Semi-Supervised Learning

Maria-Florina Balcan 11/30/2015

Two Core Aspects of Supervised Learning

Algorithm Design. How to optimize?

Computation

Automatically generate rules that do well on observed data.

• E.g.: Adaboost, SVM, etc.

Confidence Bounds, Generalization

(Labeled) Data

Confidence for rule effectiveness on future data.

· VC-dimension, Rademacher complexity, margin based bounds, etc.

Sample Complexity: Uniform Convergence Finite Hypothesis Spaces

Realizable Case

Theorem After

$$m_l \geq \frac{1}{\varepsilon} \left[\ln(|C|) + \ln\left(\frac{1}{\delta}\right) \right]$$

examples, with probab. $1-\delta$, all $h\in C$ with $err(h)\geq \varepsilon$ have $e\widehat{r}r(h)>0$.

Agnostic Case

· What if there is no perfect h?

Theorem After m examples, with probab. $\geq 1 - \delta$, all $h \in C$ have $|err(h) - e\hat{r}r(h)| < \varepsilon$, for

$$m_l \geq \frac{2}{\varepsilon^2} \left[\ln(|C|) + \ln\left(\frac{2}{\delta}\right) \right]$$

Maria-Florina Balcan

Sample Complexity: Uniform Convergence Infinite Hypothesis Spaces

- C[S] the set of splittings of dataset S using concepts from C.
- \cdot C[m] maximum number of ways to split m points using concepts in ${\it C}$; i.e. $C[m] = \max\limits_{|S|=m} |C[S]|$
- · C[m,D] expected number of splits of m points from D with concepts in C.
- Fact #1: previous results still hold if we replace |C| with C[2m].
- Fact #2: can even replace with C[2m,D].

Maria-Florina Balcan

Sample Complexity: Uniform Convergence Infinite Hypothesis Spaces

For instance:

Theorem For any class C, distrib. D, if the number of labeled examples seen m_l satisfies

$$m_l \ge \frac{2}{\varepsilon} \left[\log_2(2C[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$$

 $m_l \geq \frac{2}{\varepsilon} \left[\log_2(2C[2m]) + \log_2\left(\frac{1}{\delta}\right) \right]$ then with probab. $1-\delta$, all $h \in C$ with $err(h) \geq \varepsilon$ have $e\hat{r}r(h) > 0$.

Sauer's Lemma, $C[m]=O(m^{VC-dim(C)})$ implies:

Theorem

$$m_l = \mathrm{O}\left(\frac{1}{\varepsilon}\left[VCdim(C)\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

 $m_l = \mathrm{O}\left(\frac{1}{\varepsilon}\left[VCdim(C)\log\left(\frac{1}{\varepsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$ labeled examples are sufficient so that with probab. $1-\delta$, all $h \in C$ with $err(h) \ge \varepsilon$ have $e\hat{r}r(h) > 0$.

Sample Complexity: ϵ -Cover Bounds

- C_ϵ is an ϵ -cover for C w.r.t. D if for every $h \in C$ there is a $h' \in C_\epsilon$ which is ϵ -close to h.
- To learn, it's enough to find an $\epsilon\text{-cover}$ and then do empirical risk minimization w.r.t. the functions in this cover.
- In principle, in the realizable case, the number of labeled examples we need is

$$O\left(\frac{1}{\varepsilon}\left[\ln(|C_{\epsilon/4}|) + \ln\left(\frac{1}{\delta}\right)\right]\right)$$

Usually, for fixed distributions.

Maria-Florina Balcan

Sample Complexity: ϵ -Cover Bounds

Can be much better than Uniform-Convergence bounds!

Simple Example (Realizable case)

- X={1, 2, ...,n}, $C = C_1 \cup C_2$, D= uniform over X.
- C_1 the class of all functions that predict positive on at most $\epsilon \le n/4$ examples.
- C_2 the class of all functions that predict negative on at most $\epsilon \le n/4$ examples.

