10-806 Foundations of Machine Learning and Data Science

Lecturer: Avrim Blum Lecture 12: October 19, 2015

1 Recap: Follow the Regularized Leader

The idea of FTRL is we run FTL but add in a fake “day 0”, where the loss on day 0 is given by
a penalty function on hypotheses called a regularizer R : C — [0,00). We now run FTL where we
include the fake day 0. So, now the algorithm looks as follows:

Follow the Regularized Leader (FTRL):

e Begin with hy = argmingec R(h).
e Fort=2,3,...1et hy = argminpee[R(h) + (¢1(h) + ...+ Li—1(h))].

If we can find a function R such that hypotheses don’t change quickly and yet R’s penalties do not
get too large, we will perform well. Specifically, Theorem 1 from last time immediately implies the
following bound for Follow the Regularized Leader.

Theorem 1 Let hy = argmin,o[R(h)+ (€1(h)+ ...+ 4—1(h))], as in FTRL. Then for any T, for
any sequence of T loss functions, for any h* € C, we have:

T T T
> l(he) =Y b(h*) <Y [l(he) — be(hega)] + [R(R*) — R(ha)]. (1)
t=1 t=1 t=1

We can interpret this as follows. Suppose there is structure on the loss functions so that similar
hypotheses have similar losses (e.g., perhaps they are linear functions) and suppose we can come
up with a regularizer that guarantees that hypotheses change slowly, guaranteeing that ¢;(h;) —
li(hiy1) < e. Then our regret will be at most €' + maxpec R(h).

1.1 FTRL with a quadratic regularizer for linear optimization

Let’s apply this to the following natural scenario. Suppose that we are doing online linear optimiza-
tion. C is the set of all points in R", and the losses are linear functions. That is, ¢;(h) = (¢, h).
We need to keep losses (or gains) bounded so let’s assume ||¢;|| < 1 and also that we are going to

compete with the optimal h* such that ||h*|| < 1. Let’s use a regularizer R(h) = \/thHQ So we
will start off with h; = 0 and run FTRL from there.
We need to figure out how far apart hy4q is from h;. To do this, let’s look at the formula for
hiy1 = argminh[\/% |h||2 +3E_(£;, h)]. Taking partial derivatives in each coordinate and setting
them to 0 we get that in each coordinate j we have \/ﬁhtﬂ,j + Etr:1 ¢;; = 0 which implies that
hiy1 = \/ﬁ Zt 1 ¢r. Equivalently, hyy; = hy — \/ﬁﬁ

This tells us two things: first of all, this algorithm is equivalent to doing online gradient descent.

Secondly, ¢1(ht) — li(hty1) = (b, he — hey1) = ﬁ(ft,ft) < \/% So, overall, our total regret is at

most B() + 5L, L < /T4 \/T = yaT.

Extensions: convex sets, convex functions

If C is not all of R™ but instead a convex set in R™, then for this regularizer each h; will just be the
projection of the overall minimizer onto C (the nearest point to it in C). Since projecting points
to a convex set can only decrease their distance, this can only shrink the distance between h; and

hit1.

Another extension is that if each ¢;(h) is not a linear function but is convex, then notice that if
we just replace ¢; with a tangent plane to ¢; at h; this will only make the problem harder (h; pays
the same, and h* perhaps pays less). Since translations don’t change regret, we can translate that
tangent plane to go through the origin, making it a linear function. Another way to say this is that
if we have convex loss functions, we can reduce to the linear case by running FTRL on subgradients
of the loss functions.

2 Online Learning III: Follow the Perturbed Leader

2.1 Making this more tangible

The above setting looks fairly abstract. Let’s now look at some more tangible problems we can
model this way, or close to this way. This will then lead us to another algorithm that is sometimes
more efficient. From now on we will assume the loss functions are linear, so we can think of them
as vectors with £, (h) = (¢4, h).

Online ranking: Imagine a search engine that given a query g outputs a list hy of web pages. The
user clicks on one, and we define the loss of A1 as the depth in the list of the web-page that was
clicked. The next time ¢ is queried we give a different ordering hs of these web pages, and the user
this time clicks on (perhaps) a different page. Our goal is to do nearly as well as best fixed ordering
of these pages in hindsight. Suppose there are n webpages in our list, and to keep the losses in [0, 1]
let’s say the loss for the user clicking the top web page is 1/n, for clicking the second web page
on the list is 2/n, and so on, down to n/n for the last one. We could model this as an “experts”
problem with n! experts but that would be too much computation. Instead, let C be the set of all
n! points in R"™ with coordinates {1/n,2/n,...,n/n} in some order, with the interpretation that
each coordinate is one of the web-pages and the value of that coordinate is the depth of that page
in the list (divided by m). If the user at time ¢ clicks on web-page i, define ¢; = ¢; to be the unit
vector in coordinate i. Then (¢;, h;) is the loss of ordering h;.

