10-806 Foundations of Machine Learning and Data Science

Lecturer: Avrim Blum 10/21/15

The Adversarial Multi-armed Bandit
Problem

(2nd-half of lecture)

Plan for second-half of lecture

Online optimization / combining expert advice but:

 What if we only get feedback for the action we chose? (called the "multi-armed bandit" setting)

- · Can we still achieve good regret bounds?
- But first, a quick discussion of [0,1] vs {0,1} costs for RWM algorithm

[0,1] costs vs {0,1} costs.

We analyzed Randomized Wtd Majority for case that all costs in {0,1} (and slightly hand-waved extension to [0,1])
Here is an alternative simple way to extend to [0,1].

 Given cost vector c, view c_i as bias of coin. Flip to create vector c' ∈ {0,1}ⁿ, s.t. E[c'_i] = c_i. Feed c' to alg A.

- For any sequence of vectors c' ∈ {0,1}ⁿ, we have:
 E_A[cost'(A)] ≤ min_i cost'(i) + [regret term]
- So, $E_{\$}[E_{A}[\cos t'(A)]] \le E_{\$}[\min_{i} \cos t'(i)] + [regret term]$
- LHS is $E_A[cost(A)] \le E_S[min_i cost(A)] = E_S[c' \cdot \vec{p}] = c \cdot \vec{p}$
- RHS ≤ min_i E_k[cost'(i)] + [r.t.] = min_i[cost(i)] + [r.t.]
- In other words, costs between 0 and 1 just make the problem easier...

Experts → Bandit setting

- In the bandit setting, only get feedback for the action we choose. Still want to compete with best action in hindsight.
- [ACF502] give algorithm with expected cumulative regret O((TN log N)^{1/2}).

 [average per-day regret O(((N log N)/T)^{1/2}).]
- Will do a somewhat weaker version of their analysis (same algorithm but not as tight a bound).
- For variety, will talk about it in the context of gains instead of losses.

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world cup).
- · For t=1,2,...T
 - Seller sets price pt
 - Buyer arrives with valuation v^t
 - If $v^{\dagger} \ge p^{\dagger}$, buyer purchases and pays p^{\dagger} , else doesn't.
 - Repeat.
- Assume all valuations \leq h.
- Goal: do nearly as well as best price in hindsight.

View each possible

price as a different

action/expert

Online pricing

If v' revealed, run RWM. $\mathsf{E}[\mathsf{gain}] \geq \mathsf{OPT}(1-\epsilon)$ - $O(\epsilon^{-1} \, \mathsf{h} \, \mathsf{log} \, \mathsf{n})$.

(algo scales gains to [0,1]; gets $\mathbf{E}[\mathbf{gain}] \geq \mathit{OPT}(1-\epsilon) - O(\epsilon^{-1}\log n)$ in the scaled world, which translates to above bound in the original world; i.e., by reduction)

- ocher sers price p
- Buyer arrives with valuation \boldsymbol{v}^{t}
- If $v^t \geq p^t,$ buyer purchases and pays $p^t,$ else doesn't.
- Repeat.
- Assume all valuations \leq h.
- Goal: do nearly as well as best fixed price in hindsight.