If the number of labeled examples $m_j < \epsilon \cdot n/4$, don't have uniform convergence yet.

The size of the smallest $\epsilon/4\text{-cover}$ is 2, so we can learn with only $O(1/\epsilon)$ labeled examples.

In fact, since the elements of this cover are far apart, much fewer examples are sufficient.

Maria-Florina Balcan

Classic Paradigm Insufficient Nowadays

Modern applications: massive amounts of raw data.

Only a tiny fraction can be annotated by human experts.

Protein sequences

Billions of webpages

Images

Semi-supervised Learning

- · Major topic of research in ML.
- Several methods have been developed to try to use unlabeled data to improve performance, e.g.:
 - Transductive SVM [Joachims '99]
 - Co-training [Blum & Mitchell '98]
 - Graph-based methods [B&C01], [ZGL03]

Test of time awards at ICML!

Workshops [ICML '03, ICML' 05, ...]

- Books: Semi-Supervised Learning, MIT 2006 O. Chapelle, B. Scholkopf and A. Zien (eds)
 - Introduction to Semi-Supervised Learning, Morgan & Claypool, 2009 Zhu & Goldberg

Semi-supervised Learning

- Major topic of research in ML.
- · Several methods have been developed to try to use unlabeled data to improve performance, e.g.:
 - Transductive SVM [Joachims '99]
 - Co-training [Blum & Mitchell '98]
 - Graph-based methods [B&C01], [ZGL03]

Test of time

awards at ICML!

Both wide spread applications and solid foundational understanding!!!

Semi-supervised Learning

- Major topic of research in ML.
- Several methods have been developed to try to use unlabeled data to improve performance, e.g.:
 - Transductive SVM [Joachims '99]
 - Co-training [Blum & Mitchell '98]
 - Graph-based methods [B&CO1], [ZGLO3]

Test of time awards at ICML!

They all exploit unlabeled data in different, very interesting and creative ways.

Semi-supervised learning: no querying. Just have lots of additional unlabeled data.

A bit puzzling; unclear what unlabeled data can do for us.... It is missing the most important info. How can it help us in substantial ways?

Key Insight

Unlabeled data useful if we have beliefs not only about the form of the target, but also about its relationship with the underlying distribution.

Can we extend the PAC/SLT models to deal with Unlabeled Data?

- PAC/SLT models nice/standard models for learning from labeled data.
- Goal extend them naturally to the case of learning from both labeled and unlabeled data.
 - Different algorithms are based on different assumptions about how data should behave.
 - Question how to capture many of the assumptions typically used?

Maria-Florina Balcan

Example of "typical" assumption: Margins The separator goes through low density regions of the space/large margin. assume we are looking for linear separator belief: should exist one with large separation

Another Example: Self-consistency

- Agreement between two parts: co-training.
 - examples contain two sufficient sets of features, i.e. an example is $x=\langle \ x_1, \ x_2 \ \rangle$ and the belief is that the two parts of the example are consistent, i.e. $\exists \ c_1, \ c_2$ such that $c_1(x_1)=c_2(x_2)=c^*(x)$
 - for example, if we want to classify web pages: $x = \langle x_1, x_2 \rangle$

Maria-Florina Balcan

Co-training: Theoretical Guarantees

- · What properties do we need for co-training to work well?
- We need assumptions about:
 - 1. the underlying data distribution
 - 2. the learning algorithms on the two sides

[Blum & Mitchell, COLT '98]

- 1. Independence given the label
- 2. Alg. for learning from random noise.

[Balcan, Blum, Yang, NIPS 2004]

- 1. Distributional expansion.
- 2. Alg. for learning from positve data only.

Maria-Florina Balcan

Problems thinking about SSL in the PAC model

- PAC model talks of learning a class C under (known or unknown) distribution D.
 - Not clear what unlabeled data can do for you.
 - Doesn't give you any info about which $c \in \mathcal{C}$ is the target function.
- Can we extend the PAC model to capture these (and more) uses of unlabeled data?
 - Give a unified framework for understanding when and why unlabeled data can help.