Online shortest paths: Consider the following adaptive route-choosing problem. Imagine each
day you have to drive between two points s and t. You have a map (a graph G) but you don’t
know what traffic will be like (what the cost of each edge will be that day). Say the costs are only
revealed to you after you get to . We can model this by having one dimension per edge, and each
path is represented by the indicator vector listing the edges in the path. Then the loss vector ¢;
is just the vector with the costs of each edge that day. Notice that you could represent this as an
experts problem also, with one expert per path, but the number of s-t paths can be exponential

in the number of edges in the graph (e.g., think of the case of a grid). However, given any set
of edge lengths, we can efficiently compute the best path for that cost vector, since that is just a
shortest-path problem. You don’t have to explicitly list all possible paths.

The standard expert setting: We can also model the standard experts setting by having one
coordinate per expert, and defining C to be the simplex C = {p = (p1,...,pn) : >_;pi = 1 and p; >
0 Vj}. Note that now |[¢]| could be as large as y/n if all experts have loss of 1.

2.2 Follow the Perturbed Leader

Notice that in the ranking and shortest path examples above, the set C is discrete, and therefore
not convex. However, both cases have the nice property that ERM can be performed efficiently:
in the case of ranking, this is just ordering the items by frequency. In the case of online shortest
paths, this is just summing all the loss vectors and then solving a shortest path problem.

This now motivates the Follow the Perturbed Leader algorithm, where instead of adding a convex
regularizer over a convex set, we add a probabilistic linear regularizer over a discrete set. That
is, we add in a fake “day 0” (which is linear just like the other days) where the losses for that
day are chosen randomly from an appropriate probability distribution. From then on, we just run
ERM with the fake day included which as we said can be done efficiently. We then show that our
regret will be low in expectation. For this analysis, we will assume that the series of loss vectors
01,0y, ... has been determined in advance by the world (but the future is just unknown to us), so
that new loss vectors do not depend on our algorithm’s previous actions. (E.g., we are not buying
enough stocks to affect the market). This means that in analyzing regret, we can think of it as “for
any sequence of loss vectors, our expected loss will be close to the loss of the best h € C for that
sequence”. We'll see where specifically we use this in the argument.

We also assume the following boundedness conditions:

e The maximum L; length of any loss vector ¢; is 1.

e The maximum L; distance between any two h,h’ € C is D (i.e., D is the diameter of C).

We will choose loss vector ¢y at random in [0, 2/¢]™, where n is the dimension of the space.

2.3 Analysis

We can directly apply Theorem 1 to this scenario, using R(h) = (€y, h). For any h* € C, we have:

T T T

D blhe) =3 b(h*) < D 1l(he) = belhusa)] + [o(R7) — bo(ha)]-

t=1 t=1 t=1

The last term on the RHS is easy to analyze. Since C has L; diameter D, and each coordinate in
{y is at most 2/¢, the value of £y(h*) — lp(h1) is at most 2D /e. So, what remains is to analyze the
expected value of ¢¢(hy) — €4 (hyy1). By linearity of expectation, this is E[¢;(h:)] — E[fi(hit1)].

Now, to help us notationally, given two points a,b € R", define Boxz(a,b) = {z : a; < x; < b; Vi}.
2 2 2 2)

€r " €

So, the algorithm is choosing ¢y at random in Box(0, 2) where 2 = (

Let p be the fraction of Box(0, 2) that lies outside Box(f;, 2). By symmetry, this is also the fraction

of Box(0, 2) that lies outside Bozx(0, 2 _ ¢;). By the fact that ¢, has Ly length at most 1, we have
p < €/2, which can be seen by adding up the portion outside, coordinate by coordinate.

We can now write:

E[t¢(h)] = (1-p)E [&(ht)lfo € Box (ft, f) + pE

gt(ht)wo ¢ BOI‘ (Et, i>‘| 5

E[€t<ht+1)] = (1 —p)E [zt(ht+1)’€0 € Bozx (6, % — Et)

—

S 2
+ pE ét(ht+1)]€0 ¢ Box <0, Z — €t>] .

Here is the key: notice that the first terms on the RHS in the two equations above are equal!
That is because the distribution on £y + ...+ ¢;_1 given that ¢y € Box(s, %) is identical to the

distribution on £ + ...+ {; given that £ € Box(ﬁ, % —4;).} So, the distribution on h; in the term
in the first equation is equal to the distribution on h;41 in the corresponding term in the second
equation. So, all we need to worry about is the second term. But since p < €/2, in the worst case
the difference here is at most De/2 where D was the Ly diameter of C.2

So, overall, our expected regret is at most 2D /e + T'De/2. Setting € = 2/+/T, our expected regret
is at most 2DV/T.

For more information on FPL, see [1].

References

[1] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291 — 307, 2005.

'This is where we are using the fact that the quantities ¢1,...,¢; have been determined in advance, before ¢y is
chosen.

2Technically, for this part we could use the Lo, diameter of C since we’ve bounded the L; length of the loss vectors
by 1.

