10-806 Foundations of Machine Learning
and Data Science

Lecturer: Avrim Blum 10/21/15

The Adversarial Multi-armed Bandit
Problem

(2nd-half of lecture)

[0,1] costs vs {0,1} costs.

We analyzed Randomized W+d Majority for case that all
costs in {0,1} (and slightly hand-waved extension to [0,1])

Here is an alternative simple way to extend to [0,1].
Given cost vector c, view c; as bias of coin. Flip fo create
vector ¢' € {0,1}", s.t. E[c]] = ¢, Feed ¢ toalg A.

world € $ ¢ A
For any sequence of vectors c' € {0,1}", we have:
Ea[cost'(A)] < min; cost'(i) + [regret term] Sl

So, E4[Ea[cost'(A)]] < Eglmin; cost'(i)] + [regret term]
LHS is Ex[cost(A)]. (since Eg[Ealcost’ (A)]] = Eslc’ - 5l = ¢ - B)
RHS < min; Eg[cost'(i)] + [r.t.] = min[cost(i)] + [r.t.]

In other words, costs between O and 1 just make the

Plan for second-half of lecture

Online optimization / combining expert advice but:
What if we only get feedback for the action we chose?
(called the "multi-armed bandit" setting)

Robots
RUs

_i} 32 min
Can we still achieve good regret bounds?

But first, a quick discussion of [0,1] vs {0,1} costs for
RWM algorithm

Experts — Bandit setting

In the bandit setting, only get feedback for the action
we choose. Still want to compete with best action in
hindsight.

[ACFS02] give algorithm with expected cumulative
regret O( (TN log N)/2),

[average per-day regret O( ((N log N)/T)2).]

Will do a somewhat weaker version of their analysis
(same algorithm but not as tight a bound).

For variety, will talk about it in the context of gains
instead of losses.

problem easier...

Online pricing
Say you are selling lemonade (or a cool new software tool, or
bottles of water at the world cup).
For t=1,2,.T
Seller sets price p*
Buyer arrives with valuation v*
If vt > p, buyer purchases and pays p', else doesn't.
Repeat.

View each possible
price as a different
action/expert

Assume all valuations < h.

Goal: do nearly as well as besy ffi
price in hindsight.

Online pricing

If v* revealed, run RWM. E[gain] > OPT(1-¢) - O(e! h log n).

(algo scales gains to [0,1]; gets E[gain] = OPT(1 — €) — O(e~*logn) in the scaled
world, which translates to above bound in the original world; i.e., by reduction)

Buyer arrives with valuation v*
If vf > pt, buyer purchases and pays p', else doesn't.
Repeat.

Assume all valuations < h.

Goal: do nearly as well as best fixed
price in hindsight.




Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (exp3)

[Auer Cesa-Bianchi,Freund,Schapire]

Distrib p*
Experti~q* qt
Gain g EXP3 Gain vector §* RWM
< nh/y
q" = (1) + v unif ne
#experts
§'=(0...0, g#/40....0)

1.RWM believgigain istp'- §' = p(g'/q") = g'awm

2.%. g'rwm = OPT (1-€) - O(e? nh/~ log n)

3. Actual gain is: g;' = g'rwm (q"/Pi") > 9Tawm(1-7)

4 E[OPT] > OPT. Because E[§]= (I- )0 + 4(g;/q) = 9/,
so E[max;[%, §;']] > max;[ E[X, §;']] = OPT.

A~
OPT

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

[Auer Cesa-Bianchi,Freund,Schapire]

Experti~q"

Gain g/

Distrib p*

Gain vector §*

Conclusion (y = e):

qt = (1-9)p* + ,),

§'=(0...0, 9//4'0...0)

E[Exp3] > OPT(1-€)? - O(e? nh log(n))

RWM

n=
#experts

A~
OPT