Maria-Florina Balcan

New discriminative model for SSL

 $S_u=\{x_i\} - x_i \text{ i.i.d. from D and } S_l=\{(x_i, y_i)\} - x_i \text{ i.i.d. from D}, y_i=c^*(x_i).$

Problems with thinking about SSL in standard WC models

- PAC or SLT: learn a class C under (known or unknown) distribution D.
 a complete disconnect between the target and D
- Unlabeled data doesn't give any info about which $c \in C$ is the target.

Key Insight

Unlabeled data useful if we have beliefs not only about the form of the target, but also about its relationship with the underlying distribution.

New model for SSL, Main Ideas

Augment the notion of a concept class C with a notion of compatibility χ between a concept and the data distribution.

"learn C" becomes "learn (C_{χ})" (learn class C under χ)

Express relationships that target and underlying distr. possess.

Idea I: use unlabeled data & belief that target is campostible to reduce C down to just {the highly compatible functions $in^{\circ}_{i}C^{\circ}_{j}$.

Class of fns C e.g., linear separators abstract prior χ unlabeled data
finite sample

abstract prior χ Compatible fins in C

nple linear separators

Idea II: degree of compatibility estimated from a finite sample.

26

Formally

Idea II: degree of compatibility estimated from a finite sample.

Require compatibility $\chi(h,D)$ to be expectation over individual examples. (don't need to be so strict but this is cleanest)

 $\chi(h,D)$ = $E_{x\in D}[\chi(h,x)]$ compatibility of h with D, $\chi(h,x)\in [0,1]$

View *in*compatibility as unlabeled error rate $err_{unl}(h)=1-\chi(h,\,D)$ incompatibility of h with D

Margins, Compatibility

· Margins: belief is that should exist a large margin separator.

- Incompatibility of h and D (unlabeled error rate of h) the probability mass within distance γ of h.
- Can be written as an expectation over individual examples $\chi(h,D)\text{=}E_{x\;\in\;D}[\chi(h,x)]$ where:
 - $\chi(h,x)=0$ if $dist(x,h) \le \gamma$
 - $\chi(h,x)=1$ if dist(x,h) $\geq \gamma$

Maria-Florina Balcan

27

Margins, Compatibility

· Margins: belief is that should exist a large margin separator.

If do not want to commit to γ in advance, define $\chi(\textbf{h},\textbf{x})$ to be a smooth function of dist(x,h), e.g.:

$$\chi(h,x) = 1 - e^{\left[-\frac{dist(x,h)}{2\sigma^2}\right]}$$

Illegal notion of compatibility: the largest γ s.t. D has probability mass exactly zero within distance γ of h.

Co-Training, Compatibility

- Co-training: examples come as pairs \langle x_1, x_2 \rangle and the goal is to learn a pair of functions $\langle h_1, h_2 \rangle$
- Hope is that the two parts of the example are consistent.
- Legal (and natural) notion of compatibility:
 - the compatibility of $\langle h_1, h_2 \rangle$ and D:

$$\Pr_{\langle x_1, x_2 \rangle \in D}[h_1(x_1) = h_2(x_2)]$$

- can be written as an expectation over examples:

$$\chi(\langle h_1, h_2 \rangle, \langle x_1, x_2 \rangle) = 1 \text{ if } h_1(x_1) = h_2(x_2)$$

$$\chi(\langle h_1, h_2 \rangle, \langle x_1, x_2 \rangle) = 0$$
 if $h_1(x_1) \neq h_2(x_2)$

Maria-Florina Balcan

Types of Results in the [BB05] Model

· As in the usual PAC model, can discuss algorithmic and sample complexity issues.

