algorithms (SODA),
2007.

[BBG09] M. F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the
approximation. In Proc. of 20th ACM-SIAM Symp. on Discrete Algorithms
(SODA), 2009.

[BCR01] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering
in metric spaces. In Proc. of 33rd ACM Symp. on Theory of Computing
(STOC), 2001.

[CS07] A. Czumaj and C. Sohler. Sublinear-time approximation algorithms for
clustering via random sampling. Random Struct. Algorithms, 30(1-2):226–
256, 2007.

[FMT+10] R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O.L.
Gavin, P. Gunesekaran, G. Ceric, K. Forslund, L. Holm, E.L. Sonnhammer,
S.R. Eddy, and A. Bateman. The pfam protein families database. Nucleic
Acids Res., 38:D211–222, 2010.

[Kle03] J. Kleinberg. An impossibility theorem for clustering. In Proc. of 17th
Conference on Neural Information Processing Systems (NIPS), 2003.

[MBHC95] A.G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: a struc-
tural classification of proteins database for the investigation of sequences
and structures. J. Mol. Biol., 247:536–540, 1995.

[MOP01] N. Mishra, D. Oblinger, and L Pitt. Sublinear time approximate clustering.
In Proc. of 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2001.

[PCS06] A. Paccanaro, J. A. Casbon, and M. A. S. Saqi. Spectral clustering of
protein sequences. Nucleic Acids Res., 34(5):1571–1580, 2006.

[VBR+10] K. Voevodski, M. F. Balcan, H. Röglin, S. Teng, and Y. Xia. Efficient
clustering with limited distance information. In Proc. of 26th Conference
on Uncertainty in Artifcial Intelligence (UAI), 2010.

[ZBD09] R. B. Zadeh and S. Ben-David. A uniqueness theorem for clustering. In
Proc. of 25th Conference on Uncertainty in Artifcial Intelligence (UAI),
2009.