Sample Complexity issues that we can address:

- How much unlabeled data we need:
 - depends both on the complexity of C and the complexity of our notion of compatibility.
- Ability of unlabeled data to reduce number of labeled examples needed:
 - compatibility of the target
 - · (various measures of) the helpfulness of the distribution
- Give both uniform convergence bounds and epsilon-cover based bounds.

Examples of results: Sample Complexity - Uniform convergence bound

Finite Hypothesis Spaces, Doubly Realizable Case

• Define $C_{D,\gamma}(\epsilon) = \{h \in C : err_{unl}(h) \leq \epsilon\}.$

Theorem

If we see

$$m_u \geq \frac{1}{\varepsilon} \left[\ln |C| + \ln \frac{2}{\delta} \right]$$

unlabeled examples and

$$m_l \geq \frac{1}{\varepsilon} \left[\ln |C_{D,\chi}(\varepsilon)| + \ln \frac{2}{\delta} \right]$$

labeled examples, then with probab. $\geq 1-\delta$, all $h\in C$ with $\hat{err}(h)=0$ and $e\hat{r}r_{unl}(h) = 0$ have $err(h) \leq \varepsilon$.

- Bound the # of labeled examples as a measure of the helpfulness of D with respect to χ - a helpful distribution is one in which $\textit{C}_{\text{D}_{x}}(\epsilon)$ is small

Maria-Florina Balcan

Examples of results: Sample Complexity - Uniform convergence bound

Simple algorithm: pick a compatible concept that agrees with the labeled sample.

If we see

$$m_u \geq \frac{1}{\varepsilon} \left[\ln |C| + \ln \frac{2}{\delta} \right]$$

unlabeled examples and

$$m_l \ge \frac{1}{\varepsilon} \left[\ln |C_{D,\chi}(\varepsilon)| + \ln \frac{2}{\delta} \right]$$

 $m_l \geq \frac{1}{\varepsilon} \left[\ln |C_{D,\chi}(\varepsilon)| + \ln \frac{2}{\delta} \right]$ labeled examples, then with probability $\geq 1-\delta$, all $h \in C$ with $\hat{err}(h) = 0$ and $e\hat{r}r_{unl}(h) = 0$ have $err(h) \leq \varepsilon$.

Maria-Florina Balcan

Sample Complexity, Uniform Convergence Bounds

If we see

If we see
$$m_u \geq \frac{1}{\varepsilon} \left[\ln |C| + \ln \frac{2}{\delta} \right]$$
 unlabeled examples and
$$m_l \geq \frac{1}{\varepsilon} \left[\ln |C_{D,\chi}(\varepsilon)| + \ln \frac{2}{\delta} \right]$$

$$C_{D,\chi}(\varepsilon) = \{ h \in C : \operatorname{err}_{\operatorname{un}}(h) \in C_{D,\chi}(\varepsilon) \}$$

 $C_{D,\chi}(\epsilon) = \{h \in C : err_{uni}(h) \leq \epsilon\}$

labeled examples, then with prob. $\geq 1-\delta$, all $h\in C$ with $\hat{err}(h)=0$ and $\hat{err}_{unl}(h) = 0$ (compatible with the sample) have $err(h) \leq \varepsilon$.

Probability that h with $err_{unl}(h)$ ϵ is compatible with S_u is $(1-\epsilon)^{m_u} \leq \delta/(2\,|\mathcal{C}|)$ By union bound, prob. 1- $\delta/2$ only hyp in $C_{D,r}(\epsilon)$ are compatible with S_u

 m_l large enough to ensure that none of fns in $\mathcal{C}_{D,\chi}(\epsilon)$ with $\text{err}(h) \geq \epsilon$ have ans4 empirical error rate of 0.

Sample Complexity, Uniform Convergence Bounds

examples and
$$m_l \geq \frac{1}{\varepsilon} \left[\ln |C_{D,\chi}(\varepsilon)| + \ln \frac{2}{\delta} \right]$$

 $C_{D,\chi}(\varepsilon) = \{h \in C : err_{uni}(h) \le \varepsilon\}$

labeled examples, then with prob. $\geq 1-\delta$, all $h\in C$ with $e\hat{r}r(h)=0$ and $e\hat{r}r_{unl}(h)=0$ (compatible with the sample) have $err(h)\leq \varepsilon$.

Bound # of labeled examples as a measure of the helpfulness of D wrt χ

- helpful D is one in which $C_{\mathrm{D},\chi}$ (ϵ) is small

35

Sample Complexity, Uniform Convergence Bounds

unlabeled examples and

labeled examples, then with prob. $\geq 1-\delta$, all $h\in C$ with $\hat{err}(h)=0$ and compatible with the sample have $err(h)\leq \varepsilon$.

Helpful distribution

(Highly compatible)

Non-helpful distribution

Examples of results: Sample Complexity - Uniform convergence bounds

Finite Hypothesis Spaces - c* not fully compatible: Theorem

Given $t \in [0, 1]$, if we see

$$m_u \ge \frac{2}{c^2} \left[\ln |C| + \ln \frac{4}{\delta} \right]$$

Given
$$t\in[0,1]$$
, if we see
$$m_u\geq\frac{2}{\varepsilon^2}\left[\ln|C|+\ln\frac{4}{\delta}\right]$$
 unlabeled examples and
$$m_l\geq\frac{1}{\varepsilon}\left[\ln|C_{D,\chi}(t+2\varepsilon)|+\ln\frac{2}{\delta}\right]$$

labeled examples, then with prob. $\geq 1-\delta$, all $h\in C$ with $\widehat{err}(h)=0$ and $\widehat{err}_{unl}(h) \leq t + \varepsilon$ have $err(h) \leq \varepsilon$; furthermore all $h \in C$ with $err_{unl}(h) \leq t$ have $\widehat{err}_{unl}(h) \leq t + \varepsilon$.

Implication If $err_{unl}(c^*) \leq t$ and $err(c^*) = 0$ then with probability $\geq 1 - \delta$ the $h \in C$ that optimizes $\widehat{err}(h)$ and $\widehat{err}_{unl}(h)$ has $err(h) \leq \epsilon$.

Maria-Florina Balcan

Examples of results: Sample Complexity - Uniform convergence bounds

Infinite Hypothesis Spaces

Assume $\chi(h,x) \in \{0,1\}$ and $\chi(\mathcal{C}) = \{\chi_h : h \in \mathcal{C}\}$ where $\chi_h(x) = \chi(h,x)$.

C[m,D] - expected # of splits of m points from D with concepts in C.

Theorem

$$m_u = O\left(\frac{VCdim\left(\chi(C)\right)}{\varepsilon^2}\log\frac{1}{\varepsilon} + \frac{1}{\varepsilon^2}\log\frac{2}{\delta}\right)$$

unlabeled examples and

$$m_l > \frac{2}{\varepsilon} \left[\log(2s) + \log \frac{2}{\delta} \right]$$

labeled examples, where

$$s = C_{D,\chi}(t+2\varepsilon)[2m_l,D]$$

are sufficient so that with probability at least $1-\delta$, all $h\in C$ with $\widehat{err}(h)=0$ and $\widehat{err}_{unl}(h) \leq t + \varepsilon$ have $err(h) \leq \varepsilon$; furthermore all $h \in C$ have

$$|err_{unl}(h) - \widehat{err}_{unl}(h)| \le \varepsilon$$

Implication: If $err_{unl}(c^*) \leq t$, then with probab. $\geq 1 - \delta$, the $h \in C$ that optimizes both $\widehat{err}(h)$ and $\widehat{err}_{unl}(h)$ has $err(h) \leq \varepsilon$.

Maria-Florina Balcan

Examples of results: Sample Complexity - Uniform convergence bounds

- For $S \subseteq X$, denote by U_S the uniform distribution over S, and by $C[m, U_S]$ the expected number of splits of m points from $U_{\rm S}$ with concepts in C.
- Assume err(c*)=0 and err_{unl}(c*)=0.
- · Theorem

An unlabeled sample $\mathcal S$ of size

$$O\left(\frac{\max[VCdim(C),VCdim(\chi(C))]}{\epsilon^2}log\frac{1}{\epsilon} + \frac{1}{\epsilon^2}log\frac{2}{\delta}\right)$$

is sufficient so that if we label m_l examples drawn uniformly at random from S, where

$$m_l > \frac{4}{\epsilon} \left[\log(2s) + \log \frac{2}{\delta} \right]$$
 and $s = C_{S,\chi}(0)[2m_l, U_S]$

then with probability $\geq 1-\delta$, all $h\in C$ with $\widehat{err}(h)=0$ and $\widehat{err}_{unl}(h)=0$ have

- · The number of labeled examples depends on the unlabeled sample.
- Useful since can imagine the learning alg. performing some calculations over the unlabeled data and then deciding how many labeled examples to purchase.

Sample Complexity Subtleties

Uniform Convergence Bounds

Theorem

 $m_u = O\left(\frac{VCdim\left(\chi(C)\right)}{\varepsilon^2}\log\frac{1}{\varepsilon} + \frac{1}{\varepsilon^2}\log\frac{2}{\delta}\right)$

Distr. dependent measure of complexity

Depends both on the complexity of C and on

 $m_l > \frac{2}{\varepsilon} \left[\log(2s) + \log\frac{2}{\delta} \right]$ labeled examples, where

 $s = C_{D,\chi}(t + 2\varepsilon)[2m_l, D]$

are sufficient s. t. with probab. $1-\delta$, all $h\in C$ with $\widehat{err}(h)=0$ and $\widehat{err}_{unl}(h)\leq t+\varepsilon$ have $err(h) < \varepsilon$.

ε-Cover bounds much better than thin form Convergence bounds.

For algorithms that behave in a specific way:

- first use the ur Highly compatible choose a representative set of compatible hypotheses
- · then use the labeled sample to choose among these

Examples of results: Sample Complexity, &-Coverbased bounds

- For algorithms that behave in a specific way:
 - first use the unlabeled data to choose a representative set of compatible hypotheses
 - then use the labeled sample to choose among these

Theorem

If t is an upper bound for $err_{unl}(c^*)$ and p is the size of a minimum $\varepsilon-$ cover for $C_{D,\chi}(t+4\varepsilon),$ then using

$$m_u = O\left(\frac{VCdim(\chi(C))}{\varepsilon^2}log\frac{1}{\varepsilon} + \frac{1}{\varepsilon^2}log\frac{2}{\delta}\right)$$

unlabeled examples and

$$m_l = O\left(\frac{1}{\varepsilon} \ln \frac{p}{\delta}\right)$$

labeled examples, we can with probab. $1-\delta$ identify a hyp. which is 10ϵ close to c^* .

· Can result in much better bound than uniform convergence!

Maria-Florina Balcan

Implications of the [BB05, BB'10] analysis

Ways in which unlabeled data can help

- If c* is highly compatible with D and have enough unlabeled data to estimate χ over all h ∈ C, then can reduce the search space (from C down to just those h ∈ C whose estimated unlabeled error rate is low).
- By providing an estimate of D, unlabeled data can allow a more refined distribution-specific notion of hypothesis space size (e.g., Annealed VC-entropy or the size of the smallest ε-cover).
- If D is nice so that the set of compatible h ∈ C has a small scover and the elements of the cover are far apart, then can learn from even fewer labeled examples than the 1/s needed just to verify a good hypothesis.

Maria-Florina Balcan

Readings:

- Semi-Supervised Learning. Encyclopedia of Machine Learning. Jerry Zhu, 2010
- A Discriminative Model for Semi-Supervised Learning. Balcan-Blum, JACM 2010.